JP5582141B2 - Treatment agent, method for producing the same, and treatment method - Google Patents

Treatment agent, method for producing the same, and treatment method

Info

Publication number
JP5582141B2
JP5582141B2 JP2011514447A JP2011514447A JP5582141B2 JP 5582141 B2 JP5582141 B2 JP 5582141B2 JP 2011514447 A JP2011514447 A JP 2011514447A JP 2011514447 A JP2011514447 A JP 2011514447A JP 5582141 B2 JP5582141 B2 JP 5582141B2
Authority
JP
Japan
Prior art keywords
fluorine
water
particles
soil
hydrogen phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011514447A
Other languages
Japanese (ja)
Other versions
JPWO2010134573A1 (en
Inventor
隆晴 松岡
巖 前田
道宣 小泉
健治 乙井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2011514447A priority Critical patent/JP5582141B2/en
Publication of JPWO2010134573A1 publication Critical patent/JPWO2010134573A1/en
Application granted granted Critical
Publication of JP5582141B2 publication Critical patent/JP5582141B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • C09K17/06Calcium compounds, e.g. lime
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/02Extraction using liquids, e.g. washing, leaching, flotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • C02F5/14Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • C11D7/04Water-soluble compounds
    • C11D7/10Salts
    • C11D7/16Phosphates including polyphosphates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • C02F2101/14Fluorine or fluorine-containing compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • C11D2111/22Electronic devices, e.g. PCBs or semiconductors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Soil Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Removal Of Specific Substances (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Sludge (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

本発明は、処理剤及びその製造方法、並びに、処理方法に関する。 The present invention relates to a treatment agent, a production method thereof, and a treatment method.

フッ素はアルミニウムの電解精錬工程、リン酸肥料の製造工程、ステンレス鋼等のピクリング工程、シリコン等の電気部品の洗浄工程から排出される排水や、ごみ焼却場洗煙排水、石炭火力排煙脱硫排水等に含有されているが、既に排水基準が設定されており、その基準値をクリアするように除去処理が実施されている。 Fluorine is the wastewater discharged from the electrolytic refining process of aluminum, the manufacturing process of phosphate fertilizer, the pickling process of stainless steel, etc., the cleaning process of electrical parts such as silicon, the sewage sewage sewage, the coal-fired flue gas desulfurization effluent However, the drainage standard has already been set, and the removal process is carried out to clear the standard value.

現在、実用化されているフッ素の処理方法としては、カルシウム塩を添加して難溶性のフッ化カルシウム(CaF)を生成し沈殿分離する方法、アルミニウム塩を添加して水酸化アルミニウム(Al(OH))と共沈させ分離する方法、あるいはカルシウム塩による凝集沈殿方法とアルミニウム塩による凝集沈殿方法を組み合わせる方法が一般的である(例えば、非特許文献1参照。)。Currently, fluorine treatment methods that have been put into practical use include a method in which a calcium salt is added to form poorly soluble calcium fluoride (CaF 2 ) and precipitated and separated, and an aluminum salt is added in an aluminum hydroxide (Al ( A method of coprecipitation with OH) 3 ) and separation, or a method of combining a coagulation precipitation method using a calcium salt and a coagulation precipitation method using an aluminum salt are common (see, for example, Non-Patent Document 1).

一方、最近では、フッ素の排水基準や環境基準が厳しくなり、フッ素を含む排水を高度に処理する必要が生じてきたが、従来のカルシウム塩による凝集沈殿方法では、排水基準である8mg/L以下にすることは、非常に困難であった。 On the other hand, effluent standards and environmental standards for fluorine have become stricter recently, and it has become necessary to treat wastewater containing fluorine at a high level. However, in conventional coagulation and precipitation methods using calcium salts, the standard is 8 mg / L or less. It was very difficult to do.

また、水酸化アルミニウムによる共沈方法では、凝集剤として硫酸バンド(Al(SO16HO)を添加する技術が知られている(例えば、特許文献1参照。)。しかしながら、これらの従来技術では、添加する硫酸バンドと同量以上の共沈物からなる汚泥と処理水とを分離処理する必要があり、さらには、分離した汚泥をフッ素が溶出しないような処置をした上で地中へ埋め立てるなど、煩雑な処理プロセスが必要であった。In addition, in the coprecipitation method using aluminum hydroxide, a technique of adding a sulfate band (Al 2 (SO 4 ) 3 16H 2 O) as a flocculant is known (for example, see Patent Document 1). However, in these conventional techniques, it is necessary to separate and treat the sludge composed of coprecipitate equal to or more than the sulfuric acid band to be added and the treated sludge so that fluorine does not elute the separated sludge. In addition, complicated processing processes such as landfilling were necessary.

これらの従来技術を解決するため、排水基準をクリアできるフッ素処理剤として、最近では、難溶性リン酸塩を用いて、排水中のフッ素をフルオロアパタイトとして固定化して除去する方法が開示されている(例えば、特許文献2及び3参照。)。 In order to solve these conventional techniques, as a fluorination treatment agent that can satisfy the wastewater standard, recently, a method of fixing and removing fluorine in wastewater as fluoroapatite using a hardly soluble phosphate is disclosed. (For example, refer to Patent Documents 2 and 3.)

また、特許文献2によれば、リン酸塩類および/又はリン酸化合物の添加のみで、排水中のフッ素濃度を0.8mg/L以下にできるとされている。 According to Patent Document 2, it is said that the fluorine concentration in the waste water can be reduced to 0.8 mg / L or less only by adding phosphates and / or phosphoric acid compounds.

しかしながら、一般的にリン酸塩類および/又はリン酸化合物を用いて行う、フッ素を含む排水の処理方法は、リン酸塩類および/又はリン酸化合物とフッ素が、それらの化学組成から決定される比率で複合塩を形成することを特徴としており、最大で化学両論量のフッ素を除去することができるが、そのためには、実質的にリン酸塩類および/又はリン酸化合物を微細な粉末にして使用する必要がある。 However, the treatment method of waste water containing fluorine generally performed using phosphates and / or phosphate compounds is a ratio in which phosphates and / or phosphate compounds and fluorine are determined from their chemical composition. It is characterized by the formation of a complex salt with a maximum of the stoichiometric amount of fluorine. For this purpose, phosphates and / or phosphate compounds are used in a fine powder. There is a need to.

微細な粉末状のリン酸塩類および/又はリン酸化合物と、フッ素を含む排水を接触させるための処理プロセスとしては、分散方式の接触槽を用いる例が挙げられる(例えば、特許文献4及び5参照。)。 Examples of the treatment process for bringing the fine powdered phosphates and / or phosphate compound into contact with the wastewater containing fluorine include examples using a dispersion type contact tank (see, for example, Patent Documents 4 and 5). .)

また、より簡便な処理方法としては、上述の微細な粉末状のリン酸塩類および/又はリン酸化合物を密に充填した充填層に、フッ素を含む排水を流通させてフッ素を除去するプロセスが一般的である。 Further, as a simpler processing method, a process of removing fluorine by circulating fluorine-containing wastewater in a packed bed in which the fine powdered phosphates and / or phosphate compounds are densely packed is generally used. Is.

ところで、フッ素の溶出を抑制するための技術として、フッ素汚染土壌中のフッ素を不溶化する処理剤として、リン酸水素カルシウム二水和物の粉状粒子を水に懸濁処理して、その粒子表面を活性化したものが開示されている(例えば、特許文献6参照。)。また、含有フッ素の溶出を低減させる石膏の処理方法として、フッ素を含有する石膏を、該石膏中の硫酸カルシウム二水和物100質量部あたり1〜5質量部の割合となる量のリン酸水素カルシウム二水和物の存在下に、水中で所要期間養生した後、回収する方法が開示されている(例えば、特許文献7参照。)。 By the way, as a technique for suppressing the elution of fluorine, as a treatment agent for insolubilizing fluorine in fluorine-contaminated soil, powder particles of calcium hydrogen phosphate dihydrate are suspended in water, and the particle surface Has been disclosed (see, for example, Patent Document 6). Moreover, as a method for treating gypsum to reduce the elution of contained fluorine, hydrogen phosphate in an amount of 1 to 5 parts by mass per 100 parts by mass of calcium sulfate dihydrate in gypsum A method of recovering after curing in water for a required period in the presence of calcium dihydrate is disclosed (for example, see Patent Document 7).

