JP5581646B2 - Circulating fluidized bed cylindrical cylinder gasification method and apparatus - Google Patents

Circulating fluidized bed cylindrical cylinder gasification method and apparatus Download PDF

Info

Publication number
JP5581646B2
JP5581646B2 JP2009235892A JP2009235892A JP5581646B2 JP 5581646 B2 JP5581646 B2 JP 5581646B2 JP 2009235892 A JP2009235892 A JP 2009235892A JP 2009235892 A JP2009235892 A JP 2009235892A JP 5581646 B2 JP5581646 B2 JP 5581646B2
Authority
JP
Japan
Prior art keywords
fluidized bed
gasification
medium
furnace
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009235892A
Other languages
Japanese (ja)
Other versions
JP2011084589A (en
Inventor
健一郎 近藤
裕信 藤吉
榮 千々岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2009235892A priority Critical patent/JP5581646B2/en
Publication of JP2011084589A publication Critical patent/JP2011084589A/en
Application granted granted Critical
Publication of JP5581646B2 publication Critical patent/JP5581646B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Description

本発明は、循環流動層式円筒胴ガス化方法及び装置に関するものである。   The present invention relates to a circulating fluidized bed cylinder gasification method and apparatus.

従来より、燃料として、石炭、バイオマス、廃プラスチック、或いは各種の含水廃棄物等の原料を用い、ガス化ガスを生成する循環流動層式ガス化装置の開発が進められている。   2. Description of the Related Art Conventionally, development of a circulating fluidized bed gasifier that generates a gasification gas using raw materials such as coal, biomass, waste plastic, or various hydrated wastes as fuel has been promoted.

図5は従来の循環流動層式ガス化装置の一例を示すものであって、該循環流動層式ガス化装置は、前記原料が投入され且つガス化剤を兼ねる水蒸気等のガス化炉流動用ガスにより流動媒体(硅砂等)の流動層1を形成して前記原料のガス化を行いガス化ガスと可燃性固形分とを生成するガス化炉2と、該ガス化炉2で生成された可燃性固形分が流動媒体と共に抜出ループシール管3を介して導入され且つ空気又は酸素等の燃焼炉流動用ガスにより流動層4を形成して前記可燃性固形分の燃焼を行う燃焼炉5と、該燃焼炉5の燃焼排ガスを抜き出す排ガス配管6途中に設けられ且つ前記燃焼排ガスから流動媒体を分離し該分離した流動媒体を媒体流下管7を介して前記ガス化炉2に供給するサイクロン等の媒体分離装置8とを備えてなる構成を有している。   FIG. 5 shows an example of a conventional circulating fluidized bed type gasifier, and the circulating fluidized bed type gasifier is used for gasification furnace flow of steam or the like into which the raw material is charged and also serves as a gasifying agent. A gasification furnace 2 for generating a gasified gas and a combustible solid content by gasifying the raw material by forming a fluidized bed 1 of a fluid medium (such as cinnabar) with gas, and the gasification furnace 2 Combustion furnace 5 in which combustible solids are introduced together with a fluid medium through an extraction loop seal tube 3 and fluidized bed 4 is formed by combustion furnace gas such as air or oxygen to burn the combustible solids. And a cyclone provided in the exhaust gas pipe 6 for extracting the combustion exhaust gas from the combustion furnace 5 and separating the fluid medium from the combustion exhaust gas and supplying the separated fluid medium to the gasification furnace 2 via the medium flow pipe 7 And a medium separating device 8 such as It is.

尚、図5中、9は前記原料をガス化炉2に投入する原料投入管、10は前記ガス化炉2の底部に形成されたウインドボックス、11は該ウインドボックス10へ導入されるガス化炉流動用ガスをガス化炉2内部へ均一に吹き込んで流動層1を形成するための多数の散気ノズル11aを有する散気板、12は前記燃焼炉5の底部に形成されたウインドボックス、13は該ウインドボックス12へ導入される燃焼炉流動用ガスを燃焼炉5内部へ均一に吹き込んで流動層4を形成するための多数の散気ノズル13aを有する散気板である。   In FIG. 5, 9 is a raw material charging pipe for charging the raw material into the gasification furnace 2, 10 is a wind box formed at the bottom of the gasification furnace 2, and 11 is gasification introduced into the wind box 10. A diffuser plate having a large number of diffuser nozzles 11a for uniformly blowing the gas for furnace flow into the gasification furnace 2 to form the fluidized bed 1, 12 is a wind box formed at the bottom of the combustion furnace 5, Reference numeral 13 denotes a diffuser plate having a large number of diffuser nozzles 13a for forming the fluidized bed 4 by uniformly blowing the combustion furnace flowing gas introduced into the wind box 12 into the combustion furnace 5.

前述の如き循環流動層式ガス化装置においては、通常運転時、ガス化炉2において、ガス化剤を兼ねる水蒸気等のガス化炉流動用ガスによりウインドボックス10の散気板11上に流動層1が形成されており、ここに原料投入管9から石炭等の原料を投入すると、該原料はガス化され、ガス化ガスと可燃性固形分とが生成され、前記ガス化炉2で生成された可燃性固形分は流動媒体と共に抜出ループシール管3を介し抜き出されて、前記燃焼炉流動用ガスによりウインドボックス12の散気板13上に流動層4が形成されている燃焼炉5へ導入され、該可燃性固形分の燃焼が行われ、該燃焼炉5からの燃焼排ガスは、排ガス配管6を介して媒体分離装置8へ導入され、該媒体分離装置8において、前記燃焼排ガスから流動媒体が分離され、該分離された流動媒体は媒体流下管7を介して前記ガス化炉2に戻され、循環される。   In the circulating fluidized bed type gasifier as described above, during normal operation, in the gasifier 2, the fluidized bed is formed on the diffuser plate 11 of the wind box 10 by the gasifier flowing gas such as water vapor that also serves as a gasifying agent. 1 is formed, and when a raw material such as coal is input from the raw material input tube 9, the raw material is gasified to generate a gasified gas and a combustible solid, and is generated in the gasifier 2. The combustible solid content is extracted together with the fluid medium through the extraction loop seal tube 3, and the combustion furnace 5 in which the fluidized bed 4 is formed on the diffuser plate 13 of the wind box 12 by the combustion furnace flow gas. The combustible solid content is combusted, and the combustion exhaust gas from the combustion furnace 5 is introduced into the medium separation device 8 via the exhaust gas pipe 6. In the medium separation device 8, the combustion exhaust gas is discharged from the combustion exhaust gas. The fluid medium is separated and the Isolated fluidized medium is returned through a medium flow down tube 7 to the gasification furnace 2, it is circulated.

