JP5581001B2 - Method for forming glass taper tube for area flow meter - Google Patents

Method for forming glass taper tube for area flow meter Download PDF

Info

Publication number
JP5581001B2
JP5581001B2 JP2009101913A JP2009101913A JP5581001B2 JP 5581001 B2 JP5581001 B2 JP 5581001B2 JP 2009101913 A JP2009101913 A JP 2009101913A JP 2009101913 A JP2009101913 A JP 2009101913A JP 5581001 B2 JP5581001 B2 JP 5581001B2
Authority
JP
Japan
Prior art keywords
glass
tube
glass tube
metal core
taper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009101913A
Other languages
Japanese (ja)
Other versions
JP2010248048A (en
Inventor
晏夫 黒▲崎▼
洋 小柳
公俊 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE UNIVERSITY OF ELECTRO-COMUNICATINS
Tokyo Keiso Co Ltd
Campus Create Co Ltd
Original Assignee
THE UNIVERSITY OF ELECTRO-COMUNICATINS
Tokyo Keiso Co Ltd
Campus Create Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE UNIVERSITY OF ELECTRO-COMUNICATINS, Tokyo Keiso Co Ltd, Campus Create Co Ltd filed Critical THE UNIVERSITY OF ELECTRO-COMUNICATINS
Priority to JP2009101913A priority Critical patent/JP5581001B2/en
Publication of JP2010248048A publication Critical patent/JP2010248048A/en
Application granted granted Critical
Publication of JP5581001B2 publication Critical patent/JP5581001B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、面積流量計用ガラステーパ管の成形方法に関するものである。 The present invention relates to a method for forming a glass taper tube for an area flow meter.

面積流量計で使用する管体は、流体が流れる上方向に径が拡大するガラステーパ管が用いられている。一般に、ガラステーパ管を得るためには、特許文献1に開示されているように、直管のガラス管を加熱源のガスバーナで加熱し、軟化したガラス管に対し治具を用いて所定のテーパ形状にしている。 The tube used in the area flow meter is a glass taper tube whose diameter increases in the upward direction in which the fluid flows. In general, in order to obtain a glass taper tube, as disclosed in Patent Document 1, a straight tube glass tube is heated with a gas burner as a heating source, and a soft taper tube is subjected to a predetermined taper using a jig. It is in shape.

しかし、ガラス管を軟化させるには、専門の技能者がガスバーナの火炎をガラス管に吹き付けることが必要である。バーナの火炎は1500〜2000℃程度の高温となるので、成形時においては炎の当て方が難しく、炎の大きさや空気、酸素と可燃ガスとの混合比率、炎の角度などの適正化など豊富な経験が必要となる。   However, in order to soften the glass tube, it is necessary for a specialized technician to blow the flame of the gas burner onto the glass tube. The flame of the burner is as high as about 1500 to 2000 ° C, so it is difficult to apply the flame during molding. There are plenty of optimizations such as flame size, air, mixing ratio of oxygen and combustible gas, and flame angle. Experience is required.

従って、品質が技能者の技能に依存することとなり、成型品の品質や形状にばらつきが生ずることが避けられない。また、火炎による加熱のため、投入する熱量に損失が大きく、高熱作業となり作業環境は常に高温に晒されて劣悪であり、後継者の育成も困難となっている。特に、ガラステーパ管の製造は熟練者といえども難しいのが現状である。 Therefore, the quality depends on the skill of the technician, and it is inevitable that the quality and shape of the molded product vary. Moreover, because of the heating by the flame, there is a large loss in the amount of heat input, and the work environment is high and the work environment is always exposed to high temperatures, and it is difficult to train successors. In particular, it is difficult for a skilled person to manufacture a glass tapered tube.

特開2005−272250号公報JP 2005-272250 A 特開平8−26753号公報JP-A-8-26753

特許文献2には、バーナを用いずに電気炉により、ガラス管を加工することが開示されている。特許文献2はガラスセルの製造に関するものであり、ガラス管内に所定形状の中金を挿入し、加熱によりガラス管を軟化し、ガラス管を外側から中金に押圧して成型している。   Patent Document 2 discloses processing a glass tube by an electric furnace without using a burner. Patent Document 2 relates to the production of a glass cell, in which a metal core of a predetermined shape is inserted into a glass tube, the glass tube is softened by heating, and the glass tube is pressed against the metal core from the outside and molded.