特開2005−324137号公報JP 2005-324137 A 特許第3504248号公報Japanese Patent No. 3504248 特開2004−358309号公報JP 2004-358309 A 特開2004−122113号公報JP 2004-122113 A 特開2006−305555号公報JP 2006-305555 A 特開2007−216156号公報JP 2007-216156 A 特開2008−297172号公報JP 2008-297172 A

朝田裕之、恵藤良弘、「フッ素とホウ素の処理技術」、環境技術、2000年、vol.29、No.4、p.283−289Hiroyuki Asada and Yoshihiro Eto, “Fluorine and Boron Treatment Technology”, Environmental Technology, 2000, vol. 29, no. 4, p. 283-289

しかしながら、特許文献4及び5のように、接触槽で微細な粉末状のリン酸塩類および/又はリン酸化合物を分散させる方法は、リン酸塩類および/又はリン酸化合物とフッ素を反応させながら、それらの流出を抑制することを特徴としているが、リン酸塩類および/又はリン酸化合物に対し、フッ素を化学両論量比まで固定化するためには、できるだけリン酸塩類および/又はリン酸化合物を微粉化して使用する必要があり、そのような微粉は処理速度を低下させる場合があった。 However, as in Patent Documents 4 and 5, the method of dispersing fine powdered phosphates and / or phosphate compounds in the contact tank is performed while reacting phosphates and / or phosphate compounds with fluorine. Although they are characterized by suppressing their outflow, in order to fix fluorine to a stoichiometric ratio with respect to phosphates and / or phosphate compounds, phosphates and / or phosphate compounds are used as much as possible. It is necessary to use after pulverizing, and such a fine powder may reduce the processing speed.

また、上述したように、微細な粉末状のリン酸塩類および/又はリン酸化合物を密に充填した充填層に、フッ素を含む排水を流通させてフッ素を除去する方法は、充填するリン酸塩類および/又はリン酸化合物が微粉状であればあるほど、充填層の透水性が低下するだけでなく、圧力損失が大きいために、充填層を耐圧仕様にしなければならないという課題や、微細な粉末であるため、水に懸濁した状態となり、水と分離しにくいという課題があった。 In addition, as described above, a method of removing fluorine by flowing fluorine-containing wastewater through a packed bed in which fine powdered phosphates and / or phosphate compounds are densely packed is used to fill phosphates The finer the phosphoric acid compound and / or the lower the water permeability of the packed bed, the greater the pressure loss, so the problem that the packed bed must be pressure resistant, and fine powder Therefore, there is a problem that it is suspended in water and is difficult to separate from water.

逆に、充填するリン酸塩類および/又はリン酸化合物を粒状にし、その粒度を大きくして透水性を上げた充填層とすると、リン酸塩類および/又はリン酸化合物は、その粒子の表面でフッ素と反応するので、リン酸塩類および/又はリン酸化合物の単位重量当りのフッ素除去量が低下する課題があった。 On the contrary, when the phosphates and / or phosphate compounds to be packed are granulated and the particle size is increased to form a packed bed with increased water permeability, the phosphates and / or phosphate compounds are formed on the surface of the particles. Since it reacts with fluorine, there has been a problem that the amount of fluorine removed per unit weight of phosphates and / or phosphate compounds is reduced.

本発明は、上述のような従来の方法における課題を解決して、簡便、かつ効率よく排水中のフッ素を除去することができる処理剤及び処理方法を提供することを目的とする。 An object of the present invention is to solve the problems in the conventional methods as described above, and to provide a treatment agent and a treatment method that can easily and efficiently remove fluorine in waste water.

本発明は、リン酸水素カルシウム二水和物(A)と粒子(B)とを含み、リン酸水素カルシウム二水和物(A)が粒子(B)に担持されていることを特徴とする処理剤である。 The present invention includes calcium hydrogen phosphate dihydrate (A) and particles (B), wherein the calcium hydrogen phosphate dihydrate (A) is supported on the particles (B). It is a processing agent.

本発明はまた、上記処理剤を製造する方法であって、リン酸水素カルシウム二水和物(A)及び粒子(B)を、傾胴型重力式ミキサーを用いて混合する工程を含む処理剤の製造方法でもある。 The present invention is also a method for producing the above-mentioned treatment agent, which comprises the step of mixing the calcium hydrogen phosphate dihydrate (A) and the particles (B) using an inclined cylinder type gravity mixer. It is also a manufacturing method.

本発明は更に、上記処理剤とフッ素を含有する処理対象水とを接触させて、該処理対象水中のフッ素を除去する工程を含む処理方法でもある。 This invention is also a processing method including the process of making the said process agent and the process target water containing a fluorine contact, and removing the fluorine in this process target water.

本発明はそして、上記処理剤とフッ素を含有する土壌とを混合し、該土壌中のフッ素を不溶化する工程を含む処理方法でもある。
以下に本発明を詳述する。
The present invention is also a treatment method including a step of mixing the treatment agent with soil containing fluorine to insolubilize fluorine in the soil.
The present invention is described in detail below.

本発明は、リン酸水素カルシウム二水和物(A)と粒子(B)(但し、リン酸水素カルシウム二水和物(A)の粒子を除く)とを含む処理剤である。リン酸水素カルシウム二水和物(A)が粒子(B)に担持されていることによって、本発明の処理剤にフッ素を含む処理対象水を透水することで、長期にわたって粉末状のリン酸水素カルシウム二水和物(A)が実質的に流出せず、更に、長期にわたって透水性に優れ、かつ、長期にわたって処理水中のフッ素濃度を0.8mg/L以下にすることができる。ここで、担持とは、担体である粒子(B)がリン酸水素カルシウム二水和物(A)を担ぐように支持することをいう。 The present invention is a treatment agent containing calcium hydrogen phosphate dihydrate (A) and particles (B) (except for particles of calcium hydrogen phosphate dihydrate (A)). By carrying the calcium hydrogen phosphate dihydrate (A) on the particles (B) and allowing the treatment agent water of the present invention to permeate the water to be treated containing fluorine, powder hydrogen phosphate in the long term Calcium dihydrate (A) does not substantially flow out, and is excellent in water permeability over a long period of time, and the fluorine concentration in the treated water can be 0.8 mg / L or less over a long period of time. Here, the term “supporting” refers to supporting the particles (B) as a carrier to carry the calcium hydrogen phosphate dihydrate (A).

本発明の処理剤は、粉末状のリン酸水素カルシウム二水和物(A)と粒子(B)とを混合することにより得られ、リン酸水素カルシウム二水和物(A)が粒子(B)に担持されており、従って粒径が大きいのでダマ(凝集物)になりにくく、透水性に優れるものとなる。また、リン酸水素カルシウム二水和物(A)を粒子(B)に担持させることによって、飛散しにくい処理剤となり、取り扱い性に優れるものとなる。更に、リン酸水素カルシウム二水和物(A)自体の粒径は小さい状態(微粉状態)で保持されるため、フッ素除去量も充分なものとなる。 The treatment agent of the present invention is obtained by mixing powdered calcium hydrogen phosphate dihydrate (A) and particles (B), and the calcium hydrogen phosphate dihydrate (A) is converted into particles (B Therefore, since the particle size is large, it is difficult to form lumps (aggregates) and has excellent water permeability. Moreover, by carrying | supporting calcium hydrogenphosphate dihydrate (A) to particle | grains (B), it becomes a processing agent which is hard to disperse | distribute and becomes excellent in handleability. Furthermore, since the particle size of the calcium hydrogen phosphate dihydrate (A) itself is maintained in a small state (fine powder state), the amount of fluorine removal is sufficient.