ここで、前記燃焼炉5で可燃性固形分の燃焼に伴い高温になった流動媒体が燃焼排ガスと共に排ガス配管6を通り前記媒体分離装置8で分離され、前記媒体流下管7を介してガス化炉2に供給されることにより、ガス化炉2の高温が保持されると共に、原料の熱分解によって生成したガスや、その残渣原料が水蒸気と反応することによって、水性ガス化反応[C+H2O=H2+CO]や水素転換反応[CO+H2O=H2+CO2]が起こり、H2やCO等の可燃性のガス化ガスが生成される。 Here, the fluidized medium that has become high in temperature due to the combustion of combustible solids in the combustion furnace 5 is separated together with the combustion exhaust gas through the exhaust gas pipe 6 by the medium separation device 8, and is gasified through the medium flow down pipe 7. By being supplied to the furnace 2, the high temperature of the gasification furnace 2 is maintained, and the gas generated by thermal decomposition of the raw material and the residual raw material react with water vapor, thereby causing a water gasification reaction [C + H 2 O = H 2 + CO] or hydrogen conversion reaction [CO + H 2 O = H 2 + CO 2 ] occurs, and a combustible gasification gas such as H 2 or CO is generated.

前記ガス化炉2で生成されたガス化ガスは、図示していないサイクロン等の媒体分離装置で煤塵等が分離除去された後、化学プラント或いはガスタービン等に供給される一方、前記媒体分離装置8で流動媒体が分離された燃焼排ガスは、排ガス処理設備へ送られる。   The gasification gas generated in the gasification furnace 2 is supplied to a chemical plant, a gas turbine or the like after the dust and the like are separated and removed by a medium separator such as a cyclone (not shown). The combustion exhaust gas from which the fluid medium is separated in 8 is sent to an exhaust gas treatment facility.

因みに、前記循環流動層式ガス化装置における通常運転中の熱量不足時、即ち前記ガス化炉2において原料のガス化のための充分な熱が得られないような場合には、前記ガス化炉2へ供給される原料と同じ石炭等の燃料が補助的に前記燃焼炉5へ投入されて燃焼が行われ、不足する熱を補うようになっている。又、前記循環流動層式ガス化装置における通常運転に到る前段階での循環予熱運転時には、前記ガス化炉2への原料の投入は行わずに、該ガス化炉2の底部から水蒸気の代わりに流動用の空気を供給した状態で、前記石炭等の燃料が予熱用として前記燃焼炉5へ投入されて燃焼が行われ、該燃焼炉5での燃料の燃焼に伴い高温になった流動媒体が燃焼排ガスと共に排ガス配管6を通り前記媒体分離装置8で分離され、前記媒体流下管7を介してガス化炉2に供給されることにより、循環流動層式ガス化装置の循環予熱が行われるようになっている。   Incidentally, when the heat quantity during normal operation in the circulating fluidized bed gasifier is insufficient, that is, when the gasifier 2 cannot obtain sufficient heat for gasification of the raw material, the gasifier A fuel such as coal that is the same as the raw material supplied to 2 is supplied to the combustion furnace 5 in an auxiliary manner and burned to make up for the insufficient heat. In addition, during the circulation preheating operation in the stage before reaching the normal operation in the circulating fluidized bed gasifier, the raw material is not charged into the gasification furnace 2, and water vapor is supplied from the bottom of the gasification furnace 2. Instead, with the flow air supplied, the fuel such as coal is charged into the combustion furnace 5 for preheating and combusted, and the flow becomes high as the fuel burns in the combustion furnace 5. The medium is separated together with the combustion exhaust gas by the medium separation device 8 through the exhaust gas pipe 6 and supplied to the gasification furnace 2 through the medium flow pipe 7, whereby circulation preheating of the circulating fluidized bed gasification device is performed. It has come to be.

尚、前述の如き循環流動層式ガス化装置と関連する一般的技術水準を示すものとしては、例えば、特許文献1がある。   For example, Patent Document 1 shows a general technical level related to the circulating fluidized bed type gasifier as described above.

特開2007−112873号公報JP 2007-112873 A

しかしながら、前述の如き従来の循環流動層式ガス化装置の場合、ガス化炉2は平板壁を組み合わせてなる直方体によって構成されているため、平板壁は強度的に弱いことから、該平板壁に補強を入れる必要があり、構造材料の使用量が多くなると共に、平板壁の端部の接続部(箱形の各コーナー部)には、熱応力が集中し易いという欠点を有していた。   However, in the case of the conventional circulating fluidized bed type gasifier as described above, since the gasification furnace 2 is constituted by a rectangular parallelepiped formed by combining flat plate walls, the flat plate wall is weak in strength. Reinforcement is required, and the amount of structural material used is increased, and there is a disadvantage that thermal stress tends to concentrate on the connection portion (each corner portion of the box shape) at the end of the flat plate wall.

又、前記平板壁を組み立ててなる直方体によって構成されているガス化炉2では、大型化するほど平板壁の表面積が大きくなり、補強部材の強度アップが必要になると共に、設置面積も広くする必要がある。又、前記平板壁は加圧運転には不向きである。   Further, in the gasification furnace 2 configured by the rectangular parallelepiped formed by assembling the flat plate wall, the surface area of the flat plate wall increases as the size increases, and the strength of the reinforcing member needs to be increased and the installation area needs to be widened. There is. Further, the flat plate wall is not suitable for pressure operation.

更に又、前記ガス化炉2を直方体構造とした場合、表面積が大きく耐火物の体積(重量)が大きくなり、工事施工費用が嵩む。   Furthermore, when the gasification furnace 2 has a rectangular parallelepiped structure, the surface area is large, the volume (weight) of the refractory is increased, and the construction cost is increased.

一方、前記流動媒体及び可燃性固形分をガス化炉2から抜き出す際のシール構造としての抜出ループシール管3はガス化炉2の外部に設置されているため、放熱を防止するための断熱材の施工が複雑で容易ではないという弱点があった。   On the other hand, since the extraction loop seal tube 3 as a seal structure when extracting the fluid medium and the combustible solid content from the gasification furnace 2 is installed outside the gasification furnace 2, heat insulation for preventing heat dissipation. There was a weak point that construction of the material was complicated and not easy.

本発明は、斯かる実情に鑑み、構造材料の使用量を少なくできると共に、熱応力を集中させにくくすることができ、最小限の設置面積で大型化にも対応し得、耐火物の体積(重量)を抑えて工事施工費用削減を図ることができ、又、表面積も小さくなるので放熱は少なく、更に流動媒体及び可燃性固形分をガス化炉から抜き出す際のシール構造をガス化炉内部に設置し得、放熱を防止するための断熱材の施工も簡略化し得る循環流動層式円筒胴ガス化方法及び装置を提供しようとするものである。   In view of such circumstances, the present invention can reduce the amount of structural material used, can make it difficult to concentrate thermal stress, and can cope with an increase in size with a minimum installation area. The construction cost can be reduced by reducing the weight), and the surface area is also reduced, so there is little heat dissipation, and the sealing structure for extracting the fluid medium and combustible solids from the gasifier is inside the gasifier. An object of the present invention is to provide a circulating fluidized bed cylinder body gasification method and apparatus that can be installed and can simplify the construction of a heat insulating material for preventing heat dissipation.

本発明は、竪型の円筒胴としたガス化炉でガス化炉流動用ガスにより流動媒体の流動層を形成して投入される原料のガス化を行いガス化ガスと可燃性固形分とを生成し、該ガス化炉で生成されたガス化ガスを取り出す一方、前記ガス化炉で生成された可燃性固形分を流動媒体と共に燃焼炉へ導入し且つ該燃焼炉で燃焼炉流動用ガスにより流動層を形成して前記可燃性固形分の燃焼を行いつつ該燃焼炉の燃焼排ガスから媒体分離装置で流動媒体を分離し該分離した流動媒体を前記ガス化炉に戻す循環流動層式円筒胴ガス化方法であって、
前記竪型の円筒胴としたガス化炉の内部に上下複数段のガス化反応流動層部を形成し、最上段に位置するガス化反応流動層部の中心部に対し、原料と前記媒体分離装置で分離された流動媒体とを導入し、該原料及び流動媒体が各ガス化反応流動層部を順次通過しつつ流下していくようにし、最下段に位置するガス化反応流動層部の中心部から前記流動媒体及び可燃性固形分を抜き出して燃焼炉へ導入することを特徴とする循環流動層式円筒胴ガス化方法にかかるものである。
The present invention is a gasification furnace having a vertical cylindrical body, which forms a fluidized bed of a fluidized medium with gas for gasification furnace flow, gasifies the raw material to be charged, and converts the gasification gas and the combustible solid content. The gasification gas generated in the gasification furnace is taken out, and the combustible solid content generated in the gasification furnace is introduced into the combustion furnace together with the fluidized medium, and the combustion furnace is supplied with the gas for the combustion furnace flow. A circulating fluidized bed type cylinder body that forms a fluidized bed to burn the combustible solids and separates the fluidized medium from the combustion exhaust gas of the combustion furnace with a medium separator and returns the separated fluidized medium to the gasification furnace A gasification method,
A gasification reaction fluidized bed portion having a plurality of upper and lower stages is formed in the gasification furnace having the vertical cylindrical body, and the raw material and the medium are separated from the central portion of the gasification reaction fluidized bed portion located at the uppermost stage. The fluidized medium separated by the apparatus is introduced so that the raw material and the fluidized medium flow down while sequentially passing through each gasification reaction fluidized bed part, and the center of the gasification reaction fluidized bed part located at the lowest stage The present invention relates to a circulating fluidized bed cylindrical cylinder gasification method, wherein the fluid medium and combustible solid content are extracted from a section and introduced into a combustion furnace.

又、本発明は、ガス化炉流動用ガスにより流動媒体の流動層を形成して投入される原料のガス化を行いガス化ガスと可燃性固形分とを生成する竪型の円筒胴としたガス化炉と、該ガス化炉で生成された可燃性固形分が流動媒体と共に導入され且つ燃焼炉流動用ガスにより流動層を形成して前記可燃性固形分の燃焼を行う燃焼炉と、該燃焼炉の燃焼排ガスから流動媒体を分離し該分離した流動媒体を前記ガス化炉に戻す媒体分離装置とを備えた循環流動層式円筒胴ガス化装置であって、
前記竪型の円筒胴としたガス化炉の内部に形成され且つ前記原料及び流動媒体が順次通過しつつ流下していくようにした上下複数段のガス化反応流動層部と、
該上下複数段のガス化反応流動層部のうち最上段に位置するガス化反応流動層部の中心部に対し前記媒体分離装置で分離された流動媒体を戻す媒体流下管と、
前記最上段に位置するガス化反応流動層部の媒体流下管の外周部に対し前記原料を投入する原料投入管と、
最下段に位置するガス化反応流動層部の中心部から流動媒体及び可燃性固形分を抜き出して前記燃焼炉へ導入する抜出管と
を備えたことを特徴とする循環流動層式円筒胴ガス化装置にかかるものである。
In addition, the present invention provides a vertical cylinder body that forms a fluidized bed of a fluidized medium with a gasification furnace fluidizing gas and gasifies a raw material that is input to generate a gasified gas and a combustible solid content. A combustion furnace in which combustible solids generated in the gasification furnace are introduced together with a fluidized medium and a fluidized bed is formed by a combustion furnace flow gas to burn the combustible solids; A circulating fluidized bed cylindrical cylinder gasifier comprising a medium separator for separating a fluid medium from combustion exhaust gas of a combustion furnace and returning the separated fluid medium to the gasification furnace,
A gasification reaction fluidized bed portion of a plurality of upper and lower stages formed inside the gasification furnace having the vertical cylindrical body and configured to flow down while the raw material and the fluidized medium sequentially pass through;
A medium flow pipe for returning the fluidized medium separated by the medium separator to the central part of the gasified reaction fluidized bed part located at the uppermost stage of the upper and lower stages of the gasification reaction fluidized bed part;
A raw material input pipe for supplying the raw material to the outer periphery of the medium flow pipe of the gasification reaction fluidized bed portion located at the uppermost stage;
A circulating fluidized bed type cylinder body gas comprising: a fluidizing medium and a combustible solid content extracted from a central portion of a gasification reaction fluidized bed portion located at the lowest stage, and an extraction pipe for introducing it into the combustion furnace. This is related to the converter.

上記手段によれば、以下のような作用が得られる。   According to the above means, the following operation can be obtained.

ガス化炉を竪型の円筒胴としたことにより、従来のように平板壁を組み合わせてなる直方体によってガス化炉を構成するのに比べ、補強部材の必要はなく円筒胴の胴板は薄板で良く、構造材料の使用量が少なくなると共に、円筒胴には箱形のようなコーナー部が存在しないことから、熱応力が集中しにくくなる。   By using a vertical gas cylinder as the gasification furnace, there is no need for reinforcing members compared to the conventional gasification furnace made up of a rectangular parallelepiped combined with flat plates, and the cylinder body plate is a thin plate. The amount of structural material used is reduced, and the cylindrical body does not have a box-like corner portion, so that thermal stress is less likely to concentrate.

又、前記竪型の円筒胴としたガス化炉は、大型化しても従来の直方体のガス化炉に比べ表面積が小さく抑えられ、補強部材が不要になると共に、前記竪型の円筒胴としたガス化炉の内部にガス化反応流動層部を上下複数段に形成することにより、設置面積は広くしなくて済み、又、表面積を小さくできるので、放熱も相対的に小さくなる。   In addition, the gasification furnace using the vertical cylinder body has a smaller surface area than the conventional rectangular gasification furnace even if the size is increased, and no reinforcing member is required. By forming the gasification reaction fluidized bed portion in the gasification furnace in a plurality of upper and lower stages, the installation area does not have to be increased, and the surface area can be reduced, so that the heat radiation is also relatively reduced.

更に又、前記竪型の円筒胴としたガス化炉は、従来のようにガス化炉を直方体構造とした場合に比べ、表面積が小さく耐火物の体積(重量)が抑えられ、工事施工費用を削減することが可能となる。   Furthermore, the gasification furnace having the above-mentioned cylindrical cylinder body has a small surface area and a reduced volume (weight) of the refractory compared to the conventional gasification furnace having a rectangular parallelepiped structure. It becomes possible to reduce.

本発明の循環流動層式円筒胴ガス化方法及び装置によれば、構造材料の使用量を少なくできると共に、熱応力を集中させにくくすることができ、最小限の設置面積で大型化にも対応し得、耐火物の体積(重量)を抑えて工事施工費用削減を図ることができ、又、表面積も小さくなるので放熱は少なく、更に流動媒体及び可燃性固形分をガス化炉から抜き出す際のシール構造をガス化炉内部に設置し得、放熱を防止するための断熱材の施工も簡略化し得るという優れた効果を奏し得る。   According to the circulating fluidized bed cylinder gasification method and apparatus of the present invention, it is possible to reduce the amount of structural material used, to make it difficult to concentrate thermal stress, and to support upsizing with a minimum installation area. In addition, the construction cost can be reduced by reducing the volume (weight) of the refractory, and the surface area is also reduced, so there is little heat dissipation, and when the fluid medium and combustible solids are extracted from the gasifier. The sealing structure can be installed inside the gasification furnace, and an excellent effect that the construction of a heat insulating material for preventing heat radiation can be simplified can be achieved.

本発明の実施例におけるガス化炉を示す概要構成図である。It is a schematic block diagram which shows the gasification furnace in the Example of this invention. 本発明の実施例におけるガス化炉の原料分配器を示す断面図である。It is sectional drawing which shows the raw material distributor of the gasification furnace in the Example of this invention. 図2のIII−III断面図である。It is III-III sectional drawing of FIG. 図2のIV−IV断面図である。It is IV-IV sectional drawing of FIG. 従来の循環流動層式ガス化装置の一例を示す全体概要構成図である。It is a whole schematic block diagram which shows an example of the conventional circulating fluidized-bed type gasifier.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1〜図4は本発明の実施例であって、図中、図5と同一の符号を付した部分は同一物を表わしており、基本的な構成は図5に示す従来のものと同様であるが、本実施例の特徴とするところは、図1〜図4に示す如く、ガス化炉2を竪型の円筒胴とし、その内部に上下複数段(図1の例では二段)のガス化反応流動層部14,15を形成し、最上段(上段)に位置するガス化反応流動層部14の中心部に対し、原料と媒体分離装置8で分離された流動媒体とを導入し、該原料及び流動媒体が各ガス化反応流動層部14,15を順次通過しつつ流下していくようにし、最下段(下段)に位置するガス化反応流動層部15の中心部から前記流動媒体及び可燃性固形分を抜き出して燃焼炉5へ導入するよう構成した点にある。   1 to 4 show an embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 5 denote the same components, and the basic configuration is the same as the conventional one shown in FIG. However, the feature of the present embodiment is that, as shown in FIGS. 1 to 4, the gasification furnace 2 is a vertical cylindrical body, and there are a plurality of upper and lower stages (two stages in the example of FIG. 1). The gasification reaction fluidized bed portions 14 and 15 are formed, and the raw material and the fluidized medium separated by the medium separator 8 are introduced into the central portion of the gasification reaction fluidized bed portion 14 located at the uppermost (upper) stage. Then, the raw material and the fluidized medium flow down while sequentially passing through the gasification reaction fluidized bed portions 14 and 15, and the above-mentioned gasification reaction fluidized bed portion 15 located at the lowermost (lower) stage is The fluid medium and the combustible solid content are extracted and introduced into the combustion furnace 5.

本実施例の場合、前記上段に位置するガス化反応流動層部14は、竪型の円筒胴としたガス化炉2内上部に、該ガス化炉2の内径より所要寸法だけ小径の円盤状に形成したウインドボックス10を配設し、該ウインドボックス10の上に外筒堰14aを立ち上げ、該外筒堰14aの内側に、流動媒体が底部の間隙から流通可能な外側内筒仕切14bと、流動媒体が上端縁から乗り越えるように流通可能な内側内筒仕切14cとを配設してなる構成を有しており、前記下段に位置するガス化反応流動層部15は、竪型の円筒胴としたガス化炉2内底部に、多数の散気ノズル11aを有する散気板11を設置することによりウインドボックス10を形成し、該ウインドボックス10の上に、前記内側内筒仕切14cと同様に流動媒体が上端縁から乗り越えるように流通可能な内筒仕切15cを配設してなる構成を有している。   In the case of the present embodiment, the gasification reaction fluidized bed portion 14 located in the upper stage is formed in a disk shape having a smaller diameter than the inner diameter of the gasification furnace 2 on the upper part in the gasification furnace 2 having a vertical cylindrical body. The outer box weir 14a is set up on the window box 10, and the outer inner cylinder partition 14b through which the fluid medium can flow from the gap at the bottom is provided inside the outer box weir 14a. And an inner inner cylinder partition 14c through which the fluid medium can flow so as to get over from the upper end edge, and the gasification reaction fluidized bed portion 15 located in the lower stage has a saddle type A wind box 10 is formed by installing a diffuser plate 11 having a large number of diffuser nozzles 11a at the bottom of the gasification furnace 2 having a cylindrical body, and the inner inner cylinder partition 14c is formed on the wind box 10. Like the fluid medium from the top edge It has to become a configuration arranging a negotiable inner cylinder partitioning 15c to exceed Ri.

又、前記上段に位置するガス化反応流動層部14の中心部には、前記媒体分離装置8で分離された流動媒体を戻す媒体流下管7を配設すると共に、該媒体流下管7の外周部に、上端開口部が擂鉢上に拡がる原料投入筒体16を同芯状に配設し、該原料投入筒体16と前記媒体流下管7との間に原料を原料投入管9から投入できるようにしてあり、前記下段に位置するガス化反応流動層部15の中心部には、流動媒体及び可燃性固形分を抜き出して燃焼炉5へ導入する抜出管17を配設すると共に、上端を閉塞した円筒シール部材18を、前記抜出管17の上方及び外周を覆うように配設してある。   In addition, a medium flow pipe 7 for returning the fluid medium separated by the medium separation device 8 is disposed at the center of the gasification reaction fluidized bed section 14 located in the upper stage, and the outer periphery of the medium flow pipe 7 The raw material charging cylinder 16 whose upper end opening extends over the mortar is concentrically disposed in the section, and the raw material can be charged from the raw material charging pipe 9 between the raw material charging cylinder 16 and the medium flow pipe 7. In the central portion of the gasification reaction fluidized bed portion 15 located in the lower stage, an extraction pipe 17 for extracting the fluid medium and combustible solid content and introducing it into the combustion furnace 5 is disposed, and the upper end A cylindrical seal member 18 is closed so as to cover the upper and outer circumferences of the extraction pipe 17.

更に又、前記原料投入管9には、前記上段に位置するガス化反応流動層部14の媒体流下管7の外周部における円周方向へ原料を均一に分配投入する原料分配器19を設けてある。   Furthermore, the raw material supply pipe 9 is provided with a raw material distributor 19 for uniformly distributing and supplying the raw material in the circumferential direction at the outer peripheral portion of the medium flow down pipe 7 of the gasification reaction fluidized bed portion 14 located in the upper stage. is there.

そして、前記原料分配器19は、図2〜図4に示す如く、上端が開放されて前記原料投入管9から原料が投入され且つ下端が閉塞された分配円筒体20の中心部に、中央分配部材21を配置し、該中央分配部材21が配置された分配円筒体20の内部に、その円周方向へ仕切板22によって複数(図3の例ではそれぞれ四個ずつで計八個)分割される導入室23a,23b,23c,23d及び排出室24a,24b,24c,24dを、前記分配円筒体20の円周方向へ互いに180°位相が異なるよう形成し、前記中央分配部材21に、前記導入室23a,23b,23c,23dの原料を180°位相の異なる側の排出室24a,24b,24c,24dへ導く連通孔21a,21b,21c,21dを穿設し、前記分配円筒体20の排出室24a,24b,24c,24d下端に、先端が前記上段に位置するガス化反応流動層部14の媒体流下管7の外周部上方周方向均等箇所における原料投入筒体16内に延びる複数本(図3及び図4の例では四本)の分配投入管25a,25b,25c,25dの基端を接続するよう構成してある。   2 to 4, the raw material distributor 19 is arranged at the central portion of the distribution cylinder 20 whose upper end is opened, raw material is introduced from the raw material introduction pipe 9 and whose lower end is closed. A member 21 is arranged and divided into a plurality of (four in the example of FIG. 3, a total of eight in the example of FIG. 3) in the circumferential direction of the distribution cylinder 20 in which the central distribution member 21 is arranged by the partition plate 22. The introduction chambers 23a, 23b, 23c, 23d and the discharge chambers 24a, 24b, 24c, 24d are formed so as to be 180 ° out of phase with each other in the circumferential direction of the distribution cylindrical body 20, and the central distribution member 21 Communication holes 21 a, 21 b, 21 c, 21 d for introducing the raw materials of the introduction chambers 23 a, 23 b, 23 c, 23 d to the discharge chambers 24 a, 24 b, 24 c, 24 d on the sides different in phase by 180 ° are drilled. Excretion A plurality of gas chambers 24a, 24b, 24c, 24d at the lower ends of the gasification reaction fluidized bed portion 14 whose upper end is located in the upper stage are extended into the raw material charging cylinder 16 at the same position in the circumferential direction above the outer periphery of the medium flow pipe 7. The base ends of the distribution input pipes 25a, 25b, 25c, and 25d (four in the examples of FIGS. 3 and 4) are connected.

次に、上記実施例の作用を説明する。   Next, the operation of the above embodiment will be described.

通常運転時、竪型の円筒胴としたガス化炉2の上段に位置するガス化反応流動層部14と下段に位置するガス化反応流動層部15においては、ガス化剤を兼ねる水蒸気等のガス化炉流動用ガスによりウインドボックス10の散気板11上に流動層1が形成されており、前記上段に位置するガス化反応流動層部14の中心部の媒体流下管7の外周部に同芯状に配設された原料投入筒体16内に原料投入管9から石炭等の原料を投入すると、該原料は、図1の矢印で示す如く、流通流動媒体と一緒に内側内筒仕切14c内底部から上昇し、該内側内筒仕切14cの上端縁を乗り越えた後、下降しつつ外側内筒仕切14bの底部の間隙から外周側へ向かい、外筒堰14aの上端縁からオーバーフローして下段に位置するガス化反応流動層部15の外周部に落下し、流動化を続けながら内周側へ移動し内筒仕切15cの上端縁を乗り越え、円筒シール部材18の底部の間隙からその内部へ入り込んで上昇し、この流通の間に、前記原料の水蒸気ガス化が進行し、ガス化ガスと可燃性固形分とが生成され、該ガス化ガスは、図示していないサイクロン等の媒体分離装置で煤塵等が分離除去された後、化学プラント或いはガスタービン等に供給される一方、前記可燃性固形分は流動媒体と共に抜出管17の上端から抜き出されて、燃焼炉5(図5参照)へ導入され、該可燃性固形分の燃焼が行われ、該燃焼炉5からの燃焼排ガスは、排ガス配管6(図5参照)を介して媒体分離装置8(図5参照)へ導入され、該媒体分離装置8において、前記燃焼排ガスから流動媒体が分離され、該分離された流動媒体は媒体流下管7を介して前記ガス化炉2の上段に位置するガス化反応流動層部14に戻され、循環される。   During normal operation, in the gasification reaction fluidized bed portion 14 located at the upper stage of the gasification furnace 2 having a vertical cylindrical body and the gasification reaction fluidized bed portion 15 located at the lower stage, steam or the like serving as a gasifying agent is used. The fluidized bed 1 is formed on the diffuser plate 11 of the wind box 10 by the gasification furnace flow gas, and is formed on the outer periphery of the medium flow down pipe 7 at the center of the gasification reaction fluidized bed portion 14 located in the upper stage. When a raw material such as coal is introduced from a raw material introduction pipe 9 into a raw material introduction cylinder 16 arranged concentrically, the raw material is divided into an inner inner cylinder partition together with a circulating fluid medium as shown by arrows in FIG. 14c rises from the inner bottom, climbs over the upper edge of the inner inner cylinder partition 14c, then descends from the gap at the bottom of the outer inner cylinder partition 14b toward the outer periphery, overflows from the upper edge of the outer cylinder weir 14a Outside the gasification reaction fluidized bed 15 located in the lower stage It falls to the part, moves to the inner peripheral side while continuing fluidization, climbs over the upper edge of the inner cylinder partition 15c, enters the inside through the gap at the bottom of the cylindrical seal member 18 and rises during this flow, Steam gasification of the raw material proceeds, gasified gas and combustible solids are generated, and the gasified gas is separated and removed by a medium separator such as a cyclone (not shown), and then the chemical plant Alternatively, while being supplied to a gas turbine or the like, the combustible solid content is extracted from the upper end of the extraction pipe 17 together with the fluid medium, and is introduced into the combustion furnace 5 (see FIG. 5) to combust the combustible solid content. The combustion exhaust gas from the combustion furnace 5 is introduced into the medium separation device 8 (see FIG. 5) through the exhaust gas pipe 6 (see FIG. 5), and flows from the combustion exhaust gas in the medium separation device 8. The media was separated and separated Dynamic medium is returned to the gasification reaction fluidized bed section 14 located in the upper part of the gasification furnace 2 through a medium flow-down pipe 7, it is circulated.

このように、前記ガス化炉2を竪型の円筒胴としたことにより、従来のように平板壁を組み合わせてなる直方体によってガス化炉2を構成するのに比べ、補強部材の必要はなく円筒胴の胴板は薄板で良く、構造材料の使用量が少なくなると共に、円筒胴には箱形のようなコーナー部が存在しないことから、熱応力が集中しにくくなる。   As described above, the gasification furnace 2 is a vertical cylindrical body, so that there is no need for a reinforcing member as compared with the conventional case where the gasification furnace 2 is constituted by a rectangular parallelepiped formed by combining flat plate walls. The body plate of the cylinder may be a thin plate, the amount of structural material used is reduced, and the cylindrical body does not have a box-like corner portion, so that thermal stress is difficult to concentrate.