しかし、一般のニクロム線ヒータ、ハロゲンヒータを使用する電気炉による加熱では、断熱構造を採用し温度制御も容易となるが、後述するようにヒータが発する輻射熱の大くはガラスを透過してしまうため、ガラス管加熱の熱効率が悪い。   However, heating by an electric furnace using a general nichrome wire heater or halogen heater adopts a heat insulation structure and facilitates temperature control. However, as will be described later, most of the radiant heat generated by the heater passes through the glass. For this reason, the thermal efficiency of the glass tube heating is poor.

更に、ガラス管を透過した輻射熱が、ガラス管よりも先に芯金を必要以上に加熱してしまうため、高温の芯金に接触したガラス表面の性状が品質に影響したり、芯金の寿命を短くしてしまうなどの問題もある。   Furthermore, the radiant heat that has passed through the glass tube heats the cored bar more than necessary before the glass tube, so the properties of the glass surface in contact with the high-temperature cored bar may affect the quality, There are also problems such as shortening.

本発明の目的は、上述の問題点を解消し、第1、第2の芯金を極度に加熱することなく、ガラステーパ管を好適に成形可能な面積流量計用ガラステーパ管の成形方法を提供することにある。 An object of the present invention is to provide a method for forming a glass taper tube for an area flow meter that can eliminate the above-mentioned problems and can suitably form a glass taper tube without extremely heating the first and second cores. It is to provide.

上記目的を達成するための本発明に係る面積流量計用ガラステーパ管の成形方法は、底部を封止したガラス管内に前記底部に前記ガラス管の内径に近似した円柱状の第1の芯金を挿入し、次いでその上に下端を細径としたテーパ状の第2の芯金を挿入し、前記ガラス管の波長透過特性において透過率が低い波長の輻射エネルギを多く発する電熱ヒータにより前記ガラス管を加熱し、前記ガラス管の軟化温度以上において前記ガラス管内を減圧して前記ガラス管を前記第1、第2の芯金に密着させ、冷却後に前記第1の芯金の周囲の前記ガラス管をリング状に切断して前記第1の芯金を抜き出し、前記ガラス管の上端から前記第2の芯金を抜き出し、両端部に円筒部を有するガラステーパ管を成形することを特徴とする。 In order to achieve the above object, a method for forming a glass taper tube for an area flow meter according to the present invention comprises a cylindrical first cored bar that approximates the inner diameter of the glass tube at the bottom in a glass tube sealed at the bottom. Is inserted, and then a second metal core having a tapered lower end is inserted on the glass tube, and the glass tube is heated by an electric heater that emits a large amount of radiation energy having a low transmittance in the wavelength transmission characteristics of the glass tube. heating the tube, wherein the first said glass tube and vacuum the glass tube at least the softening temperature of the glass tube, is adhered to the second metal core, the glass around the first metal core after cooling The tube is cut into a ring shape, the first core metal is extracted, the second core metal is extracted from the upper end of the glass tube, and a glass taper tube having cylindrical portions at both ends is formed. .

本発明に係る面積流量計用ガラステーパ管の成形方法によれば、円柱状の第1の芯金と、テーパ状の第2の芯金を封入した有底のガラス管を電熱ヒータの輻射熱で加熱して、軟化温度に上昇したところでガラステーパ管に成形するので、成形が確実になされ、ガラステーパ管の表面の仕上がりも良好となる。 According to the method for forming a glass taper tube for an area flow meter according to the present invention, a bottomed glass tube enclosing a cylindrical first metal core and a tapered second metal core is formed by radiant heat of an electric heater. heated, so that molded glass tapered tube was raised to the softening temperature, molding is performed reliably, surface finish of the glass tapered tube that Do good.

