JP5578750B1 - Amide derivatives - Google Patents

Amide derivatives Download PDF

Info

Publication number
JP5578750B1
JP5578750B1 JP2014022868A JP2014022868A JP5578750B1 JP 5578750 B1 JP5578750 B1 JP 5578750B1 JP 2014022868 A JP2014022868 A JP 2014022868A JP 2014022868 A JP2014022868 A JP 2014022868A JP 5578750 B1 JP5578750 B1 JP 5578750B1
Authority
JP
Japan
Prior art keywords
rare earth
cobalt
extractant
extracted
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014022868A
Other languages
Japanese (ja)
Other versions
JP2014159415A (en
Inventor
雅宏 後藤
富生子 久保田
雄三 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Kyushu University NUC
Original Assignee
Sumitomo Metal Mining Co Ltd
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Kyushu University NUC filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2014022868A priority Critical patent/JP5578750B1/en
Application granted granted Critical
Publication of JP5578750B1 publication Critical patent/JP5578750B1/en
Publication of JP2014159415A publication Critical patent/JP2014159415A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】不純物を高濃度に含む酸性溶液から有価金属を選択的に抽出する。
【解決手段】本発明のアミド誘導体は、下記一般式で表される。式中、R及びRは、それぞれ同一又は別異の分鎖のアルキル基を示し、Rは水素原子又はアルキル基を示し、Rは水素原子、又はアミノ酸としてα炭素に結合される、アミノ基以外の任意の基を示す。下記一般式は、グリシン単位、ヒスチジン単位、リジン単位、アスパラギン酸単位又はノルマル−メチルグリシン単位を有することが好ましい。有価金属を抽出する場合、有価金属及び不純物を含有する酸性溶液を上記アミド誘導体による溶媒抽出に付すことで、有価金属を選択的に抽出できる。

【選択図】図3

Figure 0005578750
Valuable metals are selectively extracted from an acidic solution containing impurities at a high concentration.
The amide derivative of the present invention is represented by the following general formula. In the formula, R 1 and R 2 each represent the same or different branched alkyl group, R 3 represents a hydrogen atom or an alkyl group, and R 4 is bonded to the α-carbon as a hydrogen atom or an amino acid. Represents any group other than an amino group. The following general formula preferably has a glycine unit, a histidine unit, a lysine unit, an aspartic acid unit or a normal-methylglycine unit. When extracting valuable metals, valuable metals can be selectively extracted by subjecting an acidic solution containing valuable metals and impurities to solvent extraction with the amide derivative.

[Selection] Figure 3
Figure 0005578750

Description

本発明は、アミド誘導体に関する。   The present invention relates to amide derivatives.

コバルトや希土類金属は、有価金属として知られ、産業で様々な用途として用いられている。コバルトは、二次電池の正極材のほか、航空機のジェットエンジン等に使用されるスーパーアロイ(高強度耐熱合金)等で用いられている。希土類金属は、蛍光体材料、ニッケル水素電池の負極材、モーターに搭載される磁石の添加剤、液晶パネルやハードディスクドライブに使用されるガラス基板の研磨剤等に用いられている。   Cobalt and rare earth metals are known as valuable metals and are used for various purposes in industry. Cobalt is used in superalloys (high-strength heat-resistant alloys) used for aircraft jet engines and the like, in addition to positive electrode materials for secondary batteries. Rare earth metals are used in phosphor materials, negative electrodes for nickel metal hydride batteries, additives for magnets mounted on motors, abrasives for glass substrates used in liquid crystal panels and hard disk drives, and the like.

近年、省エネルギーが強く推進されており、自動車業界においては、従来のガソリン車から、コバルトや希土類金属を使用した二次電池を搭載したハイブリッド車や電気自動車への移行が急速に進んでいる。また、照明器具においては、従来の蛍光管から、ランタン、セリウム、イットリウム、テルビウム及びユーロピウムといった希土類金属を使用した効率の良い三波長蛍光管への移行が急速に進んでいる。上記のコバルトや希土類金属は希少資源であり、そのほとんどを輸入に頼っている。   In recent years, energy conservation has been strongly promoted, and in the automobile industry, a shift from a conventional gasoline vehicle to a hybrid vehicle or an electric vehicle equipped with a secondary battery using cobalt or a rare earth metal is rapidly progressing. In lighting fixtures, the transition from conventional fluorescent tubes to efficient three-wavelength fluorescent tubes using rare earth metals such as lanthanum, cerium, yttrium, terbium and europium is rapidly progressing. The above cobalt and rare earth metals are rare resources, and most of them depend on imports.

しかし、アナログ放送用のブラウン管テレビの蛍光体には、イットリウム、ユーロピウムが用いられていたものの、近年では、液晶テレビへの移行に伴い、大量のブラウン管が使用済み製品として廃棄されている。また、二次電池や三波長蛍光管等の急速に普及している製品も将来的には使用済み製品として大量に廃棄物になることが容易に予想できる。このように、希少資源であるコバルトや希土類金属を使用済み製品からリサイクルせずに廃棄物にすることは資源節約や資源セキュリティーの観点から好ましくない。最近ではこのような使用済み製品からコバルトや希土類金属といった有価金属を効果的に回収する方法を確立することが強く望まれている。   However, although yttrium and europium were used as phosphors for CRT televisions for analog broadcasting, in recent years, a large amount of CRTs have been discarded as used products with the shift to liquid crystal televisions. In addition, rapidly spreading products such as secondary batteries and three-wavelength fluorescent tubes can easily be expected to become a large amount of waste as used products in the future. As described above, it is not preferable from the viewpoint of resource saving and resource security to use rare resources such as cobalt and rare earth metals as waste without recycling from used products. Recently, it has been strongly desired to establish a method for effectively recovering valuable metals such as cobalt and rare earth metals from such used products.

<二次電池からのコバルトの回収>
ところで、上記の二次電池として、ニッケル水素電池やリチウムイオン電池等が挙げられ、これらの正極剤には、希少金属であるコバルトの他にマンガンが使用されている。そして、リチウムイオン電池の正極材においては、高価なコバルトに替わって安価なマンガンの比率を高くする傾向にある。最近では使用済み電池から有価金属の回収が試みられており、回収法の一つとして使用済み電池を炉に投入して溶解させ、メタルとスラグに分離してメタルを回収する乾式法がある。しかし、この方法ではマンガンはスラグに移行するため、コバルトのみしか回収できない。
<Recovery of cobalt from secondary batteries>
By the way, as said secondary battery, a nickel metal hydride battery, a lithium ion battery, etc. are mentioned, Manganese other than cobalt which is a rare metal is used for these positive electrode agents. And in the positive electrode material of a lithium ion battery, it tends to increase the ratio of inexpensive manganese instead of expensive cobalt. Recently, recovery of valuable metals from used batteries has been attempted. As one of the recovery methods, there is a dry method in which used batteries are put into a furnace and dissolved, and separated into metal and slag to recover the metal. However, in this method, since manganese is transferred to slag, only cobalt can be recovered.

その他、使用済み電池を酸に溶解して沈澱法、溶媒抽出法、電解採取等の分離方法を用いて金属を回収する湿式法も知られている。例えば、沈澱法では、コバルトとマンガンを含む溶液のpHを調整し、硫化剤を添加してコバルトの硫化澱物を得る方法や酸化剤を添加することでマンガンの酸化物澱物を得る方法が知られている(特許文献1参照)。しかし、この方法では、共沈が発生する等の課題があり、コバルトとマンガンとを完全に分離することは難しい。   In addition, a wet method is also known in which a used battery is dissolved in an acid, and a metal is recovered using a separation method such as a precipitation method, a solvent extraction method, or electrolytic collection. For example, in the precipitation method, there are a method of adjusting the pH of a solution containing cobalt and manganese, a method of obtaining a cobalt sulfide starch by adding a sulfurizing agent, and a method of obtaining a manganese oxide starch by adding an oxidizing agent. It is known (see Patent Document 1). However, this method has problems such as coprecipitation, and it is difficult to completely separate cobalt and manganese.

