JP5585064B2 - Two-dimensional optical scanning device and optical scanning image display device - Google Patents

Two-dimensional optical scanning device and optical scanning image display device Download PDF

Info

Publication number
JP5585064B2
JP5585064B2 JP2009279692A JP2009279692A JP5585064B2 JP 5585064 B2 JP5585064 B2 JP 5585064B2 JP 2009279692 A JP2009279692 A JP 2009279692A JP 2009279692 A JP2009279692 A JP 2009279692A JP 5585064 B2 JP5585064 B2 JP 5585064B2
Authority
JP
Japan
Prior art keywords
optical scanning
dimensional optical
light
scanning device
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009279692A
Other languages
Japanese (ja)
Other versions
JP2010164954A (en
Inventor
俊晴 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2009279692A priority Critical patent/JP5585064B2/en
Publication of JP2010164954A publication Critical patent/JP2010164954A/en
Application granted granted Critical
Publication of JP5585064B2 publication Critical patent/JP5585064B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/02Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes by tracing or scanning a light beam on a screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/346Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on modulation of the reflection angle, e.g. micromirrors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Projection Apparatus (AREA)

Description

本発明は、第一及び第二の方向それぞれについて所定の周波数で振動する光ビーム走査手段を備えた2次元光走査装置、該2次元光走査装置を用いて入力画素データに応じて変調された光ビームをスクリーンに導き走査することにより、該スクリーン上に画像を形成する光走査型画像表示装置に関する。   The present invention is a two-dimensional optical scanning device provided with a light beam scanning means that vibrates at a predetermined frequency in each of the first and second directions, and is modulated according to input pixel data using the two-dimensional optical scanning device. The present invention relates to an optical scanning type image display apparatus that forms an image on a screen by guiding and scanning a light beam to the screen.

画像表示技術の一つとして入力画素データに応じて変調された光ビームをスクリーンに導き走査することにより、該スクリーン上に画像を形成する光走査方式がある。
光走査方式(または光走査型)の画像表示装置においては、従来は回転するポリゴンミラーとそれに同期して動くガルバノミラーを組合せたものが一般的であったが、近年は微細加工プロセスの進歩により極めて小型で2次元に光走査が可能な所謂MEMSスキャナーが実現され、携帯情報端末への組込みや眼鏡タイプなどの超小型の画像表示装置も実際に登場してきている。
As one of image display technologies, there is an optical scanning method in which an image is formed on a screen by guiding and scanning a light beam modulated according to input pixel data to the screen.
Conventionally, an optical scanning type (or optical scanning type) image display device is generally a combination of a rotating polygon mirror and a galvanometer mirror that moves in synchronization with the rotating mirror. A so-called MEMS scanner that is extremely small and capable of two-dimensional optical scanning has been realized, and an ultra-compact image display device such as a built-in portable information terminal or a glasses type has actually appeared.

そのような光走査型画像表示装置の従来例として特許文献1記載のものが知られている。
特許文献1記載の技術は、水平方向及び垂直方向にそれぞれ正弦波またはそれに近いモードで振動する2次元スキャナーを用いてリサージュまたはそれに近い軌跡でスクリーン面を走査し所望の画像を表示するための装置及び方法に関するものである。
しかしながら、特許文献1の明細中にも記載されているように、このような2次元スキャナーを用いた画像表示装置においては、水平方向と垂直方向の振幅の位相関係が適切でないと所望のビーム走査軌跡が得られず、画像品質が劣化してしまうという問題がある。
具体的には、MEMSスキャナーなど機械振動部品については、一般的に例えば温度特性などの環境的要因によって特性が経時的に変化し、それによって振幅の位相も変化する場合がある。
したがって、実際には水平方向と垂直方向の振幅の位相関係を検知し、必要に応じて適切な位相関係に補正しなければならない。
As a conventional example of such an optical scanning image display device, a device described in Patent Document 1 is known.
The technique described in Patent Document 1 is an apparatus for displaying a desired image by scanning a screen surface with a trajectory or a locus close thereto using a two-dimensional scanner that vibrates in a sine wave or a mode close thereto in the horizontal direction and the vertical direction, respectively. And a method.
However, as described in the specification of Patent Document 1, in an image display apparatus using such a two-dimensional scanner, desired beam scanning is performed unless the phase relationship between the horizontal and vertical amplitudes is appropriate. There is a problem that the trajectory cannot be obtained and the image quality deteriorates.
Specifically, for mechanical vibration parts such as a MEMS scanner, the characteristics generally change over time due to environmental factors such as temperature characteristics, and the amplitude phase may also change accordingly.
Therefore, in practice, the phase relationship between the horizontal and vertical amplitudes must be detected and corrected to an appropriate phase relationship as necessary.

水平方向と垂直方向の位相関係を検知するための従来技術としては、例えば特許文献2などがある。
これらは、誘導起電力を利用することによって、予め定める軸線回りに角変位可能な可動部材の姿勢を検出しようとするものである。すなわち、可動部材にはループ状の速度検出コイルが形成されて静磁場中に配置されており、可動部材が角変位すると、可動部材の速度検出コイルによって囲まれる領域を通る磁束が変化して誘導起電力が生じ、この誘導起電力の大きさを測定することによって可動部材の角変位を測定することができる。
また、水平方向と垂直方向の位相関係を検知するための別の従来技術としては、例えば特許文献3などがある。
これらは、圧電素子などを利用して可動部材の振動に伴う応力を電気信号に変換して取り出すことにより可動部材の姿勢を検出しようとするものである。
As a conventional technique for detecting the phase relationship between the horizontal direction and the vertical direction, there is, for example, Patent Document 2.
These are intended to detect the attitude of a movable member that can be angularly displaced around a predetermined axis by using an induced electromotive force. In other words, a loop-shaped speed detection coil is formed on the movable member and placed in a static magnetic field. When the movable member is angularly displaced, the magnetic flux passing through the region surrounded by the speed detection coil of the movable member changes and is guided. An electromotive force is generated, and the angular displacement of the movable member can be measured by measuring the magnitude of the induced electromotive force.
Another conventional technique for detecting the phase relationship between the horizontal direction and the vertical direction is, for example, Patent Document 3.
These are intended to detect the posture of the movable member by converting the stress accompanying the vibration of the movable member into an electrical signal using a piezoelectric element or the like and taking it out.

しかしながら、特許文献2に記載のような方法では構成は複雑になり、アプリケーションによっては装置の小型化あるいは低コスト化ができないという問題がある。また、所定の磁場中に配置して使用する場合、可動部材が配置される場所の磁場が変化する。
可動部材が配置される場所の磁場が変化すると、可動部材に形成されるループ状の速度検出コイルによって囲まれる領域の磁束が変化する。したがって、可動部材が角変位することによって生じる誘導起電力の大きさも変化し、可動部材の角変位量を正確に検出できなくなるという問題がある。たとえば、可動部材に形成されるループ状の速度検出コイルに囲まれる領域の磁束が零となるような磁場中に光走査装置を配置した場合、可動部材が角変位しても誘導起電力は生じず、可動部材の角変位量を検出することはできなくなる。
However, the method described in Patent Document 2 has a complicated configuration, and there is a problem that the size and cost of the apparatus cannot be reduced depending on the application. Moreover, when arrange | positioning and using in a predetermined magnetic field, the magnetic field of the place where a movable member is arrange | positioned changes.
When the magnetic field at the place where the movable member is arranged changes, the magnetic flux in the region surrounded by the loop-shaped speed detection coil formed on the movable member changes. Therefore, the magnitude of the induced electromotive force generated by the angular displacement of the movable member also changes, and there is a problem that the angular displacement amount of the movable member cannot be accurately detected. For example, when the optical scanning device is placed in a magnetic field in which the magnetic flux in the region surrounded by the loop-shaped speed detection coil formed on the movable member is zero, an induced electromotive force is generated even if the movable member is angularly displaced. Therefore, it becomes impossible to detect the angular displacement amount of the movable member.

