JP5580613B2 - Production of asymmetric esters using polymer-supported gold cluster catalysts - Google Patents

Production of asymmetric esters using polymer-supported gold cluster catalysts Download PDF

Info

Publication number
JP5580613B2
JP5580613B2 JP2010024324A JP2010024324A JP5580613B2 JP 5580613 B2 JP5580613 B2 JP 5580613B2 JP 2010024324 A JP2010024324 A JP 2010024324A JP 2010024324 A JP2010024324 A JP 2010024324A JP 5580613 B2 JP5580613 B2 JP 5580613B2
Authority
JP
Japan
Prior art keywords
group
polymer
gold
supported
gold cluster
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010024324A
Other languages
Japanese (ja)
Other versions
JP2011162453A (en
Inventor
修 小林
浩之 宮村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2010024324A priority Critical patent/JP5580613B2/en
Publication of JP2011162453A publication Critical patent/JP2011162453A/en
Application granted granted Critical
Publication of JP5580613B2 publication Critical patent/JP5580613B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Pyridine Compounds (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

この発明は、酸化反応用の高分子担持金クラスター触媒を用いて2種の異なるアルコールから非対称エステルを製造する方法に関する。
This invention relates to a method for producing two different alcohol or al asymmetric ester using polymer-supported gold clusters catalysts for oxidation reactions.

金コロイド、金ナノクラスターは生物学、触媒、ナノテクノロジーなど様々な分野に置いて注目され、活発に研究されてきた。
従来エステルを合成するには主に、カルボン酸とアルコールと化学量論量の縮合剤を用いたり、強塩基性条件下で加熱を必要としていた(非特許文献1)。
本願発明者らは、安定で長期保存や回収再使用が可能な高分子担持金クラスター触媒を開発し、この触媒をアルコールのカルボニル化合物への酸素酸化反応等の酸化反応に利用する方法を開発している(特許文献1)。
Gold colloids and gold nanoclusters have attracted attention and have been actively studied in various fields such as biology, catalysts, and nanotechnology.
Conventionally, in order to synthesize an ester, a stoichiometric amount of a carboxylic acid, an alcohol, and a condensing agent are used, or heating is required under strongly basic conditions (Non-Patent Document 1).
The present inventors have developed a polymer-supported gold cluster catalyst that is stable and can be stored and recovered and reused for a long period of time, and has developed a method for utilizing this catalyst for an oxidation reaction such as an oxygen oxidation reaction of alcohol to a carbonyl compound. (Patent Document 1).

特開2007-237116JP2007-237116 Catal. Lett. 2007, 116, 35-40Catal. Lett. 2007, 116, 35-40

従来金触媒を用いたアルコールのエステル化反応はこれまでに開発されているが、出発原料を両方ともアルコールとした場合加温条件が必要であった(非特許文献1)。
また、従来の触媒を用いて複数のアルコール官能基が存在する場合、無差別にエステル化が進行するのが一般であった。
そのため、本発明は、室温条件下、回収再使用可能な触媒を用いて、複数の異なるアルコールから非対称エステルを製造する方法を提供することを目的とする。
Conventionally, esterification reaction of alcohol using a gold catalyst has been developed so far, but when both starting materials are alcohol, heating conditions are required (Non-patent Document 1).
Further, in the case where a plurality of alcohol functional groups are present using a conventional catalyst, esterification generally proceeds indiscriminately.
Therefore, an object of the present invention is to provide a method for producing an asymmetric ester from a plurality of different alcohols using a recovered and reusable catalyst under room temperature conditions.

本発明者らが既に開発した高分子担持金クラスター触媒(特許文献1等)を、複数の異なるアルコールを用いてエステル化反応を行なうと、非対称エステルが効率良く生成することを見出し、本発明を完成させるに至った。
即ち、本発明は、溶媒を加えない液相で、高分子担持金クラスター触媒の存在下で、(a)R−CHOH及び(b)R'−OH(式中、R及びR'は、互いに異なり、R'は、水酸基を0〜2個有していてもよく、Rは、メチル基、メトキシ基又は臭素原子を有していてもよいフェニル基、フェニル基を有していてもよいビニル基、ナフチル基、ピリジル基、又はCHCHCHPhを表し、R'は、直鎖であっても分枝であってもよく、アルキル基又はポリアルキレンオキシド基を表す。)で表される2種の化合物を、酸素雰囲気かつ室温で混合することにより、R−COO−R'(式中、Rは、R'は、上記と同様を表す。)で表される非対称エステル化合物を製造する方法であって、該高分子担持金クラスター触媒が、金の平均径が20nm以下のナノサイズクラスターをスチレン系高分子に担持させて成り、該スチレン系高分子はスチレンモノマーをベースとし、その主鎖又はベンゼン環に架橋性官能基を有する親水性側鎖を有し、該架橋性官能基としてエポキシ基と水酸基を有する高分子であり、該スチレン系高分子のエポキシ基と水酸基とを架橋させて成る、非対称エステル化合物の製法である。
When the present inventors have already developed a polymer-supported gold cluster catalyst (Patent Document 1, etc.) and an esterification reaction using a plurality of different alcohols, it has been found that an asymmetric ester is efficiently produced. It came to complete.
That is, the present invention is a liquid phase in which no solvent is added, and in the presence of a polymer-supported gold cluster catalyst, (a) R—CH 2 OH and (b) R′—OH (where R and R ′ are R ′ may have 0 to 2 hydroxyl groups, and R may have a methyl group, a methoxy group or a phenyl group which may have a bromine atom, or a phenyl group. good vinyl group, a naphthyl group, a pyridyl group, or represents a CH 2 CH 2 CH 2 Ph, R ' may be a branched or a straight chain, an alkyl group or a polyalkylene oxide group. ) Are mixed in an oxygen atmosphere and at room temperature, whereby R-COO-R ′ (wherein R is the same as defined above) is represented by an asymmetry. A method for producing an ester compound, wherein the polymer-supported gold cluster catalyst has an average diameter of gold A nano-sized cluster of 20 nm or less is supported on a styrene polymer, and the styrene polymer is based on a styrene monomer and has a hydrophilic side chain having a crosslinkable functional group in its main chain or benzene ring, This is a method for producing an asymmetric ester compound, which is a polymer having an epoxy group and a hydroxyl group as the crosslinkable functional group, and is formed by crosslinking the epoxy group and the hydroxyl group of the styrenic polymer.