また、電解採取法によってコバルトをメタルとして回収しようとした場合、高濃度のマンガンが存在する系では陽極表面にマンガン酸化物が析出し、陽極の劣化が促進されることが知られている。また、特有の着色した微細なマンガン酸化物が電解液中に浮遊し、電解採取で使用する濾布の目詰まりや、マンガン酸化物によるコバルトメタルの汚染を生じる等、安定した操業が難しい。   Further, it is known that when cobalt is recovered as a metal by electrolytic collection, manganese oxide is deposited on the anode surface in a system in which a high concentration of manganese is present, and the deterioration of the anode is promoted. In addition, the specific colored fine manganese oxide floats in the electrolytic solution, and the filter cloth used for electrolytic collection is clogged, and the cobalt metal is contaminated with the manganese oxide, so that stable operation is difficult.

また、溶媒抽出法を用いてコバルトを回収しようとした場合、酸性抽出剤が広く用いられている。しかし、前述したように、最近ではリチウムイオン電池の正極剤に多くのマンガンが使用されていることから、電池の溶解液は高濃度のマンガンが存在し、このような系からコバルトを選択的かつ効果的に抽出する効果的な抽出剤は無い状況である。   Moreover, when trying to collect cobalt using a solvent extraction method, an acidic extractant is widely used. However, as described above, since a large amount of manganese is recently used in the positive electrode of lithium ion batteries, the battery solution contains a high concentration of manganese. There is no effective extractant to extract effectively.

使用済み電池のリサイクルの他、現在コバルトを生産するために行われているコバルト製錬では原料がニッケル酸化鉱等のニッケル鉱石であるが、ニッケル酸化鉱にはコバルトに比してマンガンの比率が高く、その存在比率はコバルトの5〜10倍程度であり、コバルトを製錬するにあたり、マンガンとの分離は大きな課題となっている。   In addition to recycling used batteries, cobalt smelting currently used to produce cobalt is made of nickel ore such as nickel oxide ore, but nickel oxide ore has a manganese ratio compared to cobalt. It is high and the abundance ratio is about 5 to 10 times that of cobalt. In refining cobalt, separation from manganese has become a major issue.

<三波長蛍光管及びブラウン管からの希土類金属の回収>
また、上記で挙げた三波長蛍光管に用いられる蛍光体には、ランタン、セリウム、イットリウム、テルビウム及びユーロピウムといった希土類金属の混合物が用いられる。さらに、ブラウン管用蛍光体にはイットリウム、ユーロピウムが高い比率の亜鉛とともに含まれて用いられる。
<Recovery of rare earth metals from three-wavelength fluorescent tubes and CRTs>
In addition, a mixture of rare earth metals such as lanthanum, cerium, yttrium, terbium and europium is used for the phosphor used in the three-wavelength fluorescent tube mentioned above. Furthermore, the phosphor for a cathode ray tube contains yttrium and europium together with a high ratio of zinc.

希土類金属の混合物から特定の希土類金属を回収する方法として、鉱酸等の酸に溶解した液から溶媒抽出法によって回収する方法が一般的に用いられている。希土類金属の相互分離には、例えばリン系の抽出剤である商品名PC88A(大八化学製)を用いた工業的な例がある。しかし、この抽出剤には構造中にリンを含んでいるため、工業的に使用する際は排水中に移行する抽出剤やその劣化物が公共用水域を汚染させないための高度な廃水処理が必要となる。国内の特定地域によっては水質汚濁法で規定される総量規制の対象となるため工業的な規模で使用する際には懸念点となる。   As a method for recovering a specific rare earth metal from a mixture of rare earth metals, a method of recovering by a solvent extraction method from a solution dissolved in an acid such as a mineral acid is generally used. For the mutual separation of rare earth metals, for example, there is an industrial example using a trade name PC88A (manufactured by Daihachi Chemical), which is a phosphorus-based extractant. However, because this extractant contains phosphorus in its structure, advanced wastewater treatment is required to prevent contamination of public water areas by extractants and their degradation products that migrate into wastewater when used industrially. It becomes. Depending on the specific area of the country, it is subject to the total amount regulation stipulated by the Water Pollution Law, which is a concern when used on an industrial scale.

リンを含まない抽出剤として、カルボン酸系の抽出剤(例えば2−メチル−2−エチル−1−ヘプタン酸:ネオデカン酸)が実用化している。しかし、この抽出剤は、中性以上の高いpH領域でしか抽出が進まないため、上述のような酸性溶液を対象とする場合、中和剤を多く必要とし、コストの増加が懸念される。さらに、カルボン酸系の抽出剤の抽出能力は前述のリン系の抽出剤よりも低く過大な設備が必要となりコストを上昇する問題もある。   As an extractant that does not contain phosphorus, a carboxylic acid-based extractant (for example, 2-methyl-2-ethyl-1-heptanoic acid: neodecanoic acid) has been put into practical use. However, since this extraction agent can be extracted only in a pH range higher than neutrality, when targeting an acidic solution as described above, a large amount of neutralizing agent is required and there is a concern about an increase in cost. In addition, the extraction capacity of the carboxylic acid-based extractant is lower than that of the above-described phosphorus-based extractant, and excessive equipment is required, which increases the cost.

このような問題を解決するために、ジグリコールアミド酸の骨格を持つDODGAAと呼ばれる抽出剤が開発されている(特許文献2参照)。しかし、この抽出剤を用いると、非特許文献1に示すように、希土類金属の中でも重希土類金属と呼ばれるイットリウム(Y)、ルテチウム(Lu)、イッテルビウム(Yb)、ツリウム(Tm)、エルビウム(Er)、ホルミウム(Ho)は、中希土類金属と呼ばれるジスプロシウム(Dy)、テルビウム(Tb)、ガドリニウム(Gd)、ユーロピウム(Eu)、サマリウム(Sm)とともに抽出される傾向が強いため、希土類金属の相互分離には適さない。また、DODGAAでは、軽希土類金属と呼ばれるプロメチウム(Pm)、ネオジム(Nd)、プラセオジム(Pr)、セリウム(Ce)、ランタン(La)の抽出率が低い。また、特に生産量が少なく高価なユーロピウム(Eu)も他の希土類金属から選択的に回収することはできない。このように、希土類金属を相互分離できる抽出剤、さらには、軽希土類金属を効率よく抽出できる抽出剤は見出されていない。   In order to solve such problems, an extractant called DODGAA having a diglycolamide acid skeleton has been developed (see Patent Document 2). However, when this extractant is used, as shown in Non-Patent Document 1, among rare earth metals, yttrium (Y), lutetium (Lu), ytterbium (Yb), thulium (Tm), erbium (Er) called heavy rare earth metals are used. ), Holmium (Ho) tends to be extracted together with dysprosium (Dy), terbium (Tb), gadolinium (Gd), europium (Eu), and samarium (Sm), which are called middle rare earth metals. Not suitable for separation. Moreover, in DODGAA, the extraction rate of promethium (Pm), neodymium (Nd), praseodymium (Pr), cerium (Ce), and lanthanum (La) called light rare earth metals is low. In addition, europium (Eu), which is particularly low in production and expensive, cannot be selectively recovered from other rare earth metals. Thus, an extractant that can separate rare earth metals from each other and an extractant that can efficiently extract light rare earth metals have not been found.

特開2000−234130号公報JP 2000-234130 A 特開2007−327085号公報JP 2007-327085 A

K. Shimojo, H. Naganawa, J. Noro, F. Kubota and M. Goto; Extraction behavior and separation of lanthanides with a diglycol amic acid derivative and a nitrogen-donor ligand; Anal. Sci., 23, 1427-30, 2007 Dec.K. Shimojo, H. Naganawa, J. Noro, F. Kubota and M. Goto; Extraction behavior and separation of lanthanides with a diglycol amic acid derivative and a nitrogen-donor ligand; Anal. Sci., 23, 1427-30, 2007 Dec.

本発明は、不純物を高濃度に含む酸性溶液から有価金属を選択的に抽出することを目的とする。   An object of the present invention is to selectively extract valuable metals from an acidic solution containing impurities at a high concentration.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、下記一般式で表されるアミド誘導体を提供することで上記の目的を達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that the above object can be achieved by providing an amide derivative represented by the following general formula, and have completed the present invention. .

具体的には、本発明では、以下のようなものを提供する。   Specifically, the present invention provides the following.

(1)本発明は、下記一般式で表されるアミド誘導体である。

Figure 0005578750
(式中、C 17 は分鎖であり、Rは水素原子又はアルキル基を示す。) (1) The present invention is an amide derivative represented by the following general formula .
Figure 0005578750
(In the formula , C 8 H 17 is a branched chain, and R represents a hydrogen atom or an alkyl group .)

本発明によれば、不純物を高濃度に含む酸性溶液から有価金属を選択的に抽出できる。   According to the present invention, valuable metals can be selectively extracted from an acidic solution containing impurities at a high concentration.

実施例1で合成されたグリシンアミド誘導体のH−NMRスペクトルを示す図である。1 is a diagram showing a 1 H-NMR spectrum of a glycinamide derivative synthesized in Example 1. FIG. 実施例1で合成されたグリシンアミド誘導体の13C−NMRスペクトルを示す図である。1 is a diagram showing a 13 C-NMR spectrum of a glycinamide derivative synthesized in Example 1. FIG. 実施例1のアミド誘導体を用いて、コバルト及びマンガンを含む酸性溶液からコバルトを抽出したときの結果を示す。The result when cobalt is extracted from an acidic solution containing cobalt and manganese using the amide derivative of Example 1 is shown. 実施例2のアミド誘導体を用いて、コバルト及びマンガンを含む酸性溶液からコバルトを抽出したときの結果を示す。The result when cobalt is extracted from an acidic solution containing cobalt and manganese using the amide derivative of Example 2 is shown. 参考例3のアミド誘導体を用いて、コバルト及びマンガンを含む酸性溶液からコバルトを抽出したときの結果を示す。The result when cobalt is extracted from an acidic solution containing cobalt and manganese using the amide derivative of Reference Example 3 is shown. 比較例1に係る市販のカルボン酸系コバルト抽出剤を用いて、コバルト及びマンガンを含む酸性溶液からコバルトを抽出したときの結果を示す。The result when cobalt is extracted from an acidic solution containing cobalt and manganese using a commercially available carboxylic acid-based cobalt extractant according to Comparative Example 1 is shown. 実施例1のアミド誘導体を用いて、ユーロピウム、イットリウム及び亜鉛を含む酸性溶液からユーロピウムを抽出したときの結果を示す。The result when extracting europium from the acidic solution containing europium, yttrium, and zinc using the amide derivative of Example 1 is shown. 比較例2に係るN,N−ジオクチル−3−オキサペンタン−1,5−アミド酸を用いて、ユーロピウム、イットリウム及び亜鉛を含む酸性溶液からユーロピウムを抽出したときの結果を示す。The result when extracting europium from the acidic solution containing europium, yttrium, and zinc using N, N-dioctyl-3-oxapentane-1,5-amidic acid according to Comparative Example 2 is shown. 実施例1のアミド誘導体を用いて、軽希土類金属及び重希土類金属を含有する酸性溶液から軽希土類金属を抽出したときの結果を示す。The result when light rare earth metal is extracted from an acidic solution containing light rare earth metal and heavy rare earth metal using the amide derivative of Example 1 is shown.

以下、本発明の具体的な実施形態について詳細に説明するが、本発明は以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。   Hereinafter, specific embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and may be implemented with appropriate modifications within the scope of the object of the present invention. Can do.

<アミド誘導体>
本発明のアミド誘導体は、下記一般式で表される。

Figure 0005578750
<Amide derivatives>
The amide derivative of the present invention is represented by the following general formula .
Figure 0005578750

式中、 17 は分鎖であり、置換基Rは水素原子又はアルキル基を示す。本発明ではアミドの骨格にアルキル基を導入することによって、親油性を高め、抽出剤として用いることができる。 In the formula, C 8 H 17 is a branched chain, and the substituent R represents a hydrogen atom or an alkyl group . In the present invention, by introducing an alkyl group into the amide skeleton, the lipophilicity can be increased and used as an extractant.

上記アミド誘導体は、グリシンアミド誘導体及びノルマル−メチルグリシン誘導体のいずれか1以上であることが好ましい。アミド誘導体がグリシンアミド誘導体である場合、上記のグリシンアミド誘導体は、次の方法によって合成できる。まず、NH(C 17 で表される構造のアルキルアミンに2−ハロゲン化アセチルハライドを加え、求核置換反応によりアミンの水素原子を2−ハロゲン化アセチルに置換することによって、2−ハロゲン化(N,N−ジ)アルキルアセトアミドを得る。 The above amide derivatives, glycine amide derived body及 beauty normal - is preferably any one or more of methyl glycine derivative. When the amide derivative is a glycinamide derivative, the above glycinamide derivative can be synthesized by the following method. First, 2-halogenated acetyl halide is added to an alkylamine having a structure represented by NH (C 8 H 17 ) 2 , and the hydrogen atom of the amine is substituted with 2-halogenated acetyl by nucleophilic substitution reaction. -Halogenated (N, N-di) alkylacetamide is obtained.

次に、グリシン又はN−アルキルグリシン誘導体に上記2−ハロゲン化(N,N−ジ)アルキルアセトアミドを加え、求核置換反応によりグリシン又はN−アルキルグリシン誘導体の水素原子の一つを(N,N−ジ)アルキルアセトアミド基に置換する。これら2段階の反応によってグリシンアルキルアミド誘導体を合成できる。   Next, the above-mentioned 2-halogenated (N, N-di) alkylacetamide is added to glycine or an N-alkylglycine derivative, and one of the hydrogen atoms of the glycine or N-alkylglycine derivative is (N, N) by a nucleophilic substitution reaction. Substitution with an N-di) alkylacetamide group. A glycine alkylamide derivative can be synthesized by these two-step reactions.

なお、グリシンをヒスチジン、リジン、アスパラギン酸に置き換えれば、ヒスチジンアミド誘導体、リジンアミド誘導体、アスパラギン酸アミド誘導体を合成できるが、リジンやアスパラギン酸誘導体による抽出挙動は、対象とするマンガンやコバルト等の錯安定定数から、グリシン誘導体及びヒスチジンアミド誘導体を用いた結果の範囲内に収まると考えられる。   Replacing glycine with histidine, lysine, and aspartic acid can synthesize histidine amide derivatives, lysine amide derivatives, and aspartic acid amide derivatives. From the constant, it is considered to be within the range of the results using the glycine derivative and the histidine amide derivative.

<有価金属の抽出方法>
上記方法によって合成した抽出剤を用いて有価金属イオンを抽出するには、目的の有価金属イオンを含む酸性水溶液を調整しながら、この酸性水溶液を、上記抽出剤の有機溶液に加えて混合する。これによって、有機相に目的の有価金属イオンを選択的に抽出することができる。
<Method for extracting valuable metals>
In order to extract valuable metal ions using the extractant synthesized by the above method, this acidic aqueous solution is added to and mixed with the organic solution of the extractant while adjusting the acidic aqueous solution containing the target valuable metal ions. Thereby, the target valuable metal ion can be selectively extracted into the organic phase.

有価金属イオンを抽出した後の有機溶媒を分取し、これに上記酸性水溶液よりpHを低く調整した逆抽出始液を加えて撹拌することにより、目的の有価金属イオンを有機溶媒に抽出して分離し、さらに、有機溶媒から目的の有価金属イオンを逆抽出することで目的の有価金属イオンを水溶液中に回収することができる。逆抽出溶液としては、例えば、硝酸、塩酸、硫酸を希釈した水溶液が好適に用いられる。また、有機相と水相の比率を適宜変更することによって、目的の有価金属イオンを濃縮することもできる。   The organic solvent after extracting the valuable metal ions is separated, and the reverse extraction starting liquid whose pH is adjusted lower than that of the acidic aqueous solution is added thereto and stirred to extract the desired valuable metal ions into the organic solvent. The target valuable metal ions can be recovered in the aqueous solution by separating and further back extracting the target valuable metal ions from the organic solvent. As the back extraction solution, for example, an aqueous solution in which nitric acid, hydrochloric acid, or sulfuric acid is diluted is preferably used. Moreover, the objective valuable metal ion can also be concentrated by changing suitably the ratio of an organic phase and an aqueous phase.

有機溶媒は、抽出剤及び金属抽出種が溶解する溶媒であればどのようなものであってもよく、例えば、クロロホルム、ジクロロメタン等の塩素系溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素、ヘキサン等の脂肪族炭化水素等が挙げられる。これらの有機溶媒は、単独でも複数混合しても良く、1−オクタノールのようなアルコール類を混合しても良い。   The organic solvent may be any solvent as long as the extractant and the metal extraction species are dissolved, for example, a chlorinated solvent such as chloroform and dichloromethane, an aromatic hydrocarbon such as benzene, toluene, and xylene, Examples thereof include aliphatic hydrocarbons such as hexane. These organic solvents may be used alone or in combination, and alcohols such as 1-octanol may be mixed.

抽出剤の濃度は、有価金属の種類及び濃度によって適宜設定できる。また、撹拌時間及び抽出温度は、平衡到達時間が有価金属の種類、濃度のほか、加える抽出剤の量によって変化するため、有価金属イオンの酸性水溶液、及び抽出剤の有機溶液の条件によって適宜設定すればよい。金属イオンを含む酸性水溶液のpHも、有価金属の種類によって適宜調整できる。   The concentration of the extractant can be appropriately set depending on the type and concentration of the valuable metal. The stirring time and extraction temperature are appropriately set according to the conditions of the acidic aqueous solution of valuable metal ions and the organic solution of the extractant because the equilibrium time varies depending on the type and concentration of the valuable metal and the amount of extractant added. do it. The pH of the acidic aqueous solution containing metal ions can also be adjusted as appropriate depending on the type of valuable metal.

[コバルトの抽出]
コバルトとマンガンを含有する酸性水溶液から、コバルトを効率的に回収する際、上記のアミノ誘導体であれば、いずれのアミノ誘導体を抽出剤としてもよいが、中でも、ノルマル−メチルグリシン誘導体又はヒスチジンアミド誘導体を用いると、好適なpHの範囲が広く、コバルト抽出を工業的に行う際、利便性がより高くなる点で好ましい。pHについては、コバルトとマンガンを含む酸性水溶液のpHを3.5以上5.5以下に調整しながら抽出剤の有機溶液を加えることが好ましく、上記pHを4.0以上5.0以下に調整しながら抽出剤の有機溶液を加えることがより好ましい。pHが3.5未満であると、抽出剤の種類によってはコバルトを十分に抽出できない可能性がある。pHが5.5を超えると、抽出剤の種類によってはコバルトだけでなく、マンガンも抽出されてしまう可能性がある。
[Extraction of cobalt]
When efficiently recovering cobalt from an acidic aqueous solution containing cobalt and manganese, any amino derivative may be used as an extractant as long as it is the above-described amino derivative, among which normal-methylglycine derivative or histidine amide derivative Is preferable because it has a wide pH range and is more convenient for cobalt extraction industrially. About pH, it is preferable to add the organic solution of an extractant, adjusting the pH of the acidic aqueous solution containing cobalt and manganese to 3.5 or more and 5.5 or less, and adjusting the said pH to 4.0 or more and 5.0 or less More preferably, an organic solution of the extractant is added. If the pH is less than 3.5, cobalt may not be sufficiently extracted depending on the type of the extractant. When pH exceeds 5.5, depending on the kind of extractant, not only cobalt but also manganese may be extracted.

[ユーロピウムの抽出]
ユーロピウム、イットリウム等の複数種類の希土類金属と、亜鉛とを含有する酸性水溶液からユーロピウムを効率的に回収するためには、この酸性水溶液のpHを2.0以上3.0以下に調整しながら抽出剤の有機溶液を加えることが好ましい。pHが2.0未満であると、ユーロピウムを十分に抽出できないため、好ましくない。pHが3.0を超えると、ユーロピウムだけでなく、イットリウムをはじめとした他の希土類金属も抽出されてしまうため、好ましくない。
[Extraction of europium]
In order to efficiently recover europium from an acidic aqueous solution containing multiple types of rare earth metals such as europium and yttrium, and zinc, extraction is performed while adjusting the pH of the acidic aqueous solution to 2.0 to 3.0. It is preferred to add an organic solution of the agent. If the pH is less than 2.0, europium cannot be sufficiently extracted, which is not preferable. If the pH exceeds 3.0, not only europium but also other rare earth metals such as yttrium are extracted, which is not preferable.

[希土類元素の選択抽出]
本発明の抽出剤は、従来から知られていた抽出剤DODGAAと比較し、軽希土類元素と中希土類元素の方が重希土類元素よりも抽出しやすい特徴がある。このため、特に重希土類元素と軽希土類元素の両方を含有する溶液のpHを調整しながら、本発明の抽出剤と接触させることにより、溶液から軽希土類元素を抽出し、重希土類元素を抽出後液に分配することで分離できる。また、中希土類元素も含有される溶液の場合には、上記の抽出剤中から逆抽出した溶液にDODGAAを再度接触させることにより、軽希土類元素と中希土類元素とを分離することも可能である。
[Selective extraction of rare earth elements]
The extractant of the present invention is characterized in that light rare earth elements and medium rare earth elements are easier to extract than heavy rare earth elements, compared with the conventionally known extractant DODGAA. For this reason, after adjusting the pH of the solution containing both heavy rare earth elements and light rare earth elements, the light rare earth elements are extracted from the solution by contacting with the extractant of the present invention, and the heavy rare earth elements are extracted. Separation can be achieved by distributing the liquid. In the case of a solution that also contains medium rare earth elements, it is possible to separate light rare earth elements and medium rare earth elements by bringing DODGAA into contact again with the solution back-extracted from the above extractant. .

重希土類元素と軽希土類元素を含有する酸性水溶液から、軽希土類元素を効率的に回収するためには、重希土類元素と軽希土類元素を含む酸性水溶液のpHを1.7以上2.7以下に調整しながら抽出剤の有機溶液を加えることが好ましく、上記pHを1.9以上2.5以下に調整しながら抽出剤の有機溶液を加えることがより好ましく、上記pHを2.1以上2.4以下に調整しながら抽出剤の有機溶液を加えることがさらに好ましい。pHが1.7未満であると、重希土類元素と軽希土類元素との分離が完全でなく、結果として軽希土類元素を十分に抽出できない可能性があるため、好ましくない。pHが2.7を超えると、軽希土類元素だけでなく、重希土類元素も抽出されてしまい、結果として希土類元素の選択性が低くなるため、好ましくない。   In order to efficiently recover light rare earth elements from an acidic aqueous solution containing heavy rare earth elements and light rare earth elements, the pH of the acidic aqueous solution containing heavy rare earth elements and light rare earth elements is set to 1.7 or more and 2.7 or less. It is preferable to add an organic solution of the extractant while adjusting, more preferably, an organic solution of the extractant is added while adjusting the pH to 1.9 to 2.5, and the pH is adjusted to 2.1 to 2. More preferably, the organic solution of the extractant is added while adjusting to 4 or less. When the pH is less than 1.7, the separation of the heavy rare earth element and the light rare earth element is not complete, and as a result, the light rare earth element may not be sufficiently extracted. If the pH exceeds 2.7, not only light rare earth elements but also heavy rare earth elements are extracted, resulting in low selectivity of rare earth elements, which is not preferable.

本発明の抽出剤が従来の抽出剤と異なる抽出挙動をとるメカニズムは正確にはわからないが、本発明の抽出剤の構造上の特徴によって従来なかった効果が得られたと考えられる。   Although the mechanism by which the extractant of the present invention takes an extraction behavior different from that of the conventional extractant is not exactly known, it is considered that an effect that has not been obtained conventionally is obtained by the structural characteristics of the extractant of the present invention.

以下、実施例により、本発明をさらに詳細に説明するが、本発明はこれらの記載に何ら制限を受けるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention does not receive a restriction | limiting at all in these description.

<実施例1> (グリシンアミド誘導体の合成)
抽出剤となるアミド誘導体の一例として、下記一般式(I)で表されるグリシンアミド誘導体、すなわち、2つの2−エチルヘキシル基を導入したN−[N,N−ビス(2−エチルヘキシル)アミノカルボニルメチル]グリシン(N−[N,N−Bis(2−ethylhexyl)aminocarbonylmethyl]glycine)(あるいはN,N−ジ(2−エチルヘキシル)アセトアミド−2−グリシン(N,N−di(2−ethylhexyl)acetamide−2−glycine)ともいい、以下「D2EHAG」という。)を合成した。
<Example 1> (Synthesis of glycinamide derivative)
As an example of an amide derivative used as an extractant, a glycinamide derivative represented by the following general formula (I), that is, N- [N, N-bis (2-ethylhexyl) aminocarbonyl into which two 2-ethylhexyl groups are introduced Methyl] glycine (N- [N, N-Bis (2-ethylhexyl) aminocarbonylmethyl] glycine) (or N, N-di (2-ethylhexyl) acetamido-2-glycine (N, N-di (2-ethylhexyl) acetamide) -2-glycine), hereinafter referred to as “D2EHAG”).

D2EHAGの合成は、次のようにして行った。まず、下記反応式(II)に示すように、市販のジ(2−エチルヘキシル)アミン23.1g(0.1mol)と、トリエチルアミン10.1g(0.1mol)とを分取し、これにクロロホルムを加えて溶解し、次いで2−クロロアセチルクロリド13.5g(0.12mol)を滴下した後、1mol/lの塩酸で1回洗浄し、その後、イオン交換水で洗浄し、クロロホルム相を分取した。
次に、無水硫酸ナトリウムを適量(約10〜20g)加え、脱水した後、ろ過し、黄色液体29.1gを得た。この黄色液体(反応生成物)の構造を、核磁気共鳴分析装置(NMR)を用いて同定したところ、上記黄色液体は、2−クロロ−N,N−ジ(2−エチルヘキシル)アセトアミド(以下「CDEHAA」という。)の構造であることが確認された。なお、CDEHAAの収率は、原料であるジ(2−エチルヘキシル)アミンに対して90%であった。

Figure 0005578750
D2EHAG was synthesized as follows. First, as shown in the following reaction formula (II), 23.1 g (0.1 mol) of commercially available di (2-ethylhexyl) amine and 10.1 g (0.1 mol) of triethylamine were fractionated and mixed with chloroform. Then, 13.5 g (0.12 mol) of 2-chloroacetyl chloride was added dropwise, then washed once with 1 mol / l hydrochloric acid, then with ion-exchanged water, and the chloroform phase was separated. did.
Next, an appropriate amount (about 10 to 20 g) of anhydrous sodium sulfate was added and dehydrated, followed by filtration to obtain 29.1 g of a yellow liquid. When the structure of this yellow liquid (reaction product) was identified using a nuclear magnetic resonance analyzer (NMR), the yellow liquid was identified as 2-chloro-N, N-di (2-ethylhexyl) acetamide (hereinafter “ CDEHAA ”)). The yield of CDEHAA was 90% with respect to di (2-ethylhexyl) amine as a raw material.
Figure 0005578750

次に、下記反応式(III)に示すように、水酸化ナトリウム8.0g(0.2mol)にメタノールを加えて溶解し、さらにグリシン15.01g(0.2mol)を加えた溶液を撹拌しながら、上記CDEHAA12.72g(0.04mol)をゆっくりと滴下し、撹拌した。撹拌を終えた後、反応液中の溶媒を留去し、残留物にクロロホルムを加えて溶解した。この溶液に1mol/lの硫酸を添加して酸性にした後、イオン交換水で洗浄し、クロロホルム相を分取した。
このクロロホルム相に無水硫酸マグネシウム適量を加え脱水し、ろ過した。再び溶媒を減圧除去し、12.5gの黄色糊状体を得た。上記のCDEHAA量を基準とした収率は87%であった。黄色糊状体の構造をNMR及び元素分析により同定したところ、図1及び図2に示すように、D2EHAGの構造を持つことが確認された。上記の工程を経て、実施例1のアミド誘導体を得た。

Figure 0005578750
Next, as shown in the following reaction formula (III), methanol is added to and dissolved in 8.0 g (0.2 mol) of sodium hydroxide, and the solution in which 15.01 g (0.2 mol) of glycine is further added is stirred. Then, 12.72 g (0.04 mol) of the above CDEHAA was slowly added dropwise and stirred. After completion of the stirring, the solvent in the reaction solution was distilled off, and chloroform was added to the residue to dissolve it. The solution was acidified by adding 1 mol / l sulfuric acid, washed with ion-exchanged water, and the chloroform phase was separated.
An appropriate amount of anhydrous magnesium sulfate was added to the chloroform phase for dehydration and filtration. The solvent was removed again under reduced pressure to obtain 12.5 g of a yellow paste. The yield based on the above CDEHAA amount was 87%. When the structure of the yellow paste was identified by NMR and elemental analysis, it was confirmed that it had a D2EHAG structure as shown in FIGS. The amide derivative of Example 1 was obtained through the above steps.
Figure 0005578750

<実施例2> (ノルマル−メチルグリシン誘導体の合成)
抽出剤となるアミド誘導体の他の一例として、下記一般式(I)で表されるノルマル−メチルグリシン誘導体、すなわち、2つの2−エチルヘキシル基を導入したN−[N,N−ビス(2−エチルヘキシル)アミノカルボニルメチル]サルコシン(N−[N,N−Bis(2−ethylhexyl)aminocarbonylmethyl]sarcocine)(あるいはN,N−ジ(2−エチルヘキシル)アセトアミド−2−サルコシン(N,N−di(2−ethylhexyl)acetamide−2−sarcocine)ともいい、以下「D2EHAS」という。)を合成した。
<Example 2> (Synthesis of normal-methylglycine derivative)
As another example of the amide derivative serving as an extractant, a normal-methylglycine derivative represented by the following general formula (I), that is, N- [N, N-bis (2- Ethylhexyl) aminocarbonylmethyl] sarcosine (N- [N, N-Bis (2-ethylhexyl) aminocarbonylmethyl) sarcosine) (or N, N-di (2-ethylhexyl) acetamido-2-sarcosine (N, N-di (2 -Ethylhexyl) acetamide-2-sarcosine), hereinafter referred to as "D2EHAS").

D2EHASの合成は、次のようにして行った。下記反応式(IV)に示すように、水酸化ナトリウム5.3g(0.132mol)にメタノールを加えて溶解し、さらにサルコシン(N−メチルグリシン)11.8g(0.132mol)を加えた溶液を撹拌しながら、上記CDEHAA36.3g(0.12mol)をゆっくりと滴下し、撹拌した。撹拌を終えた後、反応液中の溶媒を留去し、残留物にクロロホルムを加えて溶解した。この溶液に1mol/lの硫酸を添加して酸性にした後、イオン交換水で洗浄し、クロロホルム相を分取した。
このクロロホルム相に無水硫酸マグネシウム適量を加え脱水し、ろ過した。再び溶媒を減圧除去し、26.8gの黄褐色糊状体を得た。上記のCDEHAA量を基準とした収率は60%であった。黄色糊状体の構造をNMR及び元素分析により同定したところ、D2EHASの構造を持つことが確認された。上記の工程を経て、実施例2のアミド誘導体を得た。

Figure 0005578750
The synthesis of D2EHAS was performed as follows. As shown in the following reaction formula (IV), methanol is added to and dissolved in 5.3 g (0.132 mol) of sodium hydroxide, and 11.8 g (0.132 mol) of sarcosine (N-methylglycine) is further added. While stirring, 36.3 g (0.12 mol) of the above CDEHAA was slowly added dropwise and stirred. After completion of the stirring, the solvent in the reaction solution was distilled off, and chloroform was added to the residue to dissolve it. The solution was acidified by adding 1 mol / l sulfuric acid, washed with ion-exchanged water, and the chloroform phase was separated.
An appropriate amount of anhydrous magnesium sulfate was added to the chloroform phase for dehydration and filtration. The solvent was removed again under reduced pressure to obtain 26.8 g of a tan paste. The yield based on the above CDEHAA amount was 60%. When the structure of the yellow paste was identified by NMR and elemental analysis, it was confirmed to have a D2EHAS structure. The amide derivative of Example 2 was obtained through the above steps.
Figure 0005578750

参考例3> (ヒスチジンアミド誘導体の合成)
抽出剤となるアミド誘導体の他の一例として、下記一般式(I)で表されるヒスチジンアミド誘導体、すなわち、2つの2−エチルヘキシル基を導入したN−[N,N−ビス(2−エチルヘキシル)アミノカルボニルメチル]ヒスチジン(N−[N,N−Bis(2−ethylhexyl)aminocarbonylmethyl]histidine)(或いはN,N−ジ(2−エチルヘキシル)アセトアミド−2−ヒスチジン(N,N−di(2−ethylhexyl)acetamide−2−histidine)ともいい、以下「D2EHAH」という。)を合成した。
Reference Example 3 (Synthesis of histidine amide derivative)
As another example of an amide derivative serving as an extractant, a histidine amide derivative represented by the following general formula (I), that is, N- [N, N-bis (2-ethylhexyl) into which two 2-ethylhexyl groups are introduced Aminocarbonylmethyl] histidine (N- [N, N-Bis (2-ethylhexyl) aminocarbonylmethyl) histidine) (or N, N-di (2-ethylhexyl) acetamido-2-histidine (N, N-di (2-ethylhexyl)) ) Acetamide-2-histidine), hereinafter referred to as “D2EHAH”).

D2EHAHの合成は、次のようにして行った。下記反応式(V)に示すように、水酸化ナトリウム16g(0.4mol)にメタノールを加えて溶解し、さらにヒスチジン31.0g(0.2mol)を加えた溶液を撹拌しながら、上記CDEHAA13.2g(0.04mol)をゆっくりと滴下した。滴下終了後、アルカリ性条件を維持しながら撹拌した。撹拌を終えた後、反応液中の溶媒を留去し、残留物に酢酸エチルを加えて溶解した。この溶液を洗浄し、酢酸エチル相を分取した。
この酢酸エチル相に無水硫酸マグネシウム適量を加え脱水し、ろ過した。再び溶媒を減圧除去し、9.9gの黄褐色糊状体を得た。上記のCDEHAA量を基準とした収率は57%であった。黄褐色糊状体の構造をNMR及び元素分析により同定したところ、D2EHAHの構造を持つことが確認された。上記の工程を経て、参考例3のアミド誘導体を得た。

Figure 0005578750
The synthesis of D2EHAH was performed as follows. As shown in the following reaction formula (V), methanol was added to 16 g (0.4 mol) of sodium hydroxide to dissolve it, and further, 31.0 g (0.2 mol) of histidine was further added, while stirring, the CDEHAA13. 2 g (0.04 mol) was slowly added dropwise. After completion of dropping, the mixture was stirred while maintaining alkaline conditions. After completion of the stirring, the solvent in the reaction solution was distilled off, and the residue was dissolved by adding ethyl acetate. This solution was washed and the ethyl acetate phase was separated.
An appropriate amount of anhydrous magnesium sulfate was added to the ethyl acetate phase for dehydration and filtration. The solvent was removed again under reduced pressure to obtain 9.9 g of a tan paste. The yield based on the above CDEHAA amount was 57%. When the structure of the yellowish brown paste was identified by NMR and elemental analysis, it was confirmed to have the structure of D2EHAH. The amide derivative of Reference Example 3 was obtained through the above steps.
Figure 0005578750

<比較例1>
比較例1として、市販のカルボン酸系コバルト抽出剤(商品名:VA−10,ネオデカン酸,ヘキシオン・スペシャリティケミカルズ・ジャパン社製)を用いた。
<Comparative Example 1>
As Comparative Example 1, a commercially available carboxylic acid-based cobalt extractant (trade name: VA-10, neodecanoic acid, manufactured by Hexion Specialty Chemicals Japan) was used.

<比較例2>
比較例2として、従来公知のユーロピウム抽出剤であるN,N−ジオクチル−3−オキサペンタン−1,5−アミド酸(以下、「DODGAA」という。)を用いた。
<Comparative example 2>
As Comparative Example 2, N, N-dioctyl-3-oxapentane-1,5-amidic acid (hereinafter referred to as “DODGAA”), which is a conventionally known europium extractant, was used.

DODGAAの合成は、次のようにして行った。まず、下記反応式(VI)に示すように、無水ジグリコール酸4.2gを丸底フラスコに取り、ジクロロメタン40mlを入れて懸濁させた。その後、ジオクチルアミン(純度98%)7gをジクロロメタン10mlに溶解させ、滴下漏斗にてゆっくりと加えた。室温で撹拌しながら、無水ジグリコール酸が反応して溶液が透明になることを確認し、反応を終了した。

Figure 0005578750
The synthesis of DODGAA was performed as follows. First, as shown in the following reaction formula (VI), 4.2 g of diglycolic anhydride was placed in a round bottom flask and suspended in 40 ml of dichloromethane. Thereafter, 7 g of dioctylamine (purity 98%) was dissolved in 10 ml of dichloromethane and slowly added with a dropping funnel. While stirring at room temperature, it was confirmed that diglycolic anhydride reacted and the solution became transparent, and the reaction was terminated.
Figure 0005578750

続いて、上記溶液を水で洗浄し、水溶性不純物を除去した。そして、水洗浄後の溶液に、脱水剤として硫酸ナトリウムを加えた。そして、溶液を吸引ろ過し、その後、溶媒を蒸発させた。そして、ヘキサンを用いて再結晶(3回)した後、真空乾燥した。得られた物質の収量は9.57gであり、上記の無水ジグリコール酸を基準とした収率は94.3%であった。そして、得られた物質の構造をNMR及び元素分析により同定したところ、純度99%以上のDODGAAであることが確認された。   Subsequently, the solution was washed with water to remove water-soluble impurities. Then, sodium sulfate was added as a dehydrating agent to the solution after washing with water. The solution was filtered with suction, and then the solvent was evaporated. And after recrystallizing (three times) using hexane, it vacuum-dried. The yield of the obtained substance was 9.57 g, and the yield based on the above diglycolic anhydride was 94.3%. And when the structure of the obtained substance was identified by NMR and elemental analysis, it was confirmed that it was DODGAA having a purity of 99% or more.

<コバルトの抽出>
実施例1,2、参考例3及び比較例1の化合物を用いて、コバルトの抽出分離を行った。
<Extraction of cobalt>
Using the compounds of Examples 1 and 2, Reference Example 3 and Comparative Example 1, cobalt was extracted and separated.

[実施例1,2及び参考例3
コバルトとマンガンをそれぞれ1×10−4mol/l含み、pHを2.5〜7.5に調整した数種類の硫酸酸性溶液と、それと同体積の0.01mol/lの有価金属抽出剤を含むノルマルドデカン溶液を試験管に加えて25℃恒温庫内に入れ、24時間振とうした。このとき、硫酸溶液のpHは、濃度0.1mol/lの硫酸、硫酸アンモニウム及びアンモニアを用いて調整した。
[Examples 1 and 2 and Reference Example 3 ]
Contains several kinds of sulfuric acid acidic solution containing 1 × 10 −4 mol / l of cobalt and manganese and pH adjusted to 2.5 to 7.5, and 0.01 mol / l of valuable metal extractant with the same volume. The normal dodecane solution was added to a test tube, placed in a thermostatic chamber at 25 ° C., and shaken for 24 hours. At this time, the pH of the sulfuric acid solution was adjusted using sulfuric acid, ammonium sulfate and ammonia having a concentration of 0.1 mol / l.

振とう後、水相を分取し、誘導プラズマ発光分光分析装置(ICP−AES)を用いてコバルト濃度及びマンガン濃度を測定した。また、有機相について、1mol/lの硫酸を用いて逆抽出した。そして、逆抽出相中のコバルト濃度及びマンガン濃度を、ICP−AESを用いて測定した。これらの測定結果から、コバルト及びマンガンの抽出率を、有機相中の物量/(有機相中の物量+水相中の物量)で定義し、求めた。実施例1のアミド誘導体を用いたときの結果を図3に示し、実施例2のアミド誘導体を用いたときの結果を図4に示し、参考例3のアミド誘導体を用いたときの結果を図5に示す。図3〜5の横軸は、硫酸酸性溶液のpHであり、縦軸は、コバルト又はマンガンの抽出率(単位:%)である。グラフ中、四角はコバルトの抽出率を示し、丸はマンガンの抽出率を示す。 After shaking, the aqueous phase was separated, and the cobalt concentration and the manganese concentration were measured using an induction plasma emission spectrometer (ICP-AES). The organic phase was back extracted with 1 mol / l sulfuric acid. And the cobalt concentration and manganese concentration in a back extraction phase were measured using ICP-AES. From these measurement results, the extraction rate of cobalt and manganese was defined by the quantity in the organic phase / (the quantity in the organic phase + the quantity in the aqueous phase). FIG. 3 shows the results when using the amide derivative of Example 1, FIG. 4 shows the results when using the amide derivative of Example 2, and shows the results when using the amide derivative of Reference Example 3. As shown in FIG. The horizontal axis of FIGS. 3-5 is pH of a sulfuric acid acidic solution, and a vertical axis | shaft is the extraction rate (unit:%) of cobalt or manganese. In the graph, squares indicate cobalt extraction rates, and circles indicate manganese extraction rates.

[比較例1]
硫酸酸性溶液のpHを4.0〜7.5に調整したこと、及びアミド誘導体を含むノルマルドデカン溶液の濃度を実施例の10倍である0.1mol/lにしたこと以外は、実施例と同じ方法にてコバルトを抽出した。結果を図6に示す。図6の横軸は、硫酸酸性溶液のpHであり、縦軸は、コバルト又はマンガンの抽出率(単位:%)である。グラフ中、四角はコバルトの抽出率を示し、ダイヤ形はマンガンの抽出率を示す。
[Comparative Example 1]
Except that the pH of the sulfuric acid acidic solution was adjusted to 4.0 to 7.5 and that the concentration of the normal decane solution containing the amide derivative was 0.1 mol / l, which is 10 times that of the example, Cobalt was extracted by the same method. The results are shown in FIG. The horizontal axis of FIG. 6 is the pH of the sulfuric acid acidic solution, and the vertical axis is the extraction rate (unit:%) of cobalt or manganese. In the graph, the square indicates the extraction rate of cobalt, and the diamond shape indicates the extraction rate of manganese.

実施例のアミド誘導体を用いると、pHが3.0以上5.5以下の範囲では、少なくとも20%を超える抽出率でコバルトを抽出できることが確認された(図3〜図5)。とりわけ、ノルマル−メチルグリシン誘導体又はヒスチジンアミド誘導体を用いると、好適なpHの範囲が広く、本発明のコバルト抽出を工業的に行う際、より利便性が高いことが確認された(図4、図5)。また、誘導体の種類にかかわらず、pHが4.0以上5.0以下の範囲では、80%を超える抽出率でコバルトを抽出できるとともに、マンガンはほとんど抽出されないことが確認された(図3〜図5)。一方、比較例1のアミド誘導体を用いると、抽出剤の濃度を実施例の10倍にしたとしても、20%未満の抽出率でしかコバルトを抽出できないことが確認された(図6)。   When the amide derivative of the example was used, it was confirmed that cobalt could be extracted at an extraction rate exceeding 20% within a pH range of 3.0 to 5.5 (FIGS. 3 to 5). In particular, when a normal-methylglycine derivative or a histidine amide derivative was used, it was confirmed that the preferred pH range was wide and more convenient when industrially performing the cobalt extraction of the present invention (FIG. 4, FIG. 4). 5). Regardless of the type of derivative, it was confirmed that in the range of pH 4.0 to 5.0, cobalt can be extracted at an extraction rate exceeding 80%, and manganese is hardly extracted (FIG. 3). FIG. 5). On the other hand, when the amide derivative of Comparative Example 1 was used, it was confirmed that cobalt could be extracted only with an extraction rate of less than 20% even when the concentration of the extractant was 10 times that of the Example (FIG. 6).

<ユーロピウムの抽出>
実施例1及び比較例2の化合物を用いて、ユーロピウムの抽出分離を行った。
<Extraction of Europium>
Europium was extracted and separated using the compounds of Example 1 and Comparative Example 2.

[実施例1]
イットリウム、ユーロピウム及び亜鉛をそれぞれ1×10−4mol/l含み、pHを1〜4に調整した数種類の酸性溶液と、それと同体積の0.01mol/lの有価金属抽出剤を含むノルマルドデカン溶液を試験管に加えて25℃恒温庫内に入れ、24時間振とうした。このとき、酸性溶液のpHは、濃度0.1mol/lの硝酸、酢酸及び酢酸ナトリウムを用いて調整した。
[Example 1]
A normal decane solution containing several kinds of acidic solutions each containing 1 × 10 −4 mol / l of yttrium, europium and zinc and adjusting the pH to 1 to 4 and 0.01 mol / l of valuable metal extractant of the same volume Was added to a test tube, placed in a thermostatic chamber at 25 ° C., and shaken for 24 hours. At this time, the pH of the acidic solution was adjusted using nitric acid, acetic acid and sodium acetate having a concentration of 0.1 mol / l.

振とう後、水相を分取し、ICP−AESを用いてイットリウム濃度、ユーロピウム濃度及び亜鉛濃度を測定した。また、有機相について、1mol/lの硝酸を用いて逆抽出した。そして、逆抽出相中のイットリウム濃度、ユーロピウム濃度及び亜鉛濃度を、ICP−AESを用いて測定した。これらの測定結果から、イットリウム、ユーロピウム及び亜鉛の抽出率を、有機相中の物量/(有機相中の物量+水相中の物量)で定義し、求めた。結果を図7に示す。図7の横軸は、酸性溶液のpHであり、縦軸は、イットリウム、ユーロピウム及び亜鉛の抽出率である。   After shaking, the aqueous phase was separated and the yttrium concentration, europium concentration and zinc concentration were measured using ICP-AES. The organic phase was back extracted with 1 mol / l nitric acid. And the yttrium density | concentration in the back extraction phase, the europium density | concentration, and the zinc density | concentration were measured using ICP-AES. From these measurement results, the extraction rates of yttrium, europium and zinc were defined and determined by the amount in the organic phase / (the amount in the organic phase + the amount in the aqueous phase). The results are shown in FIG. The horizontal axis in FIG. 7 is the pH of the acidic solution, and the vertical axis is the extraction rate of yttrium, europium, and zinc.

[比較例2]
硫酸酸性溶液のpHを1.2〜2.2に調整したこと以外は、実施例と同じ方法にてユーロピウムを抽出した。結果を図8に示す。
[Comparative Example 2]
Europium was extracted by the same method as in Example except that the pH of the sulfuric acid acidic solution was adjusted to 1.2 to 2.2. The results are shown in FIG.

実施例のアミド誘導体を用いると、pHが2.0以上3.0以下の範囲では、少なくとも40%を超える抽出率でユーロピウムを抽出でき、かつ、ユーロピウムの抽出率とイットリウムの抽出率との間で有意な差を見いだせることが確認された(図7)。一方、比較例2の化合物を用いると、高い抽出率でユーロピウムを抽出できるものの、イットリウムも高い抽出率で抽出されるため、ユーロピウムとイットリウムとを分離できないことが確認された(図8)。 When the amide derivative of Example 1 is used, europium can be extracted at an extraction rate exceeding 40% in the range of pH 2.0 to 3.0, and the extraction rate of europium and the extraction rate of yttrium It was confirmed that a significant difference was found between them (FIG. 7). On the other hand, when the compound of Comparative Example 2 was used, europium could be extracted at a high extraction rate, but yttrium was also extracted at a high extraction rate, so that it was confirmed that europium and yttrium could not be separated (FIG. 8).

このように、下記一般式で表されるアミド誘導体からなる有価金属抽出剤を用いることにより、使用済みの二次電池からはコバルトを効率的に回収でき、三波長蛍光管及びブラウン管からはユーロピウムとイットリウムとを効率的に分離回収できることが確認された。

Figure 0005578750
(式中、C 17 は分鎖であり、Rは水素原子又はアルキル基を示す。) Thus, by using a valuable metal extractant composed of an amide derivative represented by the following general formula, cobalt can be efficiently recovered from a used secondary battery, and europium and three-wavelength fluorescent tubes and It was confirmed that yttrium can be separated and recovered efficiently.
Figure 0005578750
(In the formula , C 8 H 17 is a branched chain, and R represents a hydrogen atom or an alkyl group .)

<軽希土類金属の抽出>
実施例1のアミド誘導体を用いて、複数種類の希土類金属を含有する酸性溶液から軽希土類金属を抽出分離した。
軽希土類金属であるランタン(La)及びセシウム(Ce)と、重希土類金属であるツリウム(Tm)及びイッテルビウム(Yb)とをそれぞれ1×10−4mol/l含み、pHを1.1〜3.4に調整した数種類の硝酸酸性溶液と、それと同体積の0.01mol/lの有価金属抽出剤を含むノルマルドデカン溶液を試験管に加えて25℃恒温庫内に入れ、24時間振とうした。このとき、酸性溶液のpHは、濃度0.1mol/lの硝酸、硝酸アンモニウム及びアンモニアを用いて調整した。
<Extraction of light rare earth metals>
Using the amide derivative of Example 1, light rare earth metal was extracted and separated from an acidic solution containing a plurality of types of rare earth metals.
It contains 1 × 10 −4 mol / l each of lanthanum (La) and cesium (Ce), which are light rare earth metals, and thulium (Tm) and ytterbium (Yb), which are heavy rare earth metals, and has a pH of 1.1 to 3. Four kinds of nitric acid acidic solution adjusted to .4 and a normal dodecane solution containing 0.01 mol / l of valuable metal extractant in the same volume were added to a test tube and placed in a thermostatic chamber at 25 ° C. and shaken for 24 hours. . At this time, the pH of the acidic solution was adjusted using nitric acid, ammonium nitrate and ammonia having a concentration of 0.1 mol / l.

振とう後、水相を分取し、ICP−AESを用いて各々の希土類金属の濃度を測定した。また、有機相について、2mol/lの硝酸を用いて逆抽出した。そして、逆抽出相中の各々の希土類金属の濃度を、ICP−AESを用いて測定した。これらの測定結果から、各々の希土類金属の抽出率を、有機相中の物量/(有機相中の物量+水相中の物量)で定義し、求めた。結果を図9に示す。図9の横軸は、酸性溶液のpHであり、縦軸は、希土類金属の抽出率である。   After shaking, the aqueous phase was separated and the concentration of each rare earth metal was measured using ICP-AES. The organic phase was back extracted with 2 mol / l nitric acid. And the density | concentration of each rare earth metal in a back extraction phase was measured using ICP-AES. From these measurement results, the extraction rate of each rare earth metal was defined by the quantity in the organic phase / (the quantity in the organic phase + the quantity in the aqueous phase). The results are shown in FIG. The horizontal axis in FIG. 9 is the pH of the acidic solution, and the vertical axis is the extraction rate of the rare earth metal.

実施例のアミド誘導体を用いると、pHが1.7以上2.7以下の範囲では、複数種類の希土類金属を含有する酸性溶液から軽希土類金属を選択的に抽出できることが確認された(図9)。とりわけ、pHが1.9以上2.5以下の範囲では、30%を超える抽出率で軽希土類金属を抽出できるとともに、重希土類金属はほとんど抽出されないことが確認された(図9)。また、pHが2.1以上2.4以下の範囲では、50%を超える抽出率で軽希土類金属を抽出できるとともに、重希土類金属の抽出率は、軽希土類金属の抽出率からみて有意に少ないことが確認された。   When the amide derivatives of the examples were used, it was confirmed that light rare earth metals can be selectively extracted from an acidic solution containing a plurality of types of rare earth metals within a pH range of 1.7 to 2.7 (FIG. 9). ). In particular, in the range of pH 1.9 or more and 2.5 or less, it was confirmed that light rare earth metals can be extracted with an extraction rate exceeding 30% and that heavy rare earth metals are hardly extracted (FIG. 9). In addition, when the pH is in the range of 2.1 to 2.4, light rare earth metals can be extracted with an extraction rate exceeding 50%, and the extraction rate of heavy rare earth metals is significantly small in view of the extraction rate of light rare earth metals. It was confirmed.

なお、比較例2の化合物を用いると、重希土類金属が軽希土類金属に優先して抽出されるため、実施例のアミド誘導体ほど高い効率で軽希土類金属を抽出できるとはいえない。   When the compound of Comparative Example 2 is used, the heavy rare earth metal is extracted with priority over the light rare earth metal, and thus it cannot be said that the light rare earth metal can be extracted with higher efficiency than the amide derivatives of the examples.

Claims (1)

下記一般式で表されるアミド誘導体。
Figure 0005578750
(式中、C 17 は分鎖であり、Rは水素原子又はアルキル基を示す。)
Amide derivatives represented by the following general formula .
Figure 0005578750
(In the formula , C 8 H 17 is a branched chain, and R represents a hydrogen atom or an alkyl group .)
JP2014022868A 2011-11-09 2014-02-07 Amide derivatives Active JP5578750B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014022868A JP5578750B1 (en) 2011-11-09 2014-02-07 Amide derivatives

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2011245981 2011-11-09
JP2011245981 2011-11-09
JP2012056143 2012-03-13
JP2012056143 2012-03-13
JP2014022868A JP5578750B1 (en) 2011-11-09 2014-02-07 Amide derivatives

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013084951A Division JP5496387B2 (en) 2011-11-09 2013-04-15 Amide derivatives

Publications (2)

Publication Number Publication Date
JP5578750B1 true JP5578750B1 (en) 2014-08-27
JP2014159415A JP2014159415A (en) 2014-09-04

Family

ID=49273939

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2012225454A Active JP5279942B1 (en) 2011-11-09 2012-10-10 Cobalt extraction method
JP2013084951A Active JP5496387B2 (en) 2011-11-09 2013-04-15 Amide derivatives
JP2014022868A Active JP5578750B1 (en) 2011-11-09 2014-02-07 Amide derivatives

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2012225454A Active JP5279942B1 (en) 2011-11-09 2012-10-10 Cobalt extraction method
JP2013084951A Active JP5496387B2 (en) 2011-11-09 2013-04-15 Amide derivatives

Country Status (1)

Country Link
JP (3) JP5279942B1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5279942B1 (en) * 2011-11-09 2013-09-04 国立大学法人九州大学 Cobalt extraction method
JP5279938B1 (en) 2011-11-09 2013-09-04 国立大学法人九州大学 Valuable metal extractant and method for extracting valuable metal using the extractant
JP5367862B2 (en) 2012-03-13 2013-12-11 国立大学法人九州大学 Scandium extractant and method for extracting scandium using the extractant
JP5398885B1 (en) 2012-08-20 2014-01-29 国立大学法人九州大学 Gallium extraction method
JP5734268B2 (en) 2012-12-12 2015-06-17 国立大学法人九州大学 Nickel extraction method
JP5595554B1 (en) 2013-03-18 2014-09-24 国立大学法人九州大学 Method for separating impurities from an acidic solution containing nickel, cobalt and / or scandium
JP5940688B1 (en) 2015-01-20 2016-06-29 国立大学法人九州大学 Zirconium extractant and zirconium extraction method
JP6460973B2 (en) * 2015-12-21 2019-01-30 トヨタ自動車株式会社 Method for recovering rare earth elements from rare earth magnets
JP6863132B2 (en) * 2017-06-28 2021-04-21 住友金属鉱山株式会社 How to select an extractant
JP7496594B2 (en) 2020-05-14 2024-06-07 国立大学法人 宮崎大学 Extractant for rare earth metals or iron
WO2022266919A1 (en) 2021-06-24 2022-12-29 福建省长汀金龙稀土有限公司 N,n-dihydrocarbyl amide carboxylic acid, preparation method therefor and use thereof
JP7542289B1 (en) 2023-08-30 2024-08-30 メック株式会社 Solvent extraction method for selectively extracting cobalt

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3075657B2 (en) * 1993-10-15 2000-08-14 富士写真フイルム株式会社 Photographic processing composition and processing method
EP0834581A1 (en) * 1996-09-30 1998-04-08 Basf Aktiengesellschaft Use of hydrocarbon-soluble aminomethylenephosphonic acid derivatives for the solvent extraction of metal ions from aqueous solutions
JP5035788B2 (en) * 2006-06-06 2012-09-26 独立行政法人日本原子力研究開発機構 Rare earth metal extractant and extraction method
ATE555836T1 (en) * 2007-06-29 2012-05-15 Harvard College DENSITY-BASED MATERIAL SEPARATION PROCESS, MONITORING SOLID-ASSISTED REACTIONS AND MEASUREMENT OF THE DENSITY OF SMALL LIQUID VOLUME AND SOLIDS
CN101519427B (en) * 2008-02-29 2015-02-25 中国人民解放军军事医学科学院毒物药物研究所 Peptide derivative with endothelin receptor antagonizing activity, drug composition and application thereof
JP5326610B2 (en) * 2009-02-02 2013-10-30 住友金属鉱山株式会社 Method for recovering metals from used nickel metal hydride batteries
JP5279942B1 (en) * 2011-11-09 2013-09-04 国立大学法人九州大学 Cobalt extraction method

Also Published As

Publication number Publication date
JP2013216967A (en) 2013-10-24
JP5496387B2 (en) 2014-05-21
JP2013216656A (en) 2013-10-24
JP2014159415A (en) 2014-09-04
JP5279942B1 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
JP5279938B1 (en) Valuable metal extractant and method for extracting valuable metal using the extractant
JP5578750B1 (en) Amide derivatives
JP5734268B2 (en) Nickel extraction method
WO2013069563A1 (en) Cobalt extraction method
JP6053724B2 (en) Ion exchange resin and metal adsorption separation method
JP5595543B1 (en) Valuable metal extraction method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140707

R150 Certificate of patent or registration of utility model

Ref document number: 5578750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250