また、特許文献3に記載のような方法では検出される電気信号が微弱であり、十分な検出精度を得るためにはS/N比が高く増幅率の高い検出回路が必要になり、やはり装置が複雑で大型になり、高コストになるという問題がある。
水平方向と垂直方向の位相関係を検知するための更に別の従来技術としてはこの他にも、例えば特許文献4などのように、可動部材とそれを支持する部材との間に対向する様に電極を設けてコンデンサを構成し、可動部材の振動に伴うコンデンサの容量変化を検出する方法など幾つかの方法があるが、いずれの方法も検出される電気信号が微弱であり、上述と同様の問題点がある。
Further, in the method as described in Patent Document 3, a detected electric signal is weak, and in order to obtain sufficient detection accuracy, a detection circuit having a high S / N ratio and a high amplification factor is required. However, there is a problem that it becomes complicated and large in size and high in cost.
In addition to this, as another prior art for detecting the phase relationship between the horizontal direction and the vertical direction, for example, as in Patent Document 4, the movable member and the member that supports it are opposed to each other. There are several methods, such as a method of detecting the capacitance change of the capacitor due to the vibration of the movable member by providing an electrode, and any method has a weak electric signal, and the same as described above. There is a problem.

本発明は、このような事情に鑑みてなされたもので、水平方向と垂直方向の振幅の位相ずれを高精度に検知でき、高画質化を維持できる2次元光走査装置の提供を、その主な目的とする。
また、本発明は、本装置の置かれる環境に影響されずに水平方向と垂直方向の振幅の位相ずれを高精度に検知できて高画質化を維持でき、且つ構成が簡単で小型低コストの2次元光走査装置の提供を、その主な目的とする。
The present invention has been made in view of such circumstances, and the main object of the present invention is to provide a two-dimensional optical scanning device that can detect a phase shift between amplitudes in the horizontal and vertical directions with high accuracy and maintain high image quality. With a purpose.
In addition, the present invention can detect the phase shift of the amplitude in the horizontal direction and the vertical direction with high accuracy without being affected by the environment in which the apparatus is placed, can maintain high image quality, and has a simple configuration, small size and low cost. The main purpose is to provide a two-dimensional optical scanning device.

上記目的を達成するために、請求項1に記載の発明では、第一の周波数の信号を印加することによって第一の方向に前記第一の周波数で光ビームを往復走査すべく振動する第一の光走査手段と、前記第一の周波数とは異なる第二の周波数の信号を印加することによって第二の方向に前記第二の周波数で光ビームを往復走査すべく振動する第二の光走査手段と、を備えた2次元光走査装置において、前記第一または第二の走査方向のうち少なくとも一方の走査方向の有効走査領域外において2つ以上隣り合うように配置され、前記第一及び第二の光走査手段の前記光ビームを受光する受光手段と、前記光ビームの折り返しにおける前記各受光手段における受光時間を取得し、これらの受光時間に基づいて前記第一及び第二の光走査手段の振動の位相ずれを検知する位相検知手段と、を設けたことを特徴とする。 In order to achieve the above object, according to the first aspect of the present invention, the first vibration that vibrates to reciprocate the light beam at the first frequency in the first direction by applying a signal having the first frequency. And a second optical scanning that vibrates to reciprocately scan the light beam at the second frequency in the second direction by applying a signal having a second frequency different from the first frequency. And two or more adjacent to each other outside an effective scanning area in at least one of the first and second scanning directions, the first and second light receiving means for receiving pre climate beams of second light scanning unit acquires the light reception time in each light receiving unit in reflection of the light beam, said first and second optical scanning based on these light reception time means of the vibration of the A phase detection means for detecting a phase deviation, characterized in that the provided.

請求項2に記載の発明では、請求項1に記載の2次元光走査装置において、前記受光手段は、前記第一または第二の走査方向のうち周波数の高い方の走査方向に配置されていることを特徴とする。
請求項3に記載の発明では、請求項1または2に記載の2次元光走査装置において、前記位相検知手段によって検知された前記第一及び第二の光走査手段の振動の位相ずれを所定の範囲内に補正する位相補正手段を有していることを特徴とする。
According to a second aspect of the present invention, in the two-dimensional optical scanning device according to the first aspect , the light receiving means is arranged in a scanning direction having a higher frequency in the first or second scanning direction. It is characterized by that.
According to a third aspect of the present invention, in the two-dimensional optical scanning device according to the first or second aspect , the phase shift of the vibrations of the first and second optical scanning units detected by the phase detecting unit is predetermined. It has a phase correcting means for correcting within the range .

請求項4に記載の発明では、請求項に記載の2次元光走査装置において、前記位相補正手段は、前記第一及び第二の光走査手段の振動の位相ずれが所定の範囲内になるように前記第一の周波数の信号と前記第二の周波数の信号との位相関係を制御することを特徴とする。
請求項5に記載の発明では、ことを特徴とする。
According to a fourth aspect of the present invention, in the two-dimensional optical scanning device according to the third aspect , the phase correction means has a phase shift of vibrations of the first and second optical scanning means within a predetermined range. Thus, the phase relationship between the signal of the first frequency and the signal of the second frequency is controlled .
The invention according to claim 5 is characterized in that.

請求項6に記載の発明では、請求項3または4に記載の2次元光走査装置において、前記位相補正手段は、1つの受光手段でしか前記光ビームが受光されないときは、2つ以上の受光手段で受光されるように前段補正を行い、その後、前記位相検知手段によって検知された前記第一及び第二の光走査手段の振動の位相ずれを所定の範囲内に補正することを特徴とする。
請求項7に記載の発明では、請求項に記載の2次元光走査装置において、前記受光手段を前記周波数の低い走査方向に沿って第一のグループと第二のグループとに分け、前記位相検知手段は、前記第一のグループ全体での前記光ビームの受光時間1と、前記第二のグループ全体での前記光ビームの受光時間2とを取得し、それらの比較結果に基づいて前記第一及び第二の光走査手段の振動の位相ずれを検知することを特徴とする。
According to a sixth aspect of the present invention, in the two-dimensional optical scanning device according to the third or fourth aspect , when the light beam is received by only one light receiving unit , the phase correcting unit receives two or more light receiving units. The pre-stage correction is performed so that the light is received by the means, and then the phase shift of the vibrations of the first and second optical scanning means detected by the phase detection means is corrected within a predetermined range. .
According to a seventh aspect of the present invention, in the two-dimensional optical scanning device according to the sixth aspect , the light receiving means is divided into a first group and a second group along the scanning direction with the low frequency, and the phase The detecting means obtains the light receiving time 1 of the light beam in the entire first group and the light receiving time 2 of the light beam in the entire second group, and based on the comparison result, It is characterized by detecting a phase shift of vibrations of the first and second optical scanning means .

請求項8に記載の発明では、請求項7に記載の2次元光走査装置において、前記受光時間1または2は、それぞれ、前記第一のグループの受光手段全体で検知される前記光ビームの受光時間の合計1と、前記第二のグループの受光手段全体で検知される前記光ビームの受光時間の合計2であり、前記位相検知手段は、前記周波数の低い走査方向について、一方の向きに走査している期間中の一部または全部の期間ごとに前記受光時間の合計1および2の差分値を取得し、その結果に基づいて前記第一及び第二の光走査手段の振動の位相ずれを検知することを特徴とする。
請求項9に記載の発明では、請求項8に記載の2次元光走査装置において、前記位相検知手段によって検知された前記第一及び第二の光走査手段の振動の位相ずれを所定の範囲内に補正する位相補正手段を有し、前記位相補正手段は、前記第一の走査と第二の走査の位相関係が一巡する1フレーム期間において取得された前記受光時間の合計1および2の差分値のうち、少なくとも一つが所定の範囲内に入るように前記第一及び第二の光走査手段の振動の位相ずれを補正することを特徴とする。
According to an eighth aspect of the present invention, in the two-dimensional optical scanning apparatus according to the seventh aspect, the light reception time 1 or 2 is received by the entire light receiving means of the first group. The total time is 1 and the total light receiving time of the light beam detected by the entire light receiving means of the second group is 2, and the phase detecting means scans in one direction with respect to the low frequency scanning direction. A difference value of a total of 1 and 2 of the light receiving times is obtained for every part or all of the periods during the period, and the phase shift of the vibration of the first and second optical scanning means is obtained based on the result. It is characterized by detecting .
According to a ninth aspect of the present invention, in the two-dimensional optical scanning device according to the eighth aspect, the phase shift of the vibrations of the first and second optical scanning means detected by the phase detecting means is within a predetermined range. The phase correction means corrects the difference between the total of 1 and 2 of the light reception times acquired in one frame period in which the phase relationship between the first scan and the second scan makes a round. Among these, the phase shift of the vibration of the first and second optical scanning means is corrected so that at least one falls within a predetermined range .