又、前記竪型の円筒胴としたガス化炉2は、大型化しても従来の直方体のガス化炉2に比べ表面積が小さく抑えられ、補強部材が不要になると共に、前記竪型の円筒胴としたガス化炉2の内部にガス化反応流動層部14,15を上下複数段に形成することにより、設置面積は広くしなくて済み、又、表面積を小さくできるので、放熱も相対的に小さくなる。   Further, the gasification furnace 2 having the vertical cylindrical cylinder has a surface area smaller than that of the conventional rectangular gasification furnace 2 even if the size is increased, and no reinforcing member is required. By forming the gasification reaction fluidized bed portions 14 and 15 in a plurality of upper and lower stages inside the gasification furnace 2, the installation area does not have to be increased and the surface area can be reduced, so that heat radiation is relatively Get smaller.

更に又、前記竪型の円筒胴としたガス化炉2は、従来のようにガス化炉2を直方体構造とした場合に比べ、表面積が小さく耐火物の体積(重量)が抑えられ、工事施工費用を削減することが可能となる。   Furthermore, the gasification furnace 2 having the vertical cylindrical body has a small surface area and a reduced volume (weight) of the refractory compared to the conventional case where the gasification furnace 2 has a rectangular parallelepiped structure. Costs can be reduced.

一方、仮に、前記原料投入管9から単に原料を原料投入筒体16の円周方向一箇所に投入した場合、前記上段に位置するガス化反応流動層部14全体に原料が均一に行き渡らなくなる可能性があるが、前記原料投入管9には、前記上段に位置するガス化反応流動層部14の媒体流下管7の外周部における円周方向へ原料を均一に分配投入する原料分配器19を設けてあるため、原料は竪型の円筒胴としたガス化炉2のガス化反応流動層部14全体に均一に行き渡らせることが可能となる。   On the other hand, if the raw material is simply introduced from the raw material introduction pipe 9 into one place in the circumferential direction of the raw material introduction cylinder 16, the raw material may not be uniformly distributed over the entire gasification reaction fluidized bed portion 14 located in the upper stage. However, the raw material supply pipe 9 is provided with a raw material distributor 19 for uniformly distributing and supplying the raw material in the circumferential direction in the outer peripheral portion of the medium flow down pipe 7 of the gasification reaction fluidized bed portion 14 located in the upper stage. Therefore, the raw material can be uniformly distributed throughout the gasification reaction fluidized bed portion 14 of the gasification furnace 2 having a vertical cylindrical body.

因みに、図2〜図4に示す如く、前記原料投入管9から原料が、原料分配器19の分配円筒体20の円周方向に均一とならずに、例えば、その円周方向所要範囲に隣接する導入室23aと排出室24c並びに導入室23bと排出室24d(即ち、図3において分配円筒体20の半円弧状となる領域)に投入されたとしても、前記原料は、前記排出室24c(24d)に接続された分配投入管25c(25d)からそのまま前記上段に位置するガス化反応流動層部14の媒体流下管7の外周部上方における原料投入筒体16内に投入されると共に、前記導入室23a(23b)に連通孔21a(21b)を介して連通される180°位相の異なる側の排出室24a(24b)に接続された分配投入管25a(25b)から前記上段に位置するガス化反応流動層部14の媒体流下管7の外周部上方における原料投入筒体16内に投入されるため、原料が前記上段に位置するガス化反応流動層部14の媒体流下管7の外周部における円周方向へ偏って投入される心配はない。   Incidentally, as shown in FIGS. 2 to 4, the raw material from the raw material input pipe 9 is not uniform in the circumferential direction of the distribution cylindrical body 20 of the raw material distributor 19, for example, adjacent to the required range in the circumferential direction. Even if the material is introduced into the introduction chamber 23a and the discharge chamber 24c and the introduction chamber 23b and the discharge chamber 24d (that is, the semicircular arc region of the distribution cylindrical body 20 in FIG. 3), the raw material remains in the discharge chamber 24c ( 24d) is fed as it is into the raw material feed cylinder 16 above the outer periphery of the medium flow down pipe 7 of the gasification reaction fluidized bed portion 14 located in the upper stage from the distribution feed pipe 25c (25d), From the distribution input pipe 25a (25b) connected to the discharge chamber 24a (24b) on the side different in phase by 180 ° communicated with the introduction chamber 23a (23b) through the communication hole 21a (21b), Since the raw material is introduced into the raw material charging cylinder 16 above the outer peripheral portion of the medium flow down pipe 7 of the gasification reaction fluidized bed portion 14, the outer peripheral portion of the medium flow down tube 7 of the gasification reaction fluidized bed portion 14 located in the upper stage There is no worry of being thrown in the circumferential direction.

同様に、前記原料投入管9から原料が、原料分配器19の分配円筒体20の円周方向に均一とならずに、例えば、その円周方向所要範囲に隣接する導入室23dと排出室24a並びに導入室23b,23c(即ち、図3において分配円筒体20の半円弧状となる領域)に投入されたとしても、前記原料は、前記排出室24aに接続された分配投入管25aからそのまま前記上段に位置するガス化反応流動層部14の媒体流下管7の外周部上方における原料投入筒体16内に投入されると共に、前記導入室23d(23b,23c)に連通孔21d(21b,21c)を介して連通される180°位相の異なる側の排出室24d(24b,24c)に接続された分配投入管25d(25b,25c)から前記上段に位置するガス化反応流動層部14の媒体流下管7の外周部上方における原料投入筒体16内に投入されるため、原料が前記上段に位置するガス化反応流動層部14の媒体流下管7の外周部における円周方向へ偏って投入される心配はない。   Similarly, the raw material from the raw material input pipe 9 is not uniform in the circumferential direction of the distribution cylindrical body 20 of the raw material distributor 19, but, for example, the introduction chamber 23d and the discharge chamber 24a adjacent to the required range in the circumferential direction. In addition, even if the material is introduced into the introduction chambers 23b and 23c (that is, the semicircular arc-shaped region of the distribution cylinder 20 in FIG. 3), the raw material is directly supplied from the distribution input pipe 25a connected to the discharge chamber 24a. The gasification reaction fluidized bed 14 located in the upper stage is charged into the raw material charging cylinder 16 above the outer periphery of the medium flow pipe 7 and communicated with the introduction chamber 23d (23b, 23c) 21d (21b, 21c). The gasification reaction fluidized bed portion located in the upper stage from the distribution input pipe 25d (25b, 25c) connected to the discharge chambers 24d (24b, 24c) on the sides different in phase by 180 ° communicated via Since the raw material is introduced into the raw material charging cylinder 16 above the outer peripheral portion of the medium flow down pipe 7, the raw material extends in the circumferential direction at the outer peripheral portion of the medium flow down pipe 7 of the gasification reaction fluidized bed portion 14 located in the upper stage. There is no worry about being thrown in.