本発明の処理剤は、リン酸水素カルシウム二水和物(A)を含むため、該処理剤に水等を接触させることで、水等の中のフッ素を除去することができる。また、フッ素汚染土壌と混合すると、該フッ素汚染土壌中のフッ素をフッ素アパタイトとして不溶化することができ、土壌からのフッ素の溶出を抑制することができる。リン酸水素カルシウム二水和物(A)は、フッ素汚染土壌中のフッ素をフッ素アパタイトとして不溶化することに対して、特に優れた効果を発揮する。例えば、リン酸カルシウム(Ca(PO)にもフッ素汚染土壌中のフッ素を不溶化する作用効果は認められるが、リン酸水素カルシウム二水和物(A)と比較すると劣るものである。Since the treatment agent of the present invention contains calcium hydrogen phosphate dihydrate (A), fluorine in water or the like can be removed by bringing water or the like into contact with the treatment agent. Moreover, when mixed with fluorine-contaminated soil, fluorine in the fluorine-contaminated soil can be insolubilized as fluorapatite, and elution of fluorine from the soil can be suppressed. Calcium hydrogen phosphate dihydrate (A) exhibits a particularly excellent effect on insolubilizing fluorine in fluorine-contaminated soil as fluorine apatite. For example, calcium phosphate (Ca 3 (PO 4 ) 2 ) has an effect of insolubilizing fluorine in fluorine-contaminated soil, but is inferior to calcium hydrogen phosphate dihydrate (A).

フッ素アパタイト自体は天然のリン鉱石の主成分であり、他に有機物質や重金属類等を使用しないこともあって、かかる本発明の処理剤によると、二次的な環境汚染を引き起こすことなく、簡単な作業で、経済的に、且つ確実にフッ素汚染土壌からのフッ素の溶出量を土壌環境基準の0.8mg/L以下に低減することができる。 Fluoroapatite itself is the main component of natural phosphate ore, and other organic substances or heavy metals may not be used, and according to the treatment agent of the present invention, without causing secondary environmental pollution, The amount of fluorine eluted from fluorine-contaminated soil can be reduced to 0.8 mg / L or less of the soil environment standard with simple operations economically and reliably.

上記処理剤は、粒子(B)100質量部に対して、リン酸水素カルシウム二水和物(A)が1〜100質量部であることが好ましい。上記範囲に設定することによって、リン酸水素カルシウム二水和物(A)が粒子(B)に効率よく担持され、より透水性、フッ素除去性に優れる処理剤となる。より好ましくは、粒子(B)100質量部に対して、リン酸水素カルシウム二水和物(A)5〜50質量部であり、更に好ましくは、7〜15質量部である。 It is preferable that the said processing agent is 1-100 mass parts of calcium hydrogenphosphate dihydrate (A) with respect to 100 mass parts of particle | grains (B). By setting to the said range, calcium hydrogenphosphate dihydrate (A) is efficiently carry | supported by particle | grain (B), and it becomes a processing agent which is more excellent in water permeability and fluorine removability. More preferably, it is 5-50 mass parts of calcium hydrogenphosphate dihydrate (A) with respect to 100 mass parts of particle | grains (B), More preferably, it is 7-15 mass parts.

上記リン酸水素カルシウム二水和物(A)は、粉末であることが好ましく、その平均粒子径が30〜70μmであることがより好ましい。上記範囲の平均粒子径であることによって、効率的にリン酸水素カルシウムが粒子(B)に担持されるとともに、フッ素除去性に優れる処理剤とすることができる。 The calcium hydrogen phosphate dihydrate (A) is preferably a powder, and more preferably has an average particle size of 30 to 70 μm. When the average particle diameter is in the above range, calcium hydrogen phosphate can be efficiently carried on the particles (B), and a treatment agent having excellent fluorine removability can be obtained.

上記リン酸水素カルシウム二水和物(A)の平均粒子径は、日機装株式会社製のマイクロトラック9320HRAを用いて、レーザー回折錯乱法により測定したものである。 The average particle diameter of the calcium hydrogen phosphate dihydrate (A) is measured by a laser diffraction confusion method using Microtrack 9320HRA manufactured by Nikkiso Co., Ltd.

上記リン酸水素カルシウム二水和物(A)は、粒子表面を活性化したものであることも好ましい形態の一つである。上記フッ素を不溶化する作用は、リン酸水素カルシウム二水和物(A)の粉状粒子を水に懸濁処理してその粒子表面を活性化するとより増大する。 The calcium hydrogen phosphate dihydrate (A) is one of the preferred forms in which the particle surface is activated. The effect | action which insolubilizes the said fluorine increases more when the powdery particle | grains of a calcium hydrogenphosphate dihydrate (A) are suspended in water, and the particle | grain surface is activated.

リン酸水素カルシウム二水和物(A)の粉状粒子を水に懸濁して撹拌又は振とうすることにより懸濁液から回収した粒子は、その表面に大きさが数十nm程度の多数の微細結晶を均一に析出した構造のものとなる。このような粒子はその表面が活性化されており、例えば、フッ素汚染土壌中のフッ素をより効率的に不溶化することができる。したがって、本発明の処理剤に用いるリン酸水素カルシウム二水和物(A)としては、リン酸水素カルシウム二水和物(A)の粉状粒子を水に懸濁処理してその粒子表面を活性化したものが好ましい。 The particles recovered from the suspension by suspending the powdered particles of calcium hydrogen phosphate dihydrate (A) in water and stirring or shaking the particles have a large number of tens of nanometers on the surface. The structure is such that fine crystals are uniformly deposited. The surface of such particles is activated, and for example, fluorine in fluorine-contaminated soil can be insolubilized more efficiently. Therefore, as the calcium hydrogen phosphate dihydrate (A) used in the treating agent of the present invention, the powder particles of calcium hydrogen phosphate dihydrate (A) are suspended in water and the particle surface is treated. Activated ones are preferred.

上記粒子(B)は、リン酸水素カルシウム二水和物(A)を担持可能な粒子である。リン酸水素カルシウム二水和物(A)が粒子(B)に担持されることによって、透水性、フッ素除去性に優れる処理剤とすることができる。 The particle (B) is a particle capable of supporting the calcium hydrogen phosphate dihydrate (A). By carrying the calcium hydrogen phosphate dihydrate (A) on the particles (B), a treatment agent having excellent water permeability and fluorine removability can be obtained.

上記粒子(B)としては、例えば、一般的に水の浄化に用いられる濾過砂、濾過砂利等が挙げられるが、本発明はこれらに限定されるものではない。粒子(B)として、砂を用いることも好ましい。 Examples of the particles (B) include filtration sand and filtration gravel generally used for water purification, but the present invention is not limited to these. It is also preferable to use sand as the particles (B).

上記粒子(B)は、実質的に、粒子径が0.3〜3.0mmの粒子であることが好ましく、実質的に粒子径が0.3〜3.0mmの粒子のみからなることがより好ましい。粒子(B)としては、粒子(B)全体の90質量%以上の粒子が0.3〜3.0mmの粒子径を有するものであることが好ましく、より好ましい比率は99質量%以上であり、更に好ましい比率は99.9質量%以上である。粒子(B)は、粒子径が0.3mm未満である粒子を含まず、粒子径が3.0mmを超える粒子を含まないことが特に好ましい。粒子径が上記範囲であることによって、リン酸水素カルシウム二水和物(A)が効率的に担持されるため、より透水性、含フッ素化合物の除去性に優れる処理剤とすることができる。粒子(B)は、実質的に、粒子径が2.8mmを超える粒子を含まないことが最も好ましい。 It is preferable that the particle (B) is substantially a particle having a particle size of 0.3 to 3.0 mm, and is substantially composed of only a particle having a particle size of 0.3 to 3.0 mm. preferable. As the particles (B), it is preferable that 90% by mass or more of the particles (B) have a particle diameter of 0.3 to 3.0 mm, and a more preferable ratio is 99% by mass or more. A more desirable ratio is 99.9% by mass or more. It is particularly preferable that the particles (B) do not contain particles having a particle diameter of less than 0.3 mm and do not contain particles having a particle diameter of more than 3.0 mm. When the particle diameter is in the above range, the calcium hydrogen phosphate dihydrate (A) is efficiently supported, so that the treatment agent can be made more excellent in water permeability and fluorine-containing compound removability. Most preferably, the particles (B) do not substantially contain particles having a particle diameter exceeding 2.8 mm.