本発明の方法を用いることにより、酸化次数の少ないアルコールから直接エステルを合成することができる。さらに回収、再使用可能な触媒を用いて、大気に豊富に存在する分子状酸素を酸化剤として、室温、常温といった穏和な条件下反応を行うことができるため、エネルギー効率、E factorに優れている。さらに、ポリオールのモノエステル化も可能になることから、複雑な化合物を合成する際、複数存在するアルコール官能基の選択的な保護も可能となる。   By using the method of the present invention, an ester can be directly synthesized from an alcohol having a low oxidation order. Furthermore, using a catalyst that can be recovered and reused, it is possible to carry out reactions under mild conditions such as room temperature and room temperature using molecular oxygen that is abundant in the atmosphere as an oxidizing agent, so it has excellent energy efficiency and E factor. Yes. Furthermore, since the polyol can be monoesterified, a plurality of alcohol functional groups can be selectively protected when a complex compound is synthesized.

本発明で用いる触媒は、金のナノサイズクラスターが、スチレン系高分子との相互作用によりポリマーに微小クラスターとして担持された形態を有する。
金をスチレン系高分子に担持させる方法としては、特に限定されないが、例えば上記したごとき構造を有する高分子と金前駆体とを、a)適当な極性の良溶媒に溶解し還元剤と混合した後適当な極性の貧溶媒で凝集させる、b)適当な非極性又は低極性の良溶媒に溶解し還元剤と混合した後適当な極性の貧溶媒で凝集させる、ことにより行われる。
金クラスターはスチレン系高分子の芳香環との相互作用により担持されている。
The catalyst used in the present invention has a form in which gold nanosize clusters are supported as fine clusters on a polymer by interaction with a styrenic polymer.
A method for supporting gold on a styrene polymer is not particularly limited. For example, a polymer having a structure as described above and a gold precursor are dissolved in a good solvent having an appropriate polarity and mixed with a reducing agent. It is then aggregated with an appropriate polar poor solvent, b) dissolved in an appropriate non-polar or low-polar good solvent, mixed with a reducing agent, and then aggregated with an appropriate polar poor solvent.
The gold cluster is supported by the interaction with the aromatic ring of the styrenic polymer.

尚、極性の良溶媒としてはテトラヒドロフラン(THF)、ジオキサン、アセトン、N,N−ジメチルホルムアミド(DMF)、N−メチル−2−ピロリドン(NMP)などがあり、非極性又は低極性の良溶媒としてはトルエン、ジクロロメタン、クロロホルムなどが使用できる。極性の貧溶媒としてはメタノール、エタノール、ブタノール、アミルアルコールなどがあり、非極性の貧溶媒としてはヘキサン、ヘプタン、オクタンなどが使用できる。金クラスターを架橋性ポリマーに担持する際の、ポリマーの濃度は用いる溶媒やポリマーの分子量によっても異なるが、約5.0〜200 mg/mL、好ましくは10〜100 mg/mlである。1価又は3価の金化合物は、ポリマー1gに対して、0.01〜0.5 mmol、好ましくは0.03〜0.2 mmol使用する。還元剤は、還元に必要な量の1〜10当量使用するが、例えば1価の金化合物を水素化ホウ素ナトリウムで還元する場合の水素化ホウ素ナトリウムは、金化合物の0.5〜5倍モルが好適である。還元に必要な温度及び時間は金化合物や還元剤の種類によるが、通常は0℃〜50℃の間、好ましくは室温で、1〜24時間で行われる。相分離する際の貧溶媒は、良溶媒に対して1〜10(v/v)倍量、好ましくは2〜5倍量使用し、0.5〜5時間程度で滴下する。   Examples of good polar solvents include tetrahydrofuran (THF), dioxane, acetone, N, N-dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP), and the like. For example, toluene, dichloromethane, chloroform and the like can be used. Examples of the polar poor solvent include methanol, ethanol, butanol, and amyl alcohol, and examples of the nonpolar poor solvent include hexane, heptane, and octane. When the gold cluster is supported on the crosslinkable polymer, the concentration of the polymer varies depending on the solvent used and the molecular weight of the polymer, but is about 5.0 to 200 mg / mL, preferably 10 to 100 mg / ml. The monovalent or trivalent gold compound is used in an amount of 0.01 to 0.5 mmol, preferably 0.03 to 0.2 mmol, relative to 1 g of the polymer. The reducing agent is used in an amount of 1 to 10 equivalents necessary for the reduction. For example, when reducing a monovalent gold compound with sodium borohydride, sodium borohydride is 0.5 to 5 times mol of the gold compound. Is preferred. The temperature and time required for the reduction depend on the kind of the gold compound and the reducing agent, but are usually between 0 ° C. and 50 ° C., preferably at room temperature, for 1 to 24 hours. The poor solvent for phase separation is used in an amount of 1 to 10 (v / v) times, preferably 2 to 5 times the amount of the good solvent, and is dropped in about 0.5 to 5 hours.

金前駆体としては、1価又は3価の金化合物を用いる。このような金化合物として、ハロゲン化金、ハロゲン化金のトリフェニルホスフィン錯体が挙げられる。ハロゲン化金のトリフェニルホスフィン錯体として、AuCl(PPh)が挙げられる。 A monovalent or trivalent gold compound is used as the gold precursor. Examples of such gold compounds include gold halides and triphenylphosphine complexes of gold halides. An example of the triphenylphosphine complex of gold halide is AuCl (PPh 3 ).

このような金化合物を還元剤を用いて還元することにより、ナノサイズの金クラスターがスチレン形高分子に担持される。このような還元剤として、水素化ホウ素化合物、水素化アルミニウム化合物又は水素化ケイ素化合物、好ましくは水素化ホウ素ナトリウム又はボランを用いることができる。   By reducing such a gold compound using a reducing agent, nanosized gold clusters are supported on the styrene polymer. As such a reducing agent, a borohydride compound, an aluminum hydride compound or a silicon hydride compound, preferably sodium borohydride or borane can be used.