実施例のガラステーパ管成形装置の構成図である。It is a block diagram of the glass taper tube shaping | molding apparatus of an Example. 第2の芯金の拡大横断面図である。It is an expansion cross-sectional view of the 2nd metal core . ホウケイ酸ガラスの透過スペクトル特性図である。It is a transmission spectrum characteristic figure of borosilicate glass. ヒータの放射強度スペクトル特性図である。It is a radiation intensity spectrum characteristic view of a heater. 成形時の芯金、ガラス管等の時間に対する温度経過のグラフ図である。It is a graph figure of temperature progress with respect to time, such as a metal core at the time of shaping, a glass tube. ガラス管が芯金に密着した状態の縦断面図である。It is a longitudinal cross-sectional view of a state in which the glass tube is in close contact with the cored bar. 成形で得られたガラステーパ管の縦断面図である。It is a longitudinal cross-sectional view of the glass taper tube obtained by shaping | molding.

本発明を図示の実施例に基づいて詳細に説明する。
図1はガラス管をテーパ管に成形する成形装置の構成図を示し、加熱炉1の上部中心部には開口部1aが設けられている。加熱炉1内には、コイル状に巻回されたカーボンヒータ2が配置され、開口部1aから挿入された被加熱物であるガラス管は、カーボンヒータ2により囲まれるようになっている。カーボンヒータ2は例えば石英管中にカーボン繊維の撚線が挿通されており、不溶性ガスが充填され密閉されている。
The present invention will be described in detail based on the embodiments shown in the drawings.
FIG. 1 shows a configuration diagram of a molding apparatus for molding a glass tube into a tapered tube, and an opening 1 a is provided in the upper center portion of the heating furnace 1. A carbon heater 2 wound in a coil shape is disposed in the heating furnace 1, and a glass tube as a heated object inserted from the opening 1 a is surrounded by the carbon heater 2. In the carbon heater 2, for example, a stranded wire of carbon fiber is inserted into a quartz tube, and the carbon heater 2 is sealed with an insoluble gas.

加熱炉1の開口部1aは、種々の径のガラス管に対応するために大き目に造られており、例えば内径25mm程度とされ、またコイル状のカーボンヒータ2の内径は、遠隔的に輻射エネルギをガラス管3に加えるために、更に大きくされている。開口部1aから加熱炉1の内部に加工すべきガラス管3に芯金を挿入し、図示しないハンド手段により挿入され、所定の高さ位置に固定できるようになっている。 The opening 1a of the heating furnace 1 is made large in order to accommodate glass tubes of various diameters, and has an inner diameter of about 25 mm, for example, and the inner diameter of the coiled carbon heater 2 is remotely controlled by radiation energy. Is added to the glass tube 3 to make it larger. A cored bar is inserted into the glass tube 3 to be processed inside the heating furnace 1 from the opening 1a and inserted by hand means (not shown) so that it can be fixed at a predetermined height position.

カーボンヒータ2のカーボン繊維には、温度制御装置5の電源から通電できるようにされており、カーボンヒータ2の近傍に配置された放射温度計、熱電対温度計などの温度センサ6を用いて、加熱炉1内の温度制御が可能とされている。   The carbon fiber of the carbon heater 2 can be energized from the power source of the temperature control device 5, and using a temperature sensor 6 such as a radiation thermometer or a thermocouple thermometer arranged in the vicinity of the carbon heater 2, The temperature inside the heating furnace 1 can be controlled.

図1において、ホウケイ酸ガラスから成り、底部を封止したガラス管3の底部にガラス管3の内径に近似する第1の芯金7を挿入する。次いで、下端を細径としたテーパ状の耐熱鋼やSUSから成る第2の芯金4を挿入する。第1の芯金7は第2の芯金4と同材質であることが好ましい。 In FIG. 1, the 1st metal core 7 which consists of borosilicate glass and approximates the internal diameter of the glass tube 3 is inserted in the bottom part of the glass tube 3 which sealed the bottom part. Next, a second metal core 4 made of tapered heat-resistant steel or SUS having a small diameter at the lower end is inserted. The first metal core 7 is preferably made of the same material as the second metal core 4.

