JP5586256B2 - Radiated power measuring method and radiated power measuring apparatus - Google Patents

Radiated power measuring method and radiated power measuring apparatus Download PDF

Info

Publication number
JP5586256B2
JP5586256B2 JP2010021957A JP2010021957A JP5586256B2 JP 5586256 B2 JP5586256 B2 JP 5586256B2 JP 2010021957 A JP2010021957 A JP 2010021957A JP 2010021957 A JP2010021957 A JP 2010021957A JP 5586256 B2 JP5586256 B2 JP 5586256B2
Authority
JP
Japan
Prior art keywords
power
maximum power
receiving antenna
measured
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010021957A
Other languages
Japanese (ja)
Other versions
JP2011158418A (en
Inventor
扶 手代木
誠範 待鳥
尚志 河村
徹 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2010021957A priority Critical patent/JP5586256B2/en
Publication of JP2011158418A publication Critical patent/JP2011158418A/en
Application granted granted Critical
Publication of JP5586256B2 publication Critical patent/JP5586256B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、小型無線端末の放射電力を測定するための技術に関し、特に、楕円球型で金属壁面に囲まれた空間を有する結合器を用い、その結合器内の焦点位置の一方に配置した無線端末から放射された電波を他方の焦点位置に配置した受信アンテナに集合させて無線端末の全放射電力を測定する方法および装置において、結合器の内部機構を簡易化してその大型化を防ぐとともに、より確実な結合状態を実現しシステムに損失がある場合を含んで正確な測定を行えるようにするための技術に関する。   The present invention relates to a technique for measuring radiated power of a small wireless terminal, and in particular, using a coupler having an ellipsoidal shape and a space surrounded by a metal wall surface, and arranged at one of the focal positions in the coupler. In a method and apparatus for measuring the total radiated power of a wireless terminal by collecting radio waves radiated from the wireless terminal on a receiving antenna disposed at the other focal position, the internal mechanism of the coupler is simplified to prevent its enlargement The present invention relates to a technique for realizing a more reliable coupling state and enabling accurate measurement including a case where there is a loss in the system.

ユビキタス社会の到来を向かえ、RFID(無線タグ)、UWB(Ultra Wide Band)、BAN(Body Area Network)関連の無線機器などの超小型無線端末の爆発的増大が予測されている。   With the advent of the ubiquitous society, the explosive increase in ultra-small wireless terminals such as RFID (wireless tag), UWB (Ultra Wide Band), and BAN (Body Area Network) related wireless devices is expected.

これらの機器は、その寸法の制約や経済的理由から、従来の無線機のように試験用端子を持たないものが多く、機器が放射した電波を受信してその試験をしなければならない。   Many of these devices do not have a test terminal like conventional wireless devices due to dimensional constraints and economic reasons, and must be tested by receiving radio waves emitted by the devices.

特に、上記のような小型無線端末は、他の通信への影響、人体への影響などを考慮してその放射電力が厳しく規定されており、放射電力の測定が重要な試験項目となる。   In particular, the radiated power of a small wireless terminal as described above is strictly defined in consideration of the influence on other communications, the influence on the human body, etc., and the measurement of the radiated power is an important test item.

放射電力には、任意方向のeirp(等価等方放射電力)と、全空間に放射される全放射電力(TRP)とがあるが、eirpは測定装置が複雑でかつ測定に長時間を要することから、TRPを扱うことが多くなってきている。   There are two types of radiated power: eirp (equivalent isotropic radiated power) in any direction and total radiated power (TRP) radiated to the entire space. However, irrp requires a complicated measuring device and requires a long time for measurement. Therefore, TRP is increasingly handled.

これまで用いられているTRPの測定法としては、以下のものが知られている。
(1)供試機器を包む球面上をプローブでスキャンしメッシュ点での放射電力を測定し、これらを積算する球面スキャニング法。
(2)金属で覆った部屋の中で供試機器から放射された電波を金属羽根の回転で撹拌してランダムフィールドを発生させ、統計的手法に基づき供試機器からの全放射電力を推定する方法。
(3)金属膜で覆った角錐状の空間と電波吸収体で内部にTEM波を発生させるG−TEMセルと呼ばれる装置を用いる方法。
(4)複数のアンテナとそれらに接続するアイソレータと位相調整器およびそれらアレーアンテナの信号を合成する合成器等を有し、アレーの中心線上に置かれた被測定物から放射電力を測定する電磁波結合装置。
The following methods are known as TRP measurement methods used so far.
(1) A spherical scanning method in which a sphere surrounding the EUT is scanned with a probe, the radiated power at the mesh points is measured, and these are integrated.
(2) In the room covered with metal, the radio wave radiated from the EUT is agitated by the rotation of the metal blades to generate a random field, and the total radiated power from the EUT is estimated based on statistical methods. Method.
(3) A method using a device called a G-TEM cell that generates a TEM wave inside with a pyramidal space covered with a metal film and a radio wave absorber.
(4) An electromagnetic wave that has a plurality of antennas, isolators and phase adjusters connected to them, and a synthesizer that synthesizes the signals of these array antennas, and measures the radiated power from the object to be measured placed on the center line of the array Coupling device.

上記球面スキャニング法は、精度の高い測定が可能であるが、その反面、大掛かりな設備(電波無反射室、球面スキャナなど)が必要で、かつ測定に長時間を要する。   The above spherical scanning method can measure with high accuracy, but on the other hand, it requires a large facility (such as a non-radio wave reflection chamber and a spherical scanner) and takes a long time for the measurement.

さらに、全空間のごく一部に放射された電波を受信して電力を求め、その総和をとるので、各測定点における受信感度が非常に小さくなり、スプリアスの測定が困難となるという問題がある。   Furthermore, since radio waves radiated to a very small part of the entire space are received and power is obtained and summed, the reception sensitivity at each measurement point becomes very small, making it difficult to measure spurious. .

一方、金属で覆った部屋の中で電波を攪拌する方法では、大型電波無反射室を必要としないという利点はあるが、人為的に発生させたランダムフィールドと理論的確率モデルとの一致性に曖昧さが残り、統計的処理に基づくので結果の不確かさが大きく、測定に長時間を要するなどの問題がある。また、スプリアス測定も球面スキャンと同様難しい。   On the other hand, the method of stirring radio waves in a room covered with metal has the advantage that a large radio wave non-reflective chamber is not required, but the agreement between the artificially generated random field and the theoretical probability model Since ambiguity remains and the result is based on statistical processing, there are problems such as large uncertainty in results and a long time for measurement. Spurious measurement is also difficult as with spherical scan.

また、G−TEMセルは内部電界分布の一様性の確保が難しい上、全放射電力を測定するためには、被測定物の向きを全方向に変えられるように2軸の回転台をG−TEMセル中に装備しなければならないという困難な問題がある。   In addition, it is difficult for the G-TEM cell to ensure the uniformity of the internal electric field distribution, and in order to measure the total radiated power, the G-TEM cell is equipped with a two-axis rotary table so that the direction of the object to be measured can be changed in all directions. There is a difficult problem that it must be equipped in the TEM cell.

これらの問題を解決する技術として本願発明者らは、楕円球状の閉空間を有する結合器を用いてアンテナの全放射電力を測定する方法を提案した(特許文献1)。   As a technique for solving these problems, the inventors of the present application have proposed a method of measuring the total radiated power of an antenna using a coupler having an elliptical closed space (Patent Document 1).

この測定方法は、楕円をその焦点を結ぶ軸を中心に回転して得られる楕円球状で金属の壁面で囲まれた閉空間の焦点位置に被測定物と受信アンテナを配置して、被測定物から放射された電波を壁面で反射させて受信アンテナに集中させることで、被測定物の全放射電力を測定するものである。   In this measurement method, an object to be measured and a receiving antenna are arranged at a focal position in a closed space that is an ellipsoidal sphere obtained by rotating an ellipse around an axis that connects the focal points, and is surrounded by a metal wall surface. The total radiated power of the object to be measured is measured by reflecting the radio wave radiated from the wall surface and concentrating it on the receiving antenna.

国際公開 WO 2009/041513International publication WO 2009/041513

上記の楕円球空間の結合器を用いた場合、被測定物と受信アンテナとの間の結合度が1となることが理想であるが、実際には、被測定物の大きさやサイドローブ等の影響を受けて、被測定物から放射された電波が異なる位相で焦点近傍に集合して互いに電波を弱め合うキャンセル現象が生じて、全放射電力の正確な測定に困難が生じる場合がある。   In the case of using the elliptical spherical space coupler, it is ideal that the degree of coupling between the object to be measured and the receiving antenna is 1, but in reality, the size of the object to be measured, the side lobe, etc. Due to the influence, a cancellation phenomenon may occur in which the radio waves radiated from the object to be measured gather in the vicinity of the focal point with different phases and weaken the radio waves, resulting in difficulty in accurately measuring the total radiated power.

このような困難から逃れるために、被測定物に代わる送信基準アンテナと受信アンテナの位置を、焦点を結ぶ線に沿ってその焦点近傍の範囲で距離が変化するように連続的に移動させ、送信基準アンテナの反射係数が最小で、且つ基準アンテナから受信アンテナへの透過係数が最大となる位置を見つけ、その位置を完全結合位置として送信基準アンテナの代わりに被測定物を配置し、被測定物からの電波を受信アンテナで受信し、その時の受信レベルと、送信基準アンテナを用いたときの受信信号レベルとの比および送信基準アンテナへの供給電力から、被測定物の放射電力を求めることも考えられる。   In order to avoid such difficulties, the position of the transmission reference antenna and reception antenna that replaces the object to be measured is continuously moved along the line connecting the focal points so that the distance changes in the vicinity of the focal point, and transmission is performed. Find the position where the reflection coefficient of the reference antenna is the smallest and the transmission coefficient from the reference antenna to the reception antenna is the largest, and place the measured object in place of the transmitting reference antenna with that position as the perfect coupling position. It is also possible to obtain the radiated power of the DUT from the ratio of the reception level at that time and the received signal level when using the transmission reference antenna and the power supplied to the transmission reference antenna. Conceivable.

しかしながら、上記技術を用いるには、基準アンテナや受信アンテナを連続的に移動させる機構を、結合器内に二組設ける必要がある。   However, in order to use the above technique, it is necessary to provide two sets of mechanisms for continuously moving the reference antenna and the receiving antenna in the coupler.

そしてその移動量は最低でも測定する電波の±1波長分は必要となり、周波数が低い場合、その移動範囲も大きくなり、結合器の大きさもその分を見込んで大きくしなければならず、装置の大型化が避けられず、コストも高くなる。また、たとえ移動機構の駆動部のみを結合器の外に配置する構造を採用しても装置全体として大型化することにかわりない。   The amount of movement must be at least ± 1 wavelength of the radio wave to be measured. If the frequency is low, the range of movement will be large, and the size of the coupler must be increased accordingly. The increase in size is inevitable and the cost increases. Even if a structure in which only the driving unit of the moving mechanism is arranged outside the coupler is adopted, the size of the entire apparatus is not increased.

また、空間内でより完全な結合位置を見つけるために、二つの焦点を結ぶ軸に沿った一次元変位だけでなく、その軸方向を含む3次元の変位機構を設ける必要が生じるが、そのような複雑な3次元の変位機構を二組設けた場合、装置がさらに大型化してコストもさらに高くなってしまう。   In addition, in order to find a more complete coupling position in the space, it is necessary to provide not only a one-dimensional displacement along the axis connecting two focal points but also a three-dimensional displacement mechanism including the axial direction. When two complicated three-dimensional displacement mechanisms are provided, the apparatus is further increased in size and cost is further increased.

上記課題を解決するための手法として本願出願人は、結合器と電力測定器との間に整合器を挿入して、その整合器によって受信電力最大となるようにすることで極めて高い結合度を得ることができることを見出した。   As a technique for solving the above problem, the applicant of the present application inserts a matching device between the coupler and the power measuring device so that the received power is maximized by the matching device. Found that can be obtained.

ところが、完全結合は系が無損失の場合でしか保証されず、系に無視できない損失がある場合に、完全結合とならず測定精度が低下する。   However, perfect coupling is guaranteed only when the system is lossless. When the system has a loss that cannot be ignored, perfect coupling is not achieved and measurement accuracy is reduced.

本発明は、上記事情に鑑みてなされたもので、結合器内に連続移動機構を設けなくても、送受信間に理想的な結合状態を実現させ、コンパクトで低コストにシステム構成でき、且つ系に無視できない損失がある場合であっても、正確な測定が行える放射電力測定方法および装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and can realize an ideal coupling state between transmission and reception without providing a continuous movement mechanism in the coupler, and can be configured in a compact and low-cost system. It is an object of the present invention to provide a radiated power measuring method and apparatus capable of performing accurate measurement even when there is a loss that cannot be ignored.