本発明のスチレン系高分子はスチレンモノマーをベースとした高分子であり、その主鎖又はベンゼン環に架橋性官能基を有する親水性側鎖を有する。
この架橋性官能基を有する親水性側鎖は、親水性を有する架橋性官能基のみから成るものであっても、親水性側鎖の主鎖に架橋性官能基が付いたものでもよい。
架橋性官能基の一方は、エポキシ基である。
もう一方の架橋性官能基は水酸基である。
親水性側鎖の主鎖としては、比較的短いアルキル基、例えば、炭素数が1〜6程度のアルキレン基であってもよいが、−R(OR−、−R(COOR−、又は−R(COOR(OR−(式中、Rは共有結合又は炭素数1〜6、好ましくは共有結合又は1〜2のアルキレン基を表し、Rはそれぞれ独立して炭素数2〜4、好ましくは2のアルキレン基を表し、u、v及びzは1〜10の整数、wは1又は2を表す。)で表される主鎖をもつものが親水性であるため好ましい。このような好ましい主鎖として、−CH(OC−や−CO(OC−等が挙げられる。
The styrenic polymer of the present invention is a polymer based on a styrene monomer, and has a hydrophilic side chain having a crosslinkable functional group in its main chain or benzene ring.
The hydrophilic side chain having a crosslinkable functional group may be composed of only a crosslinkable functional group having hydrophilicity, or may have a crosslinkable functional group attached to the main chain of the hydrophilic side chain.
One of the crosslinkable functional groups is an epoxy group.
The other crosslinkable functional group is a hydroxyl group.
The main chain of the hydrophilic side chain may be a relatively short alkyl group, for example, an alkylene group having about 1 to 6 carbon atoms, but —R 3 (OR 4 ) u —, —R 3 (COOR 4) v -, or -R 3 (COOR 4) w ( oR 4) z - ( wherein, R 3 is a covalent bond or a 1 to 6 carbon atoms, preferably an alkylene group of a covalent bond or 1-2, R 4 each independently represents an alkylene group having 2 to 4 carbon atoms, preferably 2; u, v and z are integers of 1 to 10, and w is 1 or 2. What it has is preferable because it is hydrophilic. Examples of such a preferred main chain include —CH 2 (OC 2 H 4 ) 4 — and —CO (OC 2 H 4 ) 4 —.

このようなスチレン系高分子として、例えば、下式(化2)

Figure 0005580613
(式中、Xはアルキレン基又はエーテル結合を含むアルキレン基を表す。)又は下式(化3)
Figure 0005580613
(式中、Xはアルキレン基又はエーテル結合を含むアルキレン基を表す。)で表される構造を有するモノマーを全モノマー中に5〜60%含み、下式(化4)
Figure 0005580613
(式中、Xはアルキレン基又はエーテル結合を含むアルキレン基を表す。)又は下式(化5)
Figure 0005580613
(式中、Xはアルキレン基又はエーテル結合を含むアルキレン基を表す。)で表される構造を有するモノマーを全モノマー中に10〜60%含み、かつこれらの合計が100%以下となるように含み、更にこれらの合計が100%未満の場合には残部としてスチレンモノマーを含むモノマー混合物を共重合して得られたスチレン系高分子が挙げられる。 As such a styrenic polymer, for example, the following formula (Chemical Formula 2)
Figure 0005580613
(Wherein X a represents an alkylene group or an alkylene group containing an ether bond) or the following formula (Formula 3)
Figure 0005580613
(In the formula, Xb represents an alkylene group or an alkylene group containing an ether bond.) A monomer having a structure represented by the formula:
Figure 0005580613
(Wherein X c represents an alkylene group or an alkylene group containing an ether bond) or the following formula (Formula 5)
Figure 0005580613
(In the formula, Xd represents an alkylene group or an alkylene group containing an ether bond.) Monomers having a structure represented by the formula: 10 to 60% are included in all monomers, and the total of these is 100% or less. In addition, when the total of these is less than 100%, a styrenic polymer obtained by copolymerizing a monomer mixture containing a styrene monomer as the balance may be mentioned.

好ましいスチレン系高分子として、下記の高分子が挙げられる。

Figure 0005580613
式中、l、m及びnは構成モノマーのモル比を表し、(l+m+n)に対して、mは5〜60%、好ましくは10〜50%、nは10〜60%、好ましくは20〜50%であり、ただし、m+nは100%以下である。lは残部である。oは0〜5の整数、pは1〜6の整数を表す。 Examples of preferable styrenic polymers include the following polymers.
Figure 0005580613
In the formula, l, m and n represent the molar ratio of the constituent monomers, and with respect to (l + m + n), m is 5 to 60%, preferably 10 to 50%, and n is 10 to 60%, preferably 20 to 50%. Where m + n is 100% or less. l is the balance. o represents an integer of 0 to 5, and p represents an integer of 1 to 6.

このようなスチレン系高分子と上記の金前駆体を、上記のような適当な溶媒に還元剤と共に溶解し、その後、高分子に対する貧溶媒を加えることにより、金クラスター含有高分子を相分離させることができる。
この場合、金前駆体がまず還元を受ける。金前駆体に配位子が結合していた場合は、その際に配位子が脱離する。還元された金はクラスターとして高分子の疎水性部分に取り込まれ、高分子の芳香環から電子供与を受け微小な状態でも安定化される。
これに担持されている金クラスター1個の平均径は20nm以下、好ましくは0.3〜20nm、より好ましくは0.3〜10nm、更に好ましくは0.3〜5nm、より更に好ましくは0.3〜2nm、よりより更に好ましいのは0.3〜1nmであり、数多くの金クラスターがミセルの疎水性部分(スチレン系高分子の芳香環)に均一に分散して存在していると考えられる。このように金属が微小なクラスター(微小金属塊)となっているため、高い触媒活性を示すことができる。
Such a styrenic polymer and the above gold precursor are dissolved in an appropriate solvent as described above together with a reducing agent, and then a poor solvent for the polymer is added to phase separate the gold cluster-containing polymer. be able to.
In this case, the gold precursor first undergoes reduction. When a ligand is bonded to the gold precursor, the ligand is eliminated at that time. The reduced gold is incorporated into the hydrophobic part of the polymer as a cluster and is stabilized even in a microscopic state by receiving electrons from the aromatic ring of the polymer.
The average diameter of one gold cluster supported thereon is 20 nm or less, preferably 0.3 to 20 nm, more preferably 0.3 to 10 nm, still more preferably 0.3 to 5 nm, still more preferably 0.3 to 2 nm, and even more preferably. Is 0.3 to 1 nm, and many gold clusters are considered to be uniformly dispersed in the hydrophobic part of the micelle (the aromatic ring of the styrenic polymer). Thus, since the metal is a minute cluster (minute metal lump), high catalytic activity can be exhibited.