即ち、前記原料は原料投入管9から必ずしもその円周方向へ均等に落下するとは限らず、むしろ偏って落下すると思われるが、前記原料分配器19の導入室23a,23b,23c,23dと排出室24a,24b,24c,24dとを連通孔21a,21b,21c,21dによって連通してあるため、例えば、仮に、導入室23cに原料が多く落下し排出室24cに原料が少なく落下したとしても、これらの原料は連通孔21cを介して合流し分配投入管25cから排出され、同様のことがそれ以外の導入室及び排出室でも起こる形となるので、その結果、先端が前記上段に位置するガス化反応流動層部14の媒体流下管7の外周部上方周方向均等箇所における原料投入筒体16内に延びる分配投入管25a,25b,25c,25dからの排出量が平均化されることとなる。   In other words, the raw material does not necessarily fall evenly in the circumferential direction from the raw material input pipe 9, but rather seems to fall evenly. However, the introduction chambers 23a, 23b, 23c, 23d of the raw material distributor 19 and the discharge are discharged. Since the chambers 24a, 24b, 24c, and 24d communicate with each other through the communication holes 21a, 21b, 21c, and 21d, for example, even if a large amount of raw material falls into the introduction chamber 23c and a small amount of raw material falls into the discharge chamber 24c. These raw materials join through the communication hole 21c and are discharged from the distribution input pipe 25c, and the same thing occurs in the other introduction chambers and discharge chambers. As a result, the tip is located in the upper stage. The distribution input pipes 25a, 25b, 25c, 25d extending into the raw material input cylinder 16 at the same position in the upper peripheral direction of the outer periphery of the medium flow pipe 7 of the gasification reaction fluidized bed section 14 So that the amount of discharge is averaged.

尚、前記原料分配器19の中央分配部材21が配置された分配円筒体20の導入室及び排出室の分割個数は、図3の例に示すようにそれぞれ四個ずつで計八個に限らず、それぞれ三個ずつで計六個としたり、或いはそれぞれ五個ずつで計十個としたりすることも可能である。   The number of divisions of the introduction chamber and the discharge chamber of the distribution cylinder 20 in which the central distribution member 21 of the raw material distributor 19 is arranged is not limited to eight in total, as shown in the example of FIG. Each of the three can be six, or each of the five can be ten.

又、前記下段に位置するガス化反応流動層部15の中心部には、上端を閉塞した円筒シール部材18を、前記抜出管17の上方及び外周を覆うように配設してあるため、流動媒体及び可燃性固形分をガス化炉2から抜き出す際のシール構造として従来のように抜出ループシール管3(図5参照)をガス化炉2の外部に設置しなくて済み、外部への放熱を抑制可能になると共に、放熱を防止するための断熱材の施工が簡略化可能となる。   In addition, a cylindrical seal member 18 whose upper end is closed is disposed at the center of the gasification reaction fluidized bed portion 15 located at the lower stage so as to cover the upper and outer circumferences of the extraction pipe 17. As a conventional sealing structure for extracting the fluid medium and combustible solid content from the gasification furnace 2, the extraction loop seal pipe 3 (see FIG. 5) need not be installed outside the gasification furnace 2 as in the prior art. It is possible to suppress the heat dissipation of the heat and simplify the construction of the heat insulating material for preventing the heat dissipation.

こうして、構造材料の使用量を少なくできると共に、熱応力を集中させにくくすることができ、最小限の設置面積で大型化にも対応し得、耐火物の体積(重量)を抑えて工事施工費用削減を図ることができ、又、表面積も小さくなるので放熱は少なく、更に流動媒体及び可燃性固形分をガス化炉2から抜き出す際のシール構造をガス化炉2内部に設置し得、放熱を防止するための断熱材の施工も簡略化し得る。   In this way, the amount of structural material used can be reduced, heat stress can be made difficult to concentrate, and the size can be increased with the minimum installation area, and the construction cost can be reduced by reducing the volume (weight) of the refractory. Reduction can be achieved, and since the surface area is small, heat radiation is small. Furthermore, a sealing structure for extracting the fluid medium and combustible solid content from the gasification furnace 2 can be installed inside the gasification furnace 2 to dissipate heat. The construction of the heat insulating material for preventing can also be simplified.

尚、本発明の循環流動層式円筒胴ガス化方法及び装置は、上述の実施例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In addition, the circulating fluidized-bed cylindrical cylinder gasification method and apparatus of the present invention are not limited to the above-described embodiments, and various changes can be made without departing from the scope of the present invention. is there.

1 流動層
2 ガス化炉
4 流動層
5 燃焼炉
7 媒体流下管
8 媒体分離装置
9 原料投入管
14 ガス化反応流動層部
14a 外筒堰
14b 外側内筒仕切
14c 内側内筒仕切
15 ガス化反応流動層部
15c 内筒仕切
16 原料投入筒体
17 抜出管
18 円筒シール部材
19 原料分配器
20 分配円筒体
21 中央分配部材
21a 連通孔
21b 連通孔
21c 連通孔
21d 連通孔
22 仕切板
23a 導入室
23b 導入室
23c 導入室
23d 導入室
24a 排出室
24b 排出室
24c 排出室
24d 排出室
25a 分配投入管
25b 分配投入管
25c 分配投入管
25d 分配投入管
DESCRIPTION OF SYMBOLS 1 Fluidized bed 2 Gasification furnace 4 Fluidized bed 5 Combustion furnace 7 Medium flow down pipe 8 Medium separation apparatus 9 Raw material input pipe 14 Gasification reaction fluidized bed part 14a Outer cylinder weir 14b Outer inner cylinder partition 14c Inner inner cylinder partition 15 Gasification reaction Fluidized bed portion 15c Inner cylinder partition 16 Raw material input cylinder 17 Extraction pipe 18 Cylindrical seal member 19 Raw material distributor 20 Distribution cylinder 21 Central distribution member 21a Communication hole 21b Communication hole 21c Communication hole 21d Communication hole 22 Partition plate 23a Introduction chamber 23b introduction chamber 23c introduction chamber 23d introduction chamber 24a discharge chamber 24b discharge chamber 24c discharge chamber 24d discharge chamber 25a distribution input pipe 25b distribution input pipe 25c distribution input pipe 25d distribution input pipe

Claims (2)