前記目的を達成するために、本発明の請求項1の放射電力測定方法は、
楕円をその2つの焦点(F1、F2)を通る軸を中心に回転して得られる楕円球状で金属の壁面(11)で囲まれた閉空間(12)の一方の焦点(F1)の近傍に配置した被測定物(1)から放射された電波を前記壁面で反射させて他方の焦点(F2)の近傍に配置した受信アンテナ(15)に集中させて、該受信アンテナの出力信号の電力を電力測定器(150)によって測定することで被測定物の全放射電力を測定する放射電力測定方法において、
前記受信アンテナと前記電力測定器の間に可変整合器(130)を挿入し、且つ、該可変整合器と前記受信アンテナとの間に減衰器(120)を挿入し、
前記電力測定器で測定される電力が最大となるように前記可変整合器を設定し、そのときの最大電力を測定する処理を、前記減衰器に異なる複数の減衰量を与えてそれぞれ行い、
異なる二つの減衰量をそれぞれα 、α 、該減衰量ごとに測定された最大電力をそれぞれP 、P 、前記測定系の損失をK とするとき、前記測定系が無損失と仮定したときの最大電力Prを、以下の推定式
Pr=[(α −α )P
/{[α α −α α ]K +α −α
によって推定し、
該推定した最大電力値に基づいて、前記被測定物の全放射電力を算出することを特徴とする。
In order to achieve the above object, a method for measuring a radiated power according to claim 1 of the present invention comprises:
In the vicinity of one focal point (F1) of the closed space (12) enclosed by the metal wall surface (11) which is an elliptical sphere obtained by rotating the ellipse around the axis passing through the two focal points (F1, F2). The radio wave radiated from the measured object (1) arranged is reflected by the wall surface and concentrated on the receiving antenna (15) arranged near the other focal point (F2), and the power of the output signal of the receiving antenna is In a radiated power measurement method for measuring the total radiated power of a device under test by measuring with a power meter (150),
A variable matching unit (130) is inserted between the receiving antenna and the power measuring device, and an attenuator (120) is inserted between the variable matching unit and the receiving antenna;
The variable matching device is set so that the power measured by the power meter is maximized, and the process of measuring the maximum power at that time is performed by giving a plurality of different attenuation amounts to the attenuator,
When two different attenuations are α 1 and α 2 , the maximum power measured for each attenuation is P 1 and P 2 , and the loss of the measurement system is K 0 , the measurement system is assumed to be lossless. Assuming that the maximum power Pr is as follows:
Pr = [(α 1 2 −α 2 2 ) P 1 P 2 K 0 ]
/ {[Α 1 2 α 2 P 1 1 α 2 2 P 2 ] K 0 2 + α 1 P 2 2 P 1 }
It estimated by,
The total radiated power of the device under test is calculated based on the estimated maximum power value.

また、本発明の請求項の放射電力測定方法は、請求項1記載の放射電力測定方法において、
前記減衰器として可変減衰器を用いたことを特徴とする。
Further, the radiation power measuring method according to claim 2 of the present invention, in the radiation power measuring method of claim 1 Symbol placement,
A variable attenuator is used as the attenuator.

また、本発明の請求項の放射電力測定方法は、請求項1または請求項2記載の放射電力測定方法において、
信号供給を受けて電波を放射する基準アンテナを前記被測定物に代えて配置した状態で、前記各減衰量についての最大電力を測定し、該減衰量と最大電力から、前記閉空間、基準アンテナ及び前記受信アンテナから前記電力測定器に至る校正系が無損失と仮定したときの最大電力を推定する段階を含み、
前記測定系について推定された最大電力と校正系について推定された最大電力とに基づいて前記被測定物の全放射電力を算出することを特徴とする。
The radiated power measuring method according to claim 3 of the present invention is the radiated power measuring method according to claim 1 or 2 ,
In a state where a reference antenna that receives a signal and radiates radio waves is arranged instead of the object to be measured, the maximum power for each attenuation is measured, and the closed space, the reference antenna is determined from the attenuation and the maximum power. And estimating the maximum power when the calibration system from the receiving antenna to the power measuring device is assumed to be lossless,
The total radiated power of the device under test is calculated based on the maximum power estimated for the measurement system and the maximum power estimated for the calibration system.

また、本発明の請求項の放射電力測定方法は、請求項1〜のいずれかに記載の放射電力測定方法において、
前記被測定物または前記基準アンテナと受信アンテナとの距離を複数通りに変えて、各距離についての最大電力を求め、その最大値を優先して前記推定に用いることを特徴とする。
Moreover, the radiated power measuring method of Claim 4 of this invention is the radiated power measuring method in any one of Claims 1-3 ,
The distance between the object to be measured or the reference antenna and the receiving antenna is changed in a plurality of ways, the maximum power for each distance is obtained, and the maximum value is preferentially used for the estimation.

また、本発明の請求項の放射電力測定装置は、
楕円をその2つの焦点(F1、F2)を通る軸を中心に回転して得られる楕円球状で、金属の壁面で囲まれた閉空間を有し、被測定物(1)を一方の焦点の近傍位置に支持し、受信アンテナ(15)を前記他方の焦点の近傍位置に支持する支持手段(50、55)を含み、前記放射体から放射された電波を前記受信アンテナに集中させてその受信信号を前記閉空間から外部へ出力させる結合器(21)と、
前記受信アンテナの出力信号の電力を測定するための電力測定器(150)と、
前記受信アンテナと前記電力測定器の間に設けられた可変整合器(130)と、
前記受信アンテナと前記可変整合器の間に挿入された減衰器(120)と、
前記電力測定器で測定される電力が最大となるように前記可変整合器を設定し、そのときの最大電力を測定する処理を、前記減衰器に異なる複数の減衰量を与えてそれぞれ行い、該各減衰量とその減衰量ごとに測定された最大電力とから、前記閉空間及び前記受信アンテナから前記電力測定器にいたる測定系が無損失と仮定したときの最大電力を推定し、該推定した最大電力に基づいて、前記被測定物の全放射電力を算出する測定制御部(190)とを有し、
さらに前記測定制御部は、異なる二つの減衰量をそれぞれα、α、該減衰量ごとに測定された最大電力をそれぞれP、P、前記測定系の損失をKとするとき、前記測定系が無損失と仮定したときの最大電力Prを、以下の推定式
Pr=[(α −α )P
/{[α α−αα ]K +α−α
によって推定することを特徴とする。
A radiated power measuring device according to claim 5 of the present invention is
The ellipse is obtained by rotating an ellipse around an axis passing through its two focal points (F1, F2), has a closed space surrounded by metal walls, and the object to be measured (1) is attached to one of the focal points. Supporting means (50, 55) for supporting the receiving antenna (15) in the vicinity of the other focal point and supporting the receiving antenna (15) in the vicinity, and concentrating the radio waves radiated from the radiator on the receiving antenna A coupler (21) for outputting a signal from the closed space to the outside;
A power meter (150) for measuring the power of the output signal of the receiving antenna;
A variable matching unit (130) provided between the receiving antenna and the power measuring device;
An attenuator (120) inserted between the receiving antenna and the variable matcher;
The variable matching device is set so that the power measured by the power meter is maximized, and the process of measuring the maximum power at that time is performed by giving a plurality of different attenuation amounts to the attenuator, From each attenuation amount and the maximum power measured for each attenuation amount, the maximum power when the measurement system from the closed space and the receiving antenna to the power measuring device is assumed to be lossless is estimated, and the estimation is performed. A measurement control unit (190) for calculating the total radiated power of the device under test based on the maximum power;
Further, the measurement control unit sets α 1 and α 2 as two different attenuation amounts, P 1 and P 2 as the maximum power measured for each attenuation amount, and K 0 as the loss of the measurement system, respectively. The maximum power Pr when the measurement system is assumed to be lossless is expressed by the following estimation formula Pr = [(α 1 2 −α 2 2 ) P 1 P 2 K 0 ].
/ {[Α 1 2 α 2 P 11 α 2 2 P 2 ] K 0 2 + α 1 P 22 P 1 }
It is characterized by estimating by.

また、本発明の請求項の放射電力測定装置は、請求項記載の放射電力測定装置において、
前記減衰器として可変減衰器を用いたことを特徴とする。
A radiated power measuring device according to claim 6 of the present invention is the radiated power measuring device according to claim 5 ,
A variable attenuator is used as the attenuator.

また、本発明の請求項の放射電力測定装置は、請求項5または請求項6記載の放射電力測定装置において、
前記測定制御部は、
信号供給を受けて電波を放射する基準アンテナを前記被測定物に代えて配置した状態で、前記各減衰量についての最大電力を測定し、該減衰量と最大電力から、前記閉空間、基準アンテナ及び前記受信アンテナから前記電力測定器に至る校正系が無損失と仮定したときの最大電力を前記測定系と同等に推定し、
該校正系について推定された最大電力と前記測定系について推定された最大電力とに基づいて前記被測定物の全放射電力を算出することを特徴とする。
A radiated power measuring device according to claim 7 of the present invention is the radiated power measuring device according to claim 5 or 6 ,
The measurement control unit
In a state where a reference antenna that receives a signal and radiates radio waves is arranged instead of the object to be measured, the maximum power for each attenuation is measured, and the closed space, the reference antenna is determined from the attenuation and the maximum power. And the maximum power when the calibration system from the receiving antenna to the power measuring device is assumed to be lossless is estimated equivalent to the measuring system,
The total radiated power of the device under test is calculated based on the maximum power estimated for the calibration system and the maximum power estimated for the measurement system.

また、本発明の請求項の放射電力測定装置は、請求項5〜7のいずれかに記載の放射電力測定装置において、
前記測定制御部は、
前記被測定物または前記基準アンテナと受信アンテナとの距離を複数通りに変えて、各距離についての最大電力を求め、その最大値を優先して前記推定に用いることを特徴とする。
Moreover, the radiated power measuring apparatus of Claim 8 of this invention is a radiated power measuring apparatus in any one of Claims 5-7 ,
The measurement control unit
The distance between the object to be measured or the reference antenna and the receiving antenna is changed in a plurality of ways, the maximum power for each distance is obtained, and the maximum value is preferentially used for the estimation.

このように、本発明の放射電力測定方法および装置では、受信アンテナと電力測定器の間に減衰器および可変整合器を挿入して、減衰器によって与えられた複数の異なる減衰量について受信電力が最大となるように整合させたときに得られた最大電力から、測定系が無損失と仮定したときの最大電力を推定し、その推定結果に基づいて被測定物の全放射電力を算出している。   Thus, in the method and apparatus for measuring radiated power according to the present invention, an attenuator and a variable matching device are inserted between the receiving antenna and the power measuring device, and the received power is obtained for a plurality of different attenuations provided by the attenuator. Estimate the maximum power when the measurement system is assumed to be lossless from the maximum power obtained when it is matched so that it is maximized, and calculate the total radiated power of the device under test based on the estimation result. Yes.

この測定原理は、結合器と可変整合器をそれぞれ4端子網とし、カスケード回路の出力が電力測定器の入力インピーダンスで終端される等価回路を想定した演算によって導かれることであり、結合器の出力側で整合をとれば、無損失の系全体の反射係数が0で、透過係数が1、つまり完全結合状態が実現できるという知見に基づくものであって、系に無視できない損失がある場合でも、被測定物の放射電力を正確に求めることができる。   The principle of this measurement is that the coupler and the variable matching network are each a four-terminal network, and the output of the cascade circuit is derived by an operation that assumes an equivalent circuit terminated with the input impedance of the power meter. If the matching is performed on the side, the reflection coefficient of the entire lossless system is 0 and the transmission coefficient is 1, that is, based on the knowledge that a completely coupled state can be realized. The radiated power of the object to be measured can be accurately obtained.

また、結合調整のために放射体や受信アンテナの位置を連続的に動かす必要がないので、コンパクトで低コストにシステム構成できる。   Further, since it is not necessary to continuously move the positions of the radiator and the receiving antenna for coupling adjustment, the system configuration can be made compact and at low cost.

また、アンテナ間距離が異なる複数通りの配置を設定し、各配置についての得られる最大電力の最大値を選択して推定に用いるものでは、落ち込み(ディップ)の影響を受けないで、広い周波数範囲で正確な測定が行える。   In addition, when multiple types of arrangements with different distances between antennas are set, and the maximum value of the maximum power obtained for each arrangement is selected and used for estimation, it is not affected by dip and has a wide frequency range. Can make accurate measurements.

本発明の測定方法を説明するためのシステム図System diagram for explaining the measurement method of the present invention 本発明の測定方法を説明するためのシグナルフローグラフSignal flow graph for explaining the measurement method of the present invention 本発明の測定方法を説明するためのシグナルフローグラフSignal flow graph for explaining the measurement method of the present invention シミュレーションの条件を示す図Diagram showing simulation conditions アンテナ位置固定、コリニア配置の場合の系の透過率の特性を示す図Diagram showing the transmission characteristics of the system when the antenna position is fixed and collinear アンテナ位置固定、コリニア配置の場合の系の透過率の損失補償した特性と損失がない理想状態の特性とを示す図Diagram showing loss-compensated characteristics of system transmittance in the case of fixed antenna position and collinear arrangement, and characteristics in an ideal state with no loss アンテナ位置を5通りに変えたときの系の透過率の損失補償した特性から最大値を選択した特性と、損失がない理想状態の特性とを示す図The figure which shows the characteristic which selected the maximum value from the characteristic which carried out the loss compensation of the transmittance | permeability of a system when changing an antenna position in five ways, and the characteristic of an ideal state without a loss 反射率が−7dBのときの系の透過率を近似する多項式の図Polynomial diagram approximating system transmittance when reflectivity is −7 dB 反射率が−3dBのときの系の透過率を近似する多項式の図Polynomial diagram approximating system transmittance when reflectivity is -3 dB 反射率が−1dBのときの系の透過率を近似する多項式の図Polynomial diagram approximating system transmittance when reflectivity is -1 dB 反射率が−0.5dBのときの系の透過率を近似する多項式の図Polynomial diagram approximating system transmittance when reflectivity is -0.5 dB トラップ型の可変整合器の構成例を示す図A diagram showing a configuration example of a trap-type variable matching device デジタル移相型の可変整合器の構成例を示す図A diagram showing a configuration example of a digital phase-shifting variable matching device 送受信のアンテナが対向配置の場合の構成例を示す図The figure which shows the structural example in case the antenna of transmission / reception is opposite arrangement | positioning 放射電力測定装置の実施形態の全体構成図Overall configuration diagram of embodiment of radiated power measuring device 要部の内部構造を示す図Diagram showing the internal structure of the main part 要部の内部構造を示す図Diagram showing the internal structure of the main part 要部の内部構造を示す図Diagram showing the internal structure of the main part 実施形態の動作を説明するためのフローチャート図Flowchart diagram for explaining the operation of the embodiment 実施形態の動作を説明するためのフローチャート図Flowchart diagram for explaining the operation of the embodiment

(測定方法)
以下、図面に基づいて本発明の実施の形態を説明する。
図1は、本発明の測定方法の原理を説明するための図である。
(Measuring method)
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram for explaining the principle of the measurement method of the present invention.