このように金クラスターを担持したミセルは、架橋性官能基(エポキシ基と水酸基)により架橋することができる。架橋することにより金クラスターは安定化すると共に種々の溶剤に対して不溶化し、担持した金クラスターの漏れを防止することができる。
架橋反応により、金クラスターを担持した高分子鎖同士を結合させることや、架橋基を有する材料など適当な担体に結合させることもできる。
架橋反応は、加熱や紫外線照射、好ましくは加熱により架橋性官能基を反応させることにより行う。架橋反応は、これらの方法以外にも、使用する直鎖型有機高分子化合物を架橋するための従来公知の方法である、例えば架橋剤を用いる方法、過酸化物やアゾ化合物等のラジカル重合触媒を用いる方法、酸又は塩基を添加して加熱する方法、例えばカルボジイミド類のような脱水縮合剤と適当な架橋剤を組み合わせて反応させる方法等に準じても行うことができる。
Thus, the micelle carrying the gold cluster can be crosslinked by a crosslinkable functional group (epoxy group and hydroxyl group). By crosslinking, the gold cluster is stabilized and insolubilized in various solvents, and leakage of the supported gold cluster can be prevented.
By the crosslinking reaction, polymer chains carrying gold clusters can be bonded to each other, or can be bonded to an appropriate carrier such as a material having a crosslinking group.
The cross-linking reaction is performed by reacting the cross-linkable functional group by heating or ultraviolet irradiation, preferably by heating. In addition to these methods, the crosslinking reaction is a conventionally known method for crosslinking a linear organic polymer compound to be used. For example, a method using a crosslinking agent, a radical polymerization catalyst such as a peroxide or an azo compound This method can also be carried out according to a method of using an acid, a method of heating by adding an acid or a base, for example, a method of reacting by combining a dehydrating condensing agent such as carbodiimide and an appropriate crosslinking agent.

架橋性官能基を加熱により架橋させる際の温度は、通常50〜200℃、好ましくは70〜180℃、より好ましくは100〜160℃である。
加熱架橋反応させる際の反応時間は、通常0.1〜100時間、好ましくは1〜50時間、より好ましくは2〜10時間である。
The temperature at which the crosslinkable functional group is crosslinked by heating is usually 50 to 200 ° C, preferably 70 to 180 ° C, more preferably 100 to 160 ° C.
The reaction time for the heat crosslinking reaction is usually 0.1 to 100 hours, preferably 1 to 50 hours, more preferably 2 to 10 hours.

本ナノサイズ金クラスターを、塊や膜としたり、担体に固定することもできる。ガラス、シリカゲル、樹脂などの担体表面の架橋性官能基(例えば、水酸基やアミノ基など)と金含有ポリマーの架橋性官能基とを架橋反応させると、本発明の高分子担持金クラスターは担体表面に強固に固定される。また、適当な樹脂やガラスの反応容器の表面に、ミセルの架橋性官能基を使用して、本発明の高分子担持金クラスター組成物を固定化すれば、より再使用が簡便な触媒担持反応容器として使用できる。   The nano-sized gold cluster can be formed as a lump or membrane, or fixed to a carrier. When a crosslinkable functional group (for example, a hydroxyl group or an amino group) on the surface of a carrier such as glass, silica gel, or resin is crosslinked with a crosslinkable functional group of a gold-containing polymer, the polymer-supported gold cluster of the present invention is It is firmly fixed to. In addition, if the polymer-supported gold cluster composition of the present invention is immobilized on the surface of an appropriate resin or glass reaction vessel using a crosslinkable functional group of micelles, the catalyst-supported reaction can be reused more easily. Can be used as a container.

このようにして得られた架橋型金含有ポリマーミセルは多くの空孔を有しており、適当な溶剤で膨潤して表面積を拡大する。また担持された金は数ナノメートル以下の非常に小さいクラスターを形成する。   The cross-linked gold-containing polymer micelle thus obtained has many pores and swells with an appropriate solvent to increase the surface area. The supported gold forms very small clusters of several nanometers or less.

本発明においては、この高分子担持金クラスター触媒用いて、2種の異なるアルコール化合物から非対称エステル化合物を製造する。
これら2種の反応物は下式で表される。
(a)R−CHOH、及び
(b)R'−OH
式中、R及びR'は、互いに異なる。
Rは、メチル基、メトキシ基又は臭素原子を有していてもよいフェニル基、フェニル基を有していてもよいビニル基、ナフチル基、ピリジル基、又はCH CH CH Phを表す
R'は、直鎖であっても分枝であってもよく、アルキル基又はポリアルキレンオキシド基を表す。R'の炭素数は好ましくは2〜5である。
'は、水酸基を0〜2個有していてもよい
'はモノオール、ジオール又はトリオールであってもよい。
そのほか反応の際の添加剤として、塩基、好ましくはアルカリ金属の炭酸塩の添加が有効である。このような場合は、アルカリ金属炭酸塩の水溶液の使用が好適である。



In the present invention, an asymmetric ester compound is produced from two different alcohol compounds using this polymer-supported gold cluster catalyst.
These two reactants are represented by the following formulas.
(A) R—CH 2 OH, and (b) R′—OH.
In the formula, R and R ′ are different from each other.
R represents a methyl group, a methoxy group or a phenyl group which may have a bromine atom, a vinyl group which may have a phenyl group, a naphthyl group, a pyridyl group, or CH 2 CH 2 CH 2 Ph .
R ′ may be linear or branched and represents an alkyl group or a polyalkylene oxide group. R ′ preferably has 2 to 5 carbon atoms.
R ′ may have 0 to 2 hydroxyl groups .
R ′ may be a monool, diol or triol.
In addition, addition of a base, preferably an alkali metal carbonate, is effective as an additive in the reaction. In such a case, it is preferable to use an aqueous solution of an alkali metal carbonate.



この反応は液相で行なわれる。
原料のアルコールを溶媒として、更に溶媒加えない。
基質の濃度は、通常0.05〜5 mmol/ml、好ましくは0.1〜2 mmol/mlである。
触媒の基質に対する当量は、通常0.1〜10 mol%、好ましくは1〜5 mol%である。
本発明の製法は、酸素雰囲気下で行われる。酸素雰囲気下とは酸素ガス分圧が0.2以上の条件をいい、空気中でも反応は進行する。
またこの反応は、室温で行なう。
反応のための操作としては、攪拌すればよく、それ以上の特別な操作を必要としない。
反応時間は、0.3〜72時間である。
その結果、下式の反応により非対称エステル化合物が得られる。ここで非対称とは下式のエステルにおいてRとR'とが同一ではないことをいう。