図2に示すように、第2の芯金4にはガラステーパ管の内壁に沿って、フロートを安定して上下動させるためのリブを形成するために複数条の切欠部4aが形成されている。なお、リブはガラステーパ管の上下方向の位置に拘らず同径の内接円である必要から、第2の芯金4の切欠部4aの深さは第2の芯金4のテーパが細くなる位置ほど浅くされている。 As shown in FIG. 2 , the second cored bar 4 is formed with a plurality of notches 4a along the inner wall of the glass taper tube to form ribs for stably moving the float up and down. Yes. Incidentally, the ribs from necessarily inscribed circle of the same diameter regardless of the vertical position of the glass tapered pipe, the depth of the notch 4a of the second core bar 4 is thin taper of the second core metal 4 The position is shallower.

このように、第1、第2の芯金7、4を内部にセットした有底のガラス管3を加熱炉1内にハンド手段により挿入して、ガラス管3の底部を加熱炉1内の固定部に載置するなどして位置決めし、カーボンヒータ2に通電してカーボンヒータ2の温度を上昇させる。 In this way, the bottomed glass tube 3 in which the first and second core bars 7 and 4 are set is inserted into the heating furnace 1 by hand means, and the bottom of the glass tube 3 is placed in the heating furnace 1. The carbon heater 2 is positioned by placing it on a fixed part and the like, and the temperature of the carbon heater 2 is increased by energizing the carbon heater 2.

図3は加工するガラス管3の材料であるホウケイ酸ガラス(商品名:パイレックス(登録商標))の波長に対する透過スペクトル特性図であり、3μm以上の波長においては、輻射エネルギはホウケイ酸ガラスに殆ど透過することなく吸収されて、ガラスの加熱に寄与される。 FIG. 3 is a transmission spectrum characteristic diagram with respect to the wavelength of borosilicate glass (trade name: Pyrex (registered trademark)) which is a material of the glass tube 3 to be processed . At a wavelength of 3 μm or more, radiation energy is almost equal to that of borosilicate glass. It is absorbed without passing through and contributes to the heating of the glass.

図4の実線はカーボンヒータ2が発する熱線の輻射エネルギの強度スペクトル特性図であり、カーボンヒータ2は波長5μm程度にピーク値を有しているために、多くはガラス管3に吸収される。 The solid line in FIG. 4 is an intensity spectrum characteristic diagram of the radiant energy of the heat rays emitted from the carbon heater 2. Since the carbon heater 2 has a peak value at a wavelength of about 5 μm, most of it is absorbed by the glass tube 3.

また、ハロゲンヒータは波長5μm以下の輻射エネルギが発するため、多くはガラス管3を透過し、ガラス管3を加熱することなく内部の芯金7、4を加熱してしまう。更に、ニクロム線ヒータはハロゲンヒータほどではないが、ホウケイ酸ガラスを透過する波長帯が大きく存在するので、この場合も投入エネルギの5割以上が芯金7、4の加熱に使われてしまう。 Further, since the halogen heater emits radiant energy having a wavelength of 5 μm or less, most of the halogen heater passes through the glass tube 3 and heats the inner metal bars 7 and 4 without heating the glass tube 3. Furthermore, although the nichrome wire heater is not as large as the halogen heater, there is a large wavelength band that passes through the borosilicate glass. In this case, more than 50% of the input energy is used for heating the core bars 7 and 4.

上述したように、ホウケイ酸ガラスの主たる吸収波長帯は3μm以上であり、放射強度ピークが5μm程度にあるカーボンヒータ2を用いると、カーボンヒータ2からの輻射熱による投入エネルギの7割以上がガラス管3により吸収されるため、芯金7、4も通過した波長帯により昇温されるが、ガラス管3はより効率良く短時間で加熱される。 As described above, when the carbon heater 2 having a main absorption wavelength band of borosilicate glass of 3 μm or more and a radiant intensity peak of about 5 μm is used, 70% or more of the input energy by the radiant heat from the carbon heater 2 is a glass tube. Since the core metal 7, 4 is also heated by the wavelength band that has passed, the glass tube 3 is more efficiently heated in a short time.