上記粒子(B)の粒子径は、標準網ふるい器(JIS Z8801、呼び寸法:0.3〜3.0mm、ふるい器の大きさ:φ200、深さ45mm)を用いて手動でふるい分け試験を行い求める。粒子径が2.8mmを超える粒子を含まないようにする場合には、呼び寸法2.8mmのふるい器を用いる。 The particle size of the particles (B) was manually screened using a standard mesh sieve (JIS Z8801, nominal size: 0.3 to 3.0 mm, sieve size: φ200, depth 45 mm). Ask. In order not to include particles having a particle diameter exceeding 2.8 mm, a sieve having a nominal size of 2.8 mm is used.

上記粒子(B)は、均等係数が1.5以下であることが好ましい。均等係数が上記範囲であることによって、効率的にリン酸水素カルシウム二水和物(A)が担持され、より透水性に優れ、かつ上記含フッ素化合物の除去性に優れる処理剤とすることができる。
上記粒子(B)の均等係数は、JWWA A103−1:2004に沿って測定する。
The particles (B) preferably have a uniformity coefficient of 1.5 or less. When the uniformity coefficient is in the above range, the calcium hydrogen phosphate dihydrate (A) is efficiently supported, and it is possible to provide a treatment agent that is more excellent in water permeability and excellent in removability of the fluorine-containing compound. it can.
The uniformity coefficient of the particles (B) is measured according to JWWA A103-1: 2004.

本発明の処理剤は、本発明の目的を損なわない範囲で、所望によりリン酸水素カルシウム二水和物(A)及び粒子(B)以外の成分を含むものであってもよいが、リン酸水素カルシウム二水和物(A)及び粒子(B)が合計で99質量%以上を占めるものが好ましい。 The treatment agent of the present invention may optionally contain components other than calcium hydrogen phosphate dihydrate (A) and particles (B) as long as the object of the present invention is not impaired. It is preferable that the calcium hydrogen dihydrate (A) and the particles (B) occupy 99% by mass or more in total.

本発明の処理剤は、フッ素含有水用の処理剤であることが好ましく、フッ素含有土壌用の処理剤であることも好ましい。 The treatment agent of the present invention is preferably a treatment agent for fluorine-containing water, and is also preferably a treatment agent for fluorine-containing soil.

本発明は、上記処理剤を製造する方法であって、該製造方法は、リン酸水素カルシウム二水和物(A)及び粒子(B)を傾胴型重力式ミキサーを用いて混合する工程を含む処理剤の製造方法でもある。 This invention is a method of manufacturing the said processing agent, Comprising: This manufacturing method mixes the calcium hydrogenphosphate dihydrate (A) and particle | grains (B) using a tilting cylinder type gravity mixer. It is also a manufacturing method of the processing agent containing.

傾胴型重力式ミキサーは、リン酸水素カルシウム二水和物(A)及び粒子(B)を混合するための混合容器が傾胴機構に取り付けられたものであり、一般的に傾胴型重力式ミキサーと称されるものであればよい。傾胴機構とは、上記混合容器を傾斜させるための機構である。 The tilting cylinder type gravitational mixer is a type in which a mixing vessel for mixing calcium hydrogen phosphate dihydrate (A) and particles (B) is attached to a tilting cylinder mechanism. What is called a formula mixer may be used. The tilting cylinder mechanism is a mechanism for tilting the mixing container.

傾胴型重力式ミキサーの形態としては、例えば、截頭円錐形状の容器を合体させ、一端部を開口させると共に、他端部を閉塞させた混合容器を傾胴機構に取り付け、該混合容器の内周壁に混合するための羽根を取り付けたもの等が挙げられる。上記混合容器は、回転可能であることが好ましい。 As a form of the tilting cylinder type gravitational mixer, for example, a frustoconical container is united, a mixing container having one end opened and the other end closed is attached to a tilting mechanism, and the mixing container What attached the blade | wing for mixing to an inner peripheral wall etc. are mentioned. The mixing container is preferably rotatable.

上記リン酸水素カルシウム二水和物(A)及び粒子(B)を混合する場合、通常、傾胴機構を作動させてドラムの開口部を上方に向け、混合容器を一定方向に回転させながらリン酸水素カルシウム二水和物(A)及び粒子(B)を投入する。投入された各材料は羽根により持ち上げられては下方に落とされるという動作が繰り返されて混合される。
傾胴型重力式ミキサーは、投入された材料の挙動によって混合が促進されるため、リン酸水素カルシウム二水和物(A)が粒子(B)に担持された状態を良好に保持しながら混合することができる。そのため、上記処理剤の製造に特に優れた効果を発揮する。
When mixing the calcium hydrogen phosphate dihydrate (A) and the particles (B), usually, the tilting cylinder mechanism is actuated so that the opening of the drum faces upward, and the mixing container is rotated in a certain direction. Calcium oxyhydrogen dihydrate (A) and particles (B) are charged. The charged materials are mixed by repeating the operation of being lifted by the blades and dropped downward.
Tilting cylinder type gravitational mixers are mixed by the behavior of the input materials. Therefore, mixing is performed while maintaining the state that calcium hydrogen phosphate dihydrate (A) is supported on particles (B). can do. Therefore, an especially excellent effect is exhibited in the production of the treatment agent.

上記処理剤の製造方法としては、リン酸水素カルシウム二水和物(A)及び粒子(B)を傾胴型重力式ミキサーの混合容器中に入れ、必要に応じて水を添加し、混合することが好ましい。 As a manufacturing method of the said processing agent, calcium hydrogenphosphate dihydrate (A) and particle | grains (B) are put in the mixing container of a tilting-cylinder-type gravity mixer, and water is added and mixed as needed. It is preferable.

本発明は、上記処理剤とフッ素を含有する処理対象水とを接触させて、該処理対象水中のフッ素を除去する工程を含む処理方法(以下、「フッ素除去処理方法」ともいう。)でもある。 This invention is also a processing method (henceforth a "fluorine removal processing method") including the process which makes the said processing agent and the process target water containing fluorine contact, and removes the fluorine in this process target water. .

上記処理対象水と処理剤との接触は、処理対象水に処理剤を添加する回分式の接触であってもよいし、処理剤を充填したカラムに処理対象水を流通させる連続式の接触であってもよい。また、回分式の接触で複数回処理してもよいし、連続式の接触で複数回処理してもよいし、回分式の接触と連続式の接触を組み合わせた処理をしてもよい。なお、連続式の接触における充填カラムは、移動層式、固定層式、又は、流動層式のいずれであってもよい。 The contact between the treatment target water and the treatment agent may be a batch contact in which the treatment agent is added to the treatment target water, or a continuous contact in which the treatment target water is circulated through a column filled with the treatment agent. There may be. Moreover, it may be processed a plurality of times by batch contact, may be processed a plurality of times by continuous contact, or may be processed by combining batch contact and continuous contact. The packed column in the continuous contact may be a moving bed type, a fixed bed type, or a fluidized bed type.