請求項10に記載の発明では、請求項6〜9のいずれか1つに記載の2次元光走査装置において、前記受光手段は、前記周波数の低い走査方向の走査範囲の中心を境に前記第一及び第二のグループに分けられ、互いに対称になるように配置されていることを特徴とする。
請求項11に記載の発明では、請求項〜10のいずれか1つに記載の2次元光走査装置において、前記受光手段が、前記第一及び第二の光走査手段を有する装置筐体に設けられていることを特徴とする。
According to a tenth aspect of the present invention, in the two-dimensional optical scanning device according to any one of the sixth to ninth aspects, the light-receiving unit is configured such that the light receiving unit has the boundary of the scanning range in the scanning direction with the low frequency as a boundary. It is divided into the 1st and 2nd group, and is arrange | positioned so that it may become mutually symmetrical .
According to an eleventh aspect of the present invention, in the two-dimensional optical scanning device according to any one of the first to tenth aspects, the light receiving means is an apparatus casing having the first and second optical scanning means. It is provided .

請求項12に記載の発明では、光走査型画像表示装置において、請求項1〜11のいずれか1つに記載の2次元光走査装置を含み、画像信号を入力し前記第一及び第二の光走査手段の動きに同期して前記光ビームを前記画像信号に基づき強度変調しつつスクリーン面を走査することにより所望の画像を表示する手段を備えたことを特徴とする According to a twelfth aspect of the present invention, the optical scanning image display device includes the two-dimensional optical scanning device according to any one of the first to eleventh aspects, wherein an image signal is input and the first and second are input. A means for displaying a desired image by scanning the screen surface while modulating the intensity of the light beam based on the image signal in synchronization with the movement of the light scanning means is provided .

本発明によれば、光ビーム走査の状態を受光手段により直接検知して第一及び第二の光走査手段の振幅位相関係(位相のずれ状態)を把握し、位相ずれがあった場合には補正するようにしたので、2方向の走査振幅の位相関係を簡単且つ高精度に検知することが可能となり、よって所望の走査軌跡を高精度にでき、高画質化を実現できる。
また、周波数の高い側の走査方向の振幅タイミング情報を周波数が低い側の走査方向の所定期間内で複数取得し総合的に処理するようにしたので、単発の受光タイミング信号では検出精度が得られないような場合でも2方向の走査振幅の位相関係を簡単且つ高精度に検知することが可能となり、よって所望の走査軌跡が高精度に実現できる。
2方向の走査振幅の位相関係を常に最適に自動補正するようにしたので、ユーザーの手を煩わせることなく利便性の向上が図られる。
According to the present invention, the light beam scanning state is directly detected by the light receiving means to grasp the amplitude phase relationship (phase shift state) of the first and second light scanning means, and when there is a phase shift, Since the correction is made, the phase relationship between the scanning amplitudes in the two directions can be detected easily and with high accuracy, so that a desired scanning locus can be made with high accuracy and high image quality can be realized.
In addition, since a plurality of amplitude timing information in the scanning direction on the higher frequency side is acquired and processed comprehensively within a predetermined period in the scanning direction on the lower frequency side, detection accuracy can be obtained with a single light reception timing signal. Even in such a case, it is possible to detect the phase relationship between the scanning amplitudes in the two directions easily and with high accuracy, so that a desired scanning locus can be realized with high accuracy.
Since the phase relationship between the scanning amplitudes in the two directions is always optimally automatically corrected, the convenience can be improved without bothering the user.

本発明の第1の実施形態に係る光走査型画像表示装置の概要構成図である。1 is a schematic configuration diagram of an optical scanning image display device according to a first embodiment of the present invention. 第一の光走査手段と第二の光走査手段とを併せ持つMEMSスキャナーの斜視図である。It is a perspective view of the MEMS scanner which has a 1st optical scanning means and a 2nd optical scanning means together. 2次元光走査装置によるリサージュパターンを示す図である。It is a figure which shows the Lissajous pattern by a two-dimensional optical scanning device. 第一及び第二の光走査手段の振幅位相関係の検知状態を示す図である。It is a figure which shows the detection state of the amplitude phase relationship of the 1st and 2nd optical scanning means. 振幅位相がずれている状態の検知状態を示す図である。It is a figure which shows the detection state of the state from which the amplitude phase has shifted | deviated. 振幅位相がずれて1つの受光手段でしか受光できない状態を示す図である。It is a figure which shows the state which an amplitude phase shift | deviates and can receive light only with one light-receiving means. 受光手段の配置パターンを示す図である。It is a figure which shows the arrangement pattern of a light-receiving means. 第2の実施形態に係る光走査型画像表示装置の概要構成図である。It is a schematic block diagram of the optical scanning type image display apparatus which concerns on 2nd Embodiment. データ加算回路の実施例を示す概要図である。It is a schematic diagram which shows the Example of a data addition circuit. 振動の位相関係が適切である場合の図である。It is a figure in case the phase relationship of a vibration is appropriate. 振動の位相関係が適切でなく走査軌跡が不均一の場合の一例を示す図である。It is a figure which shows an example in case the phase relationship of a vibration is not suitable and a scanning locus | trajectory is non-uniform | heterogenous. 振動の位相関係が適切でなく走査軌跡が不均一の場合の他例を示す図である。It is a figure which shows the other example in case the phase relationship of a vibration is not suitable and a scanning locus | trajectory is non-uniform | heterogenous. 受光手段の配置箇所によって走査軌跡の密度が異なることを示す図で、(a)は受光手段がスクリーン側に配置された状態を示す図、(b)は受光手段が装置筐体に設けられた場合に走査軌跡がビーム径に対して受光手段の分解能を超えて密になる状態を示す図である。It is a figure which shows that the density of a scanning locus changes with the arrangement | positioning locations of a light-receiving means, (a) is a figure which shows the state by which the light-receiving means is arrange | positioned at the screen side, (b) is a light-receiving means provided in the apparatus housing | casing. It is a figure which shows the state where a scanning locus | trajectory becomes dense exceeding the resolution of a light-receiving means with respect to a beam diameter.

以下、本発明の実施形態を図を参照して説明する。
図1は、本実施形態に係る2次元光走査装置を備えた光走査型画像表示装置の第1の実施形態を概略的に示したブロック図である。
システム制御回路1は、後述するMEMS(Micro-Electro-Mechanical Systems)スキャナー4を駆動する信号Vx及びVyの基となるパルス信号Sx及びSyを生成するとともに、後述するレーザー光源5を駆動する変調信号LDVの基となるデータ信号LDDを生成し出力する。
第一の周波数の信号であるパルス信号Sxは、後述するデータ処理回路11によって制御される遅延回路2によって適当に遅延され、パルス信号dShとして出力される。
パルス信号dSh及び第二の周波数の信号であるSyはそれぞれ増幅回路3x及び3yによって適当に増幅、場合によっては更にフィルター処理され、駆動信号Vx及びVyとして出力される。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a block diagram schematically showing a first embodiment of an optical scanning type image display device including a two-dimensional optical scanning device according to the present embodiment.
The system control circuit 1 generates pulse signals Sx and Sy as a basis of signals Vx and Vy for driving a MEMS (Micro-Electro-Mechanical Systems) scanner 4 described later, and a modulation signal for driving a laser light source 5 described later. A data signal LDD that is the basis of the LDV is generated and output.
The pulse signal Sx, which is a signal having the first frequency, is appropriately delayed by a delay circuit 2 controlled by a data processing circuit 11 to be described later and output as a pulse signal dSh.
The pulse signal dSh and the signal Sy of the second frequency are appropriately amplified by the amplifier circuits 3x and 3y, respectively, further filtered in some cases, and output as drive signals Vx and Vy.