図5は成形時の芯金7、4、ガラス管3の時間(秒)に対する温度通過のグラフ図を示し、各部位に温度センサを取り付けて測温した例である。ガラス管3は芯金7、4とほぼ同程度で上昇し、ガラス管3は温度が850℃程度になると軟化点に至る。なお、このグラフ図は実験例であり、実際にはカーボンヒータ2はガラス管3ごとに常温から立ち上げる必要はないが、ガラス管3を常温から急激に昇温すると、ガラス管3にクラックが発生し易い。従って、ガラス管3は予備加熱を行うか、加熱炉1を数100℃程度に保持しておいて、ガラス管3を徐々に加熱することが好ましい。 FIG. 5 is a graph showing temperature passage with respect to time (seconds) of the core bars 7 and 4 and the glass tube 3 at the time of molding. The glass tube 3 rises at about the same level as the core bars 7 and 4, and the glass tube 3 reaches the softening point when the temperature reaches about 850 ° C. This graph is an experimental example. Actually, the carbon heater 2 does not need to be raised from room temperature for each glass tube 3, but when the glass tube 3 is rapidly heated from room temperature, the glass tube 3 is cracked. It is easy to generate . Therefore, it is preferable to preheat the glass tube 3 or to gradually heat the glass tube 3 while keeping the heating furnace 1 at about several hundred degrees Celsius.

加熱炉1において、ガラス管3が軟化点に達成したことを測温又は視覚により確認すると、ガラス管3の上部に連結した図示しない配管により、ガラス管3の内部の真空引きを始める。この真空引きによる減圧によってガラス管3内の空気は抜かれ、図6に示すように軟化したガラス管3は円形方向に縮小して、第1、第2の芯金7、4の周囲に密着し、ガラス管3は芯金7、4の形状通りの所定のテーパ状に成形される。 In the heating furnace 1, when it is confirmed by temperature measurement or visual observation that the glass tube 3 has reached the softening point, evacuation of the inside of the glass tube 3 is started by a pipe (not shown) connected to the upper part of the glass tube 3. As a result of the evacuation, the air in the glass tube 3 is removed, and the softened glass tube 3 shrinks in the circular direction as shown in FIG. 6 and is in close contact with the first and second core bars 7 and 4. The glass tube 3 is formed into a predetermined taper shape according to the shape of the core bars 7 and 4.

ガラス管3の加熱に際して、芯金7、4も或る程度の温度に加熱されることで、ガラス管3が芯金7、4に大きく熱を奪われることもなく、また芯金7、4から大きな熱を与えられることもなく、ガラス管3の成形上好ましい。また、芯金7、4の熱膨張による変形も所定範囲となり、精度の良い成形が可能となり、芯金7、4の寿命も延びることになる。 Upon heating of the glass tube 3, the core metal 7, 4 also be heated to a certain degree of temperature, without the glass tube 3 is deprived of large heat to the core metal 7, 4, also the core metal 7, 4 From the viewpoint of molding the glass tube 3, it is preferable that no great heat is applied. Further, the deformation due to the thermal expansion of the core bars 7 and 4 also falls within a predetermined range, enabling accurate molding, and extending the life of the core bars 7 and 4.

テーパ管に成形した後に、ハンド手段によりガラス管3、芯金7、4を加熱炉1から取り出し、自然冷却又はガス吹付による強制冷却後に、ガラス管3の下部の第1の芯金7の周囲を図6の点線で示すようにリング状に切断する。 After forming into a tapered tube, the glass tube 3 and the core bars 7 and 4 are taken out from the heating furnace 1 by hand means, and after the natural cooling or forced cooling by gas blowing, the periphery of the first core bar 7 below the glass tube 3 Is cut into a ring shape as shown by the dotted line in FIG.

これにより、ガラス管3の底部を取り外し、ガラス管3の上下両端から芯金7、4をそれぞれ引き抜くと、図7に示すようなガラステーパ管8が得られる。このガラステーパ管8の上端及び下端の円筒部8a、8bを用いて、面積流量計に組込むことになる。 Thereby, when the bottom part of the glass tube 3 is removed and the metal cores 7 and 4 are pulled out from the upper and lower ends of the glass tube 3, a glass taper tube 8 as shown in FIG. 7 is obtained. The glass taper tube 8 is incorporated into an area flow meter using the upper and lower cylindrical portions 8a and 8b.