本発明のフッ素除去処理方法は、フッ素濃度が0.8mg/L以下の処理水を回収する工程を含むものであってもよい。上記処理剤は透水性及び反応効率に優れるため、処理対象水に含有されているフッ素を効率よく除去し、水中のフッ素濃度を0.8mg/L以下にできる。また、上記処理剤は、リン酸水素カルシウム二水和物(A)が比較的粒径の大きい粒子(B)に担持されているため、処理対象水が懸濁することを抑制することができ、処理剤と処理水とを容易に分離することができる。 The fluorine removal treatment method of the present invention may include a step of collecting treated water having a fluorine concentration of 0.8 mg / L or less. Since the said processing agent is excellent in water permeability and reaction efficiency, the fluorine contained in process target water can be removed efficiently and the fluorine concentration in water can be 0.8 mg / L or less. Moreover, since the said processing agent is carrying | supporting the calcium hydrogenphosphate dihydrate (A) by the particle | grain (B) with a comparatively large particle diameter, it can suppress that processing target water is suspended. The treatment agent and the treated water can be easily separated.

処理対象水のフッ素含有量は特に限定されず、含有量が少なくても、また、多くても優れたフッ素除去能を発揮することができるが、例えば、0.1mg/L以上であることが好ましい。本発明の効果をより発揮する観点からは、0.8mg/Lを超えるものであることがより好ましい。 The fluorine content of the water to be treated is not particularly limited, and even if the content is small or at most, excellent fluorine removal ability can be exhibited. For example, it can be 0.1 mg / L or more. preferable. From the viewpoint of further exerting the effects of the present invention, it is more preferable to exceed 0.8 mg / L.

本発明において、フッ素含有水中のフッ素イオン濃度は、JIS K0102に準拠した方法により測定することができる。 In the present invention, the fluorine ion concentration in the fluorine-containing water can be measured by a method based on JIS K0102.

上記処理剤と接触させる処理対象水としては、フッ素を含有する水(フッ素含有水)であれば特に限定されないが、工場排水、温泉水、河川の水等が挙げられる。工場排水としては、シリコンウェハ製造工場、半導体製造工場等から排出されるフッ素含有排水、金属工場から排出される酸洗排水、アルミニウム表面処理排水、フッ酸製造排水、肥料製造排水、ごみ焼却排水等が挙げられる。 The treatment target water to be contacted with the treatment agent is not particularly limited as long as it is fluorine-containing water (fluorine-containing water), and examples thereof include factory waste water, hot spring water, and river water. Factory wastewater includes fluorine-containing wastewater discharged from silicon wafer manufacturing plants, semiconductor manufacturing plants, etc., pickling wastewater discharged from metal plants, aluminum surface treatment wastewater, hydrofluoric acid manufacturing wastewater, fertilizer manufacturing wastewater, waste incineration wastewater, etc. Is mentioned.

上記処理対象水は、フッ素イオンの高い除去効率が得られる点で、pHが3以上であることが好ましい。従って、本発明のフッ素除去処理方法によって得られる処理水(以下、単に「処理水」ともいう。)もpHが3以上であることが好ましい。上記pHはいずれも4以上であることがより好ましい。上記処理対象水又は処理水のpHが3未満である場合、若しくは、各工程中にpHが3未満となる場合、水酸化ナトリウム、水酸化カルシウム等でpHを3以上に調整してもよい。 The treatment target water preferably has a pH of 3 or more in that high removal efficiency of fluorine ions can be obtained. Accordingly, it is preferable that the treated water obtained by the fluorine removing treatment method of the present invention (hereinafter also simply referred to as “treated water”) has a pH of 3 or more. The pH is more preferably 4 or more. When the pH of the water to be treated or the treated water is less than 3, or when the pH is less than 3 during each step, the pH may be adjusted to 3 or more with sodium hydroxide, calcium hydroxide or the like.

また、上記処理対象水及び処理水は、pHが11以下であることが好ましい。pHが11を超えると、リン酸水素カルシウム二水和物(A)とフッ素イオンとの反応が進行しにくくなるおそれがある。上記フッ素含有水又は処理水のpHが11を超える場合、若しくは、各工程中にpHが11を超える場合、塩酸等でpHを11以下に調整してもよい。 Moreover, it is preferable that pHs of the said process target water and treated water are 11 or less. When pH exceeds 11, there exists a possibility that reaction of calcium hydrogenphosphate dihydrate (A) and a fluorine ion may become difficult to advance. When the pH of the fluorine-containing water or treated water exceeds 11, or when the pH exceeds 11 during each step, the pH may be adjusted to 11 or less with hydrochloric acid or the like.

上記フッ素除去処理方法によれば、リン酸水素カルシウム二水和物(A)1gあたりのフッ素除去量を1mg−F/g以上、好ましくは10mg−F/g以上とすることができる。 According to the said fluorine removal processing method, the amount of fluorine removal per 1g of calcium hydrogenphosphate dihydrate (A) can be 1 mg-F / g or more, preferably 10 mg-F / g or more.

本発明のフッ素除去処理方法は、処理対象水にカルシウムイオンを添加してフッ化カルシウム(CaF)を生成させる工程、及び、生成したフッ化カルシウムを除去してフッ素イオン濃度が低減された処理対象水を回収する工程を含むものであってもよい。これらの工程は、処理剤とフッ素を含有する処理対象水とを接触させて、該処理対象水中のフッ素を除去する工程の前に行うことが好ましい。これらの工程は、比較的低コストであるカルシウム化合物を使用するため、特に処理対象水のフッ素イオン濃度が高い場合にコストを削減できる。上記カルシウムイオンは、消石灰(Ca(OH))、炭酸カルシウム(CaCO)、塩化カルシウム(CaCl)等のカルシウム化合物として添加されることが好ましい。The fluorine removal treatment method of the present invention includes a step of adding calcium ions to water to be treated to produce calcium fluoride (CaF 2 ), and a treatment in which the fluoride ion concentration is reduced by removing the produced calcium fluoride. A step of collecting the target water may be included. These steps are preferably performed before the step of bringing the treating agent into contact with the treatment target water containing fluorine and removing the fluorine in the treatment target water. Since these steps use a calcium compound that is relatively low in cost, the cost can be reduced particularly when the fluorine ion concentration of the water to be treated is high. The calcium ions are preferably added as calcium compounds such as slaked lime (Ca (OH) 2 ), calcium carbonate (CaCO 3 ), and calcium chloride (CaCl 2 ).

上記処理水は、フッ素が充分に除去されたものとなり、フッ素濃度が低く(例えば、0.8mg/L以下)、環境基準を満たすものとなる。 The treated water is one from which fluorine has been sufficiently removed, has a low fluorine concentration (for example, 0.8 mg / L or less), and satisfies environmental standards.

本発明は更に、上記処理剤とフッ素を含有する土壌とを混合し、該土壌中のフッ素を不溶化する処理方法(以下、「フッ素不溶化処理方法」ともいう。)でもある。上記処理剤とフッ素を含有する土壌とを混合する場合、リン酸水素カルシウム二水和物(A)は土壌中に存在する可溶性のフッ素イオンと反応して、Ca10(POで表されるフルオロアパタイトを形成して不溶化する。
リン酸水素カルシウム二水和物(A)単独でフッ素を含有する土壌と混合する場合、リン酸水素カルシウムがダマ(凝集物)になり、充分に分散させることができない。しかしながら、本発明の処理剤は、リン酸水素カルシウムが粒子(B)に担持されているため、分散性に優れ、効率よくフッ素含有土壌と混合することができる。
The present invention is also a treatment method (hereinafter also referred to as “fluorine insolubilization treatment method”) in which the treatment agent and soil containing fluorine are mixed to insolubilize fluorine in the soil. When mixing the soil containing the treatment agent and fluorine, calcium hydrogen phosphate dihydrate (A) reacts with the soluble fluoride ion present in the soil, Ca 10 (PO 4) 6 F 2 Is formed and insolubilized.
When calcium hydrogen phosphate dihydrate (A) alone is mixed with soil containing fluorine, calcium hydrogen phosphate becomes lumps (aggregates) and cannot be sufficiently dispersed. However, since the calcium hydrogen phosphate is carried on the particles (B), the treatment agent of the present invention is excellent in dispersibility and can be efficiently mixed with fluorine-containing soil.