図1の(a)は、被測定物1をセットして測定する場合の測定系の構成であり、楕円をその長軸を中心に回転して得られる楕円球状で金属の壁面11で囲まれた閉空間12を有する結合器21の中で、長軸上の一方の焦点F1の位置に被測定物1の電波の放射中心をほぼ一致させ、被測定物1からその周囲に放射された電波を壁面11で反射させて他方の焦点F2の位置に配置した受信アンテナ15に集中させる。   FIG. 1A shows a configuration of a measurement system in the case where the DUT 1 is set for measurement. The ellipse is obtained by rotating an ellipse around its long axis and is surrounded by a metal wall 11. In the coupler 21 having the closed space 12, the radio wave emission center of the DUT 1 is made to substantially coincide with the position of one focal point F 1 on the long axis, and the radio wave radiated from the DUT 1 to its surroundings. Is reflected by the wall surface 11 and concentrated on the receiving antenna 15 disposed at the position of the other focal point F2.

この受信アンテナ15の出力信号は、結合器21の外部に出力され、減衰器120および可変整合器130を介して電力測定器150に入力される。減衰器120は例えば抵抗器を用いた可変減衰器、可変整合器130について後述する。また、電力測定器150としては受信機あるいはスペクトラムアナライザ等が利用できる。   The output signal of the receiving antenna 15 is output to the outside of the coupler 21 and input to the power measuring device 150 through the attenuator 120 and the variable matching device 130. As the attenuator 120, for example, a variable attenuator using a resistor and a variable matching device 130 will be described later. As the power measuring device 150, a receiver, a spectrum analyzer, or the like can be used.

ここで、上記測定系の理論解析のために、結合器21と可変整合器130は無損失で可逆性を有し、その間を損失のあるケーブルで接続したモデルを考える。   Here, for the theoretical analysis of the measurement system, consider a model in which the coupler 21 and the variable matching unit 130 are lossless and have reversibility, and are connected by a lossy cable.

このモデルは図2に示すようにSパラメータを用いたシグナルフローグラフで表される。ここで信号源と負荷は基準インピーダンスと仮定し、ロスのあるケーブルの透過係数Kは0<K<1の実数とする。また、S ijは結合器のSパラメータ、S ijは整合器のSパラメータであり、簡単のため 22 ≡Γと書く。 This model is represented by a signal flow graph using S parameters as shown in FIG. Here, it is assumed that the signal source and the load are reference impedances, and the transmission coefficient K of the lossy cable is a real number of 0 <K <1. Further, S c ij is the S parameter of the coupler, and S m ij is the S parameter of the matching unit, and is written as S c 22 ≡Γ for simplicity.

ここでケーブルロスを結合器のS行列に組み入れると、信号源と負荷を除いたフローグラフは、図3のようになる。   Here, when the cable loss is incorporated into the S matrix of the coupler, the flow graph excluding the signal source and the load is as shown in FIG.

この系全体のS行列について、負荷側整合時の|S21|を求める。先ず、S21は以下のように書ける。 For the S matrix of the entire system, | S 21 | at the time of load side matching is obtained. First, S 21 can be written as follows.

21=KS 21 21/(1−KΓ 11 ) ……(a1) S 21 = KS c 21 S m 21 / (1-K 2 Γ S m 11) ...... (a1)

結合器が無損失という仮定から、|S 21=1−Γであることに注意すると、
|S21=K(1−|Γ|)|S 21
/|1−KΓ 11 ……(a2)
となる。
Note that | S c 21 | 2 = 1−Γ 2 from the assumption that the coupler is lossless.
| S 21 | 2 = K 2 (1- | Γ | 2 ) | S m 21 | 2
/ | 1-K 2 Γ S m 11 | 2 (a2)
It becomes.

一方、S22は以下のように表され、整合時には0となる。
22=S 22+(KΓS 12 21)/(1−KΓS 11)=0……(a3)
On the other hand, S 22 are expressed as follows, becomes zero at the time of matching.
S 22 = S m 22 + (K 2 ΓS m 12 S m 21 ) / (1-K 2 ΓS m 11 ) = 0 (a3)

式(a3)の分母を払うと、S 22−KΓ(S 11 22−S 12 21)=0となり、整合器が無損失という仮定(行列式の絶対値が1および|S 21=1−|S 22)から、
|S 22=K|Γ|, |S 21=1−K|Γ|……(a4)
が得られる。
Paying the denominator of equation (a3), S m 22 −K 2 Γ (S m 11 S m 22 −S m 12 S m 21 ) = 0, and the assumption that the matching device is lossless (the absolute value of the determinant is 1 and | S m 21 | 2 = 1− | S m 22 | 2 )
| S m 22 | 2 = K 4 | Γ | 2 , | S m 21 | 2 = 1−K 4 | Γ | 2 (a4)
Is obtained.

また、式(a3)と可逆性(Sは対称)とから次式が得られる。
|S 22=K|Γ||S 21/|1−KΓS 11……(a5)
Further, the following equation is obtained from the equation (a3) and reversibility (S is symmetric).
| S m 22 | 2 = K 4 | Γ | 2 | S m 21 | 4 / | 1-K 2 ΓS m 11 | 2 ...... (a5)

さらに、式(a4)使うと、次式が得られる。
|S 21/|1−KΓS 11
=|S 22/K|Γ||S 21
=1/[1−K|Γ|] ……(a6)
Further, when the equation (a4) is used, the following equation is obtained.
| S m 21 | 2 / | 1-K 2 ΓS m 11 | 2
= | S m 22 | 2 / K 4 | Γ | 2 | S m 21 | 2
= 1 / [1-K 4 | Γ | 2 ] (a6)

この式(a6)を式(a2)の右辺に代入し、電界の透過係数Kと電力の透過係数Kとの関係K=Kを用いると、
|S21=K(1−|Γ|)/[1−K|Γ|
=K(1−|Γ|)/[1−K |Γ|]……(b1)
が得られる。
Substituting this equation (a6) into the right side of equation (a2) and using the relationship K 2 = K 0 between the transmission coefficient K of the electric field and the transmission coefficient K 0 of power,
| S 21 | 2 = K 2 (1- | Γ | 2 ) / [1-K 4 | Γ | 2 ]
= K 0 (1- | Γ | 2 ) / [1-K 0 2 | Γ | 2 ] (b1)
Is obtained.

次に、負荷挿入による系の損失補償法について考察する。
図1の(a)示した測定系において、減衰器120により異なる二つの減衰量(演算上は透過係数α、α)を与え、それに対して整合器130で受信電力が最大となるように調整したときの最大電力P、Pを測定すると、その測定値には、全放射電力P、結合器出力反射係数Γ、受信系の未知の特性係数Cが含まれ、以下のように記述できる。
Next, the system loss compensation method by load insertion is considered.
In the measurement system shown in FIG. 1A, two different attenuations (transmission coefficients α 1 and α 2 ) are given by the attenuator 120, so that the matching power is maximized by the matching unit 130. When the maximum powers P 1 and P 2 are measured, the measured values include the total radiated power P 0 , the coupler output reflection coefficient Γ, and the unknown characteristic coefficient C of the receiving system. Can be described in

=CPα(1−|Γ|)/[1−(Kα|Γ|]……(b2)
=CPα(1−|Γ|)/[1−(Kα|Γ|]……(b3)
ここで、Cは、整合器130の挿入損失、電力測定器150の入出力特性並びにケーブル損失などを含む係数である。
P 1 = CP 0 K 0 α 1 (1- | Γ | 2 ) / [1- (K 0 α 1 ) 2 | Γ | 2 ] (b2)
P 2 = CP 0 K 0 α 2 (1- | Γ | 2 ) / [1- (K 0 α 2 ) 2 | Γ | 2 ] (b3)
Here, C is a coefficient including the insertion loss of the matching device 130, the input / output characteristics of the power measuring device 150, the cable loss, and the like.

式(b2)から反射係数を求めると、
|Γ|=(P−CPα
/[P(Kα−CPα] ……(b4)
となる。
When the reflection coefficient is obtained from the equation (b2),
| Γ | 2 = (P 1 −CP 0 K 0 α 1 )
/ [P 1 (K 0 α 1 ) 2 −CP 0 K 0 α 1 ] (b4)
It becomes.

この反射係数を式(b3)に代入すると、CとPの積は、次のようになる。
Pr=CP
=(α −α )P
/{[α α−αα ]K
+α−α} ……(b5)
Substituting this reflection coefficient into equation (b3), the product of C and P 0 is as follows.
Pr = CP 0
= (Α 1 2 −α 2 2 ) P 1 P 2 K 0
/ {[Α 1 2 α 2 P 11 α 2 2 P 2 ] K 0 2
+ Α 1 P 2 −α 2 P 1 } (b5)

上記式(b5)において、α、α、P、Pは、設定値および測定結果で既知であるから、Kを予め測定しておけば、CとPの積、即ち、ケーブル損が無い場合の受信最大電力Pr(EUT)を推定することができる。 In the above formula (b5), α 1 , α 2 , P 1 , and P 2 are known from the set values and the measurement results. Therefore, if K 0 is measured in advance, the product of C and P 0 , The maximum received power Pr (EUT) when there is no cable loss can be estimated.

また、ケーブルの電力透過係数Kの測定は、図1の(b)のように、被測定物の代わりに基準アンテナ160を用いた校正系で、その基準アンテナ160の入力端と受信ケーブル出力端の間でS21を測定する。ここで入力反射係数をS11とすれば、損失に対応する電力透過係数Kは、
=|S21/(1−|S11) ……(b6)
の計算で得られる。なお、この測定は反射係数が大きくならない位置にアンテナを調整して行う。
Further, the measurement of the power transmission coefficient K 0 of the cable is performed by a calibration system using the reference antenna 160 instead of the device under test as shown in FIG. 1B, and the input end of the reference antenna 160 and the output of the receiving cable. measuring the S 21 between the ends. If the input reflection coefficient is S 11 , the power transmission coefficient K 0 corresponding to the loss is
K 0 = | S 21 | 2 / (1- | S 11 | 2 ) (b6)
It is obtained by the calculation of This measurement is performed by adjusting the antenna to a position where the reflection coefficient does not increase.

上記式(b5)で推定された測定系の最大電力Pr(EUT)は、未知の係数Cと最終的に求めたい被測定物の全放射電力Pの積であるが、係数Cが未知であるから全放射電力Pを直接求めることはできない。 The maximum power Pr (EUT) of the measurement system estimated by the above formula (b5) is the product of the unknown coefficient C and the total radiated power P 0 of the object to be measured that is finally obtained, but the coefficient C is unknown. It can not be determined directly total radiated power P 0 because there.

そこで、図1の(b)に示したように被測定物1に代えて基準アンテナ160を用い、損失Lcのケーブル162を介して信号発生器161に接続して、電力Psgの信号を供給する校正系を形成する。   Therefore, as shown in FIG. 1B, the reference antenna 160 is used in place of the DUT 1 and the signal P is supplied to the signal generator 161 via the cable 162 having the loss Lc. Form a calibration system.

この校正系で、前記同様に異なる二つの減衰量(透過係数α、α)を与えてそれぞれについて整合状態における最大電力P(Ref)、P(Ref)を求め、ケーブル損がない場合の受信最大電力Pr(Ref)を推定する。 In this calibration system, two different attenuation amounts (transmission coefficients α 1 , α 2 ) are given in the same manner as described above, and the maximum powers P 1 (Ref) and P 2 (Ref) in the matching state are obtained for each, and there is no cable loss. In this case, the maximum received power Pr (Ref) is estimated.

この校正系の最大電力Pr(Ref)は、基準アンテナ160の既知の放射効率をηrとすると、Pr(Ref)=CPsgLcηrと表され、その値は前記測定で推定されている。   The maximum power Pr (Ref) of the calibration system is expressed as Pr (Ref) = CPsgLcηr, where ηr is a known radiation efficiency of the reference antenna 160, and the value is estimated by the measurement.

そして、推定された最大電力Pr(EUT)、Pr(Ref)の比は、
Pr(EUT)/Pr(Ref)=CP/CPsgLcηr=P/PsgLcηr
となり、未知の係数Cを除去できる。
The ratio of the estimated maximum power Pr (EUT) and Pr (Ref) is
Pr (EUT) / Pr (Ref) = CP 0 / CPsgLcηr = P 0 / PsgLcηr
Thus, the unknown coefficient C can be removed.

したがって、次式から被測定物の全放射電力Pを求めることができる。
=PsgLcηrPr(EUT)/Pr(Ref) ……(b7)
Therefore, the total radiated power P 0 of the object to be measured can be obtained from the following equation.
P 0 = PsgLcηrPr (EUT) / Pr (Ref) (b7)

なお、校正系による測定は毎回行う必要はなく、一度の測定で推定された最大電力Pr(Ref)を、(PsgLcηr)の値とともにメモリに記憶しておき、測定系の測定で推定された最大電力Pr(EUT)とメモリに記憶されている値とで上記演算を行えばよい。   Note that the measurement by the calibration system does not need to be performed every time, and the maximum power Pr (Ref) estimated by one measurement is stored in a memory together with the value of (PsgLcηr), and the maximum estimated by the measurement of the measurement system is stored. The above calculation may be performed using the power Pr (EUT) and the value stored in the memory.

上記方法は、測定系において、異なる二つの減衰量を与えた時の整合状態における最大電力と減衰量とを用いて、式(b5)により系が無損失と仮定したときの最大電力を推定し、その推定した最大電力から被測定物の全放射電力を測定するものであったが、上記式(b5)の演算による推定の他に、異なる減衰量の数を3つ以上とし、各減衰量についての整合状態における最大電力を求め、減衰量と最大電力との関係を表す近似式を用いて、測定系が無損失の場合の最大電力を推定する方法もある。   The above method estimates the maximum power when the system is assumed to be lossless according to equation (b5) using the maximum power and the attenuation in the matching state when two different attenuations are given in the measurement system. The total radiated power of the object to be measured is measured from the estimated maximum power. In addition to the estimation by the calculation of the above formula (b5), the number of different attenuations is set to three or more, and each attenuation amount is measured. There is also a method of estimating the maximum power when the measurement system is lossless using an approximate expression representing the relationship between the amount of attenuation and the maximum power.

近似式としては、多項式を用いる方法や式(b2)の理論式を用いる方法がある。いずれの場合も測定値と近似式の差の2乗和が最小となる、所謂最小二乗法を用いて、多項式の場合には各次数の係数を、また理論式の場合には、CPと|Γ|の値を決定する。後者の方法としては、レーベンバーグ・マルカート法等が知られている。これは精度の高い測定は行えるが取り扱いが複雑である。 As an approximate expression, there are a method using a polynomial and a method using a theoretical expression of equation (b2). In any case, using a so-called least square method that minimizes the sum of squares of the difference between the measured value and the approximate expression, a coefficient of each order is obtained in the case of a polynomial, and CP 0 is assumed in the case of a theoretical expression. Determine the value of | Γ | 2 . As the latter method, the Levenberg-Marquardt method or the like is known. This can be measured with high accuracy, but is complicated to handle.

これに対して、多項式近似は精度の点でやや劣るが取り扱いが簡単なのでよく用いられている。例えば6次の多項式、
y=ax+bx+cx+dx+ex+fx+g ……(b8)
では、最小二乗法で各次の係数a〜gを求める。
On the other hand, polynomial approximation is often used because it is slightly inferior in accuracy but easy to handle. For example, a 6th order polynomial,
y = ax 6 + bx 5 + cx 4 + dx 3 + ex 2 + fx + g (b8)
Then, each order coefficient ag is calculated | required with the least squares method.

また、上記測定法は、異なる減衰量毎に整合状態で求めた最大電力から、系が無損失と仮定したときの最大電力を推定して、被測定物の全放射電力を測定していたが、この方法では経時変化する信号に対するリアルタイム測定を行うことは困難である。   In the above measurement method, the maximum power when the system is assumed to be lossless is estimated from the maximum power obtained in the matching state for each different attenuation, and the total radiated power of the device under test is measured. In this method, it is difficult to perform real-time measurement on a signal that changes over time.

しかし、式(b2)から被測定物についてのP1とPとは比例関係にあり、その比例係数が求まれば、経時変化する信号P1に対する全放射電力Pをリアルタイムに求めることができる。 However, P 1 and P 0 for the object to be measured are in a proportional relationship from equation (b2), and if the proportional coefficient is obtained, the total radiated power P 0 for the signal P 1 that changes with time can be obtained in real time. it can.

まず、式(b7)から被測定物についてのPとPrは比例するので、その比例係数をC1とすれば、
=C1Pr ……(c1)
と書くことができる。係数C1は、式(b7)からPsgLcηr/Pr(Ref)である。
First, P 0 and Pr for the object to be measured are proportional to each other from the equation (b7), so if the proportionality coefficient is C 1 ,
P 0 = C 1 Pr (c1)
Can be written. The coefficient C 1 is PsgLcηr / Pr (Ref) from the equation (b7).

また、式(b5)において、PとPKは比例するからP=γPとおくと、
Pr=CP
=(α −α )γP
/{[α α−αα γ]K
+αγ−α}≡C ……(c2)
と書くことができる(Cは比例係数)。
Further, in the formula (b5), P 1 and P 2 K are proportional, so if P 2 = γP 1 is set,
Pr = CP 0
= (Α 1 2 −α 2 2 ) γP 1 K 0
/ {[Α 1 2 α 21 α 2 2 γ] K 0 2
+ Α 1 γ−α 2 } ≡C 2 P 1 (c2)
Can be written as (C 2 are proportionality coefficients).

したがって、式(c1)、(c2)から、
=C1 ……(c3)
となる。
Therefore, from equations (c1) and (c2)
P 0 = C 1 C 2 P 1 (c3)
It becomes.

よって、比例係数を予め求めておき、減衰量を一つの値に固定した整合状態で得られる測定値Pに係数C1、Cを乗じることで、経時変化する信号に対する全放射電力Pをリアルタイムに測定できる。 Therefore, a proportional coefficient is obtained in advance, and the total radiation power P 0 for a signal that changes with time is obtained by multiplying the measured value P 1 obtained in the matching state in which the attenuation amount is fixed to one value by the coefficients C 1 and C 2. Can be measured in real time.

上記説明は、周波数を固定した場合で説明しているが、その測定周波数と、結合器の形状(楕円の離心率、焦点間の距離)との関係によって、結合器21の透過率が極端に低下(ディップする)ことがある。   In the above description, the frequency is fixed. However, the transmittance of the coupler 21 is extremely high depending on the relationship between the measurement frequency and the shape of the coupler (the eccentricity of the ellipse and the distance between the focal points). May drop (dip).

したがって、固定周波数での測定の場合、減衰器120の減衰量を0dB(透過係数1)、整合器130をスルー状態として、受信電力が最大になるように、被測定物1あるいは基準アンテナ160と、受信アンテナ15との距離(以下、アンテナ間距離と言う)を微調整してから上記測定を行う。   Therefore, in the case of measurement at a fixed frequency, the attenuation of the attenuator 120 is 0 dB (transmission coefficient 1), the matching unit 130 is in the through state, and the measured object 1 or the reference antenna 160 is maximized so that the received power is maximized. The above measurement is performed after finely adjusting the distance to the receiving antenna 15 (hereinafter referred to as the distance between the antennas).

また、被測定物1が出力する信号が広帯域でその周波数毎の放射電力を求める必要がある場合には、電力測定器150で測定周波数を可変して、その周波数毎に上記処理を行うことになるが、この場合も結合器21の透過率のディップが問題になるが、そのような場合には、アンテナ間距離を複数通り(上記微調整も含む)に変えて、距離毎に上記同様の測定を行い、その測定結果のうち同一周波数について透過率や測定電力が最大となるものを選択すれば、ディップの影響を軽減することができる。その場合、アンテナ間距離を複数通りに変化させる機構が必要となるが、この機構は、単にアンテナの位置を所定距離ずらして固定する機構でよく、広い範囲の連続移動機構は必要ない。   Further, when the signal output from the DUT 1 has a wide band and it is necessary to obtain the radiated power for each frequency, the power measuring device 150 varies the measurement frequency and performs the above processing for each frequency. However, in this case as well, the transmittance dip of the coupler 21 becomes a problem. In such a case, the distance between the antennas is changed to a plurality of ways (including the above fine adjustment), and the same as above for each distance. If the measurement is performed and the measurement result having the maximum transmittance or measurement power is selected for the same frequency, the influence of the dip can be reduced. In this case, a mechanism for changing the distance between the antennas in a plurality of ways is required. However, this mechanism may be a mechanism for simply shifting the position of the antenna by a predetermined distance, and does not require a wide range continuous movement mechanism.

次に、図4の(a)、(b)に示した測定条件で、被測定物(EUT)1と受信アンテナ15の放射中心位置を焦点F1、F2に合わせ、被測定物1のアンテナと受信アンテナ15とがダイポール系でそのエレメントの長さ方向が焦点を結ぶ線(z軸)に沿ってアンテナ間が直接結合しないコリニア配置とした場合の測定系全体の透過係数|S21|のシミュレーション結果を図5に示す。なお図4では、測定中心波長125mmに対して、長さ2a=4λ、楕円離心率e=0.5の結合器(楕円鏡)を導電率200000S/mの銅で形成し、被測定物(EUT)と受信アンテナの放射中心を、焦点位置を基準にして−λ/4〜+λ/4までλ/8ステップで接近あるいは離間できるものとする(各アンテナの変位量をΔzとしている)。 Next, under the measurement conditions shown in FIGS. 4A and 4B, the radiation center positions of the device under test (EUT) 1 and the receiving antenna 15 are adjusted to the focal points F1 and F2, and the antenna of the device under test 1 is Simulation of the transmission coefficient | S 21 | of the entire measurement system when the receiving antenna 15 is a dipole system and the element has a collinear arrangement in which the length direction of the element is not directly coupled along a line (z axis) that connects the focal points. The results are shown in FIG. In FIG. 4, a coupler (elliptic mirror) having a length of 2a = 4λ and an elliptical eccentricity e = 0.5 is formed of copper having an electrical conductivity of 200000 S / m with respect to the measurement center wavelength of 125 mm, and the object to be measured ( EUT) and the radiation center of the receiving antenna can be approached or separated in λ / 8 steps from −λ / 4 to + λ / 4 with reference to the focal position (the displacement amount of each antenna is Δz).

図5において、実線の特性U1は減衰量0dB(透過係数α1=1)の時に得られる最大電力P1(EUT)に対応する透過係数、一点鎖線の特性U2は減衰量−3dB(透過係数α=1/2)の時に得られる最大電力Pに対応する透過係数、点線の特性W1は、前記(b5)の推定式を用いて算出した全放射電力に対応する透過係数(損失補償した透過係数)を示している。 In FIG. 5, a solid line characteristic U1 is a transmission coefficient corresponding to the maximum power P 1 (EUT) obtained when the attenuation is 0 dB (transmission coefficient α 1 = 1), and a one-dot chain line characteristic U2 is an attenuation of −3 dB (transmission coefficient). The transmission coefficient corresponding to the maximum power P 2 obtained when α 2 = 1/2) and the dotted line characteristic W 1 are the transmission coefficients (loss compensation) corresponding to the total radiated power calculated using the estimation formula (b5). Transmission coefficient).

このように、系に損失がある場合であっても上記演算により、広い周波数範囲で格段に高い透過係数を得ることができる。   Thus, even if there is a loss in the system, a remarkably high transmission coefficient can be obtained in a wide frequency range by the above calculation.

また、図6の細実線の特性U3は系の損失が無い理想状態における透過係数を示しており、損失補償した透過係数の特性W1とよく一致していることがわかる。   Also, the characteristic U3 of the thin solid line in FIG. 6 shows the transmission coefficient in an ideal state with no loss of the system, and it can be seen that the characteristic U1 of the transmission coefficient compensated for loss is in good agreement.

また、図7の点線の特性W2は、焦点位置を基準にして被測定物1と受信アンテナ15の位置を焦点を結ぶ線に沿ってそれぞれ中心波長λの−1/4〜+1/4の範囲で対称にλ/8ステップで5通りに可変し、各位置毎に得られた5組の特性(前記図5の損失補償された特性W1をアンテナ位置毎に求めたもの)のうち、各周波数について透過係数が高いものを選択することで合成したものであり、主に結合器の寸法と波長の関係によって生じるディップを抑制している。また細実線U4は、損失が無い場合に上記同様にアンテナの位置を変化させて合成した特性であり、これも損失補償された合成特性W2とよく一致している。   Also, the dotted line characteristic W2 in FIG. 7 is a range of −1/4 to +1/4 of the center wavelength λ along the line connecting the positions of the DUT 1 and the receiving antenna 15 with the focus position as a reference. Among the five sets of characteristics obtained at each position (the loss-compensated characteristics W1 shown in FIG. 5 were determined for each antenna position). Are synthesized by selecting those having a high transmission coefficient, and the dip caused mainly by the relationship between the dimensions of the coupler and the wavelength is suppressed. The thin solid line U4 is a characteristic synthesized by changing the position of the antenna in the same manner as described above when there is no loss, and this characteristic also agrees well with the synthesized characteristic W2 compensated for loss.

この図では、3点の周波数でディップが残っているが、これを取り除くには、図4の構成において、EUTと受信アンテナの向きをx方向に合わせるような配置にして偏波を変えた測定を行えば、ディップの現れる周波数が異なるので、それらの最大受信電力を抽出すればよい。   In this figure, dips remain at three frequencies, but in order to remove these dips, measurement was performed by changing the polarization by arranging the EUT and the receiving antenna in the x direction in the configuration of FIG. Since the frequency at which the dip appears is different, the maximum received power may be extracted.

また、図8〜図11は、上記同様の測定条件で、3つ以上の減衰量とその各減衰量についての系の透過係数|S21|との関係を表す6次の多項式を、反射係数|Γ|=−7dB、−3dB、−1dB、−0.5dBの条件でそれぞれ求めたものであり、多項式を特定するためのサンプル値(菱形)は前記式(b2)を用いて求めている。 8 to 11 show a sixth-order polynomial representing the relationship between three or more attenuation amounts and the transmission coefficient | S 21 | of the system for each attenuation amount under the same measurement conditions as described above. | Γ | = −7 dB, −3 dB, −1 dB, and −0.5 dB, respectively, and the sample value (diamond) for specifying the polynomial is obtained using the above-described equation (b2). .

各図における損失0(x=0)の多項式の値は厳密解のように0になるのが理想であり、反射係数|Γ|が−7dBや−3dBのように小さい範囲では、厳密解に対する誤差が小さく、6次の多項式で系が損失0と仮定したとき整合状態における最大電力を精度よく推定できる。ただし、反射係数|Γ|が−1dBや−0.5dBのように大きい場合には、厳密解に対する誤差が大きくなるので、より高次の多項式か、レーベンバーグ・マルカート法等を用いる必要がある。   In each figure, the value of the polynomial with loss 0 (x = 0) is ideally 0 as in the exact solution, and in the range where the reflection coefficient | Γ | is small such as −7 dB and −3 dB, When the error is small and the system is assumed to have zero loss with a 6th order polynomial, the maximum power in the matching state can be estimated with high accuracy. However, when the reflection coefficient | Γ | is large, such as −1 dB or −0.5 dB, an error with respect to the exact solution becomes large. Therefore, it is necessary to use a higher-order polynomial or the Levenberg-Marquardt method or the like. .

このように上記測定方法を用いれば、簡単に且つ確実に被測定物の放射電力を求めることができ、しかも被測定物1、基準アンテナ160、受信アンテナ15を、結合調整のために連続移動させたり、3次元方向の移動機構も不要である。   In this way, by using the above measuring method, the radiated power of the device under test can be obtained easily and reliably, and the device under test 1, the reference antenna 160 and the receiving antenna 15 are continuously moved for coupling adjustment. In addition, a moving mechanism in the three-dimensional direction is also unnecessary.

したがって、装置が大型化することがなく、コンパクトで低コストにシステム構成できる。また系に無視できない損失がある場合でもその損失分を補償した正確な測定が行える。   Therefore, the system can be configured in a compact and low cost without increasing the size of the apparatus. Even if there is a loss that cannot be ignored in the system, accurate measurement can be performed with compensation for the loss.

なお、異なる減衰量を与える減衰器12としては前記したように可変減衰器が適している。また、可変整合器130としては、図12の(a)〜(c)に示すように、平行線路(主線路)の中間や両端にスタブを設けたトラップ式のものや、図13に示すように、PINダイオードへの順方向電流の供給によってオンする移相ローデッドライン型移相器とハイブリッド型移相器とを組合せ、入力信号を、π、π/2、π/4、π/8またはそれらの組合せの量だけ移相して出力するデジタル移相器を用いたもの等が採用できる。   As described above, the variable attenuator is suitable as the attenuator 12 that gives different attenuation amounts. As the variable matching unit 130, as shown in FIGS. 12A to 12C, a trap type having a stub in the middle or both ends of a parallel line (main line), or as shown in FIG. In addition, a phase-shifted loaded line type phase shifter that is turned on by supplying a forward current to the PIN diode and a hybrid type phase shifter are combined, and the input signal is π, π / 2, π / 4, π / 8 or The thing using the digital phase shifter which carries out the phase shift by the quantity of those combinations, and can output is employable.

上記図12のトラップ式整合器には、(a)のL型、(b)のT型、(c)のπ型があり、図中のL1とL2の長さをそれぞれ可変することでインピーダンス変換を行って、入力と出力の間の整合をとる。この方式のうち特に(a)は広帯域な特性を持っており、この用途に最適である。なお、線路長の可変は例えばトロンボーン機構のラインストレッチャーを用いることで実現できる。   The trap type matcher in FIG. 12 includes (a) L type, (b) T type, and (c) π type. By changing the lengths of L1 and L2 in the figure, impedance can be changed. Perform a transformation to match between input and output. Among these systems, (a) has a wide-band characteristic and is optimal for this application. The line length can be changed by using, for example, a trombone line stretcher.

例えば、前記L型の可変整合器の場合、長さL1の部分と長さL2の部分にそれぞれラインストレッチャーを用いるが、整合点はL1=0〜λ/2、L2=0〜λ/4の範囲の中で1点だけ存在するため、制御が容易である。   For example, in the case of the L-type variable matching device, a line stretcher is used for each of the length L1 portion and the length L2 portion, and the matching points are L1 = 0 to λ / 2 and L2 = 0 to λ / 4. Since there is only one point in the range, control is easy.

また上記デジタル移相器は、PINダイオードのオンオフで位相を変化させることができるので、高速の位相制御を行うことができるが、挿入損失が大きく、また使用周波数範囲が限られる。これに対し、ラインストレッチャーは、制御速度は遅いが、挿入損失が小さく、使用周波数範囲も広いという特徴を有し、測定装置の移相器には好適である。   The digital phase shifter can change the phase by turning on and off the PIN diode, so that high-speed phase control can be performed, but the insertion loss is large and the operating frequency range is limited. On the other hand, the line stretcher has characteristics that the control speed is slow but the insertion loss is small and the operating frequency range is wide, and is suitable for the phase shifter of the measuring apparatus.

また、上記L型の可変整合器をデジタル的に制御する場合、各長さL1、L2を最初は粗く可変して、電力が大きくなる長さを大まかに探し、そのあとに、細かいステップで長さを可変して、最大電力に追い込むことになる。また、このような離散的な制御の場合、真の最大値電力に達しない場合があるが、その場合には複数の測定点から内挿法によって真の最大電力を求めればよい。このような内挿法を用いる場合でシミュレーションした結果、測定点の粗さ(L1、L2の可変ステップ)は、1/40波長程度でよいことが確かめられているので、上記のような機械的な可変整合器を用いた場合でも、短時間に整合させることができる。   In addition, when the L-type variable matching unit is digitally controlled, the lengths L1 and L2 are first roughly varied to roughly find the length at which the power increases, and then the length is increased in fine steps. By changing the length, the maximum power will be driven. In the case of such discrete control, the true maximum power may not be reached. In that case, the true maximum power may be obtained from a plurality of measurement points by interpolation. As a result of simulation using such an interpolation method, it has been confirmed that the roughness of the measurement points (variable steps of L1 and L2) may be about 1/40 wavelength. Even when a variable matching device is used, matching can be performed in a short time.

前記説明は、送信側と受信側のアンテナをダイポール系としその長さ方向が、楕円軸の長さ方向に一致するコリニア配置のものであり、理論上アンテナ間で直接結合しない条件を前提としていたが、アンテナ同士が直接結合するような配列、例えば図14のように、送受信のダイポール系アンテナのエレメントが平行に対向する配置などであっても前記整合器による整合で、最大電力の測定が行え、その測定結果から被測定物の全放射電力を求めることができる。   The above description is based on the premise that the antennas on the transmitting side and the receiving side are dipole systems and the length direction of the antenna is a collinear arrangement that coincides with the length direction of the elliptical axis, and that the antennas are not theoretically coupled directly. However, even in an arrangement in which the antennas are directly coupled, for example, as shown in FIG. 14, the elements of the transmitting and receiving dipole antennas face each other in parallel, the maximum power can be measured by matching with the matching unit. The total radiated power of the object to be measured can be obtained from the measurement result.

(放射電力測定装置の説明)
図15は、上記測定方法に基づいた放射電力測定装置20の全体構成を示している。
この放射電力測定装置20は、前記した結合器21、減衰器120、可変整合器130、電力測定器150、被測定物の代わりに用いる基準アンテナ160、信号発生器161、基準アンテナ160と信号発生器161の間を接続する同軸ケーブル162、測定制御部190を有している。
(Description of radiated power measuring device)
FIG. 15 shows the overall configuration of the radiated power measuring apparatus 20 based on the above measuring method.
The radiated power measuring device 20 includes the coupler 21, the attenuator 120, the variable matching device 130, the power measuring device 150, the reference antenna 160 used instead of the device under test, the signal generator 161, the reference antenna 160, and the signal generation. A coaxial cable 162 for connecting the devices 161 and a measurement control unit 190 are provided.

この結合器21には、前記した楕円球状の閉空間12を囲む壁面11と、その閉空間12内の一方の焦点F1の位置に被測定物1および基準アンテナ160のほぼ放射中心位置がくるように支持する手段と、他方の焦点F2の位置に受信アンテナ15の中心がくるように支持する手段とが設けられている。また、被測定物1、基準アンテナ160、受信アンテナ15の出し入れができるように、閉空間12を開閉できる構造が必要である。   In this coupler 21, the radiation center position of the DUT 1 and the reference antenna 160 is almost at the position of the wall surface 11 surrounding the oval closed space 12 and one focal point F 1 in the closed space 12. And a means for supporting the receiving antenna 15 so that the center of the receiving antenna 15 is located at the position of the other focal point F2. Further, a structure capable of opening and closing the closed space 12 is required so that the DUT 1, the reference antenna 160, and the receiving antenna 15 can be taken in and out.

図16〜図18は、その具体例を示すものであり、結合器21は、下ケース22と上ケース23とに別れた開閉式で、下ケース22の上板22aには、楕円状の穴(図示せず)が形成され、その穴に前記した楕円球状の閉空間12の下半部の外周形状に沿った形状の内壁25aを有する第1の内壁形成体25が取り付けられている。   FIGS. 16 to 18 show specific examples thereof. The coupler 21 is an openable / closable type separated into a lower case 22 and an upper case 23, and the upper plate 22a of the lower case 22 has an elliptical hole. (Not shown) is formed, and a first inner wall forming body 25 having an inner wall 25a having a shape along the outer peripheral shape of the lower half of the oval spherical closed space 12 is attached to the hole.

第1の内壁形成体25は、電波を反射する金属板、金属メッシュ板のプレス加工、あるいは合成樹脂の成形品の内壁に金属膜を設ける等して形成され、その上縁には、僅かに外側へ延びて前記穴の外縁と重なるフランジ26が延設されており、この第1の内壁形成体25は、フランジ26部分が下ケース22の上板22aに固定されている。   The first inner wall forming body 25 is formed by pressing a metal plate that reflects radio waves, pressing a metal mesh plate, or providing a metal film on the inner wall of a synthetic resin molded product. A flange 26 that extends outward and overlaps with the outer edge of the hole is extended, and the flange portion of the first inner wall forming body 25 is fixed to the upper plate 22 a of the lower case 22.

一方、上ケース23の下板23aにも、楕円形の穴(図示せず)が設けられ、この穴に、第2の内壁形成体30が装着されている。   On the other hand, the lower plate 23a of the upper case 23 is also provided with an oval hole (not shown), and the second inner wall forming body 30 is mounted in this hole.

第2の内壁形成体30は、第1の内壁形成体25と対称な形状を有している。即ち、前記した楕円球状の閉空間12の上半部の外周形状に沿った形状の内壁30aを有し、その開口側の縁部には、僅かに外側へ延びて上ケース23の前記穴の外縁と重なるフランジ31が延設され、このフランジ31部分が下板23aに固定されている。   The second inner wall forming body 30 has a symmetric shape with the first inner wall forming body 25. That is, the inner wall 30a has a shape along the outer peripheral shape of the upper half of the oval spherical closed space 12 described above, and the opening side edge extends slightly outward to form the hole of the upper case 23. A flange 31 that overlaps the outer edge is extended, and the flange 31 portion is fixed to the lower plate 23a.

上ケース23は、下ケース22に対して図示しないヒンジ機構とロック機構などにより開閉自在に連結されており、上ケース23を下ケース22に重なるように閉じてロックしたとき、図12のように、第1の内壁形成体25のフランジ26と第2の内壁形成体30のフランジ31が全体的に隙間なく面接触して、それぞれの内壁25a、30aが連続して、前記した壁面11で囲まれた楕円球状の閉空間12が形成される。   The upper case 23 is connected to the lower case 22 by a hinge mechanism and a lock mechanism (not shown) so as to be opened and closed. When the upper case 23 is closed and locked so as to overlap the lower case 22, as shown in FIG. The flange 26 of the first inner wall forming body 25 and the flange 31 of the second inner wall forming body 30 are in surface contact with each other without any gap, and the inner walls 25a, 30a are continuously surrounded by the wall surface 11 described above. A closed elliptical closed space 12 is formed.

なお、下ケース22と上ケース23には、閉じたときに、上下の内壁形成体25、30がずれない状態で重なり合うようにするための位置決め機構(例えば図のようにガイドピン40とそれを受け入れるガイド穴41)が形成されている。   The lower case 22 and the upper case 23 are provided with a positioning mechanism (for example, a guide pin 40 and the guide pin 40 as shown in the figure) so that the upper and lower inner wall forming bodies 25 and 30 overlap when they are closed. A receiving guide hole 41) is formed.

また、例えば、図17の(a)のように、一方の内壁形成体30の開口側の内縁のほぼ全周に渡って弾性リブ45を突設させることで、図17の(b)のように他方の内壁形成体25と合わせられたときに、その弾性リブ45を内壁形成体25の開口側の内縁全周に接触させて、内壁形成体25、30のフランジ26、31の接触部を覆い、その接触部に隙間が生じた場合の電波の漏洩等などを低減することができる。   Further, for example, as shown in FIG. 17A, an elastic rib 45 is provided so as to protrude over substantially the entire circumference of the inner edge of the inner wall forming body 30 on the opening side, as shown in FIG. When the elastic ribs 45 are brought into contact with the entire inner edge of the inner wall forming body 25 on the opening side, the contact portions of the flanges 26 and 31 of the inner wall forming bodies 25 and 30 are brought into contact with each other. It is possible to reduce leakage of radio waves and the like when a gap is generated in the cover and the contact portion.

また、ここでは、下ケース22の上板22aと第1の内壁形成体25、上ケース23の下板23aと第2の内壁形成板30とがそれぞれ別体になっている例を示しているが、下ケース22の上板22aと第1の内壁形成体25、および上ケース23の下板23aと第2の内壁形成板30と上板22とを同一材料で一体に形成してもよい。また、ここでは第1の内壁形成体25および第2の内壁形成体30の外周形状を半楕円外周形状にしているが、内壁25a、30aが前記した楕円球に沿っていればよく、外側の形状は任意である。   Further, here, an example is shown in which the upper plate 22a of the lower case 22 and the first inner wall forming body 25, and the lower plate 23a of the upper case 23 and the second inner wall forming plate 30 are separated from each other. However, the upper plate 22a and the first inner wall forming body 25 of the lower case 22 and the lower plate 23a, the second inner wall forming plate 30 and the upper plate 22 of the upper case 23 may be integrally formed of the same material. . Further, here, the outer peripheral shape of the first inner wall forming body 25 and the second inner wall forming body 30 is a semi-elliptical outer peripheral shape, but the inner walls 25a and 30a may be along the elliptical sphere described above, The shape is arbitrary.

図15、図16、図18に示しているように、第1の内壁形成体25の開口面上の前記焦点F1の近傍位置には、前記した閉空間12内で被測定物1および基準アンテナ160を支持するための放射体支持部50が設けられ、焦点F2の近傍位置には、受信アンテナ15を支持するための受信アンテナ支持部55が設けられている。   As shown in FIGS. 15, 16, and 18, the device under test 1 and the reference antenna are located in the closed space 12 at a position near the focal point F <b> 1 on the opening surface of the first inner wall forming body 25. A radiator support part 50 for supporting 160 is provided, and a reception antenna support part 55 for supporting the reception antenna 15 is provided in the vicinity of the focal point F2.

放射体支持部50は、被測定物1および基準アンテナ160の放射中心が焦点F1の位置にほぼ一致する状態を基準位置とし、それらを焦点F1、F2を結ぶ軸に沿って一定距離(例えば中心波長λに対して±λ/4)移動できる状態で支持するものであり、焦点F1、F2を結ぶ軸に沿って移動可能な支持板51と、その支持板51の上に放射体を固定する固定具52と、支持板51の下降を防ぐ基台53および後述する位置決め機構180により構成されている。なお、これらの各構成部材のうち、結合器21内部に配置されたものは、電波に対する透過率が高い(比誘電率が1に近い)合成樹脂材により形成されている。   The radiator support unit 50 uses a state in which the radiation centers of the DUT 1 and the reference antenna 160 substantially coincide with the position of the focal point F1 as a reference position, and sets them at a fixed distance (for example, the center) along the axis connecting the focal points F1 and F2. The support plate 51 is supported so as to be movable with respect to the wavelength λ and is movable along the axis connecting the focal points F1 and F2, and the radiator is fixed on the support plate 51. The fixture 52, the base 53 that prevents the support plate 51 from descending, and a positioning mechanism 180 described later are included. Of these constituent members, those arranged inside the coupler 21 are made of a synthetic resin material having high radio wave transmittance (relative dielectric constant close to 1).

固定具52は、例えば電波伝搬に影響を与えない伸縮自在なバンドで、被測定物1や基準アンテナ160を支持板51の上の所定位置に固定させる。この支持板51の外側端部には内壁形成体25を貫通摺動する軸部51aが突設され、その軸部51aは、内壁形成体25の外側に固定された第1の位置決め機構180に係合している。軸部51aの両側部には、ネジ止め固定用の穴を有するフランジ51b、51cが突設されている。   The fixture 52 is, for example, a stretchable band that does not affect radio wave propagation, and fixes the DUT 1 and the reference antenna 160 to a predetermined position on the support plate 51. A shaft portion 51 a that penetrates and slides through the inner wall forming body 25 protrudes from the outer end portion of the support plate 51, and the shaft portion 51 a is connected to the first positioning mechanism 180 fixed to the outside of the inner wall forming body 25. Is engaged. On both sides of the shaft 51a, flanges 51b and 51c having holes for fixing with screws are projected.

第1の位置決め機構180は、断面凹状に形成され、その中央の溝部で支持板51の軸部51aを摺動自在に保持できるようになっており、その溝部の両側には、フランジ51b、51cをネジ止めするための5組のネジ穴180a〜180e、180a′〜180e′が例えば前記した中心波長λの1/8の間隔で設けられている。   The first positioning mechanism 180 is formed to have a concave cross section, and the shaft portion 51a of the support plate 51 can be slidably held by the groove portion at the center thereof, and flanges 51b and 51c are provided on both sides of the groove portion. 5 sets of screw holes 180a to 180e, 180a 'to 180e' for example, are provided at intervals of 1/8 of the above-mentioned center wavelength λ.

そして、図14のように、フランジ51b、51cを中央のネジ穴180c、180c′にネジ止めしたときに、被測定物1(または基準アンテナ160)を基準となる焦点位置に固定することができる。   As shown in FIG. 14, when the flanges 51b and 51c are screwed into the central screw holes 180c and 180c ′, the DUT 1 (or the reference antenna 160) can be fixed at the reference focal position. .

また、フランジ51b、51cを内側のネジ穴180b、180b′にネジ止めすれば、被測定物1(又は基準アンテナ160)を焦点位置よりλ/8内側の位置に固定でき、ネジ穴180a、180a′にネジ止めすれば、焦点位置よりλ/4内側の位置に固定できる。また、逆にフランジ51b、51cを外側のネジ穴180d、180d′にネジ止めすれば、焦点位置よりλ/8外側の位置に固定でき、ネジ穴180e、180e′にネジ止めすれば、焦点位置よりλ/4外側の位置に固定できる。   Further, if the flanges 51b and 51c are screwed into the inner screw holes 180b and 180b ′, the DUT 1 (or the reference antenna 160) can be fixed at a position λ / 8 inside the focal position, and the screw holes 180a and 180a. If it is screwed to ′, it can be fixed at a position inside λ / 4 from the focal position. Conversely, if the flanges 51b and 51c are screwed into the outer screw holes 180d and 180d ', the flanges 51b and 51c can be fixed at a position λ / 8 outside the focal position, and if they are screwed into the screw holes 180e and 180e', the focal position Further, it can be fixed at a position outside λ / 4.

なお、基準アンテナ160を支持する場合には、信号給電用の同軸ケーブル162を外部に引き出すことができるように例えば支持板51の軸部51aの内部に貫通する穴が形成されている。   When supporting the reference antenna 160, a hole penetrating inside the shaft portion 51a of the support plate 51 is formed so that the signal feeding coaxial cable 162 can be pulled out.

また、受信アンテナ支持部55も放射体支持部51と同様に、電波に対する透過率が高い合成樹脂材により形成された支持板56と、支持板56の下降を防ぐ基台57、支持板56の上に受信アンテナ15を固定する固定具58および第2の位置決め機構181により構成されている。   Similarly to the radiator support portion 51, the reception antenna support portion 55 includes a support plate 56 made of a synthetic resin material having a high radio wave transmittance, a base 57 that prevents the support plate 56 from descending, and a support plate 56. A fixing tool 58 for fixing the receiving antenna 15 and a second positioning mechanism 181 are provided.

ここで、受信アンテナ15は、基板15aに対するエッチング処理でアンテナ素子15bを印刷形成されたものが一般的であり、それを固定するための固定具58は、例えば受信アンテナ15の特性を変化させない合成樹脂性のネジやクリップであり、受信アンテナ15のアンテナ素子の放射中心が支持板56の上の焦点F1、F2を結ぶ楕円軸上の位置に固定させる。   Here, the receiving antenna 15 is generally formed by printing the antenna element 15b by etching the substrate 15a, and the fixing device 58 for fixing the antenna 15 is a composite that does not change the characteristics of the receiving antenna 15, for example. A resin screw or clip is used to fix the radiation center of the antenna element of the receiving antenna 15 at a position on the elliptic axis connecting the focal points F1 and F2 on the support plate 56.

この受信アンテナ15を支持する支持板56にも、その外側端部に内壁形成体25を貫通摺動する軸部56aが突設され、その軸部56aは、内壁形成体25の外側に固定された第2の位置決め機構181に係合している。軸部56aの両側部には、ネジ止め固定用の穴を有するフランジ56b、56cが突設されている。   A shaft 56 a that penetrates and slides through the inner wall forming body 25 is also provided on the outer end of the support plate 56 that supports the receiving antenna 15, and the shaft 56 a is fixed to the outside of the inner wall forming body 25. The second positioning mechanism 181 is engaged. On both sides of the shaft portion 56a, flanges 56b and 56c having holes for fixing with screws are projected.

第2の位置決め機構181は第1の位置決め機構180と同様に断面凹状に形成され、その中央の溝部で支持板56の軸部56aを摺動自在に保持できるようになっており、その溝部の両側には、フランジ56b、56cをネジ止めするための5組のネジ穴181a〜181e、181a′〜181e′が、例えば前記したλ/8の間隔で設けられている。   Similarly to the first positioning mechanism 180, the second positioning mechanism 181 is formed in a concave cross section, and the shaft portion 56a of the support plate 56 can be slidably held by the groove portion at the center thereof. On both sides, five sets of screw holes 181a to 181e and 181a 'to 181e' for screwing the flanges 56b and 56c are provided, for example, at an interval of λ / 8.

そして、図18に示しているように、フランジ56b、56cを中央のネジ穴181c、181c′にネジ止めしたときに、受信アンテナ15を基準となる焦点位置に固定することができる。   As shown in FIG. 18, when the flanges 56b and 56c are screwed into the central screw holes 181c and 181c ', the receiving antenna 15 can be fixed at the reference focal position.

また、フランジ56b、56cを内側のネジ穴181b、181b′にネジ止めすれば、受信アンテナ15を焦点位置よりλ/8内側の位置に固定でき、ネジ穴181a、181a′にネジ止めすれば、焦点位置よりλ/4内側の位置に固定できる。また逆にフランジ56b、56cを外側のネジ穴181d、181d′にネジ止めすれば、焦点位置よりλ/8外側の位置に固定でき、ネジ穴181e、181e′にネジ止めすれば、焦点位置よりλ/4外側の位置に固定できる。   If the flanges 56b and 56c are screwed into the inner screw holes 181b and 181b ', the receiving antenna 15 can be fixed at a position λ / 8 inside the focal position, and if screwed into the screw holes 181a and 181a', It can be fixed at a position inside λ / 4 from the focal position. Conversely, if the flanges 56b and 56c are screwed to the outer screw holes 181d and 181d ', the flanges 56b and 56c can be fixed to a position outside λ / 8 from the focal position, and if screwed to the screw holes 181e and 181e', It can be fixed at a position outside λ / 4.

なお、受信アンテナ15の同軸ケーブル16を外部に引き出すことができるように例えば支持板56の軸部56aの内部に貫通する穴が形成されている。   For example, a hole penetrating inside the shaft portion 56a of the support plate 56 is formed so that the coaxial cable 16 of the receiving antenna 15 can be pulled out.

また、図18で示したように受信アンテナ15がダイポール系の場合や、ループ系のような平衡型の場合には、給電点に挿入したバラン15cを介して不平衡型の同軸ケーブル16に接続する。また、ダイポール型としてスリーブアンテナ等を用いることも可能である。   As shown in FIG. 18, when the receiving antenna 15 is a dipole type or a balanced type such as a loop type, it is connected to an unbalanced coaxial cable 16 via a balun 15c inserted at a feeding point. To do. A sleeve antenna or the like can also be used as a dipole type.

この受信アンテナ15で受信された信号は、同軸ケーブル16を介して結合器21の外部に出力され、前記した減衰器120を介して、可変結合器130に接続される。   A signal received by the receiving antenna 15 is output to the outside of the coupler 21 via the coaxial cable 16 and is connected to the variable coupler 130 via the attenuator 120 described above.

なお、受信アンテナ15を支持する支持板56の位置変更に伴い同軸ケーブル16も移動するが、同軸ケーブル16のうち、少なくとも結合器21の外側の部分に可撓性のあるケーブルを用いることで、支持板56の移動を妨げることなく減衰器120に接続することができる。これは基準アンテナ160に接続する同軸ケーブル162についても同様である。   The coaxial cable 16 also moves in accordance with the position change of the support plate 56 that supports the receiving antenna 15, but by using a flexible cable at least on the outer side of the coupler 21 of the coaxial cable 16, The support plate 56 can be connected to the attenuator 120 without hindering the movement of the support plate 56. The same applies to the coaxial cable 162 connected to the reference antenna 160.

減衰器120は可変減衰器であり、可変整合器130は、前記したロンボーン式のラインストレッチャーを用いたトラップ型やデジタル移相器型のものが使用できる。なお、ラインストレッチャーを用いた可変整合器は、制御信号により線路長(L1、L2)が可変できる構造とする。   The attenuator 120 is a variable attenuator, and the variable matching device 130 can be a trap type using a long bone type line stretcher or a digital phase shifter type. Note that the variable matching device using the line stretcher has a structure in which the line length (L1, L2) can be varied by a control signal.

可変整合器130の出力は電力測定器150に入力される。電力測定器150は、広帯域な電力計や、周波数選択性のある受信機、スペクトラムアナライザ等が使用でき、前記したようにLNAを併用してもよい。   The output of the variable matching device 130 is input to the power measuring device 150. As the power meter 150, a wide-band power meter, a frequency selective receiver, a spectrum analyzer, or the like can be used, and an LNA may be used in combination as described above.

そして、測定制御部190は、前記した測定方法にしたがって、信号発生器161、電力測定器150の周波数設定、減衰器120、可変整合器130の制御および前記演算処理を行い、系が無損失と仮定した時の整合同様における最大電力を推定し、それに基づいて被測定物1のTRP(全放射電力)を算出する。   Then, the measurement control unit 190 performs the frequency setting of the signal generator 161 and the power measurement device 150, the control of the attenuator 120 and the variable matching device 130, and the arithmetic processing according to the measurement method described above, and the system is lossless. The maximum power in the same manner as the assumed matching is estimated, and the TRP (total radiated power) of the DUT 1 is calculated based on the estimated maximum power.

図19、図20は、測定制御部19の処理手順の一例を示すフローチャートである。以下、このフローチャートに基づいて装置の動作説明をする。   19 and 20 are flowcharts illustrating an example of a processing procedure of the measurement control unit 19. The operation of the apparatus will be described below based on this flowchart.

図19は、固定周波数、固定位置での測定手順を示すものであり、始めに測定の準備として、結合器21を開いて、被測定物1と受信アンテナ15を例えば基準となる焦点位置に支持させ、結合器21を閉じる(S1)。   FIG. 19 shows a measurement procedure at a fixed frequency and a fixed position. First, as a preparation for measurement, the coupler 21 is opened and the DUT 1 and the receiving antenna 15 are supported at a reference focal position, for example. The coupler 21 is closed (S1).

そして、減衰器120の減衰量を0dB、整合器130をスルー状態(L2=λ/4)、電力測定器150の周波数を測定周波数にセットし、電力測定器150の測定値が最大となるように、いずれか一方あるいは両方のアンテナの位置を調整する(S2)。   Then, the attenuation amount of the attenuator 120 is set to 0 dB, the matching unit 130 is set to the through state (L2 = λ / 4), the frequency of the power measurement device 150 is set to the measurement frequency, and the measurement value of the power measurement device 150 is maximized. Then, the position of one or both antennas is adjusted (S2).

減衰量の種類を示す値iを1にセットし、減衰量をi番目の値αiにセットし、電力測定器150の測定値が最大となるように可変整合器130を制御し、その時の最大電力Pi(EUT)を記憶する(S3〜S5)。   The value i indicating the type of attenuation is set to 1, the attenuation is set to the i-th value αi, and the variable matching device 130 is controlled so that the measured value of the power measuring device 150 is maximized. The power Pi (EUT) is stored (S3 to S5).

以下同様にして、推定に必要なm個の減衰量α1〜αmについてそれぞれの最大電力P1(EUT)〜Pm(EUT)を求め、その測定結果から測定系が無損失と仮定したときの最大電力Pr(EUT)を推定する(S6〜S8)。   Similarly, the maximum powers P1 (EUT) to Pm (EUT) of m attenuations α1 to αm necessary for estimation are obtained, and the maximum power when the measurement system is assumed to be lossless from the measurement results. Pr (EUT) is estimated (S6 to S8).

ここで前記した式(b5)の推定式を用いる場合にはm=2となり、例えば式(b8)のような多項式による推定を行う場合には、その必要精度に応じて3以上のmを設定する。   Here, when using the estimation formula of the above-described formula (b5), m = 2. For example, when estimation is performed using a polynomial such as formula (b8), m of 3 or more is set according to the required accuracy. To do.

次に、校正系について上記同様の測定を行う(この測定は、予め行っておいてその結果のみを用いてもよい)。   Next, the same measurement as described above is performed for the calibration system (this measurement may be performed in advance and only the result may be used).

即ち、結合器21を開いて、被測定物1の代わりに基準アンテナ160をセットし、結合器21を閉じる(S9)。   That is, the coupler 21 is opened, the reference antenna 160 is set instead of the DUT 1, and the coupler 21 is closed (S9).

そして、基準アンテナ160に対して信号発生器161から出力した電力Psgの信号をケーブル162を介して供給し、前記同様に減衰器120の減衰量を0dB、整合器130をスルー状態(L2=λ/4)、電力測定器150の周波数を特定周波数にセットし、電力測定器150の測定値が最大となるように、いずれか一方あるいは両方のアンテナの位置を微調整する(S10)。   Then, the signal Psg output from the signal generator 161 is supplied to the reference antenna 160 via the cable 162. Similarly to the above, the attenuation of the attenuator 120 is 0 dB, and the matching unit 130 is in the through state (L2 = λ / 4) The frequency of the power measuring device 150 is set to a specific frequency, and the position of one or both antennas is finely adjusted so that the measured value of the power measuring device 150 is maximized (S10).

そして減衰量の種類を示す値iを1にセットし、減衰量をi番目の値αiにセットし、電力測定器150の測定値が最大となるように可変整合器130を制御し、その時の最大電力Pi(Ref)を記憶する(S11〜S13)。   Then, the value i indicating the type of attenuation is set to 1, the attenuation is set to the i-th value αi, and the variable matching unit 130 is controlled so that the measured value of the power measuring device 150 is maximized. The maximum power Pi (Ref) is stored (S11 to S13).

以下同様にして、推定に必要なm個の減衰量α1〜αmについてそれぞれの最大電力P1(Ref)〜Pm(Ref)を求め、その測定結果から校正系が無損失と仮定したときの最大電力Pr(Ref)を推定する(S14〜S16)。   Similarly, the maximum powers P1 (Ref) to Pm (Ref) of m attenuations α1 to αm necessary for estimation are obtained, and the maximum power when the calibration system is assumed to be lossless from the measurement results. Pr (Ref) is estimated (S14 to S16).

そして、この校正系について推定された最大電力Pr(Ref)と測定系について推定された最大電力Pr(EUT)を前記式(b7)に代入して、被測定物1の全放射電力Pを算出する(S17)。 Then, the maximum power Pr (Ref) estimated for the calibration system and the maximum power Pr (EUT) estimated for the measurement system are substituted into the equation (b7), and the total radiated power P 0 of the DUT 1 is measured. Calculate (S17).

図20は、測定周波数可変、アンテナ位置可変の場合の測定手順を示すものであり、始めに、アンテナ位置を示す値jを1にセットし、結合器21を開いて、被測定物1と受信アンテナ15をj番目の位置に支持させ、結合器21を閉じる(S21、S22)。   FIG. 20 shows the measurement procedure when the measurement frequency is variable and the antenna position is variable. First, the value j indicating the antenna position is set to 1, the coupler 21 is opened, and the device under test 1 and the reception are received. The antenna 15 is supported at the jth position, and the coupler 21 is closed (S21, S22).

そして、i=1にセットし、減衰器120の減衰量をαiに設定し、周波数範囲fs〜feの各測定周波数について、電力測定器150の測定値が最大となるように可変整合器130を制御し、周波数範囲fs〜feにおける整合状態での最大電力特性Pij(f)を求める(S23〜S25)。   Then, i = 1 is set, the attenuation amount of the attenuator 120 is set to αi, and the variable matching device 130 is set so that the measured value of the power measuring device 150 becomes the maximum for each measurement frequency in the frequency range fs to fe. The maximum power characteristic Pij (f) in the matching state in the frequency range fs to fe is obtained (S23 to S25).

そして、上記処理S23を推定に必要なm個の減衰量について行い、j番目の位置における整合状態での最大電力特性P1j(f)、P2j(f)、…、Pmj(f)を求める(S26〜S27)。   Then, the above processing S23 is performed for m attenuations necessary for estimation, and maximum power characteristics P1j (f), P2j (f),..., Pmj (f) in the matching state at the jth position are obtained (S26). To S27).

さらに、上記処理S23〜S27の処理を、アンテナ位置を変えて繰り返し行い、減衰量についてm通り、アンテナ位置ついてn通りの組合せとなる最大電力特性P11(f)〜Pm1(f)、P12(f)〜Pm2(f)、…、P1n(f)〜Pmn(f)を求める(S28、S29)。   Further, the processes of S23 to S27 are repeated by changing the antenna position, and the maximum power characteristics P11 (f) to Pm1 (f), P12 (f) that are m combinations of attenuation and n combinations of antenna positions. ) To Pm2 (f),..., P1n (f) to Pmn (f) are obtained (S28, S29).

次に、i=1とし、i番目の減衰量について得られた各位置の最大電力特性Pi1(f)〜Pin(f)について、同一周波数のデータの最大のものを選択することで合成最大電力特性Pi(f)を求める(S31)。   Next, i = 1 is set, and the maximum power characteristics Pi1 (f) to Pin (f) of each position obtained for the i-th attenuation amount are selected by selecting the maximum of the data of the same frequency, so that the combined maximum power is selected. A characteristic Pi (f) is obtained (S31).

そしてこの処理をi=mとなるまで行い、各減衰量についての合成最大電力特性P1(f)〜Pm(f)を求める(S32、S33)。   This process is performed until i = m, and the combined maximum power characteristics P1 (f) to Pm (f) for each attenuation amount are obtained (S32, S33).

これらの合成最大電力特性は、アンテナ距離が複数通り異なる場合の周波数特性の最大値を選択して合成したものであるから、周波数と結合器の寸法関係によって生じる透過係数の大きなディップが図7に示したように抑制され、広い帯域にわたって平坦な特性となり、広帯域信号の全放射電力の測定を精度よく測定することができる。   Since these combined maximum power characteristics are obtained by selecting and combining the maximum values of the frequency characteristics when the antenna distances are different from each other, a dip having a large transmission coefficient caused by the dimensional relationship between the frequency and the coupler is shown in FIG. As shown, it is suppressed and has a flat characteristic over a wide band, and the measurement of the total radiated power of the wideband signal can be accurately performed.

そして、各減衰量について得られた合成最大電力特性P1(f)〜Pm(f)から同一測定周波数のデータを抽出し、その抽出したm個のデータを前記推定式に代入して測定系が無損失と仮定したときの最大電力Pr(EUT)を求めるという処理を全ての測定周波数について行い、所望周波数範囲fs〜feにおける測定系の最大電力特性Pr(EUT-f)を推定する(S34)。   Then, data of the same measurement frequency is extracted from the combined maximum power characteristics P1 (f) to Pm (f) obtained for each attenuation amount, and the measurement system is substituted for the m pieces of extracted data into the estimation equation. The process of obtaining the maximum power Pr (EUT) assuming no loss is performed for all the measurement frequencies, and the maximum power characteristic Pr (EUT-f) of the measurement system in the desired frequency range fs to fe is estimated (S34). .

そして、被測定物1の代わりに基準アンテナ160を用いた校正系に対しても上記測定系に対する処理S21〜S34を同様に行うことで、所望周波数範囲fs〜feにおける校正系の最大電力特性Pr(Ref-f)を推定する(S35)。   The calibration system using the reference antenna 160 instead of the DUT 1 is similarly subjected to the processes S21 to S34 for the measurement system, so that the maximum power characteristic Pr of the calibration system in the desired frequency range fs to fe is obtained. (Ref-f) is estimated (S35).

そして、各測定周波数について、測定系の最大電力特性Pr(EUT-f)と校正系の最大電力特性Pr(Ref-f)の同一測定周波数の推定値を前記式(b7)に代入して、被測定物1の全放射電力Pを算出する(S36)。 For each measurement frequency, the estimated value of the same measurement frequency of the maximum power characteristic Pr (EUT-f) of the measurement system and the maximum power characteristic Pr (Ref-f) of the calibration system is substituted into the equation (b7), The total radiated power P 0 of the DUT 1 is calculated (S36).

なお、前記したように校正系に対する測定および推定処理は、測定系に対する測定の前に予め行って記憶しておき、その記憶したデータと測定系について得られたデータとの演算で全放射電力Pを算出してもよい。 As described above, the measurement and estimation processing for the calibration system is performed and stored in advance before the measurement for the measurement system, and the total radiated power P is calculated by calculating the stored data and the data obtained for the measurement system. 0 may be calculated.