なお、成形したテーパ管内の中心軸に沿って、流量測定のためのフロートが円滑に上下動するように、ガラステーパ管8内には、複数状のリブを上下方向に形成したのでフロートの外径がリブに接しながら、或いはフロートに設けた切込みにリブが係合しながら、フロートが円滑に上下動することができる。In addition, a plurality of ribs are formed in the glass taper tube 8 in the vertical direction so that the float for measuring the flow smoothly moves up and down along the central axis in the formed taper tube. The float can smoothly move up and down while the diameter is in contact with the rib or the rib is engaged with a notch provided in the float.

なお、実施例では加熱炉1に対しガラス管3を上下動してハンド手段により出し入れするようにしているが、固定のガラス管3、芯金7、4に対し、加熱炉1が上下動するようにしてもよい。 In the embodiment, the glass tube 3 is moved up and down with respect to the heating furnace 1 by hand means, but the heating furnace 1 moves up and down with respect to the fixed glass tube 3 and the core bars 7 and 4. You may do it.

1 加熱炉
2 カーボンヒータ
3 ガラス管
第2の芯金
5 温度制御装置
6 温度センサ
第1の芯金
8 ガラステーパ管
DESCRIPTION OF SYMBOLS 1 Heating furnace 2 Carbon heater 3 Glass tube 4 2nd metal core 5 Temperature control device 6 Temperature sensor 7 1st metal core 8 Glass taper tube

Claims (3)

底部を封止したガラス管内に前記底部に前記ガラス管の内径に近似した円柱状の第1の芯金を挿入し、次いでその上に下端を細径としたテーパ状の第2の芯金を挿入し、前記ガラス管の波長透過特性において透過率が低い波長の輻射エネルギを多く発する電熱ヒータにより前記ガラス管を加熱し、前記ガラス管の軟化温度以上において前記ガラス管内を減圧して前記ガラス管を前記第1、第2の芯金に密着させ、冷却後に前記第1の芯金の周囲の前記ガラス管をリング状に切断して前記第1の芯金を抜き出し、前記ガラス管の上端から前記第2の芯金を抜き出し、両端部に円筒部を有するガラステーパ管を成形することを特徴とする面積流量計用ガラステーパ管の成形方法 A cylindrical first metal core that approximates the inner diameter of the glass tube is inserted into the glass tube with the bottom sealed, and then a tapered second metal core having a small lower end is formed thereon. insert, the glass tube was heated by a number emits electric heater radiant energy of a low transmittance wavelength in the wavelength transmission characteristic of the glass tube, the glass tube and vacuum the glass tube at least the softening temperature of the glass tube In close contact with the first and second metal cores, and after cooling, the glass tube around the first metal core is cut into a ring shape to extract the first metal core, and from the upper end of the glass tube A method for forming a glass taper tube for an area flow meter, wherein the second metal core is extracted and a glass taper tube having a cylindrical part at both ends is formed . 前記第2の芯金の周囲に複数条の切欠部を形成し、成形されたガラステーパ管には上下位置に拘らず同径の内接円を有する複数条のリブを形成することを特徴とする請求項1に記載の面積流量計用ガラステーパ管の成形方法 A plurality of notches are formed around the second core bar, and a plurality of ribs having inscribed circles having the same diameter regardless of the vertical position are formed on the molded glass taper tube. A method for forming a glass taper tube for an area flow meter according to claim 1. 前記ガラス管はホウケイ酸ガラスから成り、前記ヒータはカーボンヒータとしたことを特徴とする請求項1又は2に記載の面積流量計用ガラステーパ管の成形方法The glass tube is made of borosilicate glass, the heater is forming method area flowmeter glass tapered tube according to claim 1 or 2, characterized in that a carbon heater.
JP2009101913A 2009-04-20 2009-04-20 Method for forming glass taper tube for area flow meter Active JP5581001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009101913A JP5581001B2 (en) 2009-04-20 2009-04-20 Method for forming glass taper tube for area flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009101913A JP5581001B2 (en) 2009-04-20 2009-04-20 Method for forming glass taper tube for area flow meter

Publications (2)

Publication Number Publication Date
JP2010248048A JP2010248048A (en) 2010-11-04
JP5581001B2 true JP5581001B2 (en) 2014-08-27

Family

ID=43310870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009101913A Active JP5581001B2 (en) 2009-04-20 2009-04-20 Method for forming glass taper tube for area flow meter

