JP2014085035A - Composite boiler - Google Patents

Composite boiler Download PDF

Info

Publication number
JP2014085035A
JP2014085035A JP2012233025A JP2012233025A JP2014085035A JP 2014085035 A JP2014085035 A JP 2014085035A JP 2012233025 A JP2012233025 A JP 2012233025A JP 2012233025 A JP2012233025 A JP 2012233025A JP 2014085035 A JP2014085035 A JP 2014085035A
Authority
JP
Japan
Prior art keywords
pressure steam
exhaust gas
low
chamber
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012233025A
Other languages
Japanese (ja)
Inventor
Satoshi Morikawa
智 森川
Yoshihiko Totani
美彦 戸澗
Hiroki Endo
弘樹 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2012233025A priority Critical patent/JP2014085035A/en
Publication of JP2014085035A publication Critical patent/JP2014085035A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite boiler which can balance reduction of a manufacturing cost and space-saving while attempting improvement of a heat recovery efficiency of a waste gas heat.SOLUTION: A composite boiler comprises: multiple main engine smoke tubes 37 draining main engine waste gas into vertical directions; a furnace 47 provided with an oil burning unit 33; multiple oil burning smoke tubes 41 draining oil burning waste gas into the vertical directions; and a drum 30. A plumb partition wall 34 partitioning off the inside of the drum 30 in a low pressure steam generating water room 31 and a high pressure steam generating water room 32, and being substantially parallel for the multiple main engine smoke tubes 37 is provided. The low pressure steam generating water room 31 comprises: a low-pressure steam room 38 which can contain low pressure steam; and a low pressure steam deriving unit 39 which can derive the low pressure steam from the low-pressure steam room 38. The high pressure steam generating water room 32 comprises: a high-pressure steam room 44 which can contain high pressure steam which is higher in pressure than the low pressure steam; and a high pressure steam deriving unit 45 which can derive the high pressure steam from the high-pressure steam room 44.

Description

本発明は、主機排ガスを上下方向へ流す主機煙管と油焚排ガスを上下方向へ流す油焚煙管とをドラム内に収容したコンポジットボイラに関し、特に単一のドラム内から異なる蒸気圧の蒸気を発生可能なコンポジットボイラに関する。   The present invention relates to a composite boiler in which a main engine smoke pipe for flowing main engine exhaust gas in the vertical direction and an oil soot smoke pipe for flowing oil tank exhaust gas in the vertical direction are housed in a drum, and in particular, generates steam of different vapor pressures from within a single drum. It relates to possible composite boilers.

従来より、主機関としてディーゼルエンジンを搭載した船舶には、省エネルギー化を狙いとした廃熱回収システムが装備されている。この廃熱回収システムは、主機関の排ガス熱量を排ガスエコノマイザで回収することによって蒸気を生成し、この生成された蒸気を発電用機関の蒸気タービンを駆動する動力媒体や船内の厨房や暖房等各種加熱装置の加熱媒体として用いている。   Conventionally, a ship equipped with a diesel engine as a main engine is equipped with a waste heat recovery system aiming at energy saving. This waste heat recovery system generates steam by recovering the calorific value of the exhaust gas of the main engine with an exhaust gas economizer, and the generated steam is used as a power medium for driving the steam turbine of the engine for power generation, as well as in the kitchen and heating of the ship. Used as a heating medium for a heating device.

大型コンテナ船や原油輸送船等の大型船舶に搭載された大型の廃熱回収システムでは、排ガスエコノマイザの装置自体を小型化可能な水管式排ガスエコノマイザが主流である。この廃熱回収システムは、補助ボイラのドラム又は独立したドラムと排ガスエコノマイザとの間を給排水配管によって水・蒸気循環回路を形成し、補助ボイラのドラム又は独立したドラムを気水分離器とし、排ガスエコノマイザ本体には蒸気を生成する熱交換器のみを設けることによって、排ガスエコノマイザ本体から気水分離機能を省略している。   In a large waste heat recovery system mounted on a large vessel such as a large container ship or a crude oil transport ship, a water pipe type exhaust gas economizer that can downsize the exhaust gas economizer itself is the mainstream. In this waste heat recovery system, a water / steam circulation circuit is formed between the auxiliary boiler drum or the independent drum and the exhaust gas economizer by water supply / drainage piping, and the auxiliary boiler drum or the independent drum is used as a steam separator. The economizer body is provided with only a heat exchanger that generates steam, thereby omitting the air / water separation function from the exhaust gas economizer body.

近年、推進性能やディーゼルエンジン性能の向上が著しいため、同じ輸送能力を備えた船舶であっても、従前に比べてエンジン出力が小さく、しかも、エンジンから排出される主機排ガス温度が低下する傾向にある。それ故、特に主機出力10,000〜20,000kW以下のばら積み専用船等の小型船舶では、船内の各種加熱器を機能させるために必要な船内必要蒸気量を排ガス熱量の回収によって十分に確保することが難しくなっている。
これは、以下に説明するように、船舶として主要な推進機能を確保するためには0.6〜0.7MPaGの蒸気圧が必要であることから、主機関の排ガス系に装備された排ガスエコノマイザが少なくとも0.6〜0.7MPaGの蒸気圧の蒸気を発生するように設計されていることが主な要因の1つである。
In recent years, propulsion performance and diesel engine performance have improved significantly, and even ships with the same transportation capacity tend to have lower engine output than before, and the main engine exhaust gas temperature discharged from the engine tends to decrease. is there. Therefore, especially for small ships such as bulk ships with a main engine output of 10,000 to 20,000 kW or less, sufficient steam capacity required to make the various heaters function in the ship is sufficiently secured by collecting the exhaust gas heat quantity. It has become difficult.
This is because, as will be described below, a steam pressure of 0.6 to 0.7 MPaG is necessary to secure the main propulsion function as a ship, so the exhaust gas economizer equipped in the exhaust system of the main engine Is one of the main factors that is designed to generate steam with a vapor pressure of at least 0.6 to 0.7 MPaG.

低硫黄燃料であるA重油或いは軽油等が高価であるため、一般にディーゼルエンジンでは、廉価な残渣油(C重油)が燃料油として使用されている。
この残渣油を燃料油に使用する場合には、燃料油供給装置によって供給される残渣油を主機関(燃焼室)内へ噴霧可能な粘度(10〜15cSt)にするため、例えば、50℃における残渣油の粘度を380〜700cStとした場合、残渣油の温度を135〜150℃程度に加熱する必要がある。即ち、残渣油を上記要求に応じた目標温度まで加熱するため、燃料油加熱器は、加熱蒸気温度において上記残渣油の目標温度(例えば、150℃)よりも約15℃以上高い温度の蒸気を生成しなければならない。この165℃の飽和蒸気温度に対応した蒸気圧が0.6MPaGである。
Since A heavy oil or light oil, which is a low-sulfur fuel, is expensive, generally low-cost residual oil (C heavy oil) is used as fuel oil in diesel engines.
When this residual oil is used as fuel oil, the residual oil supplied by the fuel oil supply device has a viscosity (10 to 15 cSt) that can be sprayed into the main engine (combustion chamber). When the viscosity of the residual oil is 380 to 700 cSt, it is necessary to heat the temperature of the residual oil to about 135 to 150 ° C. That is, in order to heat the residual oil to the target temperature in accordance with the above requirement, the fuel oil heater generates steam at a heating steam temperature that is about 15 ° C. or more higher than the target temperature of the residual oil (for example, 150 ° C.). Must be generated. The vapor pressure corresponding to the saturated vapor temperature of 165 ° C. is 0.6 MPaG.

一方、燃料油加熱用以外の加熱装置、例えば船内暖房や清浄機等の各種加熱装置は、主機関燃料油加熱器に比べて低い加熱媒体温度で利用することができるため、0.2〜0.3MPaGの蒸気圧でそれらの主要機能を確保することが可能である。
しかし、上記のように、排ガスエコノマイザは、0.6〜0.7MPaGの蒸気圧の蒸気を発生するように設定されているため、蒸気の圧力を上記設定圧力まで昇圧した後、一部の蒸気系統では設備の材料費を小さくするため、0.4MPaG以下まで減圧させてから各種加熱装置に供給している。即ち、高い蒸気圧が必要とされていないにも拘わらず、燃料油加熱用以外の加熱装置に供給するための蒸気として0.6〜0.7MPaGまで一率に昇圧されているため、排ガスエコノマイザの熱回収効率が低下し、結果的に船内必要蒸気量を賄うための排ガス熱量が不足するという事態を招いている。
On the other hand, heating devices other than those for heating fuel oil, for example, various heating devices such as ship heating and purifiers, can be used at a heating medium temperature lower than that of the main engine fuel oil heater. Their main functions can be secured with a vapor pressure of 3 MPaG.
However, as described above, the exhaust gas economizer is set so as to generate steam having a vapor pressure of 0.6 to 0.7 MPaG. Therefore, after increasing the pressure of the steam to the set pressure, a part of the steam In order to reduce the material cost of the equipment in the system, the pressure is reduced to 0.4 MPaG or less and then supplied to various heating devices. That is, although the high vapor pressure is not required, the exhaust gas economizer is pressurized to 0.6 to 0.7 MPaG as a vapor to be supplied to a heating device other than the fuel oil heater. As a result, the heat recovery efficiency is reduced, resulting in a shortage of exhaust gas heat to cover the required amount of steam in the ship.

そこで、排ガス熱量の熱回収効率を高くするため、排ガス通路に蒸気生成機構を直列状に複数設置し、複数圧力の蒸気を生成可能にした種々の技術が提案されている。
特許文献1の水管式廃熱回収システムは、発電機を駆動する蒸気タービンと、蒸気を生成する補助ボイラと、ディーゼル主機関の排ガスから熱量を回収して高圧蒸気を生成する高圧蒸気生成手段と、高圧蒸気生成手段よりも下流側に配設され低圧蒸気を生成する低圧蒸気生成手段と、蒸気を蒸気タービン入口に導入する蒸気供給ラインと、高圧気水分離器を備え且つ高圧蒸気を蒸気タービン上段に導入する高圧蒸気ラインと、低圧気水分離器を備え且つ低圧蒸気を蒸気タービン下段に導入する低圧蒸気ラインとを備え、高圧蒸気及び低圧蒸気が増減したとき、蒸気供給ラインからの供給蒸気量を減増制御している。
Therefore, in order to increase the heat recovery efficiency of the exhaust gas heat quantity, various technologies have been proposed in which a plurality of steam generation mechanisms are installed in series in the exhaust gas passage so that steam at a plurality of pressures can be generated.
The water pipe waste heat recovery system of Patent Document 1 includes a steam turbine that drives a generator, an auxiliary boiler that generates steam, and high-pressure steam generation means that recovers heat from exhaust gas from a diesel main engine to generate high-pressure steam. A low-pressure steam generating means disposed downstream of the high-pressure steam generating means to generate low-pressure steam, a steam supply line for introducing the steam into the steam turbine inlet, and a high-pressure steam separator, and the high-pressure steam to the steam turbine A high-pressure steam line to be introduced into the upper stage and a low-pressure steam line having a low-pressure steam separator to introduce low-pressure steam into the lower stage of the steam turbine, and when the high-pressure steam and the low-pressure steam increase or decrease, supply steam from the steam supply line The amount is controlled to increase or decrease.

特許文献2の水管式蒸気システムは、排ガス通路に設置され且つ排ガスによって高圧蒸気を生成する上流缶体と、この上流缶体よりも下流側に流れた排ガスによって中圧蒸気を生成する中流缶体と、この中流缶体よりも下流側に流れた排ガスによって低圧蒸気を生成する下流缶体と、各缶体の夫々に対応して設けられた気水分離器と、高圧蒸気によって低圧蒸気を昇圧する昇圧機構とを備えている。   The water pipe steam system of Patent Document 2 is an upstream can body that is installed in an exhaust gas passage and generates high-pressure steam from the exhaust gas, and a middle-flow can body that generates medium-pressure steam from the exhaust gas that flows downstream from the upstream can body. A downstream can body that generates low-pressure steam by exhaust gas flowing downstream from the middle-flow can body, a steam separator provided for each of the can bodies, and the high-pressure steam to boost the low-pressure steam And a booster mechanism.