上記フッ素不溶化処理方法は、例えば、リン酸水素カルシウム二水和物(A)及び粒子(B)を混合して上記処理剤を製造する工程と、上記処理剤をフッ素を含有する土壌に添加する工程と、添加された処理剤とフッ素を含有する土壌を混合する工程とを含むものであることが好ましい。 The fluorine insolubilization treatment method includes, for example, a step of producing the treatment agent by mixing calcium hydrogen phosphate dihydrate (A) and particles (B), and adding the treatment agent to fluorine-containing soil. It is preferable to include a process and a process of mixing the added treatment agent and soil containing fluorine.

リン酸水素カルシウム二水和物(A)及び粒子(B)を混合して上記処理剤を製造する方法は特に限定されず、例えば、上述の傾胴型重力式ミキサーを用いる方法等が挙げられる。 The method for producing the treatment agent by mixing calcium hydrogen phosphate dihydrate (A) and particles (B) is not particularly limited, and examples thereof include a method using the above-mentioned tilted barrel type gravity mixer. .

上記フッ素を含有する土壌のフッ素溶出量は、特に限定されないが、例えば、0.1mg/L以上、さらには0.8mg/L以上であってもよい。 The fluorine elution amount of the soil containing fluorine is not particularly limited, but may be, for example, 0.1 mg / L or more, and further 0.8 mg / L or more.

上記土壌としては、例えば、土又は汚泥であることが好ましい。 The soil is preferably soil or sludge, for example.

上記土としては、一般的に土と称されるものであれば、特に限定されず用いることができ、例えば、砂土、砂壌土、壌土、埴壌土、埴土等のいずれも使用することができる。さらに、水成岩粉砕物、軽石粉砕物及び火山灰土等を適宜混合して調整した土等も挙げられる。また、家庭園芸で用土として用いられる土等でもよい。 The soil is not particularly limited as long as it is generally referred to as soil. For example, sand, sand loam, loam, dredged soil, dredged soil, etc. can be used. . Furthermore, the soil etc. which mixed and adjusted the crushed water rock, the pulverized pumice, volcanic ash soil, etc. suitably are mentioned. Moreover, the soil etc. which are used as soil for home gardening may be used.

上記汚泥としては、例えば、下水処理場の処理過程や工場の廃液処理過程などで生じる、有機質の最終生成物が凝集して出来た固体を挙げることができ、これをスラッジともいう。また、好気性菌などの微生物群によって水処理を行ったときに生じる微生物の集塊である活性汚泥等も挙げられる。 Examples of the sludge include solids formed by agglomeration of organic final products, which are generated in a process of a sewage treatment plant or a waste liquid process of a factory, and are also referred to as sludge. Moreover, the activated sludge etc. which are the agglomeration of microorganisms produced when a water treatment is performed by microorganism groups, such as aerobic bacteria, are also mentioned.

本発明の処理剤は、上記構成よりなるものであるため、簡便に且つ経済的に、フッ素が充分に除去された処理水を得ることができるし、また、処理された土壌からのフッ素の溶出量を土壌環境基準の0.8mg/L以下にすることができる。 Since the treatment agent of the present invention has the above-described configuration, it is possible to easily and economically obtain treated water from which fluorine has been sufficiently removed, and elution of fluorine from the treated soil. The amount can be 0.8 mg / L or less of the soil environment standard.

図1は、実施例1における濾過装置を示す模式図である。FIG. 1 is a schematic diagram illustrating a filtration device according to the first embodiment. 図2は、比較例1における濾過装置を示す模式図である。FIG. 2 is a schematic diagram showing a filtration device in Comparative Example 1.

以下に、実施例を挙げて本発明を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.

(実施例1)
傾胴型重力式ミキサー(容量110L)に、急速濾過用砂(トーケミ製、「日本水道協会規格 JWWA A103−1:2004規格品、有効径:0.6mm、均等係数:1.5以下、最大径2.8mm以下、最小径0.3mm以上」)及びリン酸水素カルシウム二水和物の粉末(太平化学産業製、「平均粒径:54μm」(以下、DCPDという。))の合計100質量部当たり、急速濾過用砂を90質量部、DCPDを10質量部の割合で投入し、3分間混合を行った。
Example 1
Inclined torso type gravity mixer (capacity 110L), sand for rapid filtration (manufactured by Tokemi, “Japan Water Works Association Standard JWWA A103-1: 2004 standard product, effective diameter: 0.6 mm, uniformity coefficient: 1.5 or less, maximum Dia. 2.8 mm or less, minimum diameter 0.3 mm or more ") and calcium hydrogen phosphate dihydrate powder (manufactured by Taihei Chemical Industrial Co., Ltd.," average particle diameter: 54 μm "(hereinafter referred to as DCPD)) in total 100 masses 90 parts by mass of rapid filtration sand and 10 parts by mass of DCPD were added per part, and mixing was performed for 3 minutes.

図1は、実施例1に係る濾過装置を示す模式図である。図1に示す通り、ガラス製カラム筐体1(φ10cm)に、上記混合により得られた急速濾過用砂とDCPDとの混合物2及びガラスウール3を充填して濾過装置5とした。
次に、フッ素を含む処理対象水を流速50ml/minにて、濾過装置5の上部に接続した管6から注入し、装置下部に接続した管7より処理水を得た。フッ素を含む処理対象水4は、図1中に示すように、カラム筐体1中で混合物2に透水させることで処理が行われる。本実施例において、混合物2の透水性は、水面8の水位の変化で評価した。表1に処理対象水の流量、フッ素濃度及び水位、ならびに、処理水の流量とフッ素濃度を示す。なお、フッ素を含む処理対象水及び処理水中のフッ素濃度は、JIS K0102に準拠した方法により測定した。
FIG. 1 is a schematic diagram illustrating the filtration device according to the first embodiment. As shown in FIG. 1, a glass column housing 1 (φ10 cm) was filled with a mixture 2 of rapid filtration sand and DCPD obtained by the above mixing and glass wool 3 to obtain a filtration device 5.
Next, the water to be treated containing fluorine was injected at a flow rate of 50 ml / min from a pipe 6 connected to the upper part of the filtration device 5, and treated water was obtained from the pipe 7 connected to the lower part of the device. As shown in FIG. 1, the treatment target water 4 containing fluorine is treated by allowing the mixture 2 to permeate through the column housing 1. In this example, the water permeability of the mixture 2 was evaluated by the change in the water level of the water surface 8. Table 1 shows the flow rate, fluorine concentration and water level of the water to be treated, and the flow rate and fluorine concentration of the treated water. The treatment target water containing fluorine and the fluorine concentration in the treatment water were measured by a method based on JIS K0102.

Figure 0005582141
Figure 0005582141

透水開始から120日経っても、処理水のフッ素濃度は環境基準値以下に維持された。また、120日後でも水位は変化しなかった。すなわち、透水性は変化しなかった。 Even after 120 days from the start of water permeation, the fluorine concentration of the treated water was maintained below the environmental standard value. The water level did not change even after 120 days. That is, the water permeability did not change.

(実施例2)
傾胴型重力式ミキサー(容量110L)に、土木・建築用途として使用されているモルタル・コンクリート等用の一般的な砂(有効径:0.1〜5mm、最大径3.0mm超、5.0mm以下)及びDCPDの合計100質量部当たり、砂を90質量部、DCPDを10質量部の割合で投入し、3分間混合を行った。
(Example 2)
General sand for mortar, concrete, etc. used for civil engineering / architectural purposes (effective diameter: 0.1 to 5 mm, maximum diameter exceeding 3.0 mm, 5) 0 mm or less) and 100 parts by mass of DCPD, 90 parts by mass of sand and 10 parts by mass of DCPD were added and mixed for 3 minutes.

実施例1と同様にして、得られた混合物をガラス製カラム筐体に充填し、濾過装置を作成し、フッ素を含む処理対象水を濾過装置の上部から注入して、透水性を評価し、フッ素濃度を測定した。結果を表2に示す。 In the same manner as in Example 1, the obtained mixture was filled into a glass column housing, a filtration device was created, water to be treated containing fluorine was injected from the top of the filtration device, and water permeability was evaluated. The fluorine concentration was measured. The results are shown in Table 2.

Figure 0005582141
Figure 0005582141

実施例1及び実施例2の結果を対比すると、急速濾過用砂にDCPDを担持させたほうが一般的な砂にDCPDを担持させるよりも、透水性が優れる。これらの結果は、担体となる粒子(B)の粒子径が透水性の向上に重要であることを示す。また、急速濾過用砂が一般的な砂よりも多くの水分を含有することも注目される。しかし、本発明者らが行った実験では一般的な砂を純水に浸してからDCPDと混合すると一部のDCPDの凝集が観察された。 Comparing the results of Example 1 and Example 2, water permeability is better when DCPD is supported on sand for rapid filtration than when DCPD is supported on general sand. These results indicate that the particle size of the particles (B) serving as the carrier is important for improving water permeability. It is also noted that rapid filtration sand contains more moisture than common sand. However, in an experiment conducted by the present inventors, when a general sand was immersed in pure water and then mixed with DCPD, some DCPD aggregation was observed.

(比較例1)
急速濾過用砂とDCPDとの混合物の代わりに、DCPDを単独で用いたこと以外は、実施例1と同様の方法で実験を行った。図2に示すように、ガラス製カラム筐体1(φ10cm)に、DCPD9及びガラスウール3を充填して濾過装置5aとした。DCPDは、実施例1と同一である。
次に、フッ素を含む対象水を、流速50ml/minにて装置上部に接続した管6から注入したところ、注入後まもなくフッ素を含む処理対象水の水面8が上昇して装置上面まで達したため、処理水は得られなかった。表3に処理対象水の流量、フッ素濃度及び水位、ならびに、処理水の流量とフッ素濃度を示す。なお、処理水は得られなかったため、処理水のフッ素濃度は測定不可能であった。
(Comparative Example 1)
The experiment was performed in the same manner as in Example 1 except that DCPD was used alone instead of the mixture of rapid filtration sand and DCPD. As shown in FIG. 2, a glass column housing 1 (φ10 cm) was filled with DCPD 9 and glass wool 3 to obtain a filtration device 5a. DCPD is the same as that in the first embodiment.
Next, when the target water containing fluorine was injected from the pipe 6 connected to the upper part of the apparatus at a flow rate of 50 ml / min, the water level 8 of the processing target water containing fluorine rose and reached the upper surface of the apparatus shortly after the injection. No treated water was obtained. Table 3 shows the flow rate, fluorine concentration and water level of the water to be treated, and the flow rate and fluorine concentration of the treated water. In addition, since the treated water was not obtained, the fluorine concentration of the treated water was not measurable.

Figure 0005582141
Figure 0005582141

(比較例2)
傾胴型重力式ミキサー(容量110L)に、手芸・装飾用途として一般的に使用されている材質がガラスおよび樹脂であるビーズ(有効径:2〜4mm)及びDCPDの合計100質量部当たり、ビーズを90質量部、DCPDを10質量部の割合で投入し、3分間混合を行った。
(Comparative Example 2)
The bead is used for tilting barrel type gravity mixer (capacity 110L), beads (effective diameter: 2-4mm) and DCPD, which are generally used for handicrafts and decoration, and 100 parts by mass of DCPD. Were added at a ratio of 90 parts by mass and 10 parts by mass of DCPD, and mixed for 3 minutes.

実施例1と同様にして、得られた混合物をガラス製カラム筐体に充填し、濾過装置を作成し、フッ素を含む処理対象水を濾過装置の上部から注入したところ、ビーズが浮遊し始め、濾過装置上部の処理水が白濁した。実施例1と同様にして、透水性を評価し、フッ素濃度を測定した。結果を表4に示す。これらの結果は、DCPDがビーズに充分に担持されないことを示す。 In the same manner as in Example 1, the obtained mixture was filled in a glass column housing, a filtration device was created, and water to be treated containing fluorine was injected from the top of the filtration device, and the beads began to float, The treated water at the top of the filtration device became cloudy. In the same manner as in Example 1, water permeability was evaluated and the fluorine concentration was measured. The results are shown in Table 4. These results indicate that DCPD is not fully supported on the beads.

Figure 0005582141
Figure 0005582141

本発明の処理剤は、上記構成よりなるものであるため、電気めっき業、半導体製造業、電子管製造業、ガラス工業等のフッ素を含有する水や、フッ素を含有する土壌が生成される分野において好適に利用可能である。 Since the treatment agent of the present invention has the above-mentioned configuration, in the field where fluorine-containing water and fluorine-containing soil are generated, such as electroplating industry, semiconductor manufacturing industry, electron tube manufacturing industry, and glass industry. It can be suitably used.

1:ガラス製カラム筐体
2:急速濾過用砂とDCPDとの混合物
3:ガラスウール
4:フッ素を含む処理対象水
5、5a:濾過装置
6、7:管
8:水面
9:DCPD
1: Glass column housing 2: Mixture of sand for rapid filtration and DCPD 3: Glass wool 4: Water to be treated 5 containing fluorine 5a: Filtration device 6, 7: Tube 8: Water surface 9: DCPD

Claims (5)

リン酸水素カルシウム二水和物(A)と粒子(B)とを含み、リン酸水素カルシウム二水和物(A)が粒子(B)に担持されており、粒子(B)は濾過砂、濾過砂利、または砂であり、粒子(B)は、実質的に、粒子径が0.3〜3.0mmの粒子であり、均等係数が1.5以下であり、リン酸水素カルシウム二水和物(A)は、平均粒子径が30〜70μmであることを特徴とする処理剤。 Calcium hydrogen phosphate dihydrate (A) and particles (B), calcium hydrogen phosphate dihydrate (A) is supported on the particles (B), the particles (B) are filtered sand, is a filter gravel or sand, the particles (B) is substantially Ri Oh particle size of particles of 0.3 to 3.0 mm, and a uniformity coefficient of 1.5 or less, calcium hydrogen phosphate dihydrate hydrate (a), the process average particle size, characterized in 30~70μm der Rukoto agent. 請求項1記載の処理剤を製造する方法であって、
リン酸水素カルシウム二水和物(A)及び粒子(B)を、傾胴型重力式ミキサーを用いて混合する工程を含む
ことを特徴とする処理剤の製造方法。
A method of manufacturing a claim 1 Symbol placement of the treatment agent,
The manufacturing method of the processing agent characterized by including the process of mixing a calcium hydrogenphosphate dihydrate (A) and particle | grains (B) using a tilting cylinder type gravity mixer.
請求項1記載の処理剤とフッ素を含有する処理対象水とを接触させて、該処理対象水中のフッ素を除去する工程を含む
ことを特徴とする処理方法。
Contacting the water to be treated containing a treatment agent and fluorine of claim 1 Symbol mounting, processing method which comprises a step of removing fluorine of the water being treated.
請求項1記載の処理剤とフッ素を含有する土壌とを混合し、該土壌中のフッ素を不溶化する工程を含む
ことを特徴とする処理方法。
Processing method according to claim 1 Symbol mixing the soil containing the placing of treatment agent and fluorine, characterized in that it comprises a step of insolubilizing the fluorine in said soil.
前記土壌は、土又は汚泥である請求項記載の処理方法。 The processing method according to claim 4 , wherein the soil is soil or sludge.
JP2011514447A 2009-05-21 2010-05-20 Treatment agent, method for producing the same, and treatment method Active JP5582141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011514447A JP5582141B2 (en) 2009-05-21 2010-05-20 Treatment agent, method for producing the same, and treatment method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009122969 2009-05-21
JP2009122969 2009-05-21
JP2011514447A JP5582141B2 (en) 2009-05-21 2010-05-20 Treatment agent, method for producing the same, and treatment method
PCT/JP2010/058536 WO2010134573A1 (en) 2009-05-21 2010-05-20 Treatment agent and process for production thereof, and treatment method