Country Status (1)

Country Link
JP (1) JP5581001B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115117717A (en) * 2022-05-18 2022-09-27 吉林省永利激光科技有限公司 Discharge tube and CO 2 Laser tube and preparation method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59196529A (en) * 1983-04-21 1984-11-07 Ushio Inc Manufacture of flash discharge lamp
US4750926A (en) * 1987-08-07 1988-06-14 Corning Glass Works Method of making precision shaped apertures in glass
JPH04187533A (en) * 1990-11-21 1992-07-06 Kyocera Corp Method for forming glass optical element
JPH088100Y2 (en) * 1990-12-24 1996-03-06 クラレプラスチックス株式会社 Core metal for pipe forming
JPH04247932A (en) * 1991-01-25 1992-09-03 Sekisui Chem Co Ltd Inner mold for molding frp pipe and method of molding frp pipe using the inner mold
JPH08217474A (en) * 1995-02-14 1996-08-27 Olympus Optical Co Ltd Method for molding glass tube having bottom
JPH0948624A (en) * 1995-08-01 1997-02-18 Olympus Optical Co Ltd Molding device of bottomed glass tube and its molding
JP3797573B2 (en) * 1997-03-25 2006-07-19 テイカ株式会社 Method for producing anatase type fine particle titanium oxide
JP2002274863A (en) * 2001-03-14 2002-09-25 Kinzo Ri Spherical capsule manufacturing method and spherical capsule
JP4916165B2 (en) * 2005-12-06 2012-04-11 ベックマン コールター, インコーポレイテッド Cylindrical container molding method, cylindrical container molding apparatus, and cylindrical container
JP2008280187A (en) * 2007-05-08 2008-11-20 Olympus Corp Method for producing glass cell

Also Published As

Publication number Publication date
JP2010248048A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
EP1364919B1 (en) Method for manufacturing a preform and optical fibre from the preform
CN106030358A (en) Photonic crystal fibre, in particular single-mode fibre for the ir wavelength range, and method for the production thereof
US11840472B2 (en) Elongation method and preform for producing an optical glass component
JP2016088821A (en) Sintering device and sintering method of porous glass preform for optical fiber
CN102875007A (en) Continuous melting furnace for producing quartz glass bar and manufacture technology
JP5581001B2 (en) Method for forming glass taper tube for area flow meter
JP2010168247A (en) Method and apparatus for producing optical fiber
US9108877B2 (en) Glass base material elongation method
US20050274149A1 (en) Hot formed articles and method and apparatus for hot-forming
US11384006B2 (en) Wire-drawing optical fiber base material manufacturing method and manufacturing apparatus
JP2009084070A (en) Manufacturing apparatus for glass round bar material, and manufacturing method of glass round bar material
CN203269782U (en) Thermal-insulation annealing device for improving optical fiber performance
CN104220830A (en) Heat treatment device
JP2020117431A (en) High-strength welding process for manufacturing heavy glass base material with large cross-sectional area
CN104496172A (en) Optical fiber heat treatment method and device
US6649261B2 (en) Rod-shaped preform for manufacturing an optical fiber therefrom, a method for manufacturing such a rod-shaped preform as well as a method for manufacturing an optical fiber, using such a rod-shaped preform
CN102775058B (en) High-precision resistance type heating furnace for medium-low-temperature optical fiber drawing tower
CN206556442U (en) A kind of thermal gradient furnace of heating element heater from spare to dense
ITVI20130252A1 (en) PROCEDURE FOR THE REALIZATION OF GLASS SHEETS AND GLASS SLAB
JP2004339014A (en) Method and apparatus for producing glass preform
EP1165451A1 (en) Method and apparatus for the thermal treatment of an object such as an optical fiber preform
JP2015202967A (en) Apparatus and method for producing optical fiber
CN102555196A (en) Device for manufacturing photonic crystal fiber grating by using hot pressing die method
JPH08231234A (en) Method of making glass tube with its inside to which glass spiral is attached
JP2019172480A (en) Method for manufacturing multi-core optical fiber

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140714

R150 Certificate of patent or registration of utility model

Ref document number: 5581001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250