大型ボイラを必要としない小型のばら積み専用船等では、省スペース化や設備費軽減のためにコンポジットボイラ(排ガス加熱併用補助ボイラ)が広く採用されている。
このコンポジットボイラは、排ガス入口煙室(主機排ガス導入部)と、複数の主機煙管と、油焚部と、複数の油焚煙管等をドラム内に収容し、単一装置内に補助ボイラ機能と排ガスエコノマイザ機能とを合わせ持った自然循環式排ガスエコノマイザを構成している。それ故、航海中には、主機排ガスの廃熱を回収して蒸気を生成することができ、停泊中には、油焚部のバーナによって燃料油を焚いて主機関の運転とは独立して蒸気を生成することができる。更に、主機関が減速(低負荷)中であって船内必要蒸気量が不足した場合には、追焚きして不足した蒸気を増量することもできる。
In small bulk carriers that do not require large boilers, composite boilers (exhaust gas combined auxiliary boilers) are widely used to save space and reduce equipment costs.
This composite boiler accommodates an exhaust gas inlet smoke chamber (main engine exhaust gas introduction section), a plurality of main engine smoke pipes, an oil tank section, a plurality of oil tank smoke pipes, etc. in a drum, and has an auxiliary boiler function in a single device. A natural circulation exhaust gas economizer that combines exhaust gas economizer functions. Therefore, during the voyage, the waste heat of the main engine exhaust gas can be recovered and steam can be generated, and during berthing, fuel oil is burned by the burner of the oil tank section independently of the operation of the main engine. Steam can be generated. Further, when the main engine is decelerating (low load) and the required steam amount on the ship is insufficient, the insufficient steam can be increased by tracking.

特開2007−1339号公報JP 2007-1339 A 特開2010−266074号公報JP 2010-266074 A

特許文献1及び特許文献2に開示された水管式廃熱回収システムは、このシステム中で複数圧力の蒸気を生成することができるため、不必要な昇圧行程を省略しつつ、必要量の高圧蒸気を生成することができ、排ガス熱量の熱回収効率の向上が可能である。
一方、構造上、特許文献1,2の技術は、複数圧力の蒸気を生成する複数の蒸気生成手段(蒸気生成機構)に対応した気水分離器を夫々の蒸気圧に対応して設ける必要があり、更に、各蒸気圧に対応した蒸気生成手段と気水分離器とを夫々連通するための配管系統も別途設置が必要である。それ故、設備の大型化に伴って製作費が高価になり、設備が占有する設置領域によってスペース的に不利になる虞がある。
Since the water pipe type waste heat recovery system disclosed in Patent Document 1 and Patent Document 2 can generate steam at multiple pressures in this system, a necessary amount of high-pressure steam is eliminated while omitting unnecessary boosting steps. The heat recovery efficiency of the exhaust gas calorie can be improved.
On the other hand, in terms of the structure, the techniques of Patent Documents 1 and 2 require that steam-water separators corresponding to a plurality of steam generating means (steam generating mechanisms) that generate steam at a plurality of pressures are provided corresponding to each steam pressure. In addition, it is necessary to separately install a piping system for communicating the steam generating means corresponding to each steam pressure and the steam separator. Therefore, the production cost increases with the increase in size of the equipment, and there is a risk that the installation area occupied by the equipment may be disadvantageous in terms of space.

船内スペースに余裕のある大型船舶の場合、排出される排ガス量が多いため、船内必要蒸気量を排ガス熱量の回収によって確保することも可能であり、また、特許文献1,2のような大型の廃熱回収システムを採用することも不可能ではない。
しかし、仕様によっては大型船舶であってもスペース的に厳しい場合も多く、このような船舶では、大型の廃熱回収システムの採用は容易ではない。また、中小型船舶では、船内必要蒸気量を賄う排ガス熱量の確保が難しく、また、スペース上の制約が多いため、大型の廃熱回収システムの採用も困難である。
In the case of large ships with ample space in the ship, the amount of exhaust gas discharged is large, so it is possible to secure the required amount of steam in the ship by recovering the amount of heat of exhaust gas. It is not impossible to adopt a waste heat recovery system.
However, depending on the specifications, there are many cases where even a large vessel is difficult in terms of space, and in such a vessel, it is not easy to adopt a large waste heat recovery system. In addition, it is difficult for small and medium-sized ships to secure the heat quantity of exhaust gas to cover the required amount of steam in the ship, and since there are many space restrictions, it is difficult to adopt a large-scale waste heat recovery system.

煙管式コンポジットボイラでは、複数の煙管や油焚部等が単一ドラム内に収容され、このドラムが気水分離機能を一体的に備えているため、省スペース化の点で有利である。しかし、排ガス熱量の熱回収効率の向上を狙いとして複数圧力の蒸気を生成する場合、生成された複数蒸気圧に対応したコンポジットボイラを複数設置し、これら複数のコンポジットボイラ毎に配管系統を設ける必要があるため、特許文献1,2の技術と同様に製作費の抑制及び省スペース化の面で解決すべき課題が残る。   In a smoke pipe type composite boiler, a plurality of smoke pipes, oil bottles and the like are accommodated in a single drum, and this drum is integrally provided with a steam-water separation function, which is advantageous in terms of space saving. However, when multiple pressure steam is generated with the aim of improving the heat recovery efficiency of the exhaust gas heat quantity, it is necessary to install multiple composite boilers corresponding to the generated multiple steam pressures, and to provide a piping system for each of these multiple composite boilers Therefore, as in the techniques of Patent Documents 1 and 2, there remain problems to be solved in terms of suppressing manufacturing costs and saving space.

本発明の目的は、排ガス熱量の熱回収効率の向上を図りつつ、製作費の抑制と省スペース化とを両立可能なコンポジットボイラを提供することである。 An object of the present invention is to provide a composite boiler that can achieve both reduction in production cost and space saving while improving heat recovery efficiency of exhaust gas heat quantity.

請求項1のコンポジットボイラは、主機排ガスを排ガス入口煙室から排ガス出口煙室に亙って上下方向へ流す複数の主機煙管と、油焚部に設けられた火炉と、油焚排ガスを前記火炉から上下方向へ流す複数の油焚煙管と、少なくとも前記複数の主機煙管と火炉と複数の油焚煙管とを内部に収容したドラムとを備えたコンポジットボイラにおいて、前記ドラム内を、前記複数の主機煙管が配設された低圧蒸気発生水室と、前記火炉と複数の油焚煙管とが配設された高圧蒸気発生水室とに仕切ると共に前記複数の主機煙管に対して略平行な仕切壁を設け、前記低圧蒸気発生水室が、前記主機煙管と水の熱交換によって発生した低圧蒸気を収容可能な低圧蒸気室と、この低圧蒸気室から低圧蒸気を導出可能な低圧蒸気導出部とを備え、前記高圧蒸気発生水室が、少なくとも前記油焚煙管と水の熱交換によって発生した高圧蒸気であって前記低圧蒸気よりも圧力が高い高圧蒸気を収容可能な高圧蒸気室と、この高圧蒸気室から高圧蒸気を導出可能な高圧蒸気導出部とを備えたことを特徴としている。   The composite boiler according to claim 1 includes a plurality of main engine smoke pipes that cause main engine exhaust gas to flow vertically from the exhaust gas inlet smoke chamber to the exhaust gas outlet smoke chamber, a furnace provided in an oil tank section, and oil fired exhaust gas to the furnace. A composite boiler comprising a plurality of oil smoke tubes that flow in the vertical direction from the top and a drum that houses at least the plurality of main device smoke tubes, a furnace, and a plurality of oil smoke tubes inside the drum. Partitioning into a low-pressure steam generating water chamber in which a smoke pipe is disposed and a high-pressure steam generating water chamber in which the furnace and a plurality of oil smoke smoke tubes are disposed, and a partition wall substantially parallel to the plurality of main engine smoke tubes The low-pressure steam generating water chamber includes a low-pressure steam chamber that can store low-pressure steam generated by heat exchange between the main engine smoke pipe and water, and a low-pressure steam deriving unit that can derive low-pressure steam from the low-pressure steam chamber. The high-pressure steam A raw water chamber is a high-pressure steam chamber that can store high-pressure steam that is at least a high-pressure steam generated by heat exchange between the oil smoke tube and water and has a pressure higher than that of the low-pressure steam, and a high-pressure steam from the high-pressure steam chamber. It is characterized by having a high-pressure steam lead-out section that can be led out.

請求項2の発明は、請求項1の発明において、前記複数の主機煙管のうち一部の主機煙管が、前記高圧蒸気発生水室の内部に配設されたことを特徴としている。
請求項3の発明は、請求項2の発明において、前記高圧蒸気発生水室が、前記複数の主機煙管のうち前記一部の主機煙管と連通された高圧側排ガス出口煙室を備え、前記低圧蒸気発生水室が、前記複数の主機煙管のうち前記一部の主機煙管を除いた残部の主機煙管と連通された低圧側排ガス出口煙室を備え、前記高圧側排ガス出口煙室から排出される主機排ガスを前記低圧側排ガス出口煙室から排出される主機排ガスに合流させる排ガス合流部を設けたことを特徴としている。
請求項4の発明は、請求項3の発明において、前記排ガス合流部に前記高圧側排ガス出口煙室から排出された主機排ガスの流量を調整可能な流量調整手段を設けたことを特徴としている。
請求項5の発明は、請求項1〜4の何れか1項の発明において、前記高圧蒸気は主機関燃料油加熱器の加熱媒体であって、その蒸気圧が0.6〜0.7MPaGに設定され、前記低圧蒸気は主機関燃料油加熱器以外の加熱装置の加熱媒体であって、その蒸気圧が0.3〜0.4MPaGに設定されていることを特徴としている。
The invention of claim 2 is characterized in that, in the invention of claim 1, some of the main engine smoke pipes are arranged inside the high pressure steam generating water chamber.
According to a third aspect of the present invention, in the second aspect of the invention, the high pressure steam generating water chamber includes a high pressure side exhaust gas outlet smoke chamber communicated with the partial main smoke tube among the plurality of main smoke tubes, and the low pressure The steam generating water chamber includes a low-pressure side exhaust gas outlet smoke chamber communicated with the remaining main-unit smoke tubes excluding the partial main-unit smoke tubes among the plurality of main-unit smoke tubes, and is discharged from the high-pressure side exhaust gas outlet smoke chamber An exhaust gas merging section for merging main engine exhaust gas with main engine exhaust gas discharged from the low-pressure side exhaust gas outlet smoke chamber is provided.
The invention of claim 4 is characterized in that, in the invention of claim 3, a flow rate adjusting means capable of adjusting a flow rate of main engine exhaust gas discharged from the high-pressure side exhaust gas outlet smoke chamber is provided in the exhaust gas merging portion.
The invention of claim 5 is the invention according to any one of claims 1 to 4, wherein the high-pressure steam is a heating medium for a main engine fuel oil heater, and the vapor pressure is 0.6 to 0.7 MPaG. The low-pressure steam is a heating medium of a heating device other than the main engine fuel oil heater, and the vapor pressure is set to 0.3 to 0.4 MPaG.

請求項6の発明は、主機排ガスを排ガス入口煙室から排ガス出口煙室に亙って上下方向へ流す複数の主機煙管と、油焚部に設けられた火炉と、油焚排ガスを前記火炉から上下方向へ流す複数の油焚煙管と、少なくとも前記複数の主機煙管と火炉と複数の油焚煙管とを内部に収容したドラムとを備えたコンポジットボイラにおいて、前記ドラム内を、少なくとも低圧蒸気発生水室と、高圧蒸気発生水室とに仕切ると共に前記複数の主機煙管に対して略直交した仕切壁を設け、前記低圧蒸気発生水室が、前記主機煙管と水の熱交換によって発生した低圧蒸気を収容可能な低圧蒸気室と、この低圧蒸気室から低圧蒸気を導出可能な低圧蒸気導出部とを備え、前記高圧蒸気発生水室が、前記主機煙管及び油焚煙管と水の熱交換によって発生した高圧蒸気であって前記低圧蒸気よりも圧力が高い高圧蒸気を収容可能な高圧蒸気室と、この高圧蒸気室から高圧蒸気を導出可能な高圧蒸気導出部とを備えたことを特徴としている。   The invention of claim 6 includes a plurality of main engine smoke pipes for flowing main engine exhaust gas vertically from the exhaust gas inlet smoke chamber to the exhaust gas outlet smoke chamber, a furnace provided in the oil tank section, and oil tank exhaust gas from the furnace. In a composite boiler comprising a plurality of oil soot pipes flowing in the vertical direction and at least a plurality of main engine smoke pipes, a furnace and a drum containing therein a plurality of oil soot smoke pipes, at least low-pressure steam generating water in the drum And a partition wall that is substantially orthogonal to the plurality of main engine smoke pipes, and the low pressure steam generation water chamber is configured to supply low pressure steam generated by heat exchange between the main engine smoke pipes and water. A low-pressure steam chamber that can be accommodated, and a low-pressure steam outlet that can extract low-pressure steam from the low-pressure steam chamber, and the high-pressure steam generation water chamber is generated by heat exchange with the main engine smoke pipe and the oil smoke pipe. High pressure steam A high pressure steam chamber there are capable of accommodating high-pressure steam pressure higher than the low pressure steam in, is characterized by comprising a high pressure steam outlet part can be derived high pressure steam from the high pressure steam chamber.

請求項7の発明は、請求項6の発明において、前記高圧蒸気発生水室は、前記低圧蒸気発生水室よりも前記排ガス入口煙室に近接した位置に配設されたことを特徴としている。
請求項8の発明は、請求項1〜7の何れか1項の発明において、前記高圧蒸気導出部から導出された高圧蒸気の一部を前記低圧蒸気導出部から導出された低圧蒸気にバイパスさせる蒸気バイパス通路を設け、この蒸気バイパス通路に高圧蒸気を減圧する減圧手段を設けたことを特徴としている。
A seventh aspect of the invention is characterized in that, in the sixth aspect of the invention, the high-pressure steam generating water chamber is disposed closer to the exhaust gas inlet smoke chamber than the low-pressure steam generating water chamber.
The invention according to claim 8 is the invention according to any one of claims 1 to 7, wherein a part of the high-pressure steam derived from the high-pressure steam deriving unit is bypassed to the low-pressure steam derived from the low-pressure steam deriving unit. A steam bypass passage is provided, and decompression means for decompressing high-pressure steam is provided in the steam bypass passage.

請求項1の発明によれば、主機煙管に略平行な仕切壁によって単一ドラム内に低圧蒸気発生水室と高圧蒸気発生水室とを形成し、両蒸気発生水室に気水分離可能な蒸気室を夫々設けたため、コンポジットボイラの全高を抑えつつ、両蒸気発生水室に夫々対応した気水分離器や配管系統を省略することができる。
低圧蒸気発生水室が排ガスエコノマイザ機能と気水分離機能を備えると共に高圧蒸気発生水室が補助ボイラ機能と気水分離機能を備えるため、複数圧力の蒸気を簡単な構成で生成することができ、不必要な昇圧行程を省略しつつ、必要量の高圧蒸気を生成できる。
それ故、排ガス熱量の熱回収効率の向上を図りつつ、製作費の抑制と省スペース化とを両立することができる。
According to the first aspect of the present invention, the low pressure steam generating water chamber and the high pressure steam generating water chamber are formed in the single drum by the partition wall substantially parallel to the main engine smoke pipe, and the steam and water can be separated into both steam generating water chambers. Since each of the steam chambers is provided, it is possible to omit the steam / water separator and the piping system respectively corresponding to both the steam generation water chambers while suppressing the overall height of the composite boiler.
Since the low-pressure steam generating water chamber has an exhaust gas economizer function and an air-water separation function, and the high-pressure steam generating water chamber has an auxiliary boiler function and an air-water separation function, it is possible to generate multiple pressure steam with a simple configuration, A necessary amount of high-pressure steam can be generated while omitting an unnecessary pressure increase stroke.
Therefore, it is possible to achieve both reduction in production cost and space saving while improving the heat recovery efficiency of the exhaust gas heat quantity.

請求項2の発明によれば、主機排ガスの熱量の一部を高圧蒸気の生成に利用するため、一層排ガス熱量の有効利用ができる。即ち、燃料油を使用することなく、一部の排ガス熱量によって高圧蒸気を発生できる。
請求項3の発明によれば、主機排ガスの通路を共通化でき、一層省スペース化を図ることができる。
請求項4の発明によれば、簡単な構成で、高圧蒸気発生水室に供給する主機排ガスの熱量を調整することができる。
請求項5の発明によれば、必要蒸気量を排ガス熱量の回収によって得た蒸気量で賄うことができる。
According to the invention of claim 2, since a part of the calorific value of the main engine exhaust gas is used for the generation of high-pressure steam, the exhaust gas calorific value can be further effectively used. That is, high-pressure steam can be generated by a part of exhaust gas heat quantity without using fuel oil.
According to the invention of claim 3, the passage of the main engine exhaust gas can be made common, and further space saving can be achieved.
According to the invention of claim 4, the amount of heat of the main engine exhaust gas supplied to the high-pressure steam generating water chamber can be adjusted with a simple configuration.
According to the fifth aspect of the present invention, the required amount of steam can be covered by the amount of steam obtained by collecting the exhaust gas calorific value.

請求項6の発明によれば、主機煙管に略直交した仕切壁によって単一ドラム内に低圧蒸気発生水室と高圧蒸気発生水室とを形成し、両蒸気発生水室に気水分離可能な蒸気室を夫々設けたため、コンポジットボイラのドラム径を抑えつつ、両蒸気発生水室に夫々対応した気水分離器や配管系統を省略することができる。
低圧蒸気発生水室が排ガスエコノマイザ機能と気水分離機能を備えると共に高圧蒸気発生水室が補助ボイラ機能と気水分離機能を備えるため、複数圧力の蒸気を簡単な構成で生成することができ、不必要な昇圧行程を省略しつつ、必要量の高圧蒸気を生成できる。
それ故、排ガス熱量の熱回収効率の向上を図りつつ、製作費の抑制と省スペース化とを両立することができる。
According to the invention of claim 6, the low pressure steam generating water chamber and the high pressure steam generating water chamber are formed in the single drum by the partition wall substantially orthogonal to the main engine smoke pipe, and the steam and water can be separated into both steam generating water chambers. Since each of the steam chambers is provided, it is possible to omit the steam separator and the piping system respectively corresponding to both steam generating water chambers while suppressing the drum diameter of the composite boiler.
Since the low-pressure steam generating water chamber has an exhaust gas economizer function and an air-water separation function, and the high-pressure steam generating water chamber has an auxiliary boiler function and an air-water separation function, it is possible to generate multiple pressure steam with a simple configuration, A necessary amount of high-pressure steam can be generated while omitting an unnecessary pressure increase stroke.
Therefore, it is possible to achieve both reduction in production cost and space saving while improving the heat recovery efficiency of the exhaust gas heat quantity.

請求項7の発明によれば、両蒸気発生水室のうち、高圧蒸気発生水室に主機排ガスの熱量を優先的に供給することができ、効率的に高圧蒸気を生成できる。
請求項8の発明によれば、低圧蒸気が不足したとき、余剰高圧蒸気を燃料油加熱用以外の装置に供給することができ、エネルギー効率を向上できる。
According to the seventh aspect of the present invention, the heat quantity of the main engine exhaust gas can be preferentially supplied to the high-pressure steam generation water chamber among the both steam generation water chambers, and high-pressure steam can be efficiently generated.
According to the eighth aspect of the invention, when the low-pressure steam is insufficient, the excess high-pressure steam can be supplied to devices other than the fuel oil heater, and the energy efficiency can be improved.

本発明の実施例1に係る廃熱回収システムの全体構成を示す蒸気循環系統図である。It is a steam circulation system diagram which shows the whole structure of the waste-heat recovery system which concerns on Example 1 of this invention. 実施例1に係るコンポジットボイラの平面図である。1 is a plan view of a composite boiler according to Embodiment 1. FIG. 図2のIII−III線断面図である。It is the III-III sectional view taken on the line of FIG. 図2のIV−IV線断面図である。It is the IV-IV sectional view taken on the line of FIG. 実施例1に係るコンポジットボイラの発生蒸気量の解析結果を示す表である。3 is a table showing the analysis result of the amount of steam generated by the composite boiler according to Example 1. 実施例2に係るコンポジットボイラの平面図である。6 is a plan view of a composite boiler according to Embodiment 2. FIG. 図6のVII−VII線断面図である。It is the VII-VII sectional view taken on the line of FIG. 実施例3に係る図7相当図である。FIG. 8 is a diagram corresponding to FIG. 7 according to the third embodiment. 実施例4に係るコンポジットボイラの平面図である。10 is a plan view of a composite boiler according to Embodiment 4. FIG. 図9のX−X線断面図である。FIG. 10 is a sectional view taken along line XX in FIG. 9.

以下、本発明の実施の形態について実施例に基づいて説明する。   Hereinafter, embodiments of the present invention will be described based on examples.

実施例1について、図1〜5に基づいて説明する
図1に示すように、本実施例の船舶は、主機関1と、廃熱回収システムS等を備えている。主機関1は、例えば、出力が7,000kWの2ストロークディーゼルエンジンの内燃機関であり、船舶の推進力を得るための主動力発生機構である。この主機関1は、過給機1aによって過給された燃焼空気が燃焼室に供給され、給気と同時に主機関燃料油供給装置2から燃焼室へ燃料である残渣油(C重油)が供給され、噴霧される。
主機排ガスは、過給機1aを駆動した後、廃熱回収システムSへ供給される。
Example 1 is demonstrated based on FIGS. 1-5 As shown in FIG. 1, the ship of a present Example is provided with the main engine 1, the waste heat recovery system S, etc. As shown in FIG. The main engine 1 is, for example, an internal combustion engine of a two-stroke diesel engine with an output of 7,000 kW, and is a main power generation mechanism for obtaining a propulsive force of a ship. In the main engine 1, combustion air supercharged by the supercharger 1a is supplied to the combustion chamber, and simultaneously with the supply air, residual oil (C heavy oil) as fuel is supplied from the main engine fuel oil supply device 2 to the combustion chamber. And sprayed.
The main engine exhaust gas is supplied to the waste heat recovery system S after driving the supercharger 1a.

図1に示すように、廃熱回収システムSは、低圧蒸気と高圧蒸気とを生成するコンポジットボイラ3と、余剰蒸気復水器兼ドレン冷却器4と、給水タンク5と、この給水タンク5からコンポジットボイラ3へ水を供給可能な給水ポンプ6等を備えている。
この廃熱回収システムSは、加熱媒体である高圧蒸気を主機関燃料油加熱器7へ供給し、加熱媒体である低圧蒸気を主機関燃料油加熱器7以外の加熱装置、具体的には、燃料油タンク加熱装置8、清浄機燃料油加熱器9、清浄機潤滑油加熱器10、暖房用加熱器11、清水加熱器12及びその他加熱装置13等へ供給する。
As shown in FIG. 1, the waste heat recovery system S includes a composite boiler 3 that generates low-pressure steam and high-pressure steam, an excess steam condenser / drain cooler 4, a feed water tank 5, and the feed water tank 5. A water supply pump 6 that can supply water to the composite boiler 3 is provided.
This waste heat recovery system S supplies high-pressure steam as a heating medium to the main engine fuel oil heater 7, and the low-pressure steam as a heating medium is a heating device other than the main engine fuel oil heater 7, specifically, The fuel oil tank heating device 8, the purifier fuel oil heater 9, the purifier lubricating oil heater 10, the heating heater 11, the fresh water heater 12, and the other heating devices 13 are supplied.

まず、低圧蒸気系配管と高圧蒸気系配管とによって構成された廃熱回収システムSの蒸気循環系統について簡単に説明する。
図1に示すように、低圧蒸気はコンポジットボイラ3から低圧蒸気通路21を流れて各加熱器8〜13へ供給され、高圧蒸気はコンポジットボイラ3から高圧蒸気通路22を流れて主機関燃料油加熱器7へ供給される。各加熱器8〜13は、低圧蒸気通路21に対して並列接続されている。主機関燃料油加熱器7及び各加熱器8〜13で加熱媒体として熱交換を終えた蒸気は、ドレン通路23を流れて余剰蒸気復水器兼ドレン冷却器4へドレンされる。この余剰蒸気復水器兼ドレン冷却器4では、リリーフされた蒸気或いはドレンを海水によって冷却することにより復水又は冷却している。
First, the steam circulation system of the waste heat recovery system S constituted by a low-pressure steam system pipe and a high-pressure steam system pipe will be briefly described.
As shown in FIG. 1, low-pressure steam flows from the composite boiler 3 through the low-pressure steam passage 21 and is supplied to the heaters 8 to 13, and high-pressure steam flows from the composite boiler 3 through the high-pressure steam passage 22 to heat the main engine fuel oil. To the vessel 7. The heaters 8 to 13 are connected in parallel to the low pressure steam passage 21. The steam that has finished heat exchange as the heating medium in the main engine fuel oil heater 7 and each of the heaters 8 to 13 flows through the drain passage 23 and is drained to the surplus steam condenser / drain cooler 4. In the surplus steam condenser / drain cooler 4, the relieved steam or drain is cooled by seawater to condense or cool.