Figure 0005580613
This reaction takes place in the liquid phase.
Raw material alcohol as solvent, have further Na adding a solvent.
The concentration of the substrate is usually 0.05 to 5 mmol / ml, preferably 0.1 to 2 mmol / ml.
The equivalent of the catalyst to the substrate is usually 0.1 to 10 mol%, preferably 1 to 5 mol%.
The production method of the present invention is performed in an oxygen atmosphere. Under an oxygen atmosphere, the oxygen gas partial pressure is 0.2 or more, and the reaction proceeds even in air.
Also this reaction will row at room temperature.
As an operation for the reaction, stirring may be performed, and no further special operation is required.
The reaction time is 0.3 to 72 hours.
As a result, an asymmetric ester compound is obtained by the reaction of the following formula. Here, asymmetric means that R and R ′ are not the same in the ester of the following formula.
Figure 0005580613

以下、実施例にて本発明を例証するが本発明を限定することを意図するものではない。
得られたエステル化合物の収率は内部標準を用いて下記条件のガスクロマトグラフィー(装置:島津製作所GC2010、カラム:GL Science, TCWAX)により定量した。標品であるイミン化合物との保持時間の一致を確認することで生成物を同定した。
GC測定条件:気化室温度250℃、FID: 250℃、キャリアガス:He、圧力:214.2kPa、全流量:90.6 mL/min、カラム流量:1.86 mL/min、線速度:30.8 cm/sec、パージ流量:3.0 mL/min、スプリット比:46.0、カラムプログラム:starting from 50.0℃, 10 min hold, 10℃/min to 220℃, 5 min hold、アニソールRT(Retention time):20.073 min、トルアルデヒドRT:25.454 min、パラトルイックアシッドメチルエステルRT:26.748、4-メチルベンジルアルコールRT:29.447
The following examples illustrate the invention but are not intended to limit the invention.
The yield of the obtained ester compound was quantified by gas chromatography (equipment: Shimadzu GC2010, column: GL Science, TCWAX) using the internal standard under the following conditions. The product was identified by confirming the coincidence of the retention time with the imine compound as the sample.
GC measurement conditions: vaporization chamber temperature 250 ° C, FID: 250 ° C, carrier gas: He, pressure: 214.2kPa, total flow rate: 90.6 mL / min, column flow rate: 1.86 mL / min, linear velocity: 30.8 cm / sec, purge Flow rate: 3.0 mL / min, Split ratio: 46.0, Column program: starting from 50.0 ° C, 10 min hold, 10 ° C / min to 220 ° C, 5 min hold, Anisole RT (Retention time): 20.073 min, Tolualdehyde RT: 25.454 min, paratoluic acid methyl ester RT: 26.748, 4-methylbenzyl alcohol RT: 29.447

製造例1
150 mLのTHFにソジウムハイドライド(60% in mineral oil, 5.2g)を加え、0℃にてその反応液にテトラエチレングリコール(25.4 g, 131 mmol)を加えた。室温で1時間撹拌した後 1-クロロメチル-4-ビニルベンゼン(13.3 g, 87.1 mmol)を加え、さらに12時間撹拌を続けた。0℃に冷却しジエチルエーテルを加え、飽和塩化アンモニウム水溶液を加え、反応を停止した。水相をエーテルで抽出した後、併せた有機相を無水硫酸ナトリウムで乾燥した後、溶媒を減圧下留去した。得られた残さをシリカゲルカラムクロマトグラフィーにて精製し、テトラエチレングリコールモノ−2−フェニル−2−プロペニルエーテルを得た(20.6 g, 66.2 mmol, 76%)。
1H NMR (CDCl3) δ 2.55-2.59 (m, 1H), 3.59-3.73 (m, 16H), 4.55 (s, 2H), 5.25 (d, 1H, J = 6.4 Hz), 5.53 (d, 1H, J = 18 Hz), 6.71 (dd, 1H, J = 11.0, 17.9 Hz), 7.22-7.27 (m, 3H), 7.31-7.39 (m, 2H); 13C NMR δ 61.8, 69.5, 70.5, 70.69, 70.74, 72.6, 73.0, 113.8, 126.3, 128.0, 136.0, 137.1, 138.0.
Production Example 1
Sodium hydride (60% in mineral oil, 5.2 g) was added to 150 mL of THF, and tetraethylene glycol (25.4 g, 131 mmol) was added to the reaction solution at 0 ° C. After stirring at room temperature for 1 hour, 1-chloromethyl-4-vinylbenzene (13.3 g, 87.1 mmol) was added, and stirring was continued for another 12 hours. After cooling to 0 ° C., diethyl ether was added, and saturated aqueous ammonium chloride solution was added to stop the reaction. The aqueous phase was extracted with ether, the combined organic phases were dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain tetraethylene glycol mono-2-phenyl-2-propenyl ether (20.6 g, 66.2 mmol, 76%).
1 H NMR (CDCl 3 ) δ 2.55-2.59 (m, 1H), 3.59-3.73 (m, 16H), 4.55 (s, 2H), 5.25 (d, 1H, J = 6.4 Hz), 5.53 (d, 1H , J = 18 Hz), 6.71 (dd, 1H, J = 11.0, 17.9 Hz), 7.22-7.27 (m, 3H), 7.31-7.39 (m, 2H); 13 C NMR δ 61.8, 69.5, 70.5, 70.69 , 70.74, 72.6, 73.0, 113.8, 126.3, 128.0, 136.0, 137.1, 138.0.

製造例2
スチレン(1.9 g、18 mmol)、4−ビニルベンジルグリシジルエーテル(特許文献1(WO2005/085307)に記載の方法に従って合成した。)(3.4 g、18 mmol)、製造例1で得たテトラエチレングリコールモノ−2−フェニル−2−プロペニルエーテル(5.6 g、18 mmol)、及び2,2'−アゾ(イソブチロニトリル)(164 mg、1 mmol)をクロロホルム(9 ml)に溶解させ、脱気操作後アルゴン中で室温、48時間攪拌した。反応液を室温まで冷却した後、THF200 mlを加えた反応液をエーテル1l中に0℃にてゆっくりと滴下し、得られた沈殿物を濾過分取した後、メタノールにて十分に洗浄した。その後、室温にて減圧乾燥させ透明ガム状固体として下式の架橋性スチレン系高分子(高分子1)(8.2g、x:y:z:=28:34:38)を得た。コポリマーのモノマー成分の比はH−NMRにより決定した。