データ信号LDDはD/A変換器6によってアナログ信号LDAに変換され、さらに増幅回路13によって適当に増幅され変調信号LDVとして出力される。レーザー光源5は変調信号LDVに基づき変調光である光ビーム12を出力する。
走査手段としてのMEMSスキャナー4は駆動信号Vxによって駆動され、入射される光ビーム12をスクリーン16上において走査領域の第一の方向としてのx方向に往復走査すると同時に、駆動信号Vyによって入射される光ビーム12を走査領域の第二の方向としてのy方向にも往復走査するように2次元的に振動するミラー部を備える。
The data signal LDD is converted into an analog signal LDA by the D / A converter 6 and further appropriately amplified by the amplifier circuit 13 and output as the modulation signal LDV. The laser light source 5 outputs a light beam 12 that is modulated light based on the modulation signal LDV.
The MEMS scanner 4 as a scanning means is driven by a drive signal Vx, and reciprocally scans the incident light beam 12 on the screen 16 in the x direction as the first direction of the scanning region, and at the same time, is incident by the drive signal Vy. A mirror portion that two-dimensionally vibrates so as to reciprocately scan the light beam 12 also in the y direction as the second direction of the scanning region is provided.

走査領域の一部の所定位置には、第二の方向(y方向)に沿って、受光手段としてのフォトダイオード7a及び7bが配置されており、到達した光ビームを電気信号Pa及びPbに変換して出力する。
ここで、必須ではないが光ビーム12は本来必要とされる有効走査領域より広い範囲を走査するようにし、フォトダイオード7a及び7bは有効走査領域範囲外に配置されることが好ましい。
信号Pa及びPbはそれぞれ増幅回路8a及び8bで電圧信号VPa及びVPbに変換された後コンパレータ9a及び9bにて2値化されてデジタル信号DPa及びDPbとして出力される。
タイマー回路10a及び10bは、それぞれデジタル信号DPa及びDPbを基にフォトダイオード7a及び7bにおいて光ビームが受光された期間を計測し、結果をデータ信号TDa及びTDbとして出力する。
Photodiodes 7a and 7b as light receiving means are arranged along a second direction (y direction) at a predetermined position in a part of the scanning region, and convert the reached light beam into electric signals Pa and Pb. And output.
Here, although it is not essential, it is preferable that the light beam 12 scans a range wider than the effective scanning area originally required, and the photodiodes 7a and 7b are arranged outside the effective scanning area.
The signals Pa and Pb are respectively converted into voltage signals VPa and VPb by the amplifier circuits 8a and 8b, then binarized by the comparators 9a and 9b, and output as digital signals DPa and DPb.
The timer circuits 10a and 10b measure the periods during which the light beams are received by the photodiodes 7a and 7b based on the digital signals DPa and DPb, respectively, and output the results as data signals TDa and TDb.

増幅回路8a及び8b、コンパレータ9a及び9b、タイマー回路10a及び10bは、位相検知手段15を構成している。
位相補正手段としてのデータ処理回路11は、例えばTDaとTDbの差分を求め、その結果が許容範囲外であればそれを補正すべく補正信号TCを出力して前述の遅延回路2を制御し、MEMSスキャナー4におけるx方向(第一の方向)とy方向(第二の方向)の走査が所望の位相関係になるようにパルス信号SxとSyの位相関係を補正する。
The amplifier circuits 8a and 8b, the comparators 9a and 9b, and the timer circuits 10a and 10b constitute the phase detection means 15.
For example, the data processing circuit 11 as the phase correction means obtains a difference between TDa and TDb, and if the result is out of the allowable range, outputs a correction signal TC to correct it and controls the delay circuit 2 described above. The phase relationship between the pulse signals Sx and Sy is corrected so that the scanning in the x direction (first direction) and the y direction (second direction) in the MEMS scanner 4 has a desired phase relationship.

図2に基づいて、MEMSスキャナー4の構成を説明する。
MEMSスキャナー4は、反射面を持つ微小ミラー13aがトーションバー13b、13cで支持された構造を有する。
微小ミラー13aは、トーションバー13bが捻れることで軸13dを略中心とした共振往復運動を行う。この振動は、フレーム13fと微小ミラー13aの各々に設けられた図示しない電極に第一の周波数の信号を印加することにより生じ、この場合、MEMSスキャナー4は第一の光走査手段として機能する。
微小ミラー13aは、トーションバー13cが捻れることで軸13eを略中心とした共振往復運動を行う。この振動は、フレーム13fとフレーム13gの各々に設けられた図示しない電極に第二の周波数の信号を印加することにより生じ、この場合、MEMSスキャナー4は第二の光走査手段として機能する。
この両軸13d、13eを略中心とする往復運動によって、微小ミラー13aの偏向面の法線方向が2次元的に変化する。このため、微小ミラー13aに入射するビームの反射方向が変化し、これにより、ビームを2次元方向に走査することができる。
The configuration of the MEMS scanner 4 will be described with reference to FIG.
The MEMS scanner 4 has a structure in which a minute mirror 13a having a reflecting surface is supported by torsion bars 13b and 13c.
The micromirror 13a performs a reciprocating reciprocating motion about the axis 13d as the torsion bar 13b is twisted. This vibration is generated by applying a signal having a first frequency to an electrode (not shown) provided on each of the frame 13f and the micromirror 13a. In this case, the MEMS scanner 4 functions as a first optical scanning unit.
The micro mirror 13a performs a reciprocating reciprocating motion about the axis 13e by twisting the torsion bar 13c. This vibration is generated by applying a signal of a second frequency to an electrode (not shown) provided in each of the frame 13f and the frame 13g. In this case, the MEMS scanner 4 functions as a second optical scanning unit.
By the reciprocating motion about both the axes 13d and 13e, the normal direction of the deflection surface of the micromirror 13a changes two-dimensionally. For this reason, the reflection direction of the beam incident on the micromirror 13a is changed, whereby the beam can be scanned in a two-dimensional direction.

図3は、2次元光走査装置によるリサージュパターンを示しており、(a)は振幅の位相ずれがない状態を、(b)、(c)は振幅の位相ずれが生じている状態を示している。
振幅の位相ずれがない場合には、図4に示すように、フォトダイオード7a、7bにおける受光期間TDaとTDbは差がなく、等しい(TDa=TDb)。この場合のフォトダイオード7a、7bと走査線の関係は図1に示した状態である。
振幅の位相ずれが生じると、図5に示すように、フォトダイオード7aにおける受光期間が短くなり、TDa<TDbとなる。これにより、位相ずれがあるか否かを直接に検知することができ、例えばその差分(TDb−TDa)を求めることにより位相ずれ量を算出することができる。
位相補正手段としてのデータ処理回路11は、位相ずれ量の算出結果が許容範囲外であればそれを補正すべく補正信号TCを出力して遅延回路2を制御し、MEMSスキャナー4におけるx方向とy方向の走査が所望の位相関係になるようにパルス信号SxとSyの位相関係を補正する。
位相ずれ量の許容値は、データ処理回路11のメモリに予め記憶されており、この許容値に基づいて補正するかどうかの判断がなされる。補正する場合には、予め記憶されている位相ずれ量と補正量との関係のデータテーブルから、補正量が自動的に抽出され、抽出された値に基づいて上記補正信号TCが生成される。
ここでは走査線の折り返し位置がフォトダイオード7b側にずれた位相ずれ状態における補正について説明したが、逆方向に位相がずれた場合でも同様に補正することができる。
FIG. 3 shows a Lissajous pattern by a two-dimensional optical scanning device, where (a) shows a state where there is no amplitude phase shift, and (b) and (c) show a state where there is a phase shift in amplitude. Yes.
When there is no phase shift in amplitude, as shown in FIG. 4, the light receiving periods TDa and TDb in the photodiodes 7a and 7b are not different and are equal (TDa = TDb). The relationship between the photodiodes 7a and 7b and the scanning lines in this case is the state shown in FIG.
When the phase shift of the amplitude occurs, as shown in FIG. 5, the light receiving period in the photodiode 7a is shortened, and TDa <TDb. This makes it possible to directly detect whether or not there is a phase shift. For example, the phase shift amount can be calculated by obtaining the difference (TDb−TDa).
The data processing circuit 11 as the phase correction means outputs a correction signal TC to correct the phase shift amount calculation result outside the allowable range, and controls the delay circuit 2 to correct it. The phase relationship between the pulse signals Sx and Sy is corrected so that the scanning in the y direction has a desired phase relationship.
The allowable value of the phase shift amount is stored in advance in the memory of the data processing circuit 11, and it is determined whether to correct based on this allowable value. In the case of correction, the correction amount is automatically extracted from the data table of the relationship between the phase shift amount and the correction amount stored in advance, and the correction signal TC is generated based on the extracted value.
Although the correction in the phase shift state in which the scanning line folding position is shifted to the photodiode 7b side has been described here, the same correction can be made even when the phase shifts in the opposite direction.

第二の周波数信号であるパルス信号Syの周波数は、第一の周波数信号であるパルス信号Sxの周波数よりも高く、図1に示すように、走査線の折り返し角度は急峻(鋭角)となる。この特性を利用して、フォトダイオード7a及び7bは第二の方向に沿って隣り合う状態に配置されている。
このように、周波数が高い方の走査線の急峻性を利用すれば、受光手段の検知面積が少なくて済み、受光手段を小型化にできる利点がある。
図1及び図3(a)に示すように、フォトダイオード7a及び7bは有効走査領域外に配置されているが、スクリーン16上において画質に影響を及ぼさないように、有効走査領域内に配置することもできる。この場合、上記小型化は画質への影響を抑制する観点から有利である。
The frequency of the pulse signal Sy that is the second frequency signal is higher than the frequency of the pulse signal Sx that is the first frequency signal, and as shown in FIG. 1, the folding angle of the scanning line becomes steep (acute angle). Using this characteristic, the photodiodes 7a and 7b are arranged adjacent to each other along the second direction.
Thus, if the steepness of the scanning line having a higher frequency is used, the detection area of the light receiving means can be reduced, and there is an advantage that the light receiving means can be downsized.
As shown in FIGS. 1 and 3A, the photodiodes 7a and 7b are arranged outside the effective scanning area, but are arranged in the effective scanning area on the screen 16 so as not to affect the image quality. You can also. In this case, the downsizing is advantageous from the viewpoint of suppressing the influence on the image quality.

図6に示すように、2つのフォトダイオード7a、7bのうち、いずれか一方でしか受光しない場合には、上記補正手法により差分を検知することはできない。このような場合には、データ処理回路11は2つのフォトダイオード7a、7bで受光されるように前段的な粗めの補正をし、2つのフォトダイオード7a、7bで受光される状態になったら上記と同様の補正を行う。
2つのフォトダイオード7a、7bのうちいずれも受光していない場合にも同様の前段的な補正が行われる。
As shown in FIG. 6, when only one of the two photodiodes 7a and 7b receives light, the difference cannot be detected by the correction method. In such a case, the data processing circuit 11 performs coarse correction in the previous stage so that light is received by the two photodiodes 7a and 7b, and when the light is received by the two photodiodes 7a and 7b. The same correction as above is performed.
A similar pre-stage correction is performed even when neither of the two photodiodes 7a and 7b receives light.

上記実施形態では、2つのフォトダイオード7a及び7bを第二の方向において隣り合うように配置したが、周波数の低い第一の方向に同様に配置してもよい。
また、図7(a)に示すように、第二の方向において1つのフォトダイオード7を配置するとともに、第一の方向において1つのフォトダイオード20を配置して受光手段を構成するようにしてもよい。
また、図7(b)、(c)に示すように、第一の方向と第二の方向において、それぞれ2つ以上のフォトダイオードを配置して受光手段を構成するようにしてもよい。
また、上記実施形態ではデータ処理回路11により自動的に補正する構成としたが、手動で補正するようにしてもよい。この場合、位相検知手段により検知された位相ずれ状態を表示し、表示結果に基づいて補正信号を送信しながら手動調整するようにしてもよい。
In the above embodiment, the two photodiodes 7a and 7b are arranged so as to be adjacent to each other in the second direction, but may be arranged similarly in the first direction having a low frequency.
Further, as shown in FIG. 7 (a), one photodiode 7 is arranged in the second direction, and one photodiode 20 is arranged in the first direction to constitute the light receiving means. Good.
Further, as shown in FIGS. 7B and 7C, the light receiving means may be configured by arranging two or more photodiodes in each of the first direction and the second direction.
In the above embodiment, the data processing circuit 11 automatically corrects the data. However, it may be corrected manually. In this case, the phase shift state detected by the phase detection means may be displayed, and manual adjustment may be performed while transmitting a correction signal based on the display result.

図8乃至図13に基づいて第2の実施形態を説明する。上記実施形態と同等の機能を有する部分は同じ番号を付加している。
第1の実施形態も含めて、受光手段は光走査手段を備えた装置筐体に設けてもよく、装置筐体とは分離してスクリーン側に設けてもよいが、
装置を小型化するために、光走査手段に対して受光手段を、走査光の投射距離(例えば画像表示装置であればスクリーン面までの距離)と比較して極めて短い距離に配置しようとすると、すなわち、光走査手段を備えた装置筐体の例えばMEMSスキャナー4とビーム透過窓との間に配置しようとすると、特に周波数の低い側の走査方向において走査軌跡がビーム径に対して検出系(受光手段)の分解能を超えて密になり、どの受光タイミングが検出すべきタイミングであるのかを判別するのが精度的に困難になるという問題が生じる場合がある。
図13はその様子の一例を示したものである。図13において、(a)は、上記実施形態の図1に例示した走査軌跡と受光手段7a、7bの関係について、光走査手段に対して受光手段を走査光の投射距離と比較して極めて短い距離に配置した場合の走査軌跡と受光手段の関係を概念的に示したものであり、(b)は実際の受光手段の受光面上での走査軌跡と光ビームの様子を示したものである。
本実施形態ではこのような場合でも水平方向と垂直方向の振幅の位相ずれを高精度に検知できて高画質化を維持でき、且つ構成が簡単で小型低コストの2次元光走査装置の提供を目的としている。
The second embodiment will be described with reference to FIGS. Parts having functions equivalent to those in the above embodiment are given the same numbers.
Including the first embodiment, the light receiving means may be provided in the apparatus casing provided with the optical scanning means, or may be provided on the screen side separately from the apparatus casing.
In order to reduce the size of the device, if the light receiving means is arranged with respect to the optical scanning means at an extremely short distance compared to the projection distance of the scanning light (for example, the distance to the screen surface in the case of an image display device), In other words, if an attempt is made to arrange, for example, between the MEMS scanner 4 and the beam transmission window of the apparatus housing provided with the optical scanning means, the scanning trajectory is detected with respect to the beam diameter, particularly in the scanning direction on the lower frequency side. There is a case in which it becomes dense beyond the resolution of (means) and it becomes difficult to accurately determine which light reception timing is the timing to be detected.
FIG. 13 shows an example of such a situation. In FIG. 13, (a) shows the relationship between the scanning trajectory illustrated in FIG. 1 of the above embodiment and the light receiving means 7a and 7b as compared with the projection distance of the scanning light with respect to the optical scanning means. The relationship between the scanning locus and the light receiving means when arranged at a distance is conceptually shown, and (b) shows the scanning locus on the light receiving surface of the actual light receiving means and the state of the light beam. .
In this embodiment, even in such a case, it is possible to detect a phase shift between amplitudes in the horizontal direction and the vertical direction with high accuracy, to maintain high image quality, and to provide a small and low-cost two-dimensional optical scanning device that is simple in configuration. It is aimed.