Publications (2)

Publication Number Publication Date
JPWO2010134573A1 JPWO2010134573A1 (en) 2012-11-12
JP5582141B2 true JP5582141B2 (en) 2014-09-03

Family

ID=43126250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011514447A Active JP5582141B2 (en) 2009-05-21 2010-05-20 Treatment agent, method for producing the same, and treatment method

Country Status (6)

Country Link
JP (1) JP5582141B2 (en)
KR (1) KR101294490B1 (en)
CN (1) CN102428038B (en)
BR (1) BRPI1011067A2 (en)
MX (1) MX2011011570A (en)
WO (1) WO2010134573A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5915231B2 (en) * 2012-02-14 2016-05-11 ダイキン工業株式会社 Processing method and processing equipment
JP2013188740A (en) * 2012-02-14 2013-09-26 Daikin Industries Ltd Reactor, treatment equipment, and treatment method
WO2014017500A1 (en) * 2012-07-24 2014-01-30 ダイキン工業株式会社 Method for treating aqueous solution containing phosphoric acid ions
CN105692575B (en) * 2016-01-27 2018-02-09 贵州省冶金化工研究所 A kind of Application way of rock phosphate in powder
CN113262805B (en) * 2021-04-20 2023-09-29 煤炭科学技术研究院有限公司 Defluorination catalyst, preparation method thereof and defluorination method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52777A (en) * 1975-06-24 1977-01-06 Hokko Chem Ind Co Ltd Method and means for preparation of arrangement of granules
JPS58199091A (en) * 1982-05-14 1983-11-19 Hitachi Plant Eng & Constr Co Ltd Production of seed crystal material for crystallization treatment of phosphate in liquid
JPS59123591A (en) * 1982-12-28 1984-07-17 Kurita Water Ind Ltd Treatment of water containing phosphate
JPS59173192A (en) * 1983-03-18 1984-10-01 Matsushita Electric Ind Co Ltd Filter medium for water treatment and its production
JP2001232167A (en) * 2000-02-28 2001-08-28 Shimooka Kogyo:Kk Agitating and mixing device for powder and granular material
JP2004358309A (en) * 2003-06-03 2004-12-24 Ngk Insulators Ltd Method for treating fluorine in wastewater
JP2007216156A (en) * 2006-02-17 2007-08-30 Institute Of National Colleges Of Technology Japan Treatment agent and treatment method of fluorine-contaminated soil
JP2008297172A (en) * 2007-06-01 2008-12-11 Institute Of National Colleges Of Technology Japan Method of treating gypsum for reducing elution of contained fluorine, and gypsum reduced in elution of contained fluorine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU579647B2 (en) * 1985-02-21 1988-12-01 Asahi Kasei Kogyo Kabushiki Kaisha Process for adsorption treatment of dissolved fluorine
US6331256B1 (en) 1998-04-22 2001-12-18 Fujitsu Limited Treatment process for fluorine-containing water
CN1291916C (en) * 2005-06-03 2006-12-27 天津大学 Process for preparing fluorine reducing ion sieve of aquatic body

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52777A (en) * 1975-06-24 1977-01-06 Hokko Chem Ind Co Ltd Method and means for preparation of arrangement of granules
JPS58199091A (en) * 1982-05-14 1983-11-19 Hitachi Plant Eng & Constr Co Ltd Production of seed crystal material for crystallization treatment of phosphate in liquid
JPS59123591A (en) * 1982-12-28 1984-07-17 Kurita Water Ind Ltd Treatment of water containing phosphate
JPS59173192A (en) * 1983-03-18 1984-10-01 Matsushita Electric Ind Co Ltd Filter medium for water treatment and its production
JP2001232167A (en) * 2000-02-28 2001-08-28 Shimooka Kogyo:Kk Agitating and mixing device for powder and granular material
JP2004358309A (en) * 2003-06-03 2004-12-24 Ngk Insulators Ltd Method for treating fluorine in wastewater
JP2007216156A (en) * 2006-02-17 2007-08-30 Institute Of National Colleges Of Technology Japan Treatment agent and treatment method of fluorine-contaminated soil
JP2008297172A (en) * 2007-06-01 2008-12-11 Institute Of National Colleges Of Technology Japan Method of treating gypsum for reducing elution of contained fluorine, and gypsum reduced in elution of contained fluorine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010033588; 袋布昌幹, 丁子哲治: 'リン酸水素カルシウム二水和物(DCPD)と水溶液中低濃度フッ化物イオンとの反応' Journal of the Ceramic Society of Japan(日本セラミックス協会学術論文誌) Vol.113, No.1317, 20050501, P.363-367 *

Also Published As

Publication number Publication date
BRPI1011067A2 (en) 2016-03-15
MX2011011570A (en) 2011-11-18
WO2010134573A1 (en) 2010-11-25
KR101294490B1 (en) 2013-08-07
JPWO2010134573A1 (en) 2012-11-12
CN102428038B (en) 2015-12-02
CN102428038A (en) 2012-04-25
KR20120022996A (en) 2012-03-12

Similar Documents

Publication Publication Date Title
JP5582141B2 (en) Treatment agent, method for producing the same, and treatment method
GB2054547A (en) Removing dissolved heay metals from solution
JP4235688B2 (en) Purification method for contaminated soil
CN110040878A (en) A kind of fluoride waste deep treatment method
JP2010517754A (en) Methods for treating substances contaminated with heavy metals
JP4870423B2 (en) Heavy metal treatment material and heavy metal treatment method using the same
JP2009136812A (en) Recovering clarification method of incineration ash, soil or the like containing harmful substance
KR100839589B1 (en) Producting method of liquefied water treatment material for removal of suspend solid, nitrate, phosphate and stench
CN107500444B (en) Device for treating desulfurization wastewater by using modified fly ash and using method thereof
JP2006341226A (en) Method for removing phosphorus from water
JP2013188740A (en) Reactor, treatment equipment, and treatment method
JP5331080B2 (en) Sludge treatment method
JP2009183907A (en) Decontaminating material and decontamination facility
JP2009142783A (en) Method and material for modifying bottom mud in closed water area or tidal flat
JP2006263509A (en) Method for fixing substance easily eluted in water, and material obtained by it
JP5915231B2 (en) Processing method and processing equipment
JP6818286B1 (en) Method of insolubilizing fluorine and / or arsenic contained in mud and earth and sand
JP5502841B2 (en) Heavy metal treatment material and heavy metal treatment method using the same
JP5171705B2 (en) Treatment method for fluorine-containing wastewater
JP2004292806A (en) Soil renewing agent and method for renewal of soil
JP2012218971A (en) Fertilizer, and method for producing the same
JP3103473B2 (en) Water purification material and its production method
JP3047833B2 (en) Hexavalent chromium treatment method
Li et al. REMOVAL OF NH+ 4-N FROM AQUEOUS SOLUTION BY CERAMSITE COATED WITH Mg (OH) 2 COMBINED WITH AIR STRIPPING.
JP2006142148A (en) Fluorine and nitrate nitrogen-containing wastewater treatment method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140526

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140630

R151 Written notification of patent or utility model registration

Ref document number: 5582141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151