余剰蒸気復水器兼ドレン冷却器4には、低圧蒸気通路21と高圧蒸気通路22から必要以上に圧力上昇した余剰蒸気が夫々リリーフ通路24a,24bを介してリリーフされる。リリーフ通路24a,24bの途中部には、リリーフ弁として余剰蒸気ダンプ弁25a,25bが夫々設けられている。これら余剰蒸気ダンプ弁25a,25bは、計画された常用蒸気圧(例えば、低圧側 0.3〜0.4MPaG,高圧側 0.6〜0.7MPaG)よりも少し高い蒸気圧(例えば、低圧側 0.4〜0.5MPaG,高圧側 0.7〜0.8MPaG)のときに余剰蒸気を下流側へ流すようにリリーフ圧力が夫々設定されている。   The surplus steam condenser / drain cooler 4 is relieved through the relief passages 24 a and 24 b, respectively, from the low pressure steam passage 21 and the high pressure steam passage 22. Surplus steam dump valves 25a and 25b are provided as relief valves in the middle of the relief passages 24a and 24b, respectively. These surplus steam dump valves 25a and 25b have a steam pressure (for example, the low pressure side) slightly higher than the planned normal steam pressure (for example, the low pressure side 0.3 to 0.4 MPaG, the high pressure side 0.6 to 0.7 MPaG). Relief pressures are set so that excess steam flows downstream when the pressure is 0.4 to 0.5 MPaG and the high pressure side is 0.7 to 0.8 MPaG.

リターン通路26aは、余剰蒸気復水器兼ドレン冷却器4を給水タンク5に連通し、復水された水を給水タンク5へ還流している。リターン通路26bは、給水タンク5を給水ポンプ6に連通し、給水タンク5に貯留された水を給水ポンプ6へ供給している。
給水ポンプ6から設定圧力で吐出された水は、給水通路27を流れ、給水通路27の途中部で低圧側給水通路28と高圧側給水通路29とに分岐される。これら低圧側給水通路28と高圧側給水通路29には、給水制御弁28a,29aが夫々設置されている。
The return passage 26 a communicates the excess steam condenser / drain cooler 4 with the water supply tank 5 and returns the condensed water to the water supply tank 5. The return passage 26 b connects the water supply tank 5 to the water supply pump 6 and supplies water stored in the water supply tank 5 to the water supply pump 6.
The water discharged from the water supply pump 6 at the set pressure flows through the water supply passage 27 and is branched into a low-pressure side water supply passage 28 and a high-pressure side water supply passage 29 in the middle of the water supply passage 27. In these low pressure side water supply passage 28 and high pressure side water supply passage 29, water supply control valves 28a, 29a are respectively installed.

次に、コンポジットボイラ3について説明する。
図1〜図4に示すように、立型煙管式コンポジットボイラ3は、軸心(中心線)が上下方向に延びるように配置された円筒状のドラム30と、設定圧力の蒸気を生成可能な低圧蒸気発生水室31と、この低圧蒸気発生水室31で生成された蒸気よりも高い圧力の蒸気を生成可能な高圧蒸気発生水室32と、油焚部33と、ドラム30の内部を仕切る鉛直仕切壁34等を一体的に備えている。
本実施例のコンポジットボイラ3は、排ガスと水とを熱交換させて低圧、例えば、0.3〜0.4MPaGの低圧蒸気と、高圧、例えば、0.6〜0.7MPaGの高圧蒸気とを生成するように構成されている。尚、蒸気圧が0.3MPaGのとき、飽和蒸気温度が144℃、蒸気圧が0.6MPaGのとき、飽和蒸気温度が165℃である。
Next, the composite boiler 3 will be described.
As shown in FIGS. 1 to 4, the vertical smoke tube type composite boiler 3 is capable of generating steam having a set pressure and a cylindrical drum 30 arranged so that an axial center (center line) extends in the vertical direction. The interior of the low-pressure steam generating water chamber 31, the high-pressure steam generating water chamber 32 capable of generating steam at a higher pressure than the steam generated in the low-pressure steam generating water chamber 31, the oil bottle portion 33, and the drum 30 is partitioned. A vertical partition wall 34 and the like are integrally provided.
The composite boiler 3 of the present embodiment heat-exchanges exhaust gas and water to produce low pressure, for example, low pressure steam of 0.3 to 0.4 MPaG and high pressure, for example, high pressure steam of 0.6 to 0.7 MPaG. Configured to generate. When the vapor pressure is 0.3 MPaG, the saturated vapor temperature is 144 ° C., and when the vapor pressure is 0.6 MPaG, the saturated vapor temperature is 165 ° C.

ドラム30は、コンポジットボイラ3の筺体として形成され、給水ポンプ6から供給された蒸気生成用の水を収容可能に構成されている。このドラム30には、主機関1に連通された主機排ガス導入通路14を介して主機関1から主機排ガスを導入可能な排ガス入口煙室35が設けられ、この排ガス入口煙室35によってドラム30の下端部が形成されている。   The drum 30 is formed as a casing of the composite boiler 3 and is configured to be able to accommodate water for steam generation supplied from the water supply pump 6. The drum 30 is provided with an exhaust gas inlet smoke chamber 35 through which the main engine exhaust gas can be introduced from the main engine 1 via the main engine exhaust gas introduction passage 14 communicated with the main engine 1. A lower end is formed.

図1,図3,図4に示すように、低圧蒸気発生水室31は、ドラム30の片側部と、鉛直仕切壁34と、排ガス入口煙室35と、低圧側排ガス出口煙室36と、排ガス入口煙室35から低圧側排ガス出口煙室36に亙って主機排ガスの一部をドラム30の軸心方向に略ストレート状に流す複数の低圧主機煙管37と、これら複数の低圧主機煙管37と水との熱交換によって発生した低圧蒸気を収容可能な低圧蒸気室38と、この低圧蒸気室38から低圧蒸気を低圧蒸気通路21へ導出可能な低圧蒸気導出部39等を備えている。この低圧蒸気発生水室31の周壁下側部には、低圧側給水通路28の下流端が接続されている。   As shown in FIGS. 1, 3, and 4, the low pressure steam generating water chamber 31 includes one side portion of the drum 30, a vertical partition wall 34, an exhaust gas inlet smoke chamber 35, a low pressure side exhaust gas outlet smoke chamber 36, A plurality of low-pressure main machine smoke pipes 37 that flow part of the main engine exhaust gas in a substantially straight shape in the axial direction of the drum 30 from the exhaust gas inlet smoke chamber 35 to the low-pressure side exhaust gas outlet smoke chamber 36, and the plurality of low-pressure main machine smoke pipes 37 A low-pressure steam chamber 38 that can store low-pressure steam generated by heat exchange with water, and a low-pressure steam lead-out section 39 that can lead out the low-pressure steam from the low-pressure steam chamber 38 to the low-pressure steam passage 21. The downstream end of the low-pressure side water supply passage 28 is connected to the lower portion of the peripheral wall of the low-pressure steam generating water chamber 31.

鉛直仕切壁34は、複数の低圧主機煙管37と略平行状に設けられ、ドラム30の内部を低圧蒸気発生水室31と高圧蒸気発生水室32に遮断している。
低圧側排ガス出口煙室36には、主機排ガス導出通路15が連通され、水と熱交換を終えた主機排ガスを低圧側排ガス出口煙室36から外部へ排出している。
低圧蒸気室38は、気液分離機能を有している。低圧蒸気発生水室31の標準水位は、複数の低圧主機煙管37を完全冷却するため、複数の低圧主機煙管37よりも上方位置に設定される。それ故、コンポジットボイラ3の上壁と水面との間に形成された空間が低圧蒸気室38に相当している。
The vertical partition wall 34 is provided substantially parallel to the plurality of low-pressure main engine smoke pipes 37, and blocks the interior of the drum 30 into the low-pressure steam generating water chamber 31 and the high-pressure steam generating water chamber 32.
The main engine exhaust gas outlet passage 15 communicates with the low pressure side exhaust gas outlet smoke chamber 36 to discharge the main engine exhaust gas after heat exchange with water from the low pressure side exhaust gas outlet smoke chamber 36 to the outside.
The low pressure steam chamber 38 has a gas-liquid separation function. The standard water level of the low-pressure steam generating water chamber 31 is set at a position above the plurality of low-pressure main engine smoke pipes 37 in order to completely cool the plurality of low-pressure main engine smoke pipes 37. Therefore, the space formed between the upper wall of the composite boiler 3 and the water surface corresponds to the low pressure steam chamber 38.

図1,図3,図4に示すように、高圧蒸気発生水室32は、ドラム30の他側部と、油焚部33と、油焚排ガス出口煙室40と、火炉47から油焚排ガス出口煙室40に亙って油焚排ガスをドラム30の軸心方向に略ストレート状に流す複数の油焚煙管41と、鉛直仕切壁34と、排ガス入口煙室35と、高圧側排ガス出口煙室42と、排ガス入口煙室35から高圧側排ガス出口煙室42に亙って主機排ガスの残部をドラム30の軸心方向に略ストレート状に流す複数の高圧主機煙管43と、複数の油焚煙管41及び複数の高圧主機煙管43と水との熱交換によって発生した高圧蒸気を収容可能な高圧蒸気室44と、この高圧蒸気室44から高圧蒸気を高圧蒸気通路22へ導出可能な高圧蒸気導出部45等を備えている。高圧蒸気発生水室32の周壁下側部には、高圧側給水通路29の下流端が接続されている。低圧主機煙管37と高圧主機煙管43の設置本数は、主機排ガスを流す配分量(例えば、低圧蒸気側:80%,高圧蒸気側:20%)によって設定されている。   As shown in FIGS. 1, 3, and 4, the high pressure steam generating water chamber 32 includes an oil tank exhaust gas from the other side of the drum 30, an oil tank section 33, an oil tank exhaust gas outlet smoke chamber 40, and a furnace 47. A plurality of oil-smoke pipes 41 flowing the oil-smoke exhaust gas in the direction of the axial center of the drum 30 over the outlet smoke chamber 40, the vertical partition wall 34, the exhaust gas inlet smoke chamber 35, and the high-pressure side exhaust gas outlet smoke A plurality of high-pressure main unit smoke pipes 43 that flow the remainder of the main engine exhaust gas in a substantially straight shape in the axial direction of the drum 30 from the exhaust gas inlet smoke chamber 35 to the high-pressure side exhaust gas outlet smoke chamber 42; The high-pressure steam chamber 44 capable of accommodating high-pressure steam generated by heat exchange between the smoke pipe 41 and the plurality of high-pressure main engine smoke pipes 43 and water, and high-pressure steam derivation capable of deriving high-pressure steam from the high-pressure steam chamber 44 to the high-pressure steam passage 22 Part 45 and the like. The downstream end of the high-pressure side water supply passage 29 is connected to the lower side of the peripheral wall of the high-pressure steam generating water chamber 32. The number of low-pressure main machine smoke pipes 37 and high-pressure main machine smoke pipes 43 is set according to the distribution amount (for example, low-pressure steam side: 80%, high-pressure steam side: 20%) through which the main engine exhaust gas flows.

図1,図3に示すように、油焚部33は、ドラム30の径方向外側へ突出した燃料油バーナ46と、ドラム30内において排ガス入口煙室35の上壁に設置された火炉47等を備えている。燃料油バーナ46による燃焼は火炉47内部で完結し、油焚排ガスは火炉47から複数の油焚煙管41を通って油焚排ガス出口煙室40に流れる。
油焚排ガス出口煙室40には、油焚排ガス導出通路16が連通され、水と熱交換を終えた油焚排ガスを油焚排ガス出口煙室40から外部へ排出している。
As shown in FIGS. 1 and 3, the oil tank portion 33 includes a fuel oil burner 46 protruding outward in the radial direction of the drum 30, a furnace 47 installed on the upper wall of the exhaust gas inlet smoke chamber 35 in the drum 30, and the like. It has. Combustion by the fuel oil burner 46 is completed inside the furnace 47, and the soot exhaust gas flows from the furnace 47 through the plurality of soot smoke pipes 41 to the oil soot exhaust gas outlet smoke chamber 40.
The oil soot exhaust gas outlet smoke chamber 40 communicates with the oil soot exhaust gas outlet passage 16 and discharges the oil soot exhaust gas after heat exchange with water from the oil soot exhaust gas exit smoke chamber 40 to the outside.