Figure 0005580613
Production Example 2
Styrene (1.9 g, 18 mmol), 4-vinylbenzylglycidyl ether (synthesized according to the method described in Patent Document 1 (WO2005 / 085307)) (3.4 g, 18 mmol), tetraethylene glycol obtained in Production Example 1 Mono-2-phenyl-2-propenyl ether (5.6 g, 18 mmol) and 2,2′-azo (isobutyronitrile) (164 mg, 1 mmol) were dissolved in chloroform (9 ml) and degassed. After the operation, the mixture was stirred in argon at room temperature for 48 hours. After the reaction solution was cooled to room temperature, the reaction solution added with 200 ml of THF was slowly added dropwise to 1 liter of ether at 0 ° C., and the resulting precipitate was collected by filtration and washed thoroughly with methanol. Then, it dried under reduced pressure at room temperature, and obtained the following formula crosslinkable styrene polymer (polymer 1) (8.2 g, x: y: z: = 28: 34: 38) as a transparent gum-like solid. The ratio of monomer components of the copolymer was determined by 1 H-NMR.
Figure 0005580613

製造例3
製造例2で得た高分子1(800 mg)と水素化ホウ素ナトリウム(7.0 mg, 0.18 mmol)のテトラヒドロフラン(THF)(10 mL)溶液に、室温でクロロトリフェニルホスフィン金((C6H5)3P)AuCl)(STREM、30 mg、0.06 mmol)のTHF(2.0 ml)溶液を0.15時間手滴下し、24時間撹拌した。この混合液にヘキサン(20 ml)を加えた。析出した金クラスターを含むマイクロカプセル化高分子をろ別し、ヘキサン洗浄と減圧乾燥を行った。その後、無溶媒下150℃で5時間加熱して高分子を架橋させた。得られた固体を、THF(20 ml)続いて水(20 ml)で洗浄、減圧乾燥し、高分子固定化ナノサイズ金クラスターを842 mg得た。金の含有量はICPにより定量した(0.079 mmol/g)。得られた高分子固定化ナノサイズ金クラスターのTEMによる観察の結果、担持されたクラスターのサイズは大部分が1〜5nmであった。このようにして得た高分子固定化ナノサイズ金クラスター触媒を以下「PI-Au」という。
Production Example 3
To a solution of polymer 1 (800 mg) obtained in Production Example 2 and sodium borohydride (7.0 mg, 0.18 mmol) in tetrahydrofuran (THF) (10 mL) was added chlorotriphenylphosphine gold ((C 6 H 5 ) 3 P) AuCl) (STREM, 30 mg, 0.06 mmol) in THF (2.0 ml) was added dropwise by hand for 0.15 hours and stirred for 24 hours. Hexane (20 ml) was added to the mixture. The precipitated microencapsulated polymer containing gold clusters was filtered, washed with hexane and dried under reduced pressure. Then, the polymer was crosslinked by heating at 150 ° C. for 5 hours in the absence of a solvent. The obtained solid was washed with THF (20 ml) followed by water (20 ml) and dried under reduced pressure to obtain 842 mg of polymer-immobilized nanosize gold clusters. The gold content was determined by ICP (0.079 mmol / g). As a result of TEM observation of the obtained polymer-immobilized nanosize gold cluster, the size of the supported cluster was mostly 1 to 5 nm. The polymer-immobilized nanosize gold cluster catalyst thus obtained is hereinafter referred to as “PI-Au”.

実施例1
本実施例では製造例3で得た触媒PI-Auを用いて下式の酸化反応を行った。

Figure 0005580613
4-メチルベンジルアルコール(30.5 mg, 0.25 mmol,東京化成・特級)、炭酸カリウム(17.3 mg,和光純薬・特級)、PI Au(0.072 mmol/g, 1 mol%)と2 mLのメタノール(和光純薬・特級を少量のNa存在下蒸留し、MS3Aを乾燥剤として保存したもの)と純水4μLを混合し、酸素雰囲気下、室温で24時間攪拌した。触媒を吸引ろ過にて除去し、アニソールを内部標準物質(東京化成・特級)としてGCで定量分析を行った結果パラトルイックアシッドメチルエステル(34.5 mg, >99% yield)を得た。
ろ過によって回収された触媒は、フラスコに入れ、オイルバスで170℃、5時間無溶媒条件で加熱することによって、活性を維持したまま再利用が可能であった。 Example 1
In this example, the oxidation reaction of the following formula was performed using the catalyst PI-Au obtained in Production Example 3.
Figure 0005580613
4-methylbenzyl alcohol (30.5 mg, 0.25 mmol, Tokyo Kasei / special grade), potassium carbonate (17.3 mg, Wako Pure Chemicals / special grade), PI Au (0.072 mmol / g, 1 mol%) and 2 mL of methanol (sum) The photopure drug / special grade was distilled in the presence of a small amount of Na and MS3A was stored as a desiccant) and 4 μL of pure water were mixed and stirred at room temperature for 24 hours in an oxygen atmosphere. The catalyst was removed by suction filtration, and quantitative analysis was performed by GC using anisole as an internal standard substance (Tokyo Kasei / special grade). As a result, paratoluic acid methyl ester (34.5 mg,> 99% yield) was obtained.
The catalyst recovered by filtration was put in a flask and heated in an oil bath at 170 ° C. for 5 hours under solvent-free conditions, so that it could be reused while maintaining the activity.

実施例2〜9
本実施例では、実施例1と同様に、表1に示すアルコールとメタノールから下式に従ってメチルエステルを合成した。なお、実施例2〜4,7,9の反応物のアルコールはTCIの市販品を用い、実施例5,6,8の反応物のアルコールは和光純薬工業の市販品を用いた。

Figure 0005580613



Examples 2-9
In this embodiment, in the same manner as in Example 1, the methyl ester form if according to the following equation from an alcohol and methanol shown in Table 1. In addition, the alcohol of the reaction products of Examples 2 to 4, 7 and 9 was a commercial product of TCI, and the alcohol of the reaction products of Examples 5, 6 and 8 was a commercial product of Wako Pure Chemical Industries.
Figure 0005580613