竪型の円筒胴としたガス化炉でガス化炉流動用ガスにより流動媒体の流動層を形成して投入される原料のガス化を行いガス化ガスと可燃性固形分とを生成し、該ガス化炉で生成されたガス化ガスを取り出す一方、前記ガス化炉で生成された可燃性固形分を流動媒体と共に燃焼炉へ導入し且つ該燃焼炉で燃焼炉流動用ガスにより流動層を形成して前記可燃性固形分の燃焼を行いつつ該燃焼炉の燃焼排ガスから媒体分離装置で流動媒体を分離し該分離した流動媒体を前記ガス化炉に戻す循環流動層式円筒胴ガス化方法であって、
前記竪型の円筒胴としたガス化炉の内部に上下複数段のガス化反応流動層部を形成し、最上段に位置するガス化反応流動層部の中心部に対し、原料と前記媒体分離装置で分離された流動媒体とを導入し、該原料及び流動媒体が各ガス化反応流動層部を順次通過しつつ流下していくようにし、最下段に位置するガス化反応流動層部の中心部から前記流動媒体及び可燃性固形分を抜き出して燃焼炉へ導入することを特徴とする循環流動層式円筒胴ガス化方法。
A gasification furnace having a vertical cylindrical body forms a fluidized bed of a fluidized medium by using a gasifying furnace fluidizing gas to gasify a raw material to be introduced to generate a gasified gas and a combustible solid. While the gasification gas generated in the gasification furnace is taken out, the combustible solid content generated in the gasification furnace is introduced into the combustion furnace together with the fluidized medium, and the fluidized bed is formed in the combustion furnace by the combustion furnace fluidizing gas. A circulating fluidized-bed cylindrical cylinder gasification method in which a fluidized medium is separated from a combustion exhaust gas of the combustion furnace by a medium separator while the combustible solid content is burned, and the separated fluidized medium is returned to the gasifier. There,
A gasification reaction fluidized bed portion having a plurality of upper and lower stages is formed in the gasification furnace having the vertical cylindrical body, and the raw material and the medium are separated from the central portion of the gasification reaction fluidized bed portion located at the uppermost stage. The fluidized medium separated by the apparatus is introduced so that the raw material and the fluidized medium flow down while sequentially passing through each gasification reaction fluidized bed part, and the center of the gasification reaction fluidized bed part located at the lowest stage A circulating fluidized bed cylindrical gasification method, wherein the fluid medium and combustible solid content are extracted from a section and introduced into a combustion furnace.
ガス化炉流動用ガスにより流動媒体の流動層を形成して投入される原料のガス化を行いガス化ガスと可燃性固形分とを生成する竪型の円筒胴としたガス化炉と、該ガス化炉で生成された可燃性固形分が流動媒体と共に導入され且つ燃焼炉流動用ガスにより流動層を形成して前記可燃性固形分の燃焼を行う燃焼炉と、該燃焼炉の燃焼排ガスから流動媒体を分離し該分離した流動媒体を前記ガス化炉に戻す媒体分離装置とを備えた循環流動層式円筒胴ガス化装置であって、
前記竪型の円筒胴としたガス化炉の内部に形成され且つ前記原料及び流動媒体が順次通過しつつ流下していくようにした上下複数段のガス化反応流動層部と、
該上下複数段のガス化反応流動層部のうち最上段に位置するガス化反応流動層部の中心部に対し前記媒体分離装置で分離された流動媒体を戻す媒体流下管と、
前記最上段に位置するガス化反応流動層部の媒体流下管の外周部に対し前記原料を投入する原料投入管と、
最下段に位置するガス化反応流動層部の中心部から流動媒体及び可燃性固形分を抜き出して前記燃焼炉へ導入する抜出管と
を備えたことを特徴とする循環流動層式円筒胴ガス化装置。
A gasification furnace having a vertical cylindrical body that forms a fluidized bed of a fluidized medium with a gasification furnace fluidizing gas and gasifies a raw material to be input to generate a gasification gas and a combustible solid content; A combustion furnace in which combustible solids produced in a gasification furnace are introduced together with a fluidized medium and a fluidized bed is formed by a combustion furnace fluidizing gas to burn the combustible solids, and from the combustion exhaust gas of the combustion furnace A circulating fluidized bed cylindrical cylinder gasifier comprising a medium separator for separating the fluid medium and returning the separated fluid medium to the gasification furnace,
A gasification reaction fluidized bed portion of a plurality of upper and lower stages formed inside the gasification furnace having the vertical cylindrical body and configured to flow down while the raw material and the fluidized medium sequentially pass through;
A medium flow pipe for returning the fluidized medium separated by the medium separator to the central part of the gasified reaction fluidized bed part located at the uppermost stage of the upper and lower stages of the gasification reaction fluidized bed part;
A raw material input pipe for supplying the raw material to the outer periphery of the medium flow pipe of the gasification reaction fluidized bed portion located at the uppermost stage;
A circulating fluidized bed type cylinder body gas comprising: a fluidizing medium and a combustible solid content extracted from a central portion of a gasification reaction fluidized bed portion located at the lowest stage, and an extraction pipe for introducing it into the combustion furnace. Device.
JP2009235892A 2009-10-13 2009-10-13 Circulating fluidized bed cylindrical cylinder gasification method and apparatus Expired - Fee Related JP5581646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009235892A JP5581646B2 (en) 2009-10-13 2009-10-13 Circulating fluidized bed cylindrical cylinder gasification method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009235892A JP5581646B2 (en) 2009-10-13 2009-10-13 Circulating fluidized bed cylindrical cylinder gasification method and apparatus

Publications (2)

Publication Number Publication Date
JP2011084589A JP2011084589A (en) 2011-04-28
JP5581646B2 true JP5581646B2 (en) 2014-09-03

Family

ID=44077787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009235892A Expired - Fee Related JP5581646B2 (en) 2009-10-13 2009-10-13 Circulating fluidized bed cylindrical cylinder gasification method and apparatus

Country Status (1)

Country Link
JP (1) JP5581646B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5811628B2 (en) * 2011-06-24 2015-11-11 株式会社Ihi Gasification gas generator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3345861B2 (en) * 1993-08-09 2002-11-18 石川島播磨重工業株式会社 Coal gasification power plant
JP4479906B2 (en) * 2005-02-03 2010-06-09 株式会社Ihi Fluidized bed gasification gas purification method and purification apparatus
JP5256662B2 (en) * 2007-08-09 2013-08-07 株式会社Ihi Fluidized bed gasification method and equipment

Also Published As

Publication number Publication date
JP2011084589A (en) 2011-04-28

Similar Documents

Publication Publication Date Title
US8197764B2 (en) Device for producing a product gas from a fuel, such as biomass
CN101622328A (en) Method for gasification in fluidized bed
JP2007112873A (en) Method and system for gasification of gasification fuel
JP5256802B2 (en) Gasification furnace structure of gasification equipment
JP5256662B2 (en) Fluidized bed gasification method and equipment
JP2014098126A (en) Circulation-type fluidized-bed gasification furnace
JP5614027B2 (en) Circulating fluidized bed gasification method and apparatus
US9428701B2 (en) Fluidized-bed gasification method and facility therefor
JP4998551B2 (en) Fluidized bed gasification facility
JP5581646B2 (en) Circulating fluidized bed cylindrical cylinder gasification method and apparatus
JP4930732B2 (en) Circulating fluidized bed gasification method and apparatus
JP2011042697A (en) Circulating fluidized bed type gasification method and apparatus
JP2006321945A (en) Gasification apparatus
JP4540405B2 (en) Gasifier with integrated dust collector
JP5509793B2 (en) Circulating fluidized bed gasifier
JP2008128519A (en) Silo-type heating furnace
JP5493481B2 (en) Circulating fluidized bed gasification method and apparatus
WO2021025116A1 (en) Gasification gas generation system
JP7399613B2 (en) Cooling wall, gasifier, gasification combined cycle power generation equipment, and cooling wall manufacturing method
KR20140058981A (en) Double fluidized bed reactor for indirect gasification
JP6160997B2 (en) Circulating fluidized bed gasifier
JP7134637B2 (en) Gasification furnace equipment, integrated gasification combined cycle equipment equipped with the same, method for manufacturing gasification furnace equipment, and method for discharging generated gas
JP2011042768A (en) Circulating fluidized bed type gasification method and apparatus
JP6259991B2 (en) Circulating fluidized bed gasifier
JP5286967B2 (en) Fluidized bed gasifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140630

LAPS Cancellation because of no payment of annual fees