図1,図4に示すように、高圧側排ガス出口煙室42には、排ガス合流通路48(排ガス合流部)が連通されている。この排ガス合流通路48は、高圧側排ガス出口煙室42を主機排ガス導出通路15に連通することによって、高圧側排ガス出口煙室42の主機排ガスを低圧側排ガス出口煙室36の主機排ガスに合流させて外部へ排出する。
高圧蒸気室44は、気液分離機能を有している。高圧蒸気発生水室32の標準水位は、複数の油焚煙管41及び複数の高圧主機煙管43を完全冷却するため、複数の油焚煙管41及び複数の高圧主機煙管43よりも上方位置に設定される。それ故、低圧蒸気室38と同様に、コンポジットボイラ3の上壁と水面との間に形成された空間が高圧蒸気室44に相当している。
As shown in FIGS. 1 and 4, an exhaust gas merging passage 48 (exhaust gas merging portion) communicates with the high pressure side exhaust gas outlet smoke chamber 42. The exhaust gas merging passage 48 connects the main engine exhaust gas in the high pressure side exhaust gas outlet smoke chamber 42 to the main engine exhaust gas in the low pressure side exhaust gas outlet smoke chamber 36 by connecting the high pressure side exhaust gas outlet smoke chamber 42 to the main engine exhaust gas outlet passage 15. To the outside.
The high-pressure steam chamber 44 has a gas-liquid separation function. The standard water level of the high pressure steam generating water chamber 32 is set at a position higher than the plurality of oil soot smoke tubes 41 and the plurality of high pressure main engine smoke tubes 43 in order to completely cool the plurality of oil soot smoke tubes 41 and the plurality of high pressure main engine smoke tubes 43. The Therefore, similarly to the low-pressure steam chamber 38, a space formed between the upper wall of the composite boiler 3 and the water surface corresponds to the high-pressure steam chamber 44.

図1に示すように、蒸気バイパス通路49は、高圧蒸気通路22を低圧蒸気通路21に連通し、高圧蒸気導出部45から導出された高圧蒸気の一部を低圧蒸気通路21へバイパス可能に構成されている。蒸気バイパス通路49の途中部には、設定圧力を任意に調節可能な減圧弁50(減圧手段)が設置されている。
これにより、各加熱器8〜13へ供給する低圧蒸気が不足した際、高圧蒸気を減圧して低圧蒸気量を補給することができる。
As shown in FIG. 1, the steam bypass passage 49 is configured to connect the high-pressure steam passage 22 to the low-pressure steam passage 21 and to bypass a part of the high-pressure steam led out from the high-pressure steam lead-out portion 45 to the low-pressure steam passage 21. Has been. In the middle of the steam bypass passage 49, a pressure reducing valve 50 (pressure reducing means) capable of arbitrarily adjusting the set pressure is installed.
Thereby, when the low pressure steam supplied to each heater 8-13 runs short, high pressure steam can be decompressed and the amount of low pressure steam can be replenished.

次に、図5に基づいて、コンポジットボイラ3の発生蒸気量に関する性能解析結果について説明する。
前提条件は、主機関1が出力7,000kWのディーゼルエンジン、給水温度が60℃、低圧蒸気発生水室31の設定蒸気圧が0.3MPaG、高圧蒸気発生水室32の設定蒸気圧が0.6MPaGとされ、主機排ガスの80%を低圧蒸気発生水室31に流し、残りの20%を高圧蒸気発生水室32に流したときの発生蒸気量を算出した。
Next, based on FIG. 5, the performance analysis result regarding the generated steam amount of the composite boiler 3 will be described.
The precondition is that the main engine 1 is a diesel engine with an output of 7,000 kW, the feed water temperature is 60 ° C., the set steam pressure in the low pressure steam generating water chamber 31 is 0.3 MPaG, and the set steam pressure in the high pressure steam generating water chamber 32 is 0. The amount of generated steam was calculated when 80% of the main engine exhaust gas flowed to the low-pressure steam generating water chamber 31 and the remaining 20% flowed to the high-pressure steam generating water chamber 32.

図5に示すように、このコンポジットボイラ3は、106kg/hrの高圧蒸気と784kg/hrの低圧蒸気とを同時に生成することが可能である。
通常、上記と同条件の船舶では、航海中において主機関燃料油加熱器の蒸気消費量が約90kg/hr、その他の加熱器の蒸気消費量が約560kg/hrであり、全ての蒸気消費量を合計した船内必要蒸気量が約650kg/hrとされる。これにより、このコンポジットボイラ3は、主機関燃料油加熱器及びその他の加熱器で必要とされる船内必要蒸気量を排ガス熱量の回収によって得た蒸気量で十分に賄えることが分かる。
ここで、低圧側蒸気発生部を持たない従来のコンポジットボイラでは、高圧側に100%の排ガスを流すに等しいので531kg/hrの蒸気しか発生できないため、必要蒸気量の全部を賄えないといえる。
As shown in FIG. 5, the composite boiler 3 can simultaneously generate high pressure steam of 106 kg / hr and low pressure steam of 784 kg / hr.
Usually, in a ship having the same conditions as above, the steam consumption of the main engine fuel oil heater is about 90 kg / hr and the steam consumption of other heaters is about 560 kg / hr during the voyage. The required amount of steam in the ship is about 650 kg / hr. Thus, it can be seen that the composite boiler 3 can sufficiently cover the necessary steam amount in the ship required by the main engine fuel oil heater and other heaters by the steam amount obtained by recovering the exhaust gas calorific value.
Here, in a conventional composite boiler that does not have a low-pressure side steam generation part, it is equivalent to flowing 100% exhaust gas to the high-pressure side, and therefore only 531 kg / hr of steam can be generated, so it can be said that it does not cover all of the necessary amount of steam. .

このコンポジットボイラ3によれば、主機煙管37,43に略平行な鉛直仕切壁34によって単一ドラム30内に低圧蒸気発生水室31と高圧蒸気発生水室32とを形成し、両蒸気発生水室31,32に気水分離可能な蒸気室38,44を夫々設けたため、コンポジットボイラ3の全高を抑えつつ、両蒸気発生水室31,32に夫々対応した気水分離器や配管系統を省略することができる。低圧蒸気発生水室31が排ガスエコノマイザ機能と気水分離機能を備えると共に高圧蒸気発生水室32が補助ボイラ機能と気水分離機能を備えるため、複数圧力の蒸気を簡単な構成で生成することができ、不必要な昇圧行程を省略しつつ、必要量の高圧蒸気を生成できる。それ故、排ガス熱量の熱回収効率の向上を図りつつ、製作費の抑制と省スペース化とを両立することができる。   According to this composite boiler 3, the low-pressure steam generating water chamber 31 and the high-pressure steam generating water chamber 32 are formed in the single drum 30 by the vertical partition wall 34 substantially parallel to the main engine smoke pipes 37, 43, and both steam generating waters are formed. Since the steam chambers 38 and 44 capable of separating water from each other are provided in the chambers 31 and 32, respectively, the steam / water separator and the piping system corresponding to both the steam generating water chambers 31 and 32 are omitted while suppressing the overall height of the composite boiler 3. can do. Since the low-pressure steam generating water chamber 31 has an exhaust gas economizer function and a steam / water separation function, and the high-pressure steam generating water chamber 32 has an auxiliary boiler function and a steam / water separation function, it is possible to generate steam at multiple pressures with a simple configuration. It is possible to generate a necessary amount of high-pressure steam while omitting an unnecessary pressure increasing step. Therefore, it is possible to achieve both reduction in production cost and space saving while improving the heat recovery efficiency of the exhaust gas heat quantity.

複数の主機煙管37,43のうち一部の主機煙管43が、高圧蒸気発生水室32の内部に配設されている。これにより、主機排ガスの熱量の一部を高圧蒸気の生成に利用するため、一層排ガス熱量の有効利用ができる。即ち、燃料油を使用することなく、一部の排ガス熱量によって高圧蒸気を発生できる。
高圧蒸気発生水室32が、複数の主機煙管37,43のうち一部の主機煙管43と連通された高圧側排ガス出口煙室42を備え、低圧蒸気発生水室31が、複数の主機煙管37,43のうち残部の主機煙管37と連通された低圧側排ガス出口煙室36を備え、高圧側排ガス出口煙室42から排出される主機排ガスを低圧側排ガス出口煙室36から排出される主機排ガスに合流させる排ガス合流通路48を設けたため、主機排ガスの通路を共通化でき、一層省スペース化を図ることができる。
A part of the main machine smoke pipes 43 among the plurality of main machine smoke pipes 37, 43 is disposed inside the high-pressure steam generating water chamber 32. Thereby, since a part of heat quantity of main machine exhaust gas is utilized for the production | generation of a high pressure steam, the exhaust gas heat quantity can be used more effectively. That is, high-pressure steam can be generated by a part of exhaust gas heat quantity without using fuel oil.
The high-pressure steam generating water chamber 32 includes a high-pressure side exhaust gas outlet smoke chamber 42 that communicates with some of the main engine smoke tubes 37, 43, and the low-pressure steam generating water chamber 31 includes a plurality of main engine smoke tubes 37. 43, the main engine exhaust gas discharged from the low pressure side exhaust gas outlet smoke chamber 36 is provided with the low pressure side exhaust gas outlet smoke chamber 36 communicated with the remaining main engine smoke pipe 37. Since the exhaust gas merging passage 48 to be joined to the main engine exhaust gas passage is provided, the main engine exhaust gas passage can be shared, and further space saving can be achieved.

高圧蒸気導出部45から導出された高圧蒸気の一部を低圧蒸気導出部39から導出された低圧蒸気にバイパスさせる蒸気バイパス通路49を設け、この蒸気バイパス通路49に高圧蒸気を減圧する減圧弁50を設けたため、低圧蒸気が不足したとき、余剰高圧蒸気を燃料油加熱用以外の加熱器8〜13に供給することができ、エネルギー効率を向上できる。
また、高圧蒸気は主機関燃料油加熱器の加熱媒体であって、その蒸気圧が0.6〜0.7MPaGに設定され、低圧蒸気は主機関燃料油加熱器7以外の加熱器8〜13の加熱媒体であって、その蒸気圧が0.3〜0.4MPaGに設定されているため、必要蒸気量を排ガス熱量の回収によって得た蒸気量で賄うことができる。
A steam bypass passage 49 for bypassing a part of the high-pressure steam derived from the high-pressure steam deriving unit 45 to the low-pressure steam derived from the low-pressure steam deriving unit 39 is provided, and a pressure reducing valve 50 for depressurizing the high-pressure steam in the steam bypass passage 49. Therefore, when low-pressure steam is insufficient, surplus high-pressure steam can be supplied to the heaters 8 to 13 other than those for heating the fuel oil, and energy efficiency can be improved.
The high-pressure steam is a heating medium for the main engine fuel oil heater, the vapor pressure of which is set to 0.6 to 0.7 MPaG, and the low pressure steam is a heater 8 to 13 other than the main engine fuel oil heater 7. Since the vapor pressure is set to 0.3 to 0.4 MPaG, the necessary vapor amount can be covered with the vapor amount obtained by collecting the exhaust gas heat amount.

次に、実施例2に係るコンポジットボイラ3Aについて図6、図7に基づいて説明する。尚、前記実施例1のコンポジットボイラ3と異なる構成についてのみ説明し、実施例1と同一の部材には同一の符号を付して説明を省略する。   Next, a composite boiler 3A according to the second embodiment will be described with reference to FIGS. Only the configuration different from that of the composite boiler 3 of the first embodiment will be described, and the same members as those of the first embodiment are denoted by the same reference numerals and description thereof will be omitted.

図7に示すように、コンポジットボイラ3Aは、排ガス出口煙室として、主機排ガス出口煙室51と、油焚排ガス出口煙室40とを備え、複数の高圧主機煙管43Aが高圧蒸気発生水室32内の鉛直仕切壁34に近接した位置に配設されている。
主機排ガス出口煙室51は、両蒸気発生水室31,32の上部を跨るように配設され、複数の低圧主機煙管37を通る主機排ガスと複数の高圧主機煙管43Aを通る主機排ガスとを収容可能に構成されている。この主機排ガス出口煙室51には、複数の低圧主機煙管37と複数の高圧主機煙管43Aとの上端が連通され、その内部で低圧主機煙管37を通る主機排ガスと高圧主機煙管43Aを通る主機排ガスが合流している。
As shown in FIG. 7, the composite boiler 3 </ b> A includes a main engine exhaust gas outlet smoke chamber 51 and an oil tank exhaust gas outlet smoke chamber 40 as exhaust gas outlet smoke chambers, and a plurality of high pressure main engine smoke pipes 43 </ b> A include high pressure steam generating water chambers 32. It is arranged at a position close to the inner vertical partition wall 34.
The main engine exhaust gas outlet smoke chamber 51 is disposed so as to straddle the upper portions of the two steam generation water chambers 31 and 32, and accommodates main engine exhaust gas passing through the plurality of low pressure main engine smoke pipes 37 and main engine exhaust gas passing through the plurality of high pressure main engine smoke pipes 43A. It is configured to be possible. The main exhaust gas outlet smoke chamber 51 communicates with the upper ends of a plurality of low-pressure main engine smoke pipes 37 and a plurality of high-pressure main engine smoke pipes 43A. Have joined.

図6、図7に示すように、主機排ガス出口煙室51は、この主機排ガス出口煙室51の上壁に一体形成された筒状の排ガス合流部52を介して主機排ガス導出通路15と連通されている。これにより、低圧主機煙管37を通る主機排ガスと高圧主機煙管43Aを通る主機排ガスとの排ガス出口煙室を共通化でき、排ガス出口煙室よりも下流側の主機排ガス通路を共通にできるため、一層製作費の低減と省スペース化を図ることができる。   As shown in FIGS. 6 and 7, the main engine exhaust gas outlet smoke chamber 51 communicates with the main engine exhaust gas outlet passage 15 via a cylindrical exhaust gas junction 52 formed integrally with the upper wall of the main engine exhaust gas outlet smoke chamber 51. Has been. As a result, the exhaust gas outlet smoke chamber of the main engine exhaust gas passing through the low pressure main engine smoke pipe 37 and the main engine exhaust gas passing through the high pressure main engine smoke pipe 43A can be shared, and the main engine exhaust gas passage on the downstream side of the exhaust gas outlet smoke chamber can be shared. Production costs can be reduced and space can be saved.

次に、実施例3に係るコンポジットボイラ3Bについて図8に基づいて説明する。尚、前記実施例1のコンポジットボイラ3と異なる構成についてのみ説明し、実施例1と同一の部材には同一の符号を付して説明を省略する。   Next, a composite boiler 3B according to Example 3 will be described with reference to FIG. Only the configuration different from that of the composite boiler 3 of the first embodiment will be described, and the same members as those of the first embodiment are denoted by the same reference numerals and description thereof will be omitted.

図8に示すように、高圧側排ガス出口煙室42には、排ガス合流通路48A(排ガス合流部)が連通されている。この排ガス合流通路48Aは、高圧側排ガス出口煙室42を主機排ガス導出通路15に連通することによって、高圧側排ガス出口煙室42を流れる主機排ガスを低圧側排ガス出口煙室36を流れる主機排ガスに合流させて外部へ排出する。   As shown in FIG. 8, an exhaust gas merging passage 48 </ b> A (exhaust gas merging portion) communicates with the high pressure side exhaust gas outlet smoke chamber 42. The exhaust gas merging passage 48A communicates the high-pressure side exhaust gas outlet smoke chamber 42 with the main engine exhaust gas outlet passage 15 so that the main engine exhaust gas flowing through the high-pressure side exhaust gas outlet smoke chamber 42 becomes the main engine exhaust gas flowing through the low-pressure side exhaust gas outlet smoke chamber 36. Combine and discharge to the outside.

排ガス合流通路48Aの途中部には、高圧側排ガス出口煙室42から排出された主機排ガスを流れる流量を調整可能な排ガス流量調整ダンパ53(流量調整手段)が設けられている。排ガス流量調整ダンパ53は、低圧蒸気生成要求が高いとき、或いは高圧蒸気生成要求が低いとき、排ガス合流通路48Aを遮断し、低圧蒸気生成要求が低いとき、或いは高圧蒸気生成要求が高いとき、排ガス合流通路48Aを開放する。
これにより、低圧主機煙管37と高圧主機煙管43とを流れる主機排ガスの流量配分が構造的に予め設定されている場合であっても、簡単な構成で、高圧蒸気発生水室32に供給する主機排ガスの熱量を調整することができる。尚、排ガス流量調整ダンパ53は、全閉(遮断)と全開(開放)の2段切替に限ることなく、蒸気圧の生成要求に応じて多段切替或いはリニアに開度調整しても良い。
An exhaust gas flow rate adjusting damper 53 (flow rate adjusting means) capable of adjusting the flow rate of the main engine exhaust gas discharged from the high pressure side exhaust gas outlet smoke chamber 42 is provided in the middle of the exhaust gas merging passage 48A. The exhaust gas flow adjustment damper 53 shuts off the exhaust gas merging passage 48A when the low-pressure steam generation request is high or when the high-pressure steam generation request is low, and when the low-pressure steam generation request is low or when the high-pressure steam generation request is high, The merge passage 48A is opened.
Thereby, even if the flow distribution of the main engine exhaust gas flowing through the low-pressure main engine smoke pipe 37 and the high-pressure main engine smoke pipe 43 is structurally preset, the main apparatus supplied to the high-pressure steam generating water chamber 32 with a simple configuration. The amount of heat of the exhaust gas can be adjusted. Note that the exhaust gas flow rate adjustment damper 53 is not limited to two-stage switching between fully closed (blocking) and fully opened (opened), but may be multistage switched or linearly adjusted according to the vapor pressure generation request.

次に、実施例4に係るコンポジットボイラ3Cについて図9,図10に基づいて説明する。尚、前記実施例1のコンポジットボイラ3と異なる構成についてのみ説明し、実施例1と同一の部材には同一の符号を付して説明を省略する。   Next, a composite boiler 3C according to the fourth embodiment will be described with reference to FIGS. Only the configuration different from that of the composite boiler 3 of the first embodiment will be described, and the same members as those of the first embodiment are denoted by the same reference numerals and description thereof will be omitted.

図9、図10に示すように、コンポジットボイラ3Cは、軸心が上下方向に延びるように配置されたドラム30Aと、設定圧力の蒸気を生成可能な低圧蒸気発生水室61と、この低圧蒸気発生水室61で生成された蒸気よりも高い圧力の蒸気を生成可能な中圧蒸気発生水室71と、この中圧蒸気発生水室71で生成された蒸気よりも高い圧力の蒸気を生成可能な高圧蒸気発生水室81と、油焚部33Aと、ドラム30Aの内部を仕切る水平仕切壁54,55等を一体的に備えている。   As shown in FIGS. 9 and 10, the composite boiler 3 </ b> C includes a drum 30 </ b> A that has an axial center extending in the vertical direction, a low-pressure steam generation water chamber 61 that can generate steam at a set pressure, and the low-pressure steam. An intermediate pressure steam generation water chamber 71 capable of generating steam having a pressure higher than that of the steam generated in the generation water chamber 61, and steam having a pressure higher than that of the steam generated in the intermediate pressure steam generation water chamber 71 can be generated. A high-pressure steam generating water chamber 81, an oil bottle portion 33A, and horizontal partition walls 54 and 55 for partitioning the interior of the drum 30A are integrally provided.

低圧蒸気発生水室61は、ドラム30Aの上段部と、低圧側排ガス出口煙室62と、ドラム30Aの軸心に略直交した水平仕切壁54と、この水平仕切壁54に対して略直交状に配置された複数の低圧主機煙管63と、低圧側排ガス出口煙室62の下壁と給水された水面との間に形成された低圧蒸気室64と、この低圧蒸気室64に対応して周壁上側部分に設けられた低圧蒸気導出部65と、低圧蒸気発生水室61の周壁下側部分に設けられた給水部(図示略)等を備えている。   The low pressure steam generating water chamber 61 includes an upper stage portion of the drum 30A, a low pressure side exhaust gas outlet smoke chamber 62, a horizontal partition wall 54 substantially orthogonal to the axis of the drum 30A, and a substantially orthogonal shape to the horizontal partition wall 54. A plurality of low-pressure main engine smoke pipes 63, a low-pressure steam chamber 64 formed between the lower wall of the low-pressure side exhaust gas outlet smoke chamber 62 and the supplied water surface, and a peripheral wall corresponding to the low-pressure steam chamber 64 A low-pressure steam outlet 65 provided in the upper part, a water supply part (not shown) provided in the lower part of the peripheral wall of the low-pressure steam generating water chamber 61, and the like are provided.

低圧側排ガス出口煙室62と水平仕切壁54とが、低圧蒸気発生水室61の上壁と下壁とを夫々形成している。低圧側排ガス出口煙室62は、複数の低圧主機煙管63から導入した主機排ガスを主機排ガス導出通路15を介して外部へ排出している。
複数の低圧主機煙管63は、複数の中圧主機煙管73から中圧側排ガス出口煙室72を介して導入された主機排ガスを上下方向に流すように構成されている。
低圧蒸気導出部65には、低圧蒸気通路66が連通されている。
The low pressure side exhaust gas outlet smoke chamber 62 and the horizontal partition wall 54 form an upper wall and a lower wall of the low pressure steam generating water chamber 61, respectively. The low pressure side exhaust gas outlet smoke chamber 62 discharges the main engine exhaust gas introduced from the plurality of low pressure main engine smoke pipes 63 through the main engine exhaust gas outlet passage 15 to the outside.
The plurality of low-pressure main engine smoke pipes 63 are configured to flow the main engine exhaust gas introduced from the plurality of medium-pressure main machine smoke pipes 73 through the intermediate pressure side exhaust gas outlet smoke chamber 72 in the vertical direction.
A low pressure steam passage 66 communicates with the low pressure steam outlet 65.

中圧蒸気発生水室71は、ドラム30Aの中段部と、中圧側排ガス出口煙室72と、ドラム30Aの軸心に略直交した水平仕切壁55と、この水平仕切壁55に対して略直交状に配置された複数の中圧主機煙管73と、仕切壁54と給水された水面との間に形成された中圧蒸気室74と、この中圧蒸気室74に対応して周壁上側部分に設けられた中圧蒸気導出部75と、中圧蒸気発生水室71の周壁下側部分に設けられた給水部(図示略)等を備えている。   The intermediate pressure steam generating water chamber 71 includes a middle portion of the drum 30A, an intermediate pressure side exhaust gas outlet smoke chamber 72, a horizontal partition wall 55 substantially orthogonal to the axis of the drum 30A, and substantially orthogonal to the horizontal partition wall 55. A plurality of medium-pressure main machine smoke pipes 73 arranged in a shape, an intermediate-pressure steam chamber 74 formed between the partition wall 54 and the supplied water surface, and an upper portion of the peripheral wall corresponding to the intermediate-pressure steam chamber 74 An intermediate pressure steam lead-out part 75 provided, a water supply part (not shown) provided in the lower part of the peripheral wall of the intermediate pressure steam generation water chamber 71 and the like are provided.

水平仕切壁54と水平仕切壁55とが、中圧蒸気発生水室71の上壁と下壁とを夫々形成している。中圧側排ガス出口煙室72は、低圧蒸気発生水室61の排ガス入口煙室を兼ねるように構成され、複数の中圧主機煙管73から導入した主機排ガスを低圧主機煙管63に導出している。複数の中圧主機煙管73は、複数の高圧主機煙管83から高圧側排ガス出口煙室82を介して導入された主機排ガスを上下方向に流すように構成されている。中圧蒸気導出部75には、中圧蒸気通路76が連通されている。
中圧蒸気通路76の途中部には、中圧蒸気の一部を低圧蒸気通路66にバイパスするバイパス通路77が設けられ、このバイパス通路77に中圧蒸気を減圧する減圧弁77aが配設されている。
The horizontal partition wall 54 and the horizontal partition wall 55 form an upper wall and a lower wall of the intermediate pressure steam generating water chamber 71, respectively. The medium-pressure side exhaust gas outlet smoke chamber 72 is configured to also serve as the exhaust gas inlet smoke chamber of the low-pressure steam generating water chamber 61, and the main engine exhaust gas introduced from the plurality of medium-pressure main engine smoke pipes 73 is led to the low-pressure main engine smoke pipe 63. The plurality of medium-pressure main machine smoke pipes 73 are configured to flow the main machine exhaust gas introduced from the plurality of high-pressure main machine smoke pipes 83 through the high-pressure side exhaust gas outlet smoke chamber 82 in the vertical direction. An intermediate pressure steam passage 76 communicates with the intermediate pressure steam outlet 75.
A bypass passage 77 for bypassing a part of the intermediate pressure steam to the low pressure steam passage 66 is provided in the middle of the intermediate pressure steam passage 76, and a pressure reducing valve 77 a for reducing the intermediate pressure steam is disposed in the bypass passage 77. ing.