図8に示すように、信号Pa及びPbはそれぞれ増幅回路8a及び8bで電圧信号VPa及びVPbに変換された後コンパレータ9a及び9bにて2値化されてデジタル信号DPa及びDPbとして出力される。
タイマー回路10a及び10bは、それぞれデジタル信号DPa及びDPbを基にフォトダイオード7a及び7bにおいて光ビームが受光された期間を計測し、結果をデータ信号TDa及びTDbとして出力する。
TDaは「受光時間の合計1」であり、「TDb」は「受光時間の合計2」である。
フォトダイオード7aは受光手段の第一のグループを構成し、フォトダイオード7bは受光手段の第二のグループを構成する。ここでは第一、第二のグループをそれぞれ1個のフォトダイオードで構成しているが、それぞれ複数個であってもよい。
有効データ判別回路22は、フォトダイオード7a及び7bの両方において同時に受光があることを検知すると信号DENを肯定(例えば”H”レベルに)し、保持する。また信号DENが”H”の期間中にフォトダイオード7a及び7bの両方において受光がなくなったことを検知すると、一定時間だけ信号TENを肯定(例えば”H”レベルに)する。受光がなくなった時点で受光期間が確定する。
As shown in FIG. 8, signals Pa and Pb are converted into voltage signals VPa and VPb by amplifier circuits 8a and 8b, respectively, and then binarized by comparators 9a and 9b and output as digital signals DPa and DPb.
The timer circuits 10a and 10b measure the periods during which the light beams are received by the photodiodes 7a and 7b based on the digital signals DPa and DPb, respectively, and output the results as data signals TDa and TDb.
TDa is “total light reception time 1”, and “TDb” is “total light reception time 2”.
The photodiode 7a constitutes a first group of light receiving means, and the photodiode 7b constitutes a second group of light receiving means. Here, each of the first and second groups is constituted by one photodiode, but a plurality of each may be provided.
When the valid data discriminating circuit 22 detects that light is simultaneously received in both the photodiodes 7a and 7b, the valid data discriminating circuit 22 makes the signal DEN affirmative (for example, “H” level) and holds it. Further, when it is detected that light is not received in both the photodiodes 7a and 7b during the period when the signal DEN is “H”, the signal TEN is affirmed (for example, set to “H” level) for a certain time. The light reception period is determined when light reception stops.

データ加算回路21a及び21bはそれぞれ、タイマー回路10a及び10bから出力されるデータ信号TDa及びTDbを信号TENが”H”の期間中に取り込み、それまでに取り込まれたデータに積算し、結果をデータ信号TTDa及びTTDbとして保持するとともに後段のデータ処理回路11に出力する。したがって、信号TENを肯定にする上記「一定時間」はデータ加算回路21a及び21bの「処理時間」である。
タイマー回路10a及び10bは、信号TENが”H”から否定の”L”に遷移すると自身を初期化し、次の受光に備える。ここでは”H”を肯定、”L”を否定の意味で用いたが、逆でもよい。
有効データ判別回路22は、次にまたフォトダイオード7a及び7bの両方において同時に受光があることを検知すると同様に信号TENを所定時間”H”にし、データ加算回路21a及び21bはそれぞれ、同様にタイマー回路10a及び10bから出力されるデータ信号TDa及びTDbを信号TENが”H”の期間中に取り込み、それまでに取り込まれたデータに積算し、データ信号TTDa及びTTDbを更新する。なおこの間、信号DENは”H”を保持している。
有効データ判別回路22は、y方向走査の一方向走査(下から上方向または上から下方向の片道期間)期間経過してフォトダイオード7aまたは7bの少なくとも一方において受光が無いことを検知すると信号DENを否定の”L”にする。
データ加算回路21a及び21bは、信号DENが”L”になると初期化され、データ信号TTDa及びTTDbの値をゼロにする。
The data addition circuits 21a and 21b capture the data signals TDa and TDb output from the timer circuits 10a and 10b, respectively, during the period when the signal TEN is “H”, and integrate the data into the data captured so far. The signals are held as signals TTDa and TTDb and output to the data processing circuit 11 at the subsequent stage. Therefore, the “certain time” for making the signal TEN positive is the “processing time” of the data addition circuits 21a and 21b.
When the signal TEN transitions from “H” to negative “L”, the timer circuits 10 a and 10 b initialize themselves and prepare for the next light reception. Here, “H” is used as an affirmative and “L” is used as a negative meaning.
Next, when the valid data discriminating circuit 22 detects that light is simultaneously received in both the photodiodes 7a and 7b, the signal TEN is set to “H” for a predetermined time, and the data adding circuits 21a and 21b are respectively set to timers. The data signals TDa and TDb output from the circuits 10a and 10b are captured during the period when the signal TEN is “H”, integrated with the data captured so far, and the data signals TTDa and TTDb are updated. During this time, the signal DEN holds “H”.
When the valid data discriminating circuit 22 detects that no light is received in at least one of the photodiodes 7a or 7b after a unidirectional scanning period (one-way period from bottom to top or top to bottom) elapses, the signal DEN To negative “L”.
The data addition circuits 21a and 21b are initialized when the signal DEN becomes “L”, and the values of the data signals TTDa and TTDb are made zero.

データ処理回路11は、1フレーム期間において信号DENが”H”から”L”になるごとにその直前のデータTTDa及びTTDbを取り込み、差分|TTDa−TTDb|の値を比較し、最小値|TTDa−TTDb|minを求める。そしてこれが許容範囲外であればそれを補正すべく補正信号TCを出力して遅延回路2を制御し、MEMSスキャナー4におけるx方向とy方向の走査が所望の位相関係になるようにSxとSyの位相関係を補正する。
差分値(|TTDa−TTDb|)が大きいほど振幅の位相がずれていることになる。
|TTDa−TTDb|minが許容範囲内であれば信号TCの値は変わらない。
図9は、図8におけるデータ加算回路21a及び21bの実施例を概略的に示したものである。なお本図はデータ加算回路21aについて示しているが、21bについても全く同様でよい。
23aは加算回路であり、タイマー回路10aからのデータ出力TDaと本回路の出力データTTDaを加算し、結果をATDaとして出力する。
24aはラッチ回路であり、信号DENが”H”のとき、信号TENが”H”のときには入力データATDaを取り込んでデータTTDaとして出力し、信号TENが”L”のときには現在のTTDaの値を保持する。そして信号DENが”L”になると初期化され、出力TTDaはゼロになる。
Each time the signal DEN changes from “H” to “L” in one frame period, the data processing circuit 11 fetches the immediately preceding data TTDa and TTDb, compares the difference | TTDa−TTDb |, and compares the minimum value | TTDa. -TTDb | min is obtained. If this is out of the permissible range, a correction signal TC is output to correct it and the delay circuit 2 is controlled, so that scanning in the x direction and y direction in the MEMS scanner 4 has a desired phase relationship. Correct the phase relationship.
The larger the difference value (| TTDa−TTDb |), the more the phase of the amplitude is shifted.
If | TTDa−TTDb | min is within an allowable range, the value of the signal TC does not change.
FIG. 9 schematically shows an embodiment of the data addition circuits 21a and 21b in FIG. Although this figure shows the data adding circuit 21a, the same may be applied to 21b.
An adder circuit 23a adds the data output TDa from the timer circuit 10a and the output data TTDa of this circuit, and outputs the result as ATDa.
Reference numeral 24a denotes a latch circuit. When the signal DEN is “H”, when the signal TEN is “H”, the input data ATDa is fetched and output as data TTDa. When the signal TEN is “L”, the current value of TTDa is set. Hold. When the signal DEN becomes “L”, it is initialized and the output TTDa becomes zero.

図10〜図12は、図13を基に本発明の効果を分かり易く説明するための概念図である。
いま、一連の走査において、例えば太線で強調した走査に着目する。これはy方向について上から下でも下から上でも構わないが、例えば上から下への走査であるとする。
まずx方向とy方向の振動の位相関係が適切である場合には図10に示すように走査面全体に均一な所望の軌跡が得られるので、光ビームが位置P近傍を通る際の走査軌跡と位置Q近傍を通る際の走査軌跡は、y方向の走査範囲の中心(ここでは振幅中心)に置かれたフォトダイオード7a及び7bの境界に対して上下対称であるから、理想的には|TTDa−TTDb|=0となるはずである。
一方、x方向とy方向の振動の位相関係が適切でないと図11や図12のように走査軌跡が不均一となる。
なお、フォトダイオード7a及び7bは画像領域外に配置されており、モニター用のレーザー点灯によって受光されるようになっている。モニター時のみ点灯するようにしてもよい。
10 to 12 are conceptual diagrams for easily explaining the effects of the present invention based on FIG.
Now, in a series of scans, focus on, for example, scans highlighted with thick lines. This may be from the top to the bottom or from the bottom to the top in the y direction. For example, it is assumed that scanning is from top to bottom.
First, when the phase relationship between the vibrations in the x direction and the y direction is appropriate, a uniform desired trajectory is obtained on the entire scanning surface as shown in FIG. 10, and thus the scanning trajectory when the light beam passes near the position P is obtained. Since the scanning trajectory when passing through the vicinity of the position Q is vertically symmetrical with respect to the boundary between the photodiodes 7a and 7b placed at the center (here, the amplitude center) of the scanning range in the y direction, ideally | TTDa−TTDb | = 0.
On the other hand, if the phase relationship between the vibrations in the x direction and the y direction is not appropriate, the scanning locus is not uniform as shown in FIGS.
The photodiodes 7a and 7b are arranged outside the image area, and are received by turning on a monitor laser. It may be lit only during monitoring.

図11のような場合には、位置P近傍においては光ビームはフォトダイオード7aの受光面中央に近い軌跡をたどり、位置Q近傍においては光ビームはフォトダイオード7bの受光面中央から遠い軌跡をたどるので、フォトダイオード7aでの受光時間はより長くなり、フォトダイオード7bでの受光時間はより短くなる。
逆に図12のような場合には、位置P近傍においては光ビームはフォトダイオード7aの受光面中央から遠い軌跡をたどり、位置Q近傍においては光ビームはフォトダイオード7bの受光面中央に近い軌跡をたどるので、フォトダイオード7aでの受光時間はより短くなり、フォトダイオード7bでの受光時間はより長くなる。
すなわち、第1の実施形態で示した1回の受光タイミングよりも大きい差分を得ることができる。本実施形態においては走査軌跡の密度が高くない場合で、2回の受光タイミングについて説明したが、更に走査軌跡の密度が高いより現実的な走査の場合には、更に多くの受光タイミングによる積算効果が得られ、より大きい差分すなわち検出精度が得られる。
In the case shown in FIG. 11, the light beam follows a locus close to the center of the light receiving surface of the photodiode 7a near the position P, and the light beam follows a locus far from the center of the light receiving surface of the photodiode 7b near the position Q. Therefore, the light reception time at the photodiode 7a becomes longer, and the light reception time at the photodiode 7b becomes shorter.
Conversely, in the case shown in FIG. 12, the light beam follows a locus far from the center of the light receiving surface of the photodiode 7a near the position P, and the light beam near the center of the light receiving surface of the photodiode 7b near the position Q. Therefore, the light receiving time at the photodiode 7a becomes shorter, and the light receiving time at the photodiode 7b becomes longer.
That is, it is possible to obtain a difference larger than the single light reception timing shown in the first embodiment. In the present embodiment, the light reception timing is described twice when the density of the scanning trajectory is not high. However, in the case of more realistic scanning with a higher density of the scanning trajectory, the integration effect due to more light reception timings. And a larger difference, that is, detection accuracy can be obtained.

4 第一の光走査手段及び第二の光走査手段としてのMEMSスキャナー
7、20 受光手段としてのフォトダイオード
11 位相補正手段としてのデータ処理回路
16 スクリーン面
x 第一の方向
y 第二の方向
Sx 第一の周波数の信号
Sy 第二の周波数の信号
4 MEMS scanner as first optical scanning means and second optical scanning means 7, 20 Photodiode as light receiving means 11 Data processing circuit as phase correcting means 16 Screen surface x First direction y Second direction Sx First frequency signal Sy Second frequency signal

特表2005−526289号公報JP 2005-526289 A 特開平11−288444号公報Japanese Patent Laid-Open No. 11-288444 特許第3518099号公報Japanese Patent No. 3518099 特開平8−304474号公報JP-A-8-304474

Claims (12)

第一の周波数の信号を印加することによって第一の方向に前記第一の周波数で光ビームを往復走査すべく振動する第一の光走査手段と、
前記第一の周波数とは異なる第二の周波数の信号を印加することによって第二の方向に前記第二の周波数で光ビームを往復走査すべく振動する第二の光走査手段と、を備えた2次元光走査装置において、
前記第一または第二の走査方向のうち少なくとも一方の走査方向の有効走査領域外において2つ以上隣り合うように配置され、前記第一及び第二の光走査手段の前記光ビームを受光する受光手段と、
前記光ビームの折り返しにおける前記各受光手段における受光時間を取得し、これらの受光時間に基づいて前記第一及び第二の光走査手段の振動の位相ずれを検知する位相検知手段と、を設けたことを特徴とする2次元光走査装置。
First optical scanning means that oscillates to reciprocally scan the light beam at the first frequency in a first direction by applying a signal at a first frequency;
Second optical scanning means that vibrates to reciprocally scan the light beam at the second frequency in the second direction by applying a signal having a second frequency different from the first frequency. In a two-dimensional optical scanning device,
Light reception for receiving the light beams of the first and second optical scanning means, arranged so as to be adjacent to each other at least two outside the effective scanning region in at least one of the first or second scanning directions. Means,
A phase detection unit that acquires a light reception time in each of the light receiving units in the folding of the light beam and detects a phase shift of vibrations of the first and second light scanning units based on the light reception times; A two-dimensional optical scanning device.
請求項1に記載の2次元光走査装置において、
前記受光手段は、前記第一または第二の走査方向のうち周波数の高い方の走査方向に配置されていることを特徴とする2次元光走査装置。
The two-dimensional optical scanning device according to claim 1,
The two-dimensional optical scanning device according to claim 1 , wherein the light receiving means is arranged in a scanning direction having a higher frequency in the first or second scanning direction .
請求項1または2に記載の2次元光走査装置において、
前記位相検知手段によって検知された前記第一及び第二の光走査手段の振動の位相ずれを所定の範囲内に補正する位相補正手段を有していることを特徴とする2次元光走査装置。
The two-dimensional optical scanning device according to claim 1 or 2 ,
A two-dimensional optical scanning apparatus comprising phase correction means for correcting a phase shift of vibrations of the first and second optical scanning means detected by the phase detection means within a predetermined range .
請求項に記載の2次元光走査装置において、
前記位相補正手段は、前記第一及び第二の光走査手段の振動の位相ずれが所定の範囲内になるように前記第一の周波数の信号と前記第二の周波数の信号との位相関係を制御することを特徴とする2次元光走査装置。
The two-dimensional optical scanning device according to claim 3 ,
The phase correction means adjusts the phase relationship between the signal of the first frequency and the signal of the second frequency so that the phase shift of vibration of the first and second optical scanning means is within a predetermined range. two-dimensional optical scanning apparatus and controls.
請求項3または4に記載の2次元光走査装置において、
前記位相補正手段は、1つの受光手段でしか前記光ビームが受光されないときは、2つ以上の受光手段で受光されるように前段補正を行い、その後、前記位相検知手段によって検知された前記第一及び第二の光走査手段の振動の位相ずれを所定の範囲内に補正することを特徴とする2次元光走査装置。
The two-dimensional optical scanning device according to claim 3 or 4 ,
When the light beam is received by only one light receiving unit , the phase correction unit performs a pre-stage correction so that the light beam is received by two or more light receiving units, and then the first phase detected by the phase detection unit. A two-dimensional optical scanning device which corrects a phase shift of vibrations of the first and second optical scanning means within a predetermined range .
請求項に記載の2次元光走査装置において、
前記受光手段は、前記第一または第二の走査方向のうち周波数の低い方の走査方向に配置されていることを特徴とする2次元光走査装置。
The two-dimensional optical scanning device according to claim 1 ,
2. The two-dimensional optical scanning device according to claim 1, wherein the light receiving means is arranged in a scanning direction having a lower frequency in the first or second scanning direction .
請求項に記載の2次元光走査装置において、
前記受光手段を前記周波数の低い走査方向に沿って第一のグループと第二のグループとに分け、前記位相検知手段は、前記第一のグループ全体での前記光ビームの受光時間1と、前記第二のグループ全体での前記光ビームの受光時間2とを取得し、それらの比較結果に基づいて前記第一及び第二の光走査手段の振動の位相ずれを検知することを特徴とする2次元光走査装置。
The two-dimensional optical scanning device according to claim 6 ,
The light receiving means is divided into a first group and a second group along the scanning direction with the low frequency, and the phase detection means has a light receiving time 1 of the light beam in the entire first group, and The light receiving time 2 of the light beam in the entire second group is acquired, and a phase shift of vibrations of the first and second optical scanning means is detected based on the comparison result 2 Dimensional optical scanning device.
請求項7に記載の2次元光走査装置において、
前記受光時間1または2は、それぞれ、前記第一のグループの受光手段全体で検知される前記光ビームの受光時間の合計1と、前記第二のグループの受光手段全体で検知される前記光ビームの受光時間の合計2であり、前記位相検知手段は、前記周波数の低い走査方向について、一方の向きに走査している期間中の一部または全部の期間ごとに前記受光時間の合計1および2の差分値を取得し、その結果に基づいて前記第一及び第二の光走査手段の振動の位相ずれを検知することを特徴とする2次元光走査装置。
The two-dimensional optical scanning device according to claim 7,
The light reception time 1 or 2 is a total of one light reception time of the light beam detected by the whole light receiving means of the first group and the light beam detected by the whole light reception means of the second group, respectively. The phase detection means has a total of 1 and 2 of the light reception times for each part or all of the period of scanning in one direction in the scanning direction with the low frequency. The two-dimensional optical scanning device is characterized in that the phase difference of the vibrations of the first and second optical scanning means is detected based on the result .
請求項8に記載の2次元光走査装置において、
前記位相検知手段によって検知された前記第一及び第二の光走査手段の振動の位相ずれを所定の範囲内に補正する位相補正手段を有し、
前記位相補正手段は、前記第一の走査と第二の走査の位相関係が一巡する1フレーム期間において取得された前記受光時間の合計1および2の差分値のうち、少なくとも一つが所定の範囲内に入るように前記第一及び第二の光走査手段の振動の位相ずれを補正することを特徴とする2次元光走査装置。
The two-dimensional optical scanning device according to claim 8,
Phase correction means for correcting the phase shift of vibration of the first and second optical scanning means detected by the phase detection means within a predetermined range;
The phase correction unit may be configured such that at least one of the difference values of the total 1 and 2 of the light receiving times acquired in one frame period in which the phase relationship between the first scan and the second scan makes a round is within a predetermined range. The two-dimensional optical scanning device is characterized by correcting a phase shift of vibrations of the first and second optical scanning means so as to enter .
請求項6〜9のいずれか1つに記載の2次元光走査装置において、
前記受光手段は、前記周波数の低い走査方向の走査範囲の中心を境に前記第一及び第二のグループに分けられ、互いに対称になるように配置されていることを特徴とする2次元光走査装置。
The two-dimensional optical scanning device according to any one of claims 6 to 9 ,
The light receiving means is divided into the first and second groups with the center of the scanning range in the scanning direction having a low frequency as a boundary, and is arranged so as to be symmetrical with each other. apparatus.
請求項〜10のいずれか1つに記載の2次元光走査装置において、
前記受光手段が、前記第一及び第二の光走査手段を有する装置筐体に設けられていることを特徴とする2次元光走査装置。
In the two-dimensional optical scanning device according to any one of claims 1 to 10,
A two-dimensional optical scanning device , wherein the light receiving means is provided in an apparatus housing having the first and second optical scanning means .
請求項1〜11のいずれか1つに記載の2次元光走査装置を含み、画像信号を入力し前記第一及び第二の光走査手段の動きに同期して前記光ビームを前記画像信号に基づき強度変調しつつスクリーン面を走査することにより所望の画像を表示する手段を備えたことを特徴とする光走査型画像表示装置。 12. The two-dimensional optical scanning device according to claim 1, wherein an image signal is input and the light beam is converted into the image signal in synchronization with movements of the first and second optical scanning units. An optical scanning type image display apparatus comprising means for displaying a desired image by scanning a screen surface while intensity-modulating based thereon .
JP2009279692A 2008-12-15 2009-12-09 Two-dimensional optical scanning device and optical scanning image display device Active JP5585064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009279692A JP5585064B2 (en) 2008-12-15 2009-12-09 Two-dimensional optical scanning device and optical scanning image display device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008318790 2008-12-15
JP2008318790 2008-12-15
JP2009279692A JP5585064B2 (en) 2008-12-15 2009-12-09 Two-dimensional optical scanning device and optical scanning image display device

Publications (2)

Publication Number Publication Date
JP2010164954A JP2010164954A (en) 2010-07-29
JP5585064B2 true JP5585064B2 (en) 2014-09-10

Family

ID=42581115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009279692A Active JP5585064B2 (en) 2008-12-15 2009-12-09 Two-dimensional optical scanning device and optical scanning image display device

Country Status (1)

Country Link
JP (1) JP5585064B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8248541B2 (en) * 2009-07-02 2012-08-21 Microvision, Inc. Phased locked resonant scanning display projection
JP5557913B2 (en) * 2010-07-22 2014-07-23 パイオニア株式会社 Image generation device
CN102117001A (en) * 2010-11-03 2011-07-06 徐英舜 Minisize array-type laser-scanning projection device
JP5640741B2 (en) * 2010-12-29 2014-12-17 株式会社リコー Two-dimensional optical scanning device and optical scanning image display device
JP5845394B2 (en) * 2011-05-17 2016-01-20 パナソニックIpマネジメント株式会社 Optical scanning device
JP2014059449A (en) * 2012-09-18 2014-04-03 Denso Corp Driving device
JP2014182226A (en) 2013-03-18 2014-09-29 Seiko Epson Corp Optical scanner, actuator, image display device, and head-mounted display
JP2014182225A (en) 2013-03-18 2014-09-29 Seiko Epson Corp Optical scanner, actuator, image display device, and head-mounted display
JP7061617B2 (en) * 2017-10-18 2022-04-28 株式会社日立産機システム Scanning type optical output device and its control method
JP6678705B2 (en) 2018-07-24 2020-04-08 三菱電機株式会社 Distance measuring device
JP2021144147A (en) * 2020-03-12 2021-09-24 国立大学法人福井大学 Projection device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4316274B2 (en) * 2003-03-31 2009-08-19 日本信号株式会社 Actuator drive controller
JP4952298B2 (en) * 2007-02-28 2012-06-13 株式会社デンソー Two-dimensional optical scanning device

Also Published As

Publication number Publication date
JP2010164954A (en) 2010-07-29

Similar Documents

Publication Publication Date Title
JP5585064B2 (en) Two-dimensional optical scanning device and optical scanning image display device
JP5397184B2 (en) Two-dimensional optical scanner drive device
JP6382297B2 (en) Method for calculating scanning trajectory of light and optical scanning device
JP2007310196A (en) Optical scanner and scanning type projector
JP6203109B2 (en) Optical scanning image forming apparatus and optical scanning image forming method
EP3012823A1 (en) Video projection apparatus capable of operating at optimum resonant frequency and its controlling method
US20080204839A1 (en) Optical scanning device, optical scanning display device, and optical scanning method
JP2012145755A (en) Image display device
JP2020515917A (en) Angular magnetic field sensor for scanners
EP4105709A1 (en) Optical scanning device, driving method of optical scanning device, and image drawing system
JP5640741B2 (en) Two-dimensional optical scanning device and optical scanning image display device
US10609297B2 (en) Optical scanning endoscope apparatus with light amount detector
US20180314059A1 (en) Optical scanning device
JP4245580B2 (en) Mirror control circuit and optical space transmission device
JP5152075B2 (en) Drive signal generator, optical scanning device including the same, and image display device
CN111381366B (en) Optical scanning device and control method thereof
WO2016116963A1 (en) Optical scanning method and optical scanning device
KR102178800B1 (en) Control device, image projection device, and control method
US20090079858A1 (en) Image display device
JP6812149B2 (en) Scanning microscope and control method of scanning microscope
JP2009258089A (en) Shape measuring apparatus
JP6171380B2 (en) Actuator drive system and video equipment
CN103116219A (en) Scanning projection device with detecting function and detection methods thereof
JP6354892B2 (en) Position detection device and video equipment
WO2019176583A1 (en) Light detection device, light detection method, and lidar device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140707

R151 Written notification of patent or utility model registration

Ref document number: 5585064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151