1……被測定物、11……壁面、12……閉空間、15……受信アンテナ、15a……基板、15b……素子、15c……バラン、16……同軸ケーブル、20……放射電力測定装置、21……結合器、22……下ケース、23……上ケース、25……第1の内壁形成体、26……フランジ、30……第2の内壁形成体、31……フランジ、40……ガイドピン、41……ガイド穴、45……弾性リブ、50……放射体支持部、51……支持板、55……受信アンテナ支持部、56……支持板、120……減衰器、130……可変整合器、150……電力測定器、160……基準アンテナ、161……信号発生器、162……同軸ケーブル、180、181……位置決め機構、190……測定制御部   DESCRIPTION OF SYMBOLS 1 ... Object to be measured, 11 ... Wall surface, 12 ... Closed space, 15 ... Receiving antenna, 15a ... Substrate, 15b ... Element, 15c ... Balun, 16 ... Coaxial cable, 20 ... Radiated power Measuring device, 21 ... coupler, 22 ... lower case, 23 ... upper case, 25 ... first inner wall forming body, 26 ... flange, 30 ... second inner wall forming body, 31 ... flange , 40... Guide pin, 41... Guide hole, 45 .. Elastic rib, 50... Radiator support, 51... Support plate, 55. Attenuator, 130 ... variable matching device, 150 ... power measuring instrument, 160 ... reference antenna, 161 ... signal generator, 162 ... coaxial cable, 180, 181 ... positioning mechanism, 190 ... measurement control unit

Claims (8)

楕円をその2つの焦点(F1、F2)を通る軸を中心に回転して得られる楕円球状で金属の壁面(11)で囲まれた閉空間(12)の一方の焦点(F1)の近傍に配置した被測定物(1)から放射された電波を前記壁面で反射させて他方の焦点(F2)の近傍に配置した受信アンテナ(15)に集中させて、該受信アンテナの出力信号の電力を電力測定器(150)によって測定することで被測定物の全放射電力を測定する放射電力測定方法において、
前記受信アンテナと前記電力測定器の間に可変整合器(130)を挿入し、且つ、該可変整合器と前記受信アンテナとの間に減衰器(120)を挿入し、
前記電力測定器で測定される電力が最大となるように前記可変整合器を設定し、そのときの最大電力を測定する処理を、前記減衰器に異なる複数の減衰量を与えてそれぞれ行い、
異なる二つの減衰量をそれぞれα、α、該減衰量ごとに測定された最大電力をそれぞれP、P、前記測定系の損失をKとするとき、前記測定系が無損失と仮定したときの最大電力Prを、以下の推定式
Pr=[(α −α )P
/{[α α−αα ]K +α−α
によって推定し、
該推定した最大電力値に基づいて、前記被測定物の全放射電力を算出することを特徴とする放射電力測定方法。
In the vicinity of one focal point (F1) of the closed space (12) enclosed by the metal wall surface (11) which is an elliptical sphere obtained by rotating the ellipse around the axis passing through the two focal points (F1, F2). The radio wave radiated from the measured object (1) arranged is reflected by the wall surface and concentrated on the receiving antenna (15) arranged near the other focal point (F2), and the power of the output signal of the receiving antenna is In a radiated power measurement method for measuring the total radiated power of a device under test by measuring with a power meter (150),
A variable matching unit (130) is inserted between the receiving antenna and the power measuring device, and an attenuator (120) is inserted between the variable matching unit and the receiving antenna;
The variable matching device is set so that the power measured by the power meter is maximized, and the process of measuring the maximum power at that time is performed by giving a plurality of different attenuation amounts to the attenuator,
When two different attenuations are α 1 and α 2 , the maximum power measured for each attenuation is P 1 and P 2 , and the loss of the measurement system is K 0 , the measurement system is assumed to be lossless. Assuming that the maximum power Pr is the following estimation formula Pr = [(α 1 2 −α 2 2 ) P 1 P 2 K 0 ]
/ {[Α 1 2 α 2 P 11 α 2 2 P 2 ] K 0 2 + α 1 P 22 P 1 }
Estimated by
A radiated power measurement method, comprising: calculating a total radiated power of the device under test based on the estimated maximum power value.
前記減衰器として可変減衰器を用いたことを特徴とする請求項1記載の放射電力測定方法。 The radiated power measurement method according to claim 1, wherein a variable attenuator is used as the attenuator . 信号供給を受けて電波を放射する基準アンテナを前記被測定物に代えて配置した状態で、前記各減衰量についての最大電力を測定し、該減衰量と最大電力から、前記閉空間、基準アンテナ及び前記受信アンテナから前記電力測定器に至る校正系が無損失と仮定したときの最大電力を推定する段階を含み、
前記測定系について推定された最大電力と校正系について推定された最大電力とに基づいて前記被測定物の全放射電力を算出することを特徴とする請求項1または請求項2に記載の放射電力測定方法。
In a state where a reference antenna that receives a signal and radiates radio waves is arranged instead of the object to be measured, the maximum power for each attenuation is measured, and the closed space, the reference antenna is determined from the attenuation and the maximum power. And estimating the maximum power when the calibration system from the receiving antenna to the power measuring device is assumed to be lossless,
The radiated power according to claim 1 or 2, wherein the total radiated power of the device under test is calculated based on the maximum power estimated for the measurement system and the maximum power estimated for the calibration system. Measuring method.
前記被測定物または前記基準アンテナと受信アンテナとの距離を複数通りに変えて、各距離についての最大電力を求め、その最大値を優先して前記推定に用いることを特徴とする請求項1〜3のいずれかに記載の放射電力測定方法。 The distance between the object to be measured or the reference antenna and the receiving antenna is changed in a plurality of ways to determine the maximum power for each distance, and the maximum value is prioritized and used for the estimation . 4. The method for measuring radiated power according to any one of 3 above 楕円をその2つの焦点(F1、F2)を通る軸を中心に回転して得られる楕円球状で、金属の壁面で囲まれた閉空間を有し、被測定物(1)を一方の焦点の近傍位置に支持し、受信アンテナ(15)を前記他方の焦点の近傍位置に支持する支持手段(50、55)を含み、前記放射体から放射された電波を前記受信アンテナに集中させてその受信信号を前記閉空間から外部へ出力させる結合器(21)と、
前記受信アンテナの出力信号の電力を測定するための電力測定器(150)と、
前記受信アンテナと前記電力測定器の間に設けられた可変整合器(130)と、
前記受信アンテナと前記可変整合器の間に挿入された減衰器(120)と、
前記電力測定器で測定される電力が最大となるように前記可変整合器を設定し、そのときの最大電力を測定する処理を、前記減衰器に異なる複数の減衰量を与えてそれぞれ行い、該各減衰量とその減衰量ごとに測定された最大電力とから、前記閉空間及び前記受信アンテナから前記電力測定器にいたる測定系が無損失と仮定したときの最大電力を推定し、該推定した最大電力に基づいて、前記被測定物の全放射電力を算出する測定制御部(190)とを有し、
さらに前記測定制御部は、異なる二つの減衰量をそれぞれα 、α 、該減衰量ごとに測定された最大電力をそれぞれP 、P 、前記測定系の損失をK とするとき、前記測定系が無損失と仮定したときの最大電力Prを、以下の推定式
Pr=[(α −α )P
/{[α α −α α ]K +α −α
によって推定することを特徴とする放射電力測定装置
The ellipse is obtained by rotating an ellipse around an axis passing through its two focal points (F1, F2), has a closed space surrounded by metal walls, and the object to be measured (1) is attached to one of the focal points. Supporting means (50, 55) for supporting the receiving antenna (15) in the vicinity of the other focal point and supporting the receiving antenna (15) in the vicinity, and concentrating the radio waves radiated from the radiator on the receiving antenna A coupler (21) for outputting a signal from the closed space to the outside;
A power meter (150) for measuring the power of the output signal of the receiving antenna;
A variable matching unit (130) provided between the receiving antenna and the power measuring device;
An attenuator (120) inserted between the receiving antenna and the variable matcher;
The variable matching device is set so that the power measured by the power meter is maximized, and the process of measuring the maximum power at that time is performed by giving a plurality of different attenuation amounts to the attenuator, From each attenuation amount and the maximum power measured for each attenuation amount, the maximum power when the measurement system from the closed space and the receiving antenna to the power measuring device is assumed to be lossless is estimated, and the estimation is performed. A measurement control unit (190) for calculating the total radiated power of the device under test based on the maximum power;
Further, the measurement control unit sets α 1 and α 2 as two different attenuation amounts, P 1 and P 2 as the maximum power measured for each attenuation amount, and K 0 as the loss of the measurement system, respectively . The maximum power Pr when the measurement system is assumed to be lossless is expressed by the following estimation formula:
Pr = [(α 1 2 −α 2 2 ) P 1 P 2 K 0 ]
/ {[Α 1 2 α 2 P 1 1 α 2 2 P 2 ] K 0 2 + α 1 P 2 2 P 1 }
The radiated power measuring apparatus characterized by estimating by .
前記減衰器として可変減衰器を用いたことを特徴とする請求項5記載の放射電力測定装置。 The radiated power measuring apparatus according to claim 5, wherein a variable attenuator is used as the attenuator . 前記測定制御部は、
信号供給を受けて電波を放射する基準アンテナを前記被測定物に代えて配置した状態で、前記各減衰量についての最大電力を測定し、該減衰量と最大電力から、前記閉空間、基準アンテナ及び前記受信アンテナから前記電力測定器に至る校正系が無損失と仮定したときの最大電力を前記測定系と同等に推定し、
該校正系について推定された最大電力と前記測定系について推定された最大電力とに基づいて前記被測定物の全放射電力を算出することを特徴とする請求項5または請求項6記載の放射電力測定装置。
The measurement control unit
In a state where a reference antenna that receives a signal and radiates radio waves is arranged instead of the object to be measured, the maximum power for each attenuation is measured, and the closed space, the reference antenna is determined from the attenuation and the maximum power. And the maximum power when the calibration system from the receiving antenna to the power measuring device is assumed to be lossless is estimated equivalent to the measuring system,
The radiated power according to claim 5 or 6, wherein the total radiated power of the device under test is calculated based on the maximum power estimated for the calibration system and the maximum power estimated for the measurement system. measuring device.
前記測定制御部は、
前記被測定物または前記基準アンテナと受信アンテナとの距離を複数通りに変えて、各距離についての最大電力を求め、その最大値を優先して前記推定に用いることを特徴とする請求項5〜7のいずれかに記載の放射電力測定装置。
The measurement control unit
By changing the distance between the object to be measured or the reference antenna and the receiving antenna in plural kinds, we obtain a maximum power for each distance, claim 5, characterized by using the estimated in favor of its maximum value The radiated power measuring device according to any one of 7 .
JP2010021957A 2010-02-03 2010-02-03 Radiated power measuring method and radiated power measuring apparatus Active JP5586256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010021957A JP5586256B2 (en) 2010-02-03 2010-02-03 Radiated power measuring method and radiated power measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010021957A JP5586256B2 (en) 2010-02-03 2010-02-03 Radiated power measuring method and radiated power measuring apparatus

Publications (2)

Publication Number Publication Date
JP2011158418A JP2011158418A (en) 2011-08-18
JP5586256B2 true JP5586256B2 (en) 2014-09-10

Family

ID=44590482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010021957A Active JP5586256B2 (en) 2010-02-03 2010-02-03 Radiated power measuring method and radiated power measuring apparatus

Country Status (1)

Country Link
JP (1) JP5586256B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011081795A1 (en) 2011-08-30 2013-02-28 Wobben Properties Gmbh Method for operating a wind energy plant
CN105684371B (en) * 2013-12-27 2019-10-22 华为技术有限公司 A kind of wireless communications method and device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275967A (en) * 2005-03-30 2006-10-12 Kyocera Corp Antenna characteristics evaluation method and measuring device
JP4672500B2 (en) * 2005-09-27 2011-04-20 富士通テン株式会社 Antenna input device
CN101802625B (en) * 2007-09-28 2012-08-08 安立股份有限公司 Radiated power measuring method, coupler for radiate power measurement, and radiated power measuring device
WO2009136638A1 (en) * 2008-05-09 2009-11-12 アンリツ株式会社 Method for measuring radiation power, measurement coupler for radiation power, and apparatus for measuring radiation power

Also Published As

Publication number Publication date
JP2011158418A (en) 2011-08-18

Similar Documents

Publication Publication Date Title
US8525744B2 (en) Radiated power measurement method, radiated power measurement coupler and radiated power measurement apparatus
EP2194387B1 (en) Radiated power measuring method, coupler for radiate power measurement, and radiated power measuring device
JP5171903B2 (en) Radiated power measuring method and radiated power measuring apparatus
Kehn et al. Definition of unifying decoupling efficiency of different array antennas—Case study of dense focal plane array feed for parabolic reflector
US11372037B2 (en) Freespace antenna measurement system
JP6633604B2 (en) Antenna measurement system and antenna measurement method
JP5586256B2 (en) Radiated power measuring method and radiated power measuring apparatus
King et al. Millimeter-wave integrated side-fire leaky-wave antenna and its application as a spectrum analyzer
Padilla et al. Experimental determination of DRW antenna phase center at mm-wavelengths using a planar scanner: Comparison of different methods
JP5135410B2 (en) TIS measuring method and apparatus
Du et al. Antenna pattern retrieval from reflection coefficient measurements with reflective loads
Icheln Methods for measuring RF radiation properties of small antennas
Salonen et al. Linear pattern correction in a small microstrip antenna array
US10848252B1 (en) Method and system for near-field reconstruction in indirect far-field systems
Salhi et al. Near-and far-field characterization of planar mm-wave antenna arrays with waveguide-to-microstrip transition
CN217820801U (en) Plane wave generating device and plane wave generating device testing system
JP2011053016A (en) Method of measuring radiation power and radiation power measuring device
RU2748478C1 (en) Device for measuring antenna gain in wide frequency band
Karttunen Millimetre and submillimetre wave antenna design using ray tracing
Narang et al. Design and characterization of microstrip based E-field sensor for GSM and UMTS frequency bands
Richter et al. Measurement of phase centers of rectangular dielectric rod antennas
JP2011149759A (en) Radiation power measuring method and radiation power measuring device
Reniers et al. Antenna‐in‐package measurements
Bozdağ et al. Spatial filtering in planar near field antenna measurement system and comparison of two gain calculation approaches
Derat et al. Numerical modeling and experimental validation of a D-band lens-based antenna design for beyond 5G communications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140722

R150 Certificate of patent or registration of utility model

Ref document number: 5586256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250