高圧蒸気発生水室81は、ドラム30Aの下段部と、高圧側排ガス出口煙室82と、水平仕切壁55に対して略直交状に配置された複数の高圧主機煙管83と、水平仕切壁55と給水された水面との間に形成された高圧蒸気室84と、この高圧蒸気室84に対応して周壁上側部分に設けられた高圧蒸気導出部85と、排ガス入口煙室86と、油焚部33Aと、油焚排ガス出口煙室40Aと、複数の油焚煙管41Aと、高圧蒸気発生水室81の周壁下側部分に設けられた給水部(図示略)等を備えている。   The high pressure steam generating water chamber 81 includes a lower stage portion of the drum 30 </ b> A, a high pressure side exhaust gas outlet smoke chamber 82, a plurality of high pressure main engine smoke pipes 83 disposed substantially orthogonal to the horizontal partition wall 55, and the horizontal partition wall 55. A high-pressure steam chamber 84 formed between the water surface and the supplied water surface, a high-pressure steam lead-out portion 85 provided in the upper portion of the peripheral wall corresponding to the high-pressure steam chamber 84, an exhaust gas inlet smoke chamber 86, an oil tank A part 33A, an oil soot exhaust gas outlet smoke chamber 40A, a plurality of oil soot smoke pipes 41A, and a water supply part (not shown) provided in the lower part of the peripheral wall of the high-pressure steam generating water chamber 81 are provided.

水平仕切壁55と排ガス入口煙室86とが、高圧蒸気発生水室81の上壁と下壁とを夫々形成している。高圧側排ガス出口煙室82は、中圧蒸気発生水室71の排ガス入口煙室を兼ねるように構成され、複数の高圧主機煙管83から導入した主機排ガスを中圧主機煙管73に導出している。複数の高圧主機煙管83は、主機排ガス導入通路14から排ガス入口煙室86を介して導入された主機排ガスを上下方向に流すように構成されている。高圧蒸気導出部85には、高圧蒸気通路86が連通されている。
高圧蒸気通路86の途中部には、高圧蒸気の一部を中圧蒸気通路76にバイパスするバイパス通路87が設けられ、このバイパス通路87に高圧蒸気を減圧する減圧弁87aが配設されている。
The horizontal partition wall 55 and the exhaust gas inlet smoke chamber 86 form an upper wall and a lower wall of the high-pressure steam generating water chamber 81, respectively. The high-pressure side exhaust gas outlet smoke chamber 82 is configured to also serve as the exhaust gas inlet smoke chamber of the intermediate-pressure steam generating water chamber 71, and the main engine exhaust gas introduced from the plurality of high-pressure main engine smoke pipes 83 is led to the intermediate pressure main engine smoke pipe 73. . The plurality of high-pressure main engine smoke pipes 83 are configured to flow the main engine exhaust gas introduced from the main engine exhaust gas introduction passage 14 through the exhaust gas inlet smoke chamber 86 in the vertical direction. A high pressure steam passage 86 communicates with the high pressure steam outlet 85.
A bypass passage 87 for bypassing a part of the high-pressure steam to the intermediate-pressure steam passage 76 is provided in the middle of the high-pressure steam passage 86, and a pressure reducing valve 87 a for reducing the high-pressure steam is provided in the bypass passage 87. .

図10に示すように、油焚部33Aは、ドラム30Aから径方向外側へ突出した燃料油バーナ46と、ドラム30A内において排ガス入口煙室86の上壁に載置された火炉47等を備えている。燃料油バーナ46による燃焼は火炉47内部で完結し、油焚排ガスは火炉47から複数の油焚煙管41Aを通って油焚排ガス出口煙室40Aに流れる。
油焚排ガス出口煙室40Aには、油焚排ガス導出通路16Aが連通され、水と熱交換を終えた油焚排ガスを油焚排ガス出口煙室40Aから外部へ排出している。
As shown in FIG. 10, the oil tank portion 33A includes a fuel oil burner 46 protruding radially outward from the drum 30A, a furnace 47 mounted on the upper wall of the exhaust gas inlet smoke chamber 86 in the drum 30A, and the like. ing. Combustion by the fuel oil burner 46 is completed inside the furnace 47, and the soot exhaust gas flows from the furnace 47 through the plurality of soot smoke pipes 41A to the oil soot exhaust gas outlet smoke chamber 40A.
The oil soot exhaust gas outlet smoke chamber 40A communicates with the oil soot exhaust gas outlet passage 16A, and the oil soot exhaust gas after heat exchange with water is discharged from the oil soot exhaust gas exit smoke chamber 40A to the outside.

以上により、主機煙管63,73,83に略直交した水平仕切壁54,55によって単一ドラム内に低圧蒸気発生水室61と中圧蒸気発生水室71と高圧蒸気発生水室81とを形成し、各蒸気発生水室61,71,81に気水分離可能な各蒸気室64,74,84を夫々設けたため、コンポジットボイラ3Cのドラム径を抑えつつ、蒸気発生水室61,71,81に夫々対応した気水分離器や配管系統を省略することができる。
低中圧蒸気発生水室61,71が排ガスエコノマイザ機能と気水分離機能を備えると共に高圧蒸気発生水室81が補助ボイラ機能と気水分離機能を備えるため、複数圧力の蒸気を簡単な構成で生成することができ、不必要な昇圧行程を省略しつつ、必要量の高圧蒸気を生成できる。それ故、排ガス熱量の熱回収効率の向上を図りつつ、製作費の抑制と省スペース化とを両立することができる。
As described above, the low pressure steam generating water chamber 61, the intermediate pressure steam generating water chamber 71, and the high pressure steam generating water chamber 81 are formed in the single drum by the horizontal partition walls 54, 55 substantially orthogonal to the main engine smoke pipes 63, 73, 83. The steam generating water chambers 61, 71, 81 are provided with the steam chambers 64, 74, 84, respectively, which can be separated into steam, so that the steam generating water chambers 61, 71, 81 are suppressed while suppressing the drum diameter of the composite boiler 3 </ b> C. It is possible to omit the steam separator and the piping system corresponding to each.
Since the low and medium pressure steam generating water chambers 61 and 71 have an exhaust gas economizer function and a steam-water separation function, and the high-pressure steam generation water chamber 81 has an auxiliary boiler function and a steam-water separation function, steam of multiple pressures can be configured with a simple configuration. It is possible to generate a necessary amount of high-pressure steam while omitting an unnecessary pressurizing step. Therefore, it is possible to achieve both reduction in production cost and space saving while improving the heat recovery efficiency of the exhaust gas heat quantity.

高圧蒸気発生水室81は、低中圧蒸気発生水室61,71よりも排ガス入口煙室86に近接した位置に配設されたため、低中圧蒸気発生水室61,71よりも高圧蒸気発生水室81に主機排ガスの熱量を優先的に供給することができ、効率的に高圧蒸気を生成できる。   Since the high pressure steam generating water chamber 81 is disposed at a position closer to the exhaust gas inlet smoke chamber 86 than the low and medium pressure steam generating water chambers 61 and 71, the high pressure steam generating water chamber 61 and 71 generates high pressure steam. The amount of heat of the main engine exhaust gas can be preferentially supplied to the water chamber 81, and high-pressure steam can be efficiently generated.

次に、前記実施例を部分的に変更した変形例について説明する。
1〕前記実施例1〜3においては、鉛直仕切壁がドラム内をドラム軸心に対して平行に2分割した例を説明したが、3分割以上に分割しても良い。この場合、複数の平行な鉛直仕切壁によってドラム内を区分けしても良く、また、ドラム軸心から放射状、例えば、ドラム内をY字状に区分けすることも可能である。
Next, a modification in which the above embodiment is partially changed will be described.
1] In the first to third embodiments, the example in which the vertical partition wall is divided into two in the drum in parallel to the drum axis has been described, but may be divided into three or more. In this case, the inside of the drum may be divided by a plurality of parallel vertical partition walls, and the inside of the drum may be divided radially, for example, in a Y shape from the drum axis.

2〕前記実施例4においては、2つの水平仕切壁がドラム内をドラム軸心に対して直交状に3分割した例を説明したが、単一の水平仕切壁によって2分割しても良く、また、3つ以上の水平仕切壁によって4分割以上に分割しても良い。また、蒸気発生水室毎に主機排ガス用排ガス出口煙室を設けた例を説明したが、少なくとも最も上側位置の蒸気発生水室に主機排ガス用排ガス出口煙室を設ければ良く、その他の蒸気発生水室の主機排ガス用排ガス出口煙室は省略しても良い。 2] In the fourth embodiment, the example in which the two horizontal partition walls are divided into three in the drum perpendicularly to the drum axis has been described, but may be divided into two by a single horizontal partition wall, Moreover, you may divide | segment into four or more divisions by three or more horizontal partition walls. Further, the example in which the exhaust gas outlet smoke chamber for main engine exhaust gas is provided for each steam generating water chamber has been described. However, the exhaust gas outlet smoke chamber for main engine exhaust gas may be provided at least in the uppermost steam generation water chamber. The exhaust gas outlet smoke chamber for main engine exhaust gas in the generation water chamber may be omitted.

3〕その他、当業者であれば、本発明の趣旨を逸脱することなく、前記実施例に種々の変更を付加した形態で実施可能であり、本発明はそのような変更形態も包含するものである。 3) In addition, those skilled in the art can implement the present invention by adding various modifications to the embodiments without departing from the spirit of the present invention, and the present invention includes such modifications. is there.

本発明は、主機排ガスを上下方向へ流す主機煙管と油焚排ガスを上下方向へ流す油焚煙管とをドラム内に収容したコンポジットボイラに関し、単一のドラム内から異なる蒸気圧の蒸気を発生可能に構成したため、排ガス熱量の熱回収効率の向上を図りつつ、製作費の抑制と省スペース化とを両立できる。   The present invention relates to a composite boiler in which a main engine smoke pipe for flowing main engine exhaust gas in the vertical direction and an oil soot pipe for flowing oil soot exhaust gas in the vertical direction are accommodated in a drum, and steam of different vapor pressures can be generated from a single drum. Therefore, it is possible to achieve both reduction in production cost and space saving while improving the heat recovery efficiency of the exhaust gas calorific value.

S 廃熱回収システム
1 主機関
3,3A,3B コンポジットボイラ
,3C
30,30A ドラム
31,61 低圧蒸気発生水室
32,81 高圧蒸気発生水室
33,33A 油焚部
34 鉛直仕切壁
35,86 排ガス入口煙室
36,62 低圧側排ガス出口煙室
37,63 低圧主機煙管
38,64 低圧蒸気室
39,65 低圧蒸気導出部
40,40A 油焚排ガス出口煙室
41,41A 油焚煙管
42,82 高圧側排ガス出口煙室
43,43A,83 高圧主機煙管
44,84 高圧蒸気室
45,85 高圧蒸気導出部
48,48A 排ガス合流通路
51 主機排ガス出口煙室
52 排ガス合流部
53 排ガス流量調整ダンパ
54,55 水平仕切壁
S Waste heat recovery system 1 Main engine 3, 3A, 3B Composite boiler, 3C
30, 30A Drum 31, 61 Low pressure steam generating water chamber 32, 81 High pressure steam generating water chamber 33, 33A Oil tank 34 Vertical partition wall 35, 86 Exhaust gas inlet smoke chamber 36, 62 Low pressure side exhaust gas outlet smoke chamber 37, 63 Low pressure Main machine smoke pipe 38, 64 Low pressure steam chamber 39, 65 Low pressure steam outlet 40, 40A Oil soot exhaust gas outlet smoke chamber 41, 41A Oil soot smoke pipe 42, 82 High pressure side exhaust gas outlet smoke chamber 43, 43A, 83 High pressure main engine smoke pipe 44, 84 High pressure steam chambers 45, 85 High pressure steam outlet 48, 48A Exhaust gas confluence passage 51 Main engine exhaust gas outlet smoke chamber 52 Exhaust gas confluence 53 53 Exhaust gas flow rate adjustment dampers 54, 55 Horizontal partition walls

Claims (8)

主機排ガスを排ガス入口煙室から排ガス出口煙室に亙って上下方向へ流す複数の主機煙管と、油焚部に設けられた火炉と、油焚排ガスを前記火炉から上下方向へ流す複数の油焚煙管と、少なくとも前記複数の主機煙管と火炉と複数の油焚煙管とを内部に収容したドラムとを備えたコンポジットボイラにおいて、
前記ドラム内を、前記複数の主機煙管が配設された低圧蒸気発生水室と、前記火炉と複数の油焚煙管とが配設された高圧蒸気発生水室とに仕切ると共に前記複数の主機煙管に対して略平行な仕切壁を設け、
前記低圧蒸気発生水室が、前記主機煙管と水の熱交換によって発生した低圧蒸気を収容可能な低圧蒸気室と、この低圧蒸気室から低圧蒸気を導出可能な低圧蒸気導出部とを備え、
前記高圧蒸気発生水室が、少なくとも前記油焚煙管と水の熱交換によって発生した高圧蒸気であって前記低圧蒸気よりも圧力が高い高圧蒸気を収容可能な高圧蒸気室と、この高圧蒸気室から高圧蒸気を導出可能な高圧蒸気導出部とを備えたことを特徴とするコンポジットボイラ。
A plurality of main engine smoke pipes flowing main engine exhaust gas from the exhaust gas inlet smoke chamber to the exhaust gas outlet smoke chamber in the vertical direction, a furnace provided in the oil tank section, and a plurality of oils flowing the oil fired exhaust gas from the furnace in the vertical direction In a composite boiler comprising a soot tube, and a drum containing at least the plurality of main engine smoke tubes, a furnace, and a plurality of oil soot tubes,
The drum is partitioned into a low pressure steam generating water chamber in which the plurality of main engine smoke pipes are arranged and a high pressure steam generating water chamber in which the furnace and a plurality of oil smoke smoke pipes are arranged, and the plurality of main engine smoke pipes A partition wall substantially parallel to the
The low-pressure steam generating water chamber includes a low-pressure steam chamber capable of storing low-pressure steam generated by heat exchange between the main engine smoke pipe and water, and a low-pressure steam deriving unit capable of deriving low-pressure steam from the low-pressure steam chamber;
The high-pressure steam generating water chamber is a high-pressure steam chamber that can store high-pressure steam that is generated by heat exchange of water with at least the oil smoke tube and has a pressure higher than that of the low-pressure steam. A composite boiler comprising a high-pressure steam deriving unit capable of deriving high-pressure steam.
前記複数の主機煙管のうち一部の主機煙管が、前記高圧蒸気発生水室の内部に配設されたことを特徴とする請求項1に記載のコンポジットボイラ。   2. The composite boiler according to claim 1, wherein some of the plurality of main engine smoke pipes are disposed inside the high-pressure steam generating water chamber. 前記高圧蒸気発生水室が、前記複数の主機煙管のうち前記一部の主機煙管と連通された高圧側排ガス出口煙室を備え、
前記低圧蒸気発生水室が、前記複数の主機煙管のうち前記一部の主機煙管を除いた残部の主機煙管と連通された低圧側排ガス出口煙室を備え、
前記高圧側排ガス出口煙室から排出される主機排ガスを前記低圧側排ガス出口煙室から排出される主機排ガスに合流させる排ガス合流部を設けたことを特徴とする請求項2に記載のコンポジットボイラ。
The high-pressure steam generating water chamber includes a high-pressure side exhaust gas outlet smoke chamber communicated with the partial main-engine smoke pipe among the plurality of main-engine smoke pipes;
The low-pressure steam generating water chamber comprises a low-pressure side exhaust gas outlet smoke chamber communicated with the remaining main-unit smoke pipes excluding the partial main-unit smoke pipes of the plurality of main-engine smoke pipes;
The composite boiler according to claim 2, further comprising an exhaust gas merging portion that joins main engine exhaust gas discharged from the high-pressure side exhaust gas outlet smoke chamber to main engine exhaust gas discharged from the low-pressure side exhaust gas outlet smoke chamber.
前記排ガス合流部に前記高圧側排ガス出口煙室から排出された主機排ガスの流量を調整可能な流量調整手段を設けたことを特徴とする請求項3に記載のコンポジットボイラ。   The composite boiler according to claim 3, wherein a flow rate adjusting means capable of adjusting a flow rate of main engine exhaust gas discharged from the high-pressure side exhaust gas outlet smoke chamber is provided at the exhaust gas merging portion. 前記高圧蒸気は主機関燃料油加熱器の加熱媒体であって、その蒸気圧が0.6〜0.7MPaGに設定され、前記低圧蒸気は主機関燃料油加熱器以外の加熱装置の加熱媒体であって、その蒸気圧が0.3〜0.4MPaGに設定されていることを特徴とする請求項1〜4の何れか1項に記載のコンポジットボイラ。   The high-pressure steam is a heating medium for a main engine fuel oil heater, the vapor pressure of which is set to 0.6 to 0.7 MPaG, and the low-pressure steam is a heating medium for a heating device other than the main engine fuel oil heater. And the vapor pressure is set to 0.3-0.4 MPaG, The composite boiler in any one of Claims 1-4 characterized by the above-mentioned. 主機排ガスを排ガス入口煙室から排ガス出口煙室に亙って上下方向へ流す複数の主機煙管と、油焚部に設けられた火炉と、油焚排ガスを前記火炉から上下方向へ流す複数の油焚煙管と、少なくとも前記複数の主機煙管と火炉と複数の油焚煙管とを内部に収容したドラムとを備えたコンポジットボイラにおいて、
前記ドラム内を、少なくとも低圧蒸気発生水室と、高圧蒸気発生水室とに仕切ると共に前記複数の主機煙管に対して略直交した仕切壁を設け、
前記低圧蒸気発生水室が、前記主機煙管と水の熱交換によって発生した低圧蒸気を収容可能な低圧蒸気室と、この低圧蒸気室から低圧蒸気を導出可能な低圧蒸気導出部とを備え、
前記高圧蒸気発生水室が、前記主機煙管及び油焚煙管と水の熱交換によって発生した高圧蒸気であって前記低圧蒸気よりも圧力が高い高圧蒸気を収容可能な高圧蒸気室と、この高圧蒸気室から高圧蒸気を導出可能な高圧蒸気導出部とを備えたことを特徴とするコンポジットボイラ。
A plurality of main engine smoke pipes flowing main engine exhaust gas from the exhaust gas inlet smoke chamber to the exhaust gas outlet smoke chamber in the vertical direction, a furnace provided in the oil tank section, and a plurality of oils flowing the oil fired exhaust gas from the furnace in the vertical direction In a composite boiler comprising a soot tube, and a drum containing at least the plurality of main engine smoke tubes, a furnace, and a plurality of oil soot tubes,
Partitioning the inside of the drum into at least a low-pressure steam generating water chamber and a high-pressure steam generating water chamber and providing a partition wall substantially orthogonal to the plurality of main engine smoke pipes;
The low-pressure steam generating water chamber includes a low-pressure steam chamber capable of storing low-pressure steam generated by heat exchange between the main engine smoke pipe and water, and a low-pressure steam deriving unit capable of deriving low-pressure steam from the low-pressure steam chamber;
The high-pressure steam generating water chamber is a high-pressure steam chamber that can store high-pressure steam that is high-pressure steam generated by heat exchange with the main engine smoke pipe and oil smoke pipe, and has a pressure higher than that of the low-pressure steam; A composite boiler comprising a high-pressure steam lead-out portion capable of leading out high-pressure steam from a chamber.
前記高圧蒸気発生水室は、前記低圧蒸気発生水室よりも前記排ガス入口煙室に近接した位置に配設されたことを特徴とする請求項6に記載のコンポジットボイラ。   The composite boiler according to claim 6, wherein the high-pressure steam generating water chamber is disposed closer to the exhaust gas inlet smoke chamber than the low-pressure steam generating water chamber. 前記高圧蒸気導出部から導出された高圧蒸気の一部を前記低圧蒸気導出部から導出された低圧蒸気にバイパスさせる蒸気バイパス通路を設け、この蒸気バイパス通路に高圧蒸気を減圧する減圧手段を設けたことを特徴とする請求項1〜7の何れか1項に記載のコンポジットボイラ。
A steam bypass passage for bypassing a part of the high-pressure steam derived from the high-pressure steam deriving section to the low-pressure steam derived from the low-pressure steam deriving section is provided, and a decompression means for depressurizing the high-pressure steam is provided in the steam bypass path. The composite boiler according to any one of claims 1 to 7, characterized in that:
JP2012233025A 2012-10-22 2012-10-22 Composite boiler Pending JP2014085035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012233025A JP2014085035A (en) 2012-10-22 2012-10-22 Composite boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012233025A JP2014085035A (en) 2012-10-22 2012-10-22 Composite boiler

Publications (1)

Publication Number Publication Date
JP2014085035A true JP2014085035A (en) 2014-05-12

Family

ID=50788264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012233025A Pending JP2014085035A (en) 2012-10-22 2012-10-22 Composite boiler

Country Status (1)

Country Link
JP (1) JP2014085035A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016038727A1 (en) * 2014-09-11 2016-03-17 株式会社マリタイムイノベーションジャパン Marine heat supply system
JP2016080314A (en) * 2014-10-22 2016-05-16 株式会社ヒラカワ boiler
JP2016125747A (en) * 2014-12-26 2016-07-11 初一 松本 Exhaust heat power generation system
KR102125634B1 (en) * 2018-12-28 2020-06-23 한국조선해양 주식회사 Electric propulsion system and ship having the same
KR20200082032A (en) * 2018-12-28 2020-07-08 한국조선해양 주식회사 Electric propulsion system and ship having the same
CN112781025A (en) * 2020-12-29 2021-05-11 哈尔滨锅炉厂有限责任公司 Direct-flow steam-water system for waste heat boiler and use method thereof
CN113464920A (en) * 2021-07-07 2021-10-01 哈尔滨中远控制工程有限公司 Method and system for coordinately controlling steam pressure of main pipe

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016038727A1 (en) * 2014-09-11 2016-03-17 株式会社マリタイムイノベーションジャパン Marine heat supply system
JP2016080314A (en) * 2014-10-22 2016-05-16 株式会社ヒラカワ boiler
JP2016125747A (en) * 2014-12-26 2016-07-11 初一 松本 Exhaust heat power generation system
KR102125634B1 (en) * 2018-12-28 2020-06-23 한국조선해양 주식회사 Electric propulsion system and ship having the same
KR20200082032A (en) * 2018-12-28 2020-07-08 한국조선해양 주식회사 Electric propulsion system and ship having the same
KR102141745B1 (en) * 2018-12-28 2020-08-05 한국조선해양 주식회사 Electric propulsion system and ship having the same
CN112781025A (en) * 2020-12-29 2021-05-11 哈尔滨锅炉厂有限责任公司 Direct-flow steam-water system for waste heat boiler and use method thereof
CN113464920A (en) * 2021-07-07 2021-10-01 哈尔滨中远控制工程有限公司 Method and system for coordinately controlling steam pressure of main pipe

Similar Documents

Publication Publication Date Title
JP2014085035A (en) Composite boiler
RU2193726C2 (en) Waste heat-powered steam generator
ES2525168T3 (en) Operating method of a combined cycle power plant with cogeneration, and a combined cycle power plant to perform the method
CN103967648B (en) A kind of marine low speed diesel residual heat comprehensive recovery system
JP5460040B2 (en) Combined cycle power plant for exhaust gas recirculation and CO2 separation and method of operating such combined cycle power plant
US6367258B1 (en) Method and apparatus for vaporizing liquid natural gas in a combined cycle power plant
JP5395089B2 (en) Floating LNG storage and regasification unit, and LPG regasification method in the same unit
CN104074692A (en) Integrative System of Concentrating Solar Power Plant and Desalineation Plant
SE531872C2 (en) Procedure for incremental energy conversion
CN104837724A (en) Liquefied gas processing system for ship
CN104806308B (en) A kind of prioritization scheme of ultra supercritical double reheat power generation sets
DK159734B (en) COMBINED GAS TURBINE DAMP TURBINE PLANT WITH CONNECTED COAL GAS GAS PLANT
JP2012037089A (en) Heat recovery unit, exhaust gas economizer and waste heat recovery system
CN102777876A (en) Exhaust gas waste heat steam producing system of marine diesel generating set
WO2012129195A2 (en) Method and configuration to reduce fatigue in steam drums
US20210047944A1 (en) Offshore electrical power plant
CN103542396B (en) Boiler for vessel
CN102650424B (en) Direct-current furnace starting system matched with middle-pressure flash tank and used for comprehensively recycling working medium and heat
KR102370604B1 (en) Fuel gas supply system and method for vessel
CN202188482U (en) Pumpless direct-current furnace startup system capable of fully recycling working media and heat
CN111076154B (en) Heat pump steam engine and phase-change sleeve type heat exchanger for heat pump steam engine
CN205135835U (en) Synthesize heat source system for boats and ships and ocean engineering field
CA2924710A1 (en) Combined cycle gas turbine plant having a waste heat steam generator
CN104704205A (en) Gas and steam turbine system having feed-water partial-flow degasser
CN105179104A (en) Comprehensive heat source system applied to fields of ships and ocean engineering