Figure 0005580613
Figure 0005580613

参考例10
参考例ではアルデヒドとエチレングルコールを用いて下式に従って下式の酸化反応を行った。

Figure 0005580613
4-メチルベンズアルデヒド(29.9 mg, 0.25 mmol,東京化成・特級)、炭酸カリウム(17.3 mg,和光純薬・特級)、PI Au(0.072 mmol/g, 1 mol%)と1 mLのエチレングリコール(和光純薬・特級)を混合し、酸素雰囲気下、室温で24時間攪拌した。触媒を吸引ろ過にて除去し、pTLCにて単離し、2-ヒドロキシメチル4-メチルベンゾエートを38.2 mg(85%)得た。生成物の分析値を以下に示す:
1H NMR (CDCl3) δ = 2.40 (s, 3H), 3.95 (t, 2H, J = 4.0 Hz), 4.44 (t, 2H, J = 4.0 Hz), 7.23 (d, 2H, J = 7.6 Hz), 7.94 (t, 2H, J = 7.6 Hz). DART-MS (M+H+)found:181.1018, calc.: 181.0864
Reference Example 10
In this reference example, an oxidation reaction of the following formula was performed using aldehyde and ethylene glycol according to the following formula.
Figure 0005580613
4-methylbenzaldehyde (29.9 mg, 0.25 mmol, Tokyo Kasei / special grade), potassium carbonate (17.3 mg, Wako Pure Chemicals / special grade), PI Au (0.072 mmol / g, 1 mol%) and 1 mL ethylene glycol (sum) (Optically pure drug / special grade) were mixed and stirred in an oxygen atmosphere at room temperature for 24 hours. The catalyst was removed by suction filtration and isolated by pTLC to obtain 38.2 mg (85%) of 2-hydroxymethyl 4-methylbenzoate. The analytical values of the product are shown below:
1 H NMR (CDCl 3 ) δ = 2.40 (s, 3H), 3.95 (t, 2H, J = 4.0 Hz), 4.44 (t, 2H, J = 4.0 Hz), 7.23 (d, 2H, J = 7.6 Hz ), 7.94 (t, 2H, J = 7.6 Hz) .DART-MS (M + H + ) found: 181.1018, calc .: 181.0864

参考例11〜14
参考例では、参考例10と同様に、ベンズアルデヒドと表2に示すアルコール化合物から下式に従ってエステルを合成した。

Figure 0005580613
Reference Examples 11-14
In this reference example, as in Reference example 10, an ester was synthesized from benzaldehyde and the alcohol compound shown in Table 2 according to the following formula.
Figure 0005580613

Figure 0005580613
Figure 0005580613

生成物の分析値を以下に示す。
参考例11の生成物:
1H NMR (CDCl3) δ= 1.94 (q, 2H, J = 6.0 Hz), 3.75 (q, 2H, J = 6.0 Hz), 4.42 (t, 2H, J = 6.0 Hz), 7.36-7.39 (m, 2H), 7.48-7.51 (m, 1H), 7.96-7.98(m, 2H). DART-MS (M+H+)found:181.1003, calc.: 181.0864
参考例12の生成物(1):
1H NMR (CDCl3) δ= 3.60-3.65 (m, 1H), 3.69-3.74 (m, 1H), 3.99-4.04 (m, 2H), 7.37-7.41 (m, 2H), 7.50-7.54 (m, 1H), 7.97-8.00 (m, 2H). DART-MS (M+H+)found:197.0933, calc.: 197.0813
参考例12の生成物(2):
1H NMR (CDCl3) δ= 3.90-3.92 (m, 4H), 5.09-5.12 (m, 1H), 7.37-7.41 (m, 2H), 7.50-7.54 (m, 1H), 7.97-8.00 (m, 2H).. DART-MS (M+H+)found: 197.0933, calc.: 197.0813
参考例13の生成物:
1H NMR (CDCl3) δ= 3.58-3.61 (m, 2H), 3.69-3.71 (m, 2H), 3.77-3.80 (m, 2H), 7.37-7.41 (m, 2H), 7.49-7.52 (m, 1H), 8.00-8.02 (m, 2H).
参考例14の生成物:
1H NMR (CDCl3) δ= 3.41 (s, 3H), 3.71 (t, 2H, J = 4.2 Hz), 4.46 (t, 2H, J = 4.2 Hz), 7.40-7.43 (m, 2H), 7.52-7.56 (m, 1H), 8.00-8.06 (m, 2H).


The analytical value of the product is shown below.
Product of Reference Example 11:
1 H NMR (CDCl 3 ) δ = 1.94 (q, 2H, J = 6.0 Hz), 3.75 (q, 2H, J = 6.0 Hz), 4.42 (t, 2H, J = 6.0 Hz), 7.36-7.39 (m , 2H), 7.48-7.51 (m, 1H), 7.96-7.98 (m, 2H). DART-MS (M + H + ) found: 181.1003, calc .: 181.0864
Product of Reference Example 12 (1):
1 H NMR (CDCl 3 ) δ = 3.60-3.65 (m, 1H), 3.69-3.74 (m, 1H), 3.99-4.04 (m, 2H), 7.37-7.41 (m, 2H), 7.50-7.54 (m , 1H), 7.97-8.00 (m, 2H). DART-MS (M + H + ) found: 197.0933, calc .: 197.0813
Product of Reference Example 12 (2):
1 H NMR (CDCl 3 ) δ = 3.90-3.92 (m, 4H), 5.09-5.12 (m, 1H), 7.37-7.41 (m, 2H), 7.50-7.54 (m, 1H), 7.97-8.00 (m , 2H) .. DART-MS (M + H + ) found: 197.0933, calc .: 197.0813
Product of Reference Example 13:
1 H NMR (CDCl 3 ) δ = 3.58-3.61 (m, 2H), 3.69-3.71 (m, 2H), 3.77-3.80 (m, 2H), 7.37-7.41 (m, 2H), 7.49-7.52 (m , 1H), 8.00-8.02 (m, 2H).
Product of Reference Example 14:
1 H NMR (CDCl 3 ) δ = 3.41 (s, 3H), 3.71 (t, 2H, J = 4.2 Hz), 4.46 (t, 2H, J = 4.2 Hz), 7.40-7.43 (m, 2H), 7.52 -7.56 (m, 1H), 8.00-8.06 (m, 2H).


Claims (2)

溶媒を加えない液相で、高分子担持金クラスター触媒の存在下で、(a)R−CHOH及び(b)R'−OH(式中、R及びR'は、互いに異なり、R'は、水酸基を0〜2個有していてもよく、Rは、メチル基、メトキシ基又は臭素原子を有していてもよいフェニル基、フェニル基を有していてもよいビニル基、ナフチル基、ピリジル基、又はCHCHCHPhを表し、R'は、直鎖であっても分枝であってもよく、アルキル基又はポリアルキレンオキシド基を表す。)で表される2種の化合物を、酸素雰囲気かつ室温で混合することにより、R−COO−R'(式中、Rは、R'は、上記と同様を表す。)で表される非対称エステル化合物を製造する方法であって、該高分子担持金クラスター触媒が、金の平均径が20nm以下のナノサイズクラスターをスチレン系高分子に担持させて成り、該スチレン系高分子はスチレンモノマーをベースとし、その主鎖又はベンゼン環に架橋性官能基を有する親水性側鎖を有し、該架橋性官能基としてエポキシ基と水酸基を有する高分子であり、該スチレン系高分子のエポキシ基と水酸基とを架橋させて成る、非対称エステル化合物の製法。
(A) R—CH 2 OH and (b) R′—OH (wherein R and R ′ are different from each other in the liquid phase with no solvent added and in the presence of the polymer-supported gold cluster catalyst, R ′ may have 0-2 hydroxyl groups, R represents a methyl group, a methoxy group or a phenyl group which may have a bromine atom, a vinyl group which may have a phenyl group, a naphthyl group , 2-pyridyl group, or represents a CH 2 CH 2 CH 2 Ph, R ' is represented by the representative.) the may be a branched or a straight chain, alkyl group or polyalkylene oxide groups A method for producing an asymmetric ester compound represented by R—COO—R ′ (wherein R is the same as defined above) by mixing seed compounds in an oxygen atmosphere and at room temperature. The polymer-supported gold cluster catalyst has an average gold diameter of 20 nm or less. No-size clusters are supported on a styrene polymer, and the styrene polymer is based on a styrene monomer and has a hydrophilic side chain having a crosslinkable functional group in its main chain or benzene ring. A method for producing an asymmetric ester compound, which is a polymer having an epoxy group and a hydroxyl group as functional groups, and is formed by crosslinking an epoxy group and a hydroxyl group of the styrenic polymer.
前記スチレン系高分子が、下式(化3)
Figure 0005580613
(式中、l、m及びnは構成モノマーのモル比を表し、(l+m+n)に対して、mは5〜60%、nは10〜60%、ただし、m+nは100%以下、lは残部であり、oは0〜5の整数、pは1〜6の整数を表す。)で表される請求項1に記載の製法。
The styrenic polymer has the following formula (Formula 3):
Figure 0005580613
(Wherein, l, m and n represent the molar ratio of the constituent monomers; with respect to (l + m + n), m is 5 to 60%, n is 10 to 60%, provided that m + n is 100% or less and l is the balance. And o represents an integer of 0 to 5, and p represents an integer of 1 to 6.).
JP2010024324A 2010-02-05 2010-02-05 Production of asymmetric esters using polymer-supported gold cluster catalysts Expired - Fee Related JP5580613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010024324A JP5580613B2 (en) 2010-02-05 2010-02-05 Production of asymmetric esters using polymer-supported gold cluster catalysts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010024324A JP5580613B2 (en) 2010-02-05 2010-02-05 Production of asymmetric esters using polymer-supported gold cluster catalysts

Publications (2)

Publication Number Publication Date
JP2011162453A JP2011162453A (en) 2011-08-25
JP5580613B2 true JP5580613B2 (en) 2014-08-27

Family

ID=44593568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010024324A Expired - Fee Related JP5580613B2 (en) 2010-02-05 2010-02-05 Production of asymmetric esters using polymer-supported gold cluster catalysts

Country Status (1)

Country Link
JP (1) JP5580613B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111672A1 (en) * 2010-03-10 2011-09-15 国立大学法人東京大学 Method for producing carboxylic acid ester, catalyst and method for producing the same
JP6226341B2 (en) * 2016-03-18 2017-11-08 公立大学法人首都大学東京 Gold cluster catalyst

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3818783B2 (en) * 1998-11-19 2006-09-06 三井化学株式会社 Method for producing carboxylic acid ester
JP2002361086A (en) * 2001-06-04 2002-12-17 Nippon Shokubai Co Ltd Carboxylic acid ester synthesis catalyst and method for producing carboxylic acid ester
JP2004181359A (en) * 2002-12-03 2004-07-02 Nippon Shokubai Co Ltd Catalyst for producing carboxylic acid ester and method for producing carboxylic acid ester
JP4792559B2 (en) * 2006-03-10 2011-10-12 独立行政法人科学技術振興機構 Polymer-supported gold cluster catalyst for oxidation reaction
JP4993437B2 (en) * 2006-05-12 2012-08-08 旭化成ケミカルズ株式会社 Gold-supporting particles containing aluminum, silica and zirconia, and method for producing carboxylic acid ester using the particles

Also Published As

Publication number Publication date
JP2011162453A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP4792559B2 (en) Polymer-supported gold cluster catalyst for oxidation reaction
JP4689691B2 (en) Polymer-supported gold cluster catalyst for oxidation reaction and production method of carbonyl compound using it
JP2009090204A (en) Polymer-supported bimetal cluster catalyst
JP5580613B2 (en) Production of asymmetric esters using polymer-supported gold cluster catalysts
CN105879914B (en) A kind of temperature sensitive type ionic liquid chirality Salen Ti composition catalysts and preparation method thereof
JP2008222584A (en) Method for producing imine compound
JP5776066B2 (en) Method for producing carboxylic acid ester, catalyst and method for producing the same
Sand et al. Chemoenzymatic one-pot reaction of noncompatible catalysts: Combining enzymatic ester hydrolysis with Cu (i)/bipyridine catalyzed oxidation in aqueous medium
Zhou et al. Synthesis and catalytic application of N-heterocyclic carbene copper complex functionalized conjugated microporous polymer
US20140371493A1 (en) Methods of converting polyols
JP5692704B2 (en) Method for producing amide compound and catalyst thereof
TWI805814B (en) Method for producing 1,3-diacyloxy-2-methylenepropane
JP2022022755A (en) Complex catalyst and solid catalyst for dehydrogenation reaction, and dehydrogenation method of alcohols and production method of hydrogen using the same
JP5534132B2 (en) Method for producing carbonyl compound, catalyst and method for producing the same
JP4696275B2 (en) Indole compound production method and catalyst
JP5649082B2 (en) Gold-polymer nanostructure-supported scandium catalyst and use thereof
JP5590299B2 (en) Method for producing aldehyde, catalyst and method for producing the same
CN106045804A (en) Method for realizing asymmetric oxidation reaction of thioether under aqueous-phase catalysis of chiral Salen Ti complex catalyst based on temperature-sensitive type ionic liquid
JP5183655B2 (en) Polymer-immobilized gold nanocluster catalyst and production method of imine compound using this catalyst
CA2740074C (en) Polymer bound solid metal complex catalyst for hydrogen reforming from formic acid
JP5293651B2 (en) Method for producing julolidine derivative
JPWO2005084802A1 (en) Polymer-encapsulated Lewis acid metal catalyst
JP5544415B2 (en) Polymer-supported boron catalyst and production method of Michael addition reaction product using this catalyst
Zekri et al. Efficient synthesis of trisphenols using reduced sulfonated graphene nanocatalyst under solvent free conditions
JP2022029075A (en) Method for producing thioester derivative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140711

R150 Certificate of patent or registration of utility model

Ref document number: 5580613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees