JP5578451B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP5578451B2
JP5578451B2 JP2012028668A JP2012028668A JP5578451B2 JP 5578451 B2 JP5578451 B2 JP 5578451B2 JP 2012028668 A JP2012028668 A JP 2012028668A JP 2012028668 A JP2012028668 A JP 2012028668A JP 5578451 B2 JP5578451 B2 JP 5578451B2
Authority
JP
Japan
Prior art keywords
amount
exhaust gas
passage
recirculation
pressure egr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012028668A
Other languages
Japanese (ja)
Other versions
JP2013164052A (en
Inventor
光弘 西村
正裕 浅野
寛 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012028668A priority Critical patent/JP5578451B2/en
Priority to DE102013101227A priority patent/DE102013101227A1/en
Publication of JP2013164052A publication Critical patent/JP2013164052A/en
Application granted granted Critical
Publication of JP5578451B2 publication Critical patent/JP5578451B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0812Particle filter loading
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/24Layout, e.g. schematics with two or more coolers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Supercharger (AREA)

Description

本発明は、内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

例えばディーゼルエンジンにおいては、排気中のNOx量を抑えるために、排気管から吸気管へ排気を還流(再循環)させるEGR(Exhaust Gas Recirculation)と呼ばれる手法が公知である。EGRを行う場合、エンジンから排出されるNOx量が適切な量となる等の目的を達成するように、EGR管のバルブ開度を制御することが求められる。   For example, in a diesel engine, a technique called EGR (Exhaust Gas Recirculation) in which exhaust gas is recirculated (recirculated) from an exhaust pipe to an intake pipe in order to suppress the amount of NOx in the exhaust is known. When performing EGR, it is required to control the valve opening of the EGR pipe so as to achieve an object such that the amount of NOx discharged from the engine becomes an appropriate amount.

EGRとしては、ターボチャージャのタービンの下流側からコンプレッサの上流側へ排気を還流する低圧EGR管と、タービンの上流側からコンプレッサの下流側へ排気を還流する高圧EGR管と、の2系統を備える場合がある。この構成には、高負荷時に高圧EGR管での排気還流量が十分でない場合にも、低圧EGR管による還流量で補える利点がある。   The EGR has two systems: a low pressure EGR pipe that circulates exhaust gas from the downstream side of the turbine of the turbocharger to the upstream side of the compressor, and a high pressure EGR pipe that circulates exhaust gas from the upstream side of the turbine to the downstream side of the compressor. There is a case. This configuration has an advantage that the recirculation amount by the low pressure EGR pipe can be compensated even when the exhaust gas recirculation amount by the high pressure EGR pipe is not sufficient at the time of high load.

2系統のEGRの場合、総EGR量の増量が必要なときに、低圧EGRによる還流は反応速度が遅いので、高圧EGR側でできるだけ補助する必要がある。下記特許文献1には、この制御を、粒子状物質(PM:Particulate Matter)を捕集するために排気管に装備されたDPF(Diesel Particulate Filter)と関連させた技術が開示されている。具体的に同文献では、DPFにおけるPMの堆積量が少なくDPFの捕集能力が高い場合には、総EGRにおける高圧EGRの割合を高めている。   In the case of two systems of EGR, when it is necessary to increase the total amount of EGR, since the reaction rate of low-pressure EGR is slow, it is necessary to assist as much as possible on the high-pressure EGR side. Patent Document 1 listed below discloses a technique in which this control is related to a DPF (Diesel Particulate Filter) equipped in an exhaust pipe in order to collect particulate matter (PM). Specifically, in this document, when the amount of PM accumulated in the DPF is small and the DPF collecting ability is high, the ratio of the high pressure EGR in the total EGR is increased.

特開2010−203282号公報JP 2010-203282 A

しかし本発明者の知見によれば、一般に、DPFのPM堆積量が多いほど、排気がDPFを通過しにくくなり、DPF上流側、すなわち高圧EGR管の上流側の圧力が高くなる。逆にDPFのPM堆積量が少ないほど、高圧EGR管の上流側の圧力は低くなる。したがってDPFのPM堆積量が少ない場合には、高圧EGRによる排気還流量を物理的に大きくしにくい傾向があると考えられる。   However, according to the knowledge of the present inventor, generally, the larger the amount of PM accumulated in the DPF, the more difficult the exhaust gas passes through the DPF, and the higher the pressure on the upstream side of the DPF, that is, the upstream side of the high-pressure EGR pipe. Conversely, the smaller the amount of PM accumulated in the DPF, the lower the pressure on the upstream side of the high-pressure EGR pipe. Therefore, when the amount of accumulated PM in the DPF is small, it is considered that the exhaust gas recirculation amount due to the high pressure EGR tends to be difficult to increase physically.

しかし上記特許文献1に記載された技術では、この点を考慮しておらず、DPFのPM堆積量が少ない場合に、高圧EGRによる排気還流量を大きくさせるように制御している。したがって特許文献1の技術では、DPFのPM堆積量が少ない場合に、実際には高圧EGRによる排気還流量を目標値まで大きくできない可能性がある。   However, the technique described in Patent Document 1 does not take this point into consideration, and controls the exhaust gas recirculation amount to be increased by the high pressure EGR when the PM accumulation amount of the DPF is small. Therefore, in the technique of Patent Document 1, when the amount of accumulated PM in the DPF is small, there is a possibility that the exhaust gas recirculation amount due to the high pressure EGR cannot actually be increased to the target value.

よってDPFのPM堆積量が少ない場合に、高圧EGRによる排気還流量を大きくしにくい性質を考慮して、高圧EGRと低圧EGRとの割合を適切に制御する技術の開発が求められる。   Therefore, it is required to develop a technique for appropriately controlling the ratio between the high pressure EGR and the low pressure EGR in consideration of the property that it is difficult to increase the exhaust gas recirculation amount due to the high pressure EGR when the PM accumulation amount of the DPF is small.

以上の議論では、DPFのPM堆積量が多い場合には、高圧EGR還流量を大きくすることが困難でない。しかし高圧EGR還流量を大きくするとタービンへの排気圧力を奪ってしまうので、過給不足となる可能性がある。したがって目標EGR還流量の設定では、この点も考慮する必要がある。   In the above discussion, it is not difficult to increase the high-pressure EGR recirculation amount when the PM deposition amount of the DPF is large. However, if the high-pressure EGR recirculation amount is increased, exhaust pressure to the turbine is deprived, which may result in insufficient supercharging. Therefore, this point needs to be taken into consideration when setting the target EGR recirculation amount.

そこで本発明が解決しようとする課題は、上記に鑑み、高圧EGRと低圧EGRの2系統のEGRを装備した構成において、DPFのPM堆積量が少ない場合には高圧EGRによる排気還流量を物理的に大きくしにくい性質や、PM堆積量が大きい場合には高圧EGR流量を大きくすると過給不足の可能性がある性質を考慮して、高圧EGR流量と低圧EGR流量とを適切に制御する内燃機関の排気浄化装置を提供することにある。   Accordingly, in view of the above, the problem to be solved by the present invention is that, in a configuration equipped with two systems of high pressure EGR and low pressure EGR, if the amount of PM accumulated in the DPF is small, the exhaust gas recirculation amount by the high pressure EGR is physically An internal combustion engine that appropriately controls the high-pressure EGR flow rate and the low-pressure EGR flow rate in consideration of the property that it is difficult to increase the flow rate and the property that there is a possibility of insufficient supercharging when the high-pressure EGR flow rate is increased when the PM accumulation amount is large An object of the present invention is to provide an exhaust purification device.

上記課題を達成するために、本発明に係る内燃機関の排気浄化装置は、内燃機関の排気通路における過給器のタービンの上流から前記内燃機関の吸気通路における過給器のコンプレッサの下流へ排気を還流させる高圧還流通路と、前記排気通路における前記タービンの下流から前記吸気通路における前記コンプレッサの上流へ排気を還流させる低圧還流通路と、前記排気通路に備えられて排気中の粒子状物質を捕集する捕集器と、その捕集器における粒子状物質の堆積量に応じた、前記高圧還流通路における物理的に確保可能な排気還流量を記憶する記憶手段と、前記高圧還流通路の排気還流量が前記内燃機関の最適制御に適合した値である場合での前記捕集器の粒子状物質の堆積量である基準堆積量よりも前記堆積量が少ない場合に、前記堆積量に応じて、前記記憶手段に記憶された物理的に確保可能な排気還流量を超えない範囲で前記高圧還流通路における目標排気還流量を設定し、その高圧還流通路における目標排気還流量の設定に応じて前記低圧還流通路における目標排気還流量を設定する設定手段と、を備え、前記記憶手段に記憶された前記物理的に確保可能な排気還流量は、前記堆積量が少ないほど物理的に確保可能な排気還流量が少ないとの性質を有するように記憶され、前記設定手段は、前記堆積量が前記基準堆積量よりも少ない場合に、前記堆積量が少ないほど、前記高圧還流通路における目標排気還流量を小さい量となるように設定し、前記堆積量が多いほど、前記高圧還流通路における目標排気還流量を大きい量となるように設定することを特徴とする。
In order to achieve the above object, an exhaust gas purification apparatus for an internal combustion engine according to the present invention exhausts from upstream of a turbine of a supercharger in an exhaust passage of the internal combustion engine to downstream of a compressor of a supercharger in the intake passage of the internal combustion engine. A high-pressure recirculation passage for recirculating exhaust gas, a low-pressure recirculation passage for recirculating exhaust gas from downstream of the turbine in the exhaust passage to upstream of the compressor in the intake passage, and particulate matter in the exhaust provided to the exhaust passage. A collector for collecting, storage means for storing an exhaust gas recirculation amount physically securable in the high pressure recirculation passage according to the amount of particulate matter accumulated in the collector, and exhaust return of the high pressure recirculation passage when the flow rate is the amount of the deposit is not less than the reference accumulation amount wherein the deposition amount of the particulate matter in the collector in the case is a value adapted to the optimal control of the internal combustion engine, wherein The target exhaust gas recirculation amount in the high pressure recirculation passage is set in a range not exceeding the physically reservable exhaust gas recirculation amount stored in the storage means according to the product amount, and the target exhaust gas recirculation amount in the high pressure recirculation passage is set. Setting means for setting a target exhaust gas recirculation amount in the low pressure recirculation passage according to the setting, and the physically reservable exhaust gas recirculation amount stored in the storage means Is stored so that the amount of exhaust gas recirculation that can be secured is small, and when the accumulation amount is smaller than the reference accumulation amount, the setting means reduces the accumulation amount in the high-pressure recirculation passage. The target exhaust gas recirculation amount is set to be a small amount, and the target exhaust gas recirculation amount in the high pressure recirculation passage is set to be a larger amount as the accumulation amount is larger .

これにより本発明に係る内燃機関の排気浄化装置では、高圧還流通路における物理的に確保可能な排気還流量を記憶しておき、捕集器における粒子状物質の堆積量が所定量よりも少なければ、物理的に確保可能な排気還流量を超えない範囲で高圧還流通路における還流量を設定し、それに応じて低圧還流通路における還流量も設定する。したがって捕集器における堆積量が少ないときに高圧還流通路における還流量が目標値を確保できなくて、(それにより高圧と低圧の総還流量が目標値に到達しなくて、)エミッションの悪化などが発生することが適切に回避される。   As a result, the exhaust gas purification apparatus for an internal combustion engine according to the present invention stores the exhaust gas recirculation amount that can be physically secured in the high pressure recirculation passage, and the amount of particulate matter accumulated in the collector is less than a predetermined amount. The recirculation amount in the high-pressure recirculation passage is set within a range that does not exceed the exhaust gas recirculation amount that can be physically secured, and the recirculation amount in the low-pressure recirculation passage is also set accordingly. Therefore, when the accumulation amount in the collector is small, the reflux amount in the high-pressure reflux passage cannot secure the target value (therefore, the total reflux amount of the high pressure and the low pressure does not reach the target value), the emission deteriorates, etc. Is appropriately avoided.

本発明の内燃機関の排気浄化装置の一実施例における構成図。The block diagram in one Example of the exhaust gas purification apparatus of the internal combustion engine of this invention. PM堆積量推定に関する制御処理の例を示すフローチャート。The flowchart which shows the example of the control processing regarding PM deposition amount estimation. 高圧EGR還流量および低圧EGR還流量の算出処理の例を示すフローチャート。The flowchart which shows the example of the calculation process of the high voltage | pressure EGR recirculation amount and the low pressure EGR recirculation amount. EGR開度の算出処理の例を示すフローチャート。The flowchart which shows the example of a calculation process of an EGR opening degree. 高圧EGR還流量および低圧EGR還流量とPM堆積量との関係の例を示す図。The figure which shows the example of the relationship between high pressure EGR recirculation amount and low pressure EGR recirculation amount, and PM deposition amount. 高圧EGR還流量と高圧EGRバルブ開度との関係の例を示す図。The figure which shows the example of the relationship between high pressure EGR recirculation amount and high pressure EGR valve opening. 通常時およびDPF再生時における高圧EGR還流量および低圧EGR還流量とPM堆積量との関係の例を示す図。The figure which shows the example of the relationship between the high pressure EGR recirculation amount at the time of normal time and a DPF reproduction | regeneration, low pressure EGR recirculation amount, and PM deposition amount.

以下、本発明の実施形態を図面を参照しつつ説明する。まず図1は、本発明に係る排気浄化装置1(以下、装置1)の一実施例における装置構成の概略図である。   Embodiments of the present invention will be described below with reference to the drawings. First, FIG. 1 is a schematic view of an apparatus configuration in an embodiment of an exhaust purification apparatus 1 (hereinafter, apparatus 1) according to the present invention.

装置1は、自動車車両の内燃機関(エンジン、例えばディーゼルエンジン)に対して構成された制御装置の一実施例である。装置1は、エンジン2、吸気管3、排気管4、過給器5(ターボチャージャー)、DPF6、低圧EGR管7、高圧EGR管8、電子制御ユニット9(ECU:Electronic Control Unit)を備える。   The device 1 is an embodiment of a control device configured for an internal combustion engine (an engine, for example, a diesel engine) of an automobile vehicle. The apparatus 1 includes an engine 2, an intake pipe 3, an exhaust pipe 4, a supercharger 5 (turbocharger), a DPF 6, a low pressure EGR pipe 7, a high pressure EGR pipe 8, and an electronic control unit 9 (ECU: Electronic Control Unit).

吸気管3を通じてエンジン2に空気が供給される。エンジン2からの排気は排気管4を通じて車外に排出される。吸気管3は、吸気スロットル30、エアフロメータ31、インタークーラ32、温度センサ33、圧力センサ34を備える。吸気スロットル30の開度調節によって吸気量が調節される。エアフロメータ31は吸気量を検出する。インタークーラ32により吸気が冷却されて、より多くの空気をエンジン2に送ることが可能となる。温度センサ33によって吸気マニホールド内の温度を検出する。圧力センサ34によって吸気マニホールド内の圧力を検出する。   Air is supplied to the engine 2 through the intake pipe 3. Exhaust gas from the engine 2 is discharged outside the vehicle through the exhaust pipe 4. The intake pipe 3 includes an intake throttle 30, an air flow meter 31, an intercooler 32, a temperature sensor 33, and a pressure sensor 34. The intake air amount is adjusted by adjusting the opening of the intake throttle 30. The air flow meter 31 detects the intake air amount. The intake air is cooled by the intercooler 32 and more air can be sent to the engine 2. A temperature sensor 33 detects the temperature in the intake manifold. A pressure sensor 34 detects the pressure in the intake manifold.

排気管4には圧力センサ40が備えられている。圧力センサ40によって排気マニホールド内の圧力を検出する。過給器5は、排気管4にタービン50、吸気管4にコンプレッサ51を備えて、排気によって駆動されたタービン50から駆動力を伝達されたコンプレッサ51が吸気を圧縮して、より多くの空気をエンジン2に送る。   The exhaust pipe 4 is provided with a pressure sensor 40. The pressure sensor 40 detects the pressure in the exhaust manifold. The supercharger 5 includes a turbine 50 in the exhaust pipe 4 and a compressor 51 in the intake pipe 4, and the compressor 51 to which driving force is transmitted from the turbine 50 driven by the exhaust compresses the intake air so that more air is supplied. Is sent to the engine 2.

DPF6は、エンジン2から排出されたPMを捕集するフィルタである。DPF6は、例えば代表的な構造として、いわゆるハニカム構造において入口側と出口側を交互に目詰めした構造とすればよい。エンジン2の運転中に排出される排気に含まれたPMは、DPF6を通過するときに、DPF壁の内部あるいは表面に捕集される。DPF6は酸化触媒が担持された酸化触媒付きDPFであるとすればよい。   The DPF 6 is a filter that collects PM discharged from the engine 2. For example, the DPF 6 may have a structure in which the inlet side and the outlet side are alternately clogged in a so-called honeycomb structure. PM contained in the exhaust discharged during operation of the engine 2 is collected inside or on the surface of the DPF wall when passing through the DPF 6. The DPF 6 may be a DPF with an oxidation catalyst on which an oxidation catalyst is supported.

DPF6に堆積したPM量の推定値が所定量を超えたとみなされた毎に、例えばエンジン筒内でのメイン噴射後のポスト噴射などによってDPF6を昇温して堆積したPMを燃焼してDPF6を再生すればよい。その際、例えばDPF6におけるPM堆積量の推定方法としては、例えばDPF6の入口側と出口側における圧力差(前後差圧)を計測し、その計測値と、予め求めておいた差圧−PM堆積量間の関係を示すマップとから、PM堆積量を推定すればよい。   Whenever the estimated value of the PM amount accumulated in the DPF 6 is considered to exceed a predetermined amount, the DPF 6 is burned by raising the temperature of the DPF 6 by post injection after the main injection in the engine cylinder, for example. Just replay it. At this time, for example, as a method of estimating the PM deposition amount in the DPF 6, for example, a pressure difference (front-rear differential pressure) between the inlet side and the outlet side of the DPF 6 is measured, and the measured value and the previously obtained differential pressure-PM deposition are measured. What is necessary is just to estimate PM deposition amount from the map which shows the relationship between quantity.

DPF6は、差圧センサ60、温度センサ61、62を備える。差圧センサ60はDPF6の前後差圧を計測する。温度センサ61はDPF6の上流側の排気温度を計測する。温度センサ62はDPF6の下流側の排気温度を計測する。   The DPF 6 includes a differential pressure sensor 60 and temperature sensors 61 and 62. The differential pressure sensor 60 measures the differential pressure across the DPF 6. The temperature sensor 61 measures the exhaust temperature upstream of the DPF 6. The temperature sensor 62 measures the exhaust temperature downstream of the DPF 6.

低圧EGR管7および高圧EGR管8は、排気管から吸気管への排気再循環(EGR)のための配管である。EGR管を通じた排気の再循環によって、エンジン内の燃焼温度が低下し、エンジンからのNOxの排出量を減少できる。低圧EGR管7は、過給器5のタービン50の下流側(さらにDPF6の下流側)からコンプレッサ51の上流側へ排気を還流する。高圧EGR管8は、タービン50の上流側からコンプレッサ51の下流側へ排気を還流する。   The low pressure EGR pipe 7 and the high pressure EGR pipe 8 are pipes for exhaust gas recirculation (EGR) from the exhaust pipe to the intake pipe. The exhaust gas recirculation through the EGR pipe lowers the combustion temperature in the engine and reduces the amount of NOx emitted from the engine. The low pressure EGR pipe 7 recirculates exhaust gas from the downstream side of the turbine 50 of the supercharger 5 (further downstream of the DPF 6) to the upstream side of the compressor 51. The high pressure EGR pipe 8 recirculates the exhaust gas from the upstream side of the turbine 50 to the downstream side of the compressor 51.

このようにEGRを2系統備えることにより、高負荷では、ターボチャージャーによる必要吸気圧を確保すること(タービン側への排気流量の確保)により、高圧EGRでは排気通路から還流できるEGR量が確保できないことがあるため、ターボチャージャーの過給による吸気圧上昇の影響を受けないよう、コンプレッサより吸気通路上流側に連通する低圧EGRでEGRを実行する。これにより、高負荷域で吸気圧が過給されている状況下でも、十分なEGR量を確保できる。   By providing two EGR systems in this way, at a high load, the required intake pressure by the turbocharger is ensured (the exhaust flow rate to the turbine side is ensured), and the high pressure EGR cannot secure the EGR amount that can be recirculated from the exhaust passage. Therefore, the EGR is executed with the low pressure EGR communicating with the upstream side of the intake passage from the compressor so as not to be affected by the increase of the intake pressure due to turbocharger supercharging. As a result, a sufficient EGR amount can be ensured even under conditions where the intake pressure is supercharged in a high load range.

低圧EGR管7、高圧EGR管8はそれぞれ低圧EGR弁70(低圧EGRバルブ)、高圧EGR弁80(高圧EGRバルブ)を備えて、それらの開度によって還流する排気量が調節される。また低圧EGR管7、高圧EGR管8はそれぞれEGRクーラ71、81を備えて、還流する排気を冷却して、より多くの排気還流を可能にする。   The low-pressure EGR pipe 7 and the high-pressure EGR pipe 8 are each provided with a low-pressure EGR valve 70 (low-pressure EGR valve) and a high-pressure EGR valve 80 (high-pressure EGR valve). The low-pressure EGR pipe 7 and the high-pressure EGR pipe 8 are provided with EGR coolers 71 and 81, respectively, to cool the recirculated exhaust gas so as to allow more exhaust gas recirculation.

ECU9は、CPUやRAMなどからなる通常のコンピュータの構造を有し、排気浄化装置1の各種演算や制御を司る。図1には、点線によってECU9と装置1の各部との間の代表的な情報の授受が示されている。例えばECU9は、エンジン2のインジェクタにおける燃料噴射、吸気スロットル30の開度、低圧EGR弁70の開度、高圧EGR弁80の開度などを制御する。   The ECU 9 has a normal computer structure composed of a CPU, a RAM, and the like, and manages various calculations and controls of the exhaust purification device 1. In FIG. 1, transfer of representative information between the ECU 9 and each part of the device 1 is shown by dotted lines. For example, the ECU 9 controls the fuel injection in the injector of the engine 2, the opening degree of the intake throttle 30, the opening degree of the low pressure EGR valve 70, the opening degree of the high pressure EGR valve 80, and the like.

またECU9は、エアフロメータ31、温度センサ33、圧力センサ34、40、差圧センサ60、温度センサ61、62等の計測値を取得する。ECU9は不揮発性のメモリ90を有し、装置1の制御に必要なプログラムやデータなどを記憶する。   The ECU 9 also acquires measurement values of the air flow meter 31, the temperature sensor 33, the pressure sensors 34 and 40, the differential pressure sensor 60, the temperature sensors 61 and 62, and the like. The ECU 9 has a nonvolatile memory 90 and stores programs and data necessary for controlling the device 1.

以上の構成のもとで、装置1は、主に低圧EGR管7、高圧EGR管8における(目標)流量やバルブ開度に関する制御を、例えば図2から図4の処理手順によって行う。図2から図4に示された処理内容は、予めプログラム化して例えばメモリ90に記憶しておき、ECU9が呼び出して自動的に処理すればよい。図2から図4の処理は、装置1が装備された車両のエンジン2が駆動している間、所定の周期ごとに繰り返し行えばよい。   With the above configuration, the apparatus 1 mainly performs control related to the (target) flow rate and valve opening degree in the low pressure EGR pipe 7 and the high pressure EGR pipe 8 according to the processing procedure of FIGS. The processing contents shown in FIGS. 2 to 4 may be programmed in advance and stored in, for example, the memory 90, and the ECU 9 may call up and automatically process the processing contents. The processing in FIGS. 2 to 4 may be repeated at predetermined intervals while the engine 2 of the vehicle equipped with the device 1 is being driven.

図2の処理ではまず、S10でECU9は、エンジン2への新気量の増分値が所定の閾値より小さいか否かを判別する。ここで新気量はエアフロメータ31の検出値である。また増分値とは、図2の処理が所定の周期ごとに繰り返し行われる際の、現在の処理における新気量の、直前(1回前)の処理での新気量からの増分値である(後述のS20、S30における増分値も同様である)。新気量の増分値が所定の閾値より小さい場合(S10:YES)はS20に進み、所定の閾値以上の場合(S10:NO)は図2の処理を終了する。   In the process of FIG. 2, first, in S10, the ECU 9 determines whether or not the increment value of the fresh air amount to the engine 2 is smaller than a predetermined threshold value. Here, the fresh air amount is a detected value of the air flow meter 31. Further, the increment value is an increment value from the fresh air amount in the immediately preceding (one previous) processing of the fresh air amount in the current processing when the processing of FIG. 2 is repeatedly performed at predetermined intervals. (Increment values in S20 and S30 described later are also the same). When the increment value of the fresh air amount is smaller than the predetermined threshold value (S10: YES), the process proceeds to S20, and when it is equal to or larger than the predetermined threshold value (S10: NO), the process of FIG.

次にS20でECU9は、DPF前後温度差の増分値が所定の閾値より小さいか否かを判別する。ここでDPF前後温度差は、温度センサ61と温度センサ62の計測値の差分である。DPF前後温度差の増分値が所定の閾値より小さい場合(S20:YES)はS30に進み、所定の閾値以上の場合(S20:NO)は図2の処理を終了する。   Next, in S20, the ECU 9 determines whether or not the increment value of the temperature difference before and after the DPF is smaller than a predetermined threshold value. Here, the temperature difference before and after the DPF is a difference between measured values of the temperature sensor 61 and the temperature sensor 62. When the incremental value of the temperature difference before and after the DPF is smaller than the predetermined threshold value (S20: YES), the process proceeds to S30, and when it is equal to or larger than the predetermined threshold value (S20: NO), the process of FIG.

次にS30でECU9は、DPF前後差圧の増分値が所定の閾値より小さいか否かを判別する。ここでDPF前後差圧は差圧センサ60の計測値である。DPF前後差圧の増分値が所定の閾値より小さい場合(S30:YES)はS40に進み、所定の閾値以上の場合(S30:NO)は図2の処理を終了する。   Next, in S30, the ECU 9 determines whether or not the increment value of the differential pressure across the DPF is smaller than a predetermined threshold value. Here, the differential pressure across the DPF is a value measured by the differential pressure sensor 60. When the incremental value of the differential pressure across the DPF is smaller than the predetermined threshold value (S30: YES), the process proceeds to S40, and when it is equal to or larger than the predetermined threshold value (S30: NO), the process of FIG.

以上の処理により、S40に進む場合は、新気量、DPF6の前後温度差、DPF6の前後差圧が安定している場合である。こうした状況はDPF6のPM堆積量の推定に適した状況である。そこでS40でECU9は、DPF6におけるPMの堆積量を推定する。推定方法の例としては、上述のとおり、予め求めておきメモリ90に記憶された差圧−PM堆積量間の関係を示すマップと、差圧センサ60によって計測された差圧の実際値と、からPM堆積量を推定すればよい。   When the process proceeds to S40 by the above processing, the fresh air amount, the temperature difference across the DPF 6 and the pressure difference across the DPF 6 are stable. Such a situation is suitable for estimating the amount of PM deposited on the DPF 6. Therefore, in S40, the ECU 9 estimates the amount of PM accumulated in the DPF 6. As an example of the estimation method, as described above, the map showing the relationship between the differential pressure and the PM deposition amount obtained in advance and stored in the memory 90, the actual value of the differential pressure measured by the differential pressure sensor 60, From this, the PM deposition amount can be estimated.

低圧EGR管7と高圧EGR管8とのそれぞれにおける排気還流量の基本となる数値は適合によって求めておいた数値(適合値)である。そして、例えば低圧EGR流量と高圧EGR流量との比率を定めておいて、全EGR流量の適合値を、その比率で分配するとしてもよい。ここで適合とは、周知のとおり、エンジンを最適に制御できるように、エンジン制御テストを繰り返すことによりECUをチューニングすることである。   The numerical value that is the basis of the exhaust gas recirculation amount in each of the low-pressure EGR pipe 7 and the high-pressure EGR pipe 8 is a numerical value (adapted value) obtained by adaptation. Then, for example, a ratio between the low pressure EGR flow rate and the high pressure EGR flow rate may be determined, and the conforming value of all the EGR flow rates may be distributed at the ratio. Here, “fit” means tuning the ECU by repeating an engine control test so that the engine can be optimally controlled, as is well known.

本発明では、DPF6におけるPM堆積量が少ない場合には、DPF6の上流側すなわち高圧EGR管8の上流側の圧力が高くなりにくいので、高圧EGR流量が十分に確保できない場合があることに着目する。そしてDPF6におけるPM堆積量が少ない場合には、高圧EGR流量を、物理的に可能なレベル(から余裕分をさらに減算した数値)まで適合値から低下させる。そして高圧EGR流量を低下した分だけ低圧EGR流量を増加させて、総EGR流量は適合値から変化させないようにする。なお本発明では、こうした処理は、DPF6のPM堆積量がある所定量(以下の例ではEGR流量の適合値を求めた際のPM堆積量)以下の場合にのみ行う。   In the present invention, when the amount of accumulated PM in the DPF 6 is small, the pressure on the upstream side of the DPF 6, that is, the upstream side of the high-pressure EGR pipe 8 is difficult to increase. . When the amount of accumulated PM in the DPF 6 is small, the high-pressure EGR flow rate is reduced from the compatible value to a physically possible level (a value obtained by further subtracting the margin). Then, the low pressure EGR flow rate is increased by an amount corresponding to the decrease in the high pressure EGR flow rate, so that the total EGR flow rate is not changed from the conforming value. In the present invention, such a process is performed only when the PM deposition amount of the DPF 6 is equal to or less than a predetermined amount (in the following example, the PM deposition amount when the EGR flow rate is determined).

PM堆積量がその所定量より大きい場合は、物理的に可能な高圧EGR流量は大きな量となるが、高圧EGR量を適合値よりも増加させることはせず、高圧EGR流量、低圧EGR流量はともに適合値のままとする。その理由は、上述のとおり高圧EGR流量を大きくし過ぎると必要な過給圧を確保できない可能性があるからである(高圧EGR流量、低圧EGR流量の適合値では適切な過給圧の確保も考慮されている)。以上の処理手順のより具体的な例を図3を参照して説明する。   When the PM deposition amount is larger than the predetermined amount, the physically possible high-pressure EGR flow rate becomes a large amount, but the high-pressure EGR amount is not increased beyond the conforming value, and the high-pressure EGR flow rate and the low-pressure EGR flow rate are Both values remain at the relevant values. The reason is that if the high-pressure EGR flow rate is too large as described above, the necessary supercharging pressure may not be ensured (the appropriate supercharging pressure may not be secured with the appropriate values for the high-pressure EGR flow rate and the low-pressure EGR flow rate). Is considered). A more specific example of the above processing procedure will be described with reference to FIG.

図3の処理ではまず、S100でECU9は、図2の処理手順を実行したことによって取得されたPM堆積量が所定量より少ないか否かを判別する。ここで所定量としては、例えばEGR流量の適合値を求めた時に用いられたPM堆積量とすればよい。PM堆積量が所定量より少ない場合(S100:YES)はS110に進み、PM堆積量が所定量以上の場合(S100:NO)はS160に進む。   In the process of FIG. 3, first, in S100, the ECU 9 determines whether or not the PM accumulation amount acquired by executing the process procedure of FIG. 2 is smaller than a predetermined amount. Here, the predetermined amount may be, for example, the PM deposition amount used when the conforming value of the EGR flow rate is obtained. When the PM accumulation amount is smaller than the predetermined amount (S100: YES), the process proceeds to S110, and when the PM accumulation amount is the predetermined amount or more (S100: NO), the process proceeds to S160.

S110に進んだ場合、ECU9は、高圧EGR管8における物理的に確保可能な最大流量を取得する。高圧EGR管8における物理的に確保可能な最大流量とは、高圧EGR弁80を全開にした状態での高圧EGR管8を流れる最大排気流量である。   When the process proceeds to S110, the ECU 9 acquires the maximum flow rate that can be physically secured in the high-pressure EGR pipe 8. The maximum flow rate that can be physically secured in the high-pressure EGR pipe 8 is the maximum exhaust flow rate that flows through the high-pressure EGR pipe 8 with the high-pressure EGR valve 80 fully opened.

図5を参照して、これを説明する。図5においては、上記S100で用いられた所定量がP0で示されている。そして、高圧EGR管8における物理的に確保可能な最大流量は点線Eで示されている。PM堆積量が多いほど、DPF6の上流側の圧力は高まるので、高圧EGR管8における物理的に確保可能な最大流量は大きくなる。   This will be described with reference to FIG. In FIG. 5, the predetermined amount used in S100 is indicated by P0. The maximum flow rate that can be physically secured in the high-pressure EGR pipe 8 is indicated by a dotted line E. As the PM deposition amount increases, the pressure on the upstream side of the DPF 6 increases, so the maximum flow rate that can be physically secured in the high-pressure EGR pipe 8 increases.

したがって点線Eは、PM堆積量の増加につれて単調に増加する性質を有する。なお図5では点線Eは直線状に記載されているが、実際の特性はこれに限定されず、単調に増加する曲線等の場合もある。点線Eの特性は、与えられた装置構成に対して予め求めておいて例えばメモリ90に記憶しておけばよい。そしてS110では、ECU9がそれを呼び出せばよい。   Therefore, the dotted line E has a property of increasing monotonously as the PM deposition amount increases. In FIG. 5, the dotted line E is described as a straight line, but the actual characteristics are not limited to this, and there may be a curve that increases monotonously. The characteristic of the dotted line E may be obtained in advance for a given apparatus configuration and stored in the memory 90, for example. And in S110, ECU9 should just call it.

次にS120でECU9は、高圧EGR管8における目標値として設定可能な最大流量を算出する。目標値として設定可能な最大流量は、上記S110で求めた(あるいは呼び出した)物理的に確保可能な最大流量から余裕分を減算した数値とする。これにより、目標値として設定可能な最大流量は、図5において破線A(ただしP0以下の部分は実線)で与えられる。図5では余裕分をMで示している。   Next, in S120, the ECU 9 calculates a maximum flow rate that can be set as a target value in the high-pressure EGR pipe 8. The maximum flow rate that can be set as the target value is a numerical value obtained by subtracting the margin from the maximum flow rate that can be obtained (or called) in S110 and that can be physically secured. As a result, the maximum flow rate that can be set as the target value is given by the broken line A in FIG. 5 (however, the portion below P0 is a solid line). In FIG. 5, the margin is indicated by M.

次にS130でECU9は、現在のPM堆積量に対応した、高圧EGR管8における目標値として設定可能な最大流量を算出する。これは上記S120で求めた、目標値として設定可能な最大流量のうちで、現在時点でのPM堆積量における数値である。図5では、現在時点でのPM堆積量をP1で示している。したがって図5のA’が、現在のPM堆積量に対応した、高圧EGR管8における目標値として設定可能な最大流量である。   Next, in S130, the ECU 9 calculates a maximum flow rate that can be set as a target value in the high-pressure EGR pipe 8 corresponding to the current PM accumulation amount. This is a numerical value of the PM deposition amount at the current time point out of the maximum flow rate that can be set as the target value obtained in S120. In FIG. 5, the PM accumulation amount at the present time is indicated by P1. Therefore, A ′ in FIG. 5 is the maximum flow rate that can be set as the target value in the high-pressure EGR pipe 8 corresponding to the current PM deposition amount.

次にS140でECU9は、高圧EGR管8での目標流量を設定する。この手順では、S140で求めた目標値として設定可能な最大流量を、目標値として設定すればよい。   Next, in S140, the ECU 9 sets a target flow rate in the high pressure EGR pipe 8. In this procedure, the maximum flow rate that can be set as the target value obtained in S140 may be set as the target value.

次にS150でECU9は、低圧EGR管7における目標流量を設定する。図5には、上述の高圧EGR還流量の適合値および低圧EGR還流量の適合値が、それぞれCとDとで示されている。上記S140によって、高圧EGR管8における目標流量がA’に設定された。つまり高圧EGR管8における目標流量は、C−A’の分だけ適合値から少ない数値に設定された。   Next, in S150, the ECU 9 sets a target flow rate in the low pressure EGR pipe 7. In FIG. 5, the adaptation value of the high pressure EGR reflux amount and the adaptation value of the low pressure EGR reflux amount are indicated by C and D, respectively. By S140, the target flow rate in the high-pressure EGR pipe 8 is set to A ′. That is, the target flow rate in the high-pressure EGR pipe 8 is set to a smaller value from the conforming value by the amount of C-A ′.

S150では、高圧EGR管8における目標流量の適合値からの減少分だけ、低圧EGR管7における目標流量を適合値から増加させて、それを低圧EGR管7における目標流量として設定する。これにより、全体の還流量(高圧EGR還流量と低圧EGR還流量との和)は適合値と同じに保たれる。   In S150, the target flow rate in the low pressure EGR pipe 7 is increased from the compatible value by a decrease from the compatible value of the target flow rate in the high pressure EGR pipe 8, and is set as the target flow rate in the low pressure EGR pipe 7. Thereby, the total reflux amount (the sum of the high-pressure EGR reflux amount and the low-pressure EGR reflux amount) is kept the same as the conforming value.

一方S160に進んだ場合、すなわちPM堆積量が所定量P0以上の場合は、高圧EGR管8および低圧EGR管7における目標流量は、上述の理由により、それぞれの適合値と同じにする。つまりS160でECU9は、高圧EGR管8の目標流量を適合値Cに設定する。そしてS170でECU9は、低圧EGR管7の目標流量を適合値Dに設定する。これにより、図5に示すとおり、PM堆積量が所定量P0以上の領域では、高圧EGR管8の目標流量、低圧EGR管7の目標流量は、それぞれ実線H、Lとなる。以上が図3の処理内容である。   On the other hand, when the process proceeds to S160, that is, when the PM deposition amount is equal to or greater than the predetermined amount P0, the target flow rates in the high pressure EGR pipe 8 and the low pressure EGR pipe 7 are made the same as the respective conforming values for the reasons described above. That is, in S160, the ECU 9 sets the target flow rate of the high pressure EGR pipe 8 to the conforming value C. In S170, the ECU 9 sets the target flow rate of the low pressure EGR pipe 7 to the conforming value D. As a result, as shown in FIG. 5, the target flow rate of the high pressure EGR pipe 8 and the target flow rate of the low pressure EGR pipe 7 become solid lines H and L, respectively, in the region where the PM accumulation amount is equal to or greater than the predetermined amount P0. The above is the processing content of FIG.

図3の処理による傾向は図7のようにまとめられる。図7の棒グラフで左側は高圧EGR流量、右側は低圧EGR流量である。また破線の枠は高圧EGR管での物理的に確保可能な最大流量Eである。PM堆積量が増加するとP0まではEの増加につれて高圧EGR流量(の目標値)Hも増加し、P0以降は適合値で一定となる。また低圧EGR流量Lは、P0までは減少し、P0以降は適合値で一定となる。   The trends due to the processing of FIG. 3 are summarized as shown in FIG. In the bar graph of FIG. 7, the left side is the high pressure EGR flow rate, and the right side is the low pressure EGR flow rate. A broken line frame represents the maximum flow rate E that can be physically secured in the high-pressure EGR pipe. When the PM accumulation amount increases, the high-pressure EGR flow rate (target value) H increases as E increases until P0, and after P0, it becomes a constant value at a suitable value. Further, the low pressure EGR flow rate L decreases until P0 and becomes a constant value after P0.

図3の処理により、PM堆積量がP0以上の場合は、高圧EGR流量を物理的に可能な数値にできるので、実際の高圧EGR流量が目標値に達しないこと等が回避できる。またPM堆積量がP0以上の場合は、過給不足が発生しないEGR流量(適合値)とできる。その結果、PM堆積量がP0以下の場合、上述の特許文献1での制御とは反対の傾向となり、高圧EGR流量を適合値よりも小さくし、低圧EGR流量を適合値よりも大きくする。なお図5のP0の所で適合値Cが点線EからMだけ小さい値となっているが、これは、余裕分Mをそのような数値とした例とすればよい。   3, when the PM accumulation amount is P0 or more, the high pressure EGR flow rate can be set to a physically possible numerical value, so that the actual high pressure EGR flow rate does not reach the target value. Further, when the PM accumulation amount is equal to or greater than P0, the EGR flow rate (adapted value) that does not cause insufficient supercharging can be obtained. As a result, when the PM deposition amount is equal to or less than P0, the tendency is opposite to the control described in Patent Document 1, and the high-pressure EGR flow rate is made smaller than the conforming value and the low-pressure EGR flow rate is made larger than the conforming value. Note that the matching value C is smaller by M from the dotted line E at P0 in FIG. 5, but this may be an example in which the margin M is such a numerical value.

次に、図4を説明する。装置1は、例えば図4の処理によって高圧EGR弁80の開度を設定する。図4の処理ではまずS200でECU9は、流量とバルブ開度との関係を示すマップを選択する。そのマップの例が図6に示されている。   Next, FIG. 4 will be described. The apparatus 1 sets the opening degree of the high pressure EGR valve 80, for example, by the process of FIG. In the process of FIG. 4, first, in S200, the ECU 9 selects a map indicating the relationship between the flow rate and the valve opening. An example of the map is shown in FIG.

図6に示されたマップは、DPF6のPM堆積量ごとの、高圧EGR弁80の開度と高圧EGR管8の流量(還流量)との間の特性を示している(具体的に図6では、PM堆積量が10g、20g、30g、40gの場合が示されている)。同じ高圧EGR流量を達成する場合でも、例えばPM堆積量が20gと30gとでは、高圧EGRバルブ開度に矢印で示したずれがある。図6のマップはエンジン2の運転条件(エンジン回転数とエンジン負荷)ごとに異なる。S200では、図6からその時点でのPM堆積量(および運転条件)における上記特性を選択する。図6のマップは予め求めておいて、例えばメモリ90に記憶しておけばよい。   The map shown in FIG. 6 shows the characteristics between the opening degree of the high pressure EGR valve 80 and the flow rate (recirculation amount) of the high pressure EGR pipe 8 for each PM accumulation amount of the DPF 6 (specifically FIG. 6). Shows the cases where the PM deposition amount is 10 g, 20 g, 30 g, and 40 g). Even when the same high-pressure EGR flow rate is achieved, for example, when the PM accumulation amount is 20 g and 30 g, the high-pressure EGR valve opening has a deviation indicated by an arrow. The map in FIG. 6 differs depending on the operating conditions (engine speed and engine load) of the engine 2. In S200, the above characteristic in the PM accumulation amount (and operation conditions) at that time is selected from FIG. The map in FIG. 6 may be obtained in advance and stored in the memory 90, for example.

次にS210でECU9は、目標開度を算出する。すなわち、S200で選択した特性において、S140で求めた高圧EGR還流量の目標値における高圧EGR弁開度を求める。   Next, in S210, the ECU 9 calculates a target opening. That is, the high pressure EGR valve opening at the target value of the high pressure EGR recirculation amount obtained in S140 is obtained for the characteristic selected in S200.

こうして高圧EGR弁開度が求められたら、例えば、高圧EGR弁80の開度が求められた開度となるように、ECU9が高圧EGR弁80に指令すればよい。   When the high-pressure EGR valve opening is thus obtained, the ECU 9 may instruct the high-pressure EGR valve 80 so that, for example, the opening of the high-pressure EGR valve 80 becomes the obtained opening.

あるいは、その指令の後に、高圧EGR還流量の実際値がS140で設定した目標値に収束するようにフィードバック制御を行ってもよい。具体的には、例えば高圧EGR還流量の推定値を算出して(その方法は後述)、それとS140で求めた高圧EGR還流量の目標値との差分を算出し、その差分値を入力としたフィードバック制御器(予め設計しておく)により高圧EGR弁への開度指令値を算出する。   Alternatively, after the command, feedback control may be performed so that the actual value of the high-pressure EGR recirculation amount converges to the target value set in S140. Specifically, for example, an estimated value of the high-pressure EGR recirculation amount is calculated (the method will be described later), and a difference between it and the target value of the high-pressure EGR recirculation amount obtained in S140 is calculated, and the difference value is input. An opening command value to the high pressure EGR valve is calculated by a feedback controller (designed in advance).

こうしたフィードバック制御を行う場合、S200で求めた高圧EGR開度の指令は、高圧EGR弁開度のフィードフォワード量となる(高圧EGR弁80への入力は、このフィードフォワード量とフィードバック量との和となる)。以上のフィードバック制御およびフィードフォワード制御はプログラム化してメモリ90に記憶しておき、それをECU9が自動的に実行すればよい。   When performing such feedback control, the high pressure EGR opening command obtained in S200 is the feed forward amount of the high pressure EGR valve opening (the input to the high pressure EGR valve 80 is the sum of the feed forward amount and the feedback amount). Becomes). The above feedback control and feedforward control may be programmed and stored in the memory 90, and the ECU 9 may automatically execute them.

高圧EGR還流量の推定方法の例は以下のとおりである。まず、エンジン2のシリンダに吸入される空気量を算出する。この算出では、周知の気体の状態方程式を吸気マニホールドに適用すればよい。これにより、次の式(e1)でシリンダに吸入される空気量が算出される。
Mcld={η*Pim*Vcld}/{R*Tim} (e1)
An example of a method for estimating the high-pressure EGR reflux amount is as follows. First, the amount of air taken into the cylinder of the engine 2 is calculated. In this calculation, a well-known gas equation of state may be applied to the intake manifold. Thereby, the amount of air sucked into the cylinder is calculated by the following equation (e1).
Mcld = {η * Pim * Vcld} / {R * Tim} (e1)

式(e1)で、Pim、Timはそれぞれ圧力センサ34、温度センサ33で検出された吸気マニホールド内の圧力値、温度値(絶対温度に変換)、Vcldはエンジン2のシリンダ容積、Rは気体定数である。ηはエンジン2の筒内に吸入されるガスの1モルあたりの質量(モル質量)や、シリンダの吸気効率を反映した数値であり、適切な値に設定すればよい(シリンダの吸気効率はエンジン回転数とPimとの2次元マップから求めればよい)。なお*は乗算、/は除算を示す。   In equation (e1), Pim and Tim are the pressure value and temperature value (converted to absolute temperature) in the intake manifold detected by the pressure sensor 34 and the temperature sensor 33, Vcld is the cylinder volume of the engine 2, and R is the gas constant. It is. η is a numerical value reflecting the mass (molar mass) of gas sucked into the cylinder of the engine 2 and the intake efficiency of the cylinder, and may be set to an appropriate value (the intake efficiency of the cylinder is determined by the engine). It may be obtained from a two-dimensional map of rotation speed and Pim). Note that * indicates multiplication and / indicates division.

次に、総EGR還流量を算出する。総EGR還流量は高圧EGR還流量と低圧EGR還流量との和である。図1から明らかなとおり、総EGR還流量とエアフロメータ31の検出値との和がシリンダに吸入される空気量に等しい。したがって、総EGR還流量は、上記で求めたシリンダに吸入される空気量からエアフロメータ31の検出値を減算すれば算出される。   Next, the total EGR reflux amount is calculated. The total EGR reflux amount is the sum of the high pressure EGR reflux amount and the low pressure EGR reflux amount. As is apparent from FIG. 1, the sum of the total EGR recirculation amount and the detected value of the air flow meter 31 is equal to the amount of air sucked into the cylinder. Therefore, the total EGR recirculation amount is calculated by subtracting the detected value of the air flow meter 31 from the air amount taken into the cylinder obtained above.

また、高圧EGR還流量(の推定値)を算出する。この算出では、周知のベルヌーイの定理を高圧EGR管8に適用する。これにより、例えば特開2010−84519号公報に記載されているように次の式(e2)によって高圧EGR還流量が算出される。
Mhp={(Pex−Pim)*2*g/γ}^(1/2) (e2)
In addition, the high-pressure EGR reflux amount (estimated value) is calculated. In this calculation, the well-known Bernoulli theorem is applied to the high-pressure EGR pipe 8. Thereby, for example, as described in Japanese Patent Application Laid-Open No. 2010-84519, the high pressure EGR reflux amount is calculated by the following equation (e2).
Mhp = {(Pex−Pim) * 2 * g / γ} ^ (1/2) (e2)

式(e2)において、Pexは圧力センサ40で検出した排気マニホールド内の圧力値、Pimは圧力センサ34で検出した吸気マニホールド内の圧力値、gは重力加速度、γは還流されるガスの比重、^(1/2)は平方根である。   In the equation (e2), Pex is a pressure value in the exhaust manifold detected by the pressure sensor 40, Pim is a pressure value in the intake manifold detected by the pressure sensor 34, g is a gravitational acceleration, γ is a specific gravity of the recirculated gas, ^ (1/2) is the square root.

そして低圧EGR還流量(の推定値)を算出する。上述のとおり、高圧EGR還流量と低圧EGR還流量との和が総EGR還流量である。したがって、上記で求めた総EGR還流量から上記で求めた高圧EGR還流量を減算することにより、低圧EGR還流量(の推定値)が算出される。以上が高圧EGR還流量、低圧EGR還流量の推定方法の一例である。   Then, the low pressure EGR recirculation amount (estimated value) is calculated. As described above, the sum of the high pressure EGR reflux amount and the low pressure EGR reflux amount is the total EGR reflux amount. Therefore, the low pressure EGR reflux amount (estimated value) is calculated by subtracting the high pressure EGR reflux amount obtained above from the total EGR reflux amount obtained above. The above is an example of a method for estimating the high pressure EGR recirculation amount and the low pressure EGR recirculation amount.

以上のとおり、図4により高圧EGR弁開度の設定、あるいは高圧EGR流量のフィードバック制御について説明したが、同様に低圧EGRに関しても、例えば低圧EGR流量のフィードバック制御を行えばよい。つまり、例えば上記で説明した低圧EGR流量の推定値と、S150、S170で求めた低圧EGR流量の目標値との差分を算出し、その差分値を入力としたフィードバック制御器(予め設計しておく)により低圧EGR弁への開度指令値を算出する。   As described above, the setting of the high-pressure EGR valve opening degree or the feedback control of the high-pressure EGR flow rate has been described with reference to FIG. 4. Similarly, for the low-pressure EGR, for example, the feedback control of the low-pressure EGR flow rate may be performed. That is, for example, a difference between the estimated value of the low-pressure EGR flow rate described above and the target value of the low-pressure EGR flow rate obtained in S150 and S170 is calculated, and the feedback controller (designed in advance) using the difference value as an input. ) To calculate the opening command value to the low pressure EGR valve.

以上のとおり、高圧還流通路における排気還流量を推定する推定手段と、その推定手段によって推定された高圧還流通路における排気還流量をフィードバックして、前記設定手段によって設定された高圧還流通路における目標排気還流量に近づくように制御するフィードバック制御器と、を備えたとしてもよい。また、低圧還流通路における排気還流量を推定する推定手段と、その推定手段によって推定された低圧還流通路における排気還流量をフィードバックして、前記設定手段によって設定された低圧還流通路における目標排気還流量に近づくように制御するフィードバック制御器と、を備えたとしてもよい。   As described above, the estimation means for estimating the exhaust gas recirculation amount in the high pressure recirculation passage, and the target exhaust gas in the high pressure recirculation passage set by the setting means by feeding back the exhaust gas recirculation amount in the high pressure recirculation passage estimated by the estimation means. And a feedback controller that controls the amount of recirculation so as to approach the recirculation amount. Further, an estimation means for estimating the exhaust gas recirculation amount in the low pressure recirculation passage, and a target exhaust gas recirculation amount in the low pressure recirculation passage set by the setting means by feeding back the exhaust gas recirculation amount in the low pressure recirculation passage estimated by the estimation means And a feedback controller that performs control so as to approach the distance.

上記実施例は特許請求の範囲に記載された趣旨の範囲内で適宜変更してよい。例えば、上記では高圧EGR流量を物理的に可能な最大流量から余裕分を差し引いた数値としたが、本発明はこれに限定されず、高圧EGR流量は、物理的に確保可能な排気還流量を超えない範囲の数値であればよく、そして高圧EGR流量に応じて低圧EGR流量を設定すればよい。また上記では所定量P0を適合値を求めた際のPM堆積量としたが、これに限定せず、任意の数値でもよく、例えば試行錯誤などで適切に求めればよい。   The above embodiments may be appropriately changed within the scope of the gist of the claims. For example, in the above, the high pressure EGR flow rate is a numerical value obtained by subtracting the margin from the physically possible maximum flow rate, but the present invention is not limited to this, and the high pressure EGR flow rate is the exhaust gas recirculation amount that can be physically secured. Any numerical value in the range not exceeding may be used, and the low pressure EGR flow rate may be set according to the high pressure EGR flow rate. In the above description, the predetermined amount P0 is the amount of PM deposited when the conforming value is obtained. However, the present invention is not limited to this, and any numerical value may be used. For example, it may be appropriately obtained by trial and error.

1 制御装置
2 エンジン(内燃機関)
3 吸気管(吸気通路)
4 排気管(排気通路)
7 低圧EGR管(低圧還流通路)
8 高圧EGR管(高圧還流通路)
9 ECU
1 control device 2 engine (internal combustion engine)
3 Intake pipe (intake passage)
4 Exhaust pipe (exhaust passage)
7 Low pressure EGR pipe (low pressure reflux passage)
8 High pressure EGR pipe (High pressure reflux passage)
9 ECU

Claims (4)

内燃機関の排気通路における過給器のタービンの上流から前記内燃機関の吸気通路における過給器のコンプレッサの下流へ排気を還流させる高圧還流通路と、
前記排気通路における前記タービンの下流から前記吸気通路における前記コンプレッサの上流へ排気を還流させる低圧還流通路と、
前記排気通路に備えられて排気中の粒子状物質を捕集する捕集器と、
その捕集器における粒子状物質の堆積量に応じた、前記高圧還流通路における物理的に確保可能な排気還流量を記憶する記憶手段と、
前記高圧還流通路の排気還流量が前記内燃機関の最適制御に適合した値である場合における前記捕集器の粒子状物質の堆積量である基準堆積量よりも前記堆積量が少ない場合に、前記堆積量に応じて、前記記憶手段に記憶された物理的に確保可能な排気還流量を超えない範囲で前記高圧還流通路における目標排気還流量を設定し、その高圧還流通路における目標排気還流量の設定に応じて前記低圧還流通路における目標排気還流量を設定する設定手段と、
を備え
前記記憶手段に記憶された前記物理的に確保可能な排気還流量は、前記堆積量が少ないほど物理的に確保可能な排気還流量が少ないとの性質を有するように記憶され、
前記設定手段は、前記堆積量が前記基準堆積量よりも少ない場合に、前記堆積量が少ないほど、前記高圧還流通路における目標排気還流量を小さい量となるように設定し、前記堆積量が多いほど、前記高圧還流通路における目標排気還流量を大きい量となるように設定することを特徴とする内燃機関の排気浄化装置。
A high-pressure recirculation passage for recirculating exhaust gas from the upstream of the turbocharger turbine in the exhaust passage of the internal combustion engine to the downstream of the compressor of the supercharger in the intake passage of the internal combustion engine;
A low pressure recirculation passage for recirculating exhaust gas from downstream of the turbine in the exhaust passage to upstream of the compressor in the intake passage;
A collector provided in the exhaust passage to collect particulate matter in the exhaust;
Storage means for storing an exhaust gas recirculation amount physically securable in the high-pressure recirculation passage according to the amount of particulate matter deposited in the collector;
If the exhaust gas recirculation amount of the high-pressure return passage is said amount deposited is not less than the reference accumulation amount is the deposition amount of the particulate matter in the collector when a value adapted to the optimal control of the internal combustion engine, A target exhaust gas recirculation amount in the high pressure recirculation passage is set in a range not exceeding the physically reservable exhaust gas recirculation amount stored in the storage unit according to the accumulation amount, and the target exhaust gas recirculation amount in the high pressure recirculation passage is set. Setting means for setting a target exhaust gas recirculation amount in the low pressure recirculation passage according to the setting of
Equipped with a,
The physically recyclable exhaust gas recirculation amount stored in the storage means is stored so as to have a property that the smaller the accumulation amount, the smaller the physically recirculated exhaust gas recirculation amount,
The setting means sets the target exhaust gas recirculation amount in the high-pressure recirculation passage to be a smaller amount as the accumulation amount is smaller when the accumulation amount is smaller than the reference accumulation amount, and the accumulation amount is larger. The exhaust gas purification apparatus for an internal combustion engine is characterized in that the target exhaust gas recirculation amount in the high pressure recirculation passage is set to be a large amount .
前記設定手段は、前記堆積量が前記基準堆積量よりも少ない場合に、前記堆積量が少ないほど、前記高圧還流通路における目標排気還流量を前記高圧還流通路の排気還流量の前記最適制御へ適合した値から減少するように設定する請求項に記載の内燃機関の排気浄化装置。 When the accumulation amount is smaller than the reference accumulation amount , the setting means adapts the target exhaust gas recirculation amount in the high pressure recirculation passage to the optimum control of the exhaust recirculation amount in the high pressure recirculation passage as the accumulation amount decreases. The exhaust emission control device for an internal combustion engine according to claim 1 , wherein the exhaust gas purification device is set so as to decrease from the measured value. 前記設定手段は、前記堆積量が前記基準堆積量よりも少ない場合に、前記高圧還流通路と前記低圧還流通路とにおける目標排気還流量の和が、前記高圧還流通路と前記低圧還流通路とにおける排気還流量の前記最適制御へ適合した値の和となるように、前記高圧還流通路と前記低圧還流通路とにおける目標排気還流量を設定する請求項に記載の内燃機関の排気浄化装置。 When the accumulation amount is smaller than the reference accumulation amount , the setting means determines that the sum of the target exhaust gas recirculation amount in the high pressure recirculation passage and the low pressure recirculation passage is exhaust gas in the high pressure recirculation passage and the low pressure recirculation passage. The exhaust purification device for an internal combustion engine according to claim 2 , wherein a target exhaust gas recirculation amount is set in the high pressure recirculation passage and the low pressure recirculation passage so as to be a sum of values suitable for the optimum control of the recirculation amount. 前記設定手段は、前記堆積量が前記基準堆積量よりも多い場合に、前記高圧還流通路と前記低圧還流通路とにおける目標排気還流量をそれぞれ前記高圧還流通路と前記低圧還流通路とにおける排気還流量の前記最適制御へ適合した値に設定する請求項1乃至のいずれか1項に記載の内燃機関の排気浄化装置。 The setting means sets the target exhaust gas recirculation amount in the high pressure recirculation passage and the low pressure recirculation passage when the accumulation amount is larger than the reference accumulation amount, respectively. The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 3 , wherein the exhaust gas purification apparatus is set to a value suitable for the optimal control .
JP2012028668A 2012-02-13 2012-02-13 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP5578451B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012028668A JP5578451B2 (en) 2012-02-13 2012-02-13 Exhaust gas purification device for internal combustion engine
DE102013101227A DE102013101227A1 (en) 2012-02-13 2013-02-07 Exhaust gas purification system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012028668A JP5578451B2 (en) 2012-02-13 2012-02-13 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2013164052A JP2013164052A (en) 2013-08-22
JP5578451B2 true JP5578451B2 (en) 2014-08-27

Family

ID=48868420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012028668A Expired - Fee Related JP5578451B2 (en) 2012-02-13 2012-02-13 Exhaust gas purification device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP5578451B2 (en)
DE (1) DE102013101227A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015222028A (en) * 2014-05-22 2015-12-10 株式会社デンソー Internal combustion engine exhaust treatment system
JP6098597B2 (en) * 2014-09-12 2017-03-22 マツダ株式会社 Engine control device
JP6319034B2 (en) * 2014-10-10 2018-05-09 トヨタ自動車株式会社 Filter inspection device and filter inspection method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4225322B2 (en) * 2006-01-27 2009-02-18 トヨタ自動車株式会社 Exhaust gas recirculation device for internal combustion engine
JP4736931B2 (en) * 2006-04-27 2011-07-27 トヨタ自動車株式会社 Exhaust gas recirculation device for internal combustion engine
JP5365261B2 (en) 2009-03-02 2013-12-11 マツダ株式会社 Method and system for controlling exhaust gas recirculation in an internal combustion engine

Also Published As

Publication number Publication date
DE102013101227A1 (en) 2013-08-14
JP2013164052A (en) 2013-08-22

Similar Documents

Publication Publication Date Title
JP4270173B2 (en) Diesel engine exhaust aftertreatment system
US7266944B2 (en) Exhaust gas filtering system for internal combustion engine
JP2006161718A (en) Exhaust emission control system for internal combustion engine
JP6036533B2 (en) PM accumulation amount estimation device and exhaust purification system for internal combustion engine
WO2016117516A1 (en) Exhaust purification system and catalyst regeneration method
JP5578451B2 (en) Exhaust gas purification device for internal combustion engine
JP5834906B2 (en) Exhaust gas purification device for internal combustion engine
CN100476167C (en) Exhaust gas filtering system for internal combustion engine
JP2010169032A (en) Engine control device
JP2008144726A (en) Exhaust emission control device for internal combustion engine
JP5699922B2 (en) Exhaust gas purification device for internal combustion engine
CN107407175B (en) Exhaust gas purification system and catalyst regeneration method
JP4868908B2 (en) Control device for engine with selective reduction type NOx catalyst
EP3049648B1 (en) Exhaust gas control apparatus and exhaust gas control method for internal-combustion engine
JP2013181411A (en) Exhaust emission control device of internal combustion engine
JP5915856B2 (en) Exhaust gas purification device for internal combustion engine
JP2009250099A (en) Exhaust emission control device of internal combustion engine
JP2009036025A (en) Exhaust emission control device of internal combustion engine and method of estimating discharged amount of particulate matter
JP5815296B2 (en) Exhaust gas purification device for internal combustion engine
JP5136465B2 (en) Exhaust gas purification device for internal combustion engine
JP2015021456A (en) Internal combustion engine control device
CN111566321B (en) Exhaust gas purification method and exhaust gas purification device for gasoline engine
JP7064376B2 (en) Exhaust treatment device
JP2010185351A (en) Exhaust gas recirculation device
JP6426064B2 (en) engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140626

R151 Written notification of patent or utility model registration

Ref document number: 5578451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees