JP5578138B2 - Optical sensor and manufacturing method thereof - Google Patents

Optical sensor and manufacturing method thereof Download PDF

Info

Publication number
JP5578138B2
JP5578138B2 JP2011139686A JP2011139686A JP5578138B2 JP 5578138 B2 JP5578138 B2 JP 5578138B2 JP 2011139686 A JP2011139686 A JP 2011139686A JP 2011139686 A JP2011139686 A JP 2011139686A JP 5578138 B2 JP5578138 B2 JP 5578138B2
Authority
JP
Japan
Prior art keywords
light
light receiving
output signal
pair
receiving elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011139686A
Other languages
Japanese (ja)
Other versions
JP2013007621A (en
Inventor
豪男 沢岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011139686A priority Critical patent/JP5578138B2/en
Publication of JP2013007621A publication Critical patent/JP2013007621A/en
Application granted granted Critical
Publication of JP5578138B2 publication Critical patent/JP5578138B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Light Receiving Elements (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

本発明は、半導体基板に受光素子が複数形成され、半導体基板における受光素子の形成面上に、透光膜を介して遮光膜が形成され、遮光膜に、透光用の開口部が形成された光センサ、及び、その製造方法に関するものである。   In the present invention, a plurality of light receiving elements are formed on a semiconductor substrate, a light shielding film is formed on the surface of the semiconductor substrate where the light receiving elements are formed via a light transmitting film, and a light transmitting opening is formed in the light shielding film. The present invention relates to an optical sensor and a method for manufacturing the same.

従来、例えば特許文献1に示されるように、半導体基板にフォトダイオードが複数形成され、その形成面上に透光性を有する透光層が形成され、その透光層に遮光性を有する遮光マスクが形成され、その遮光マスクに光伝播エリアが複数形成された光センサが提案されている。この光センサでは、遮光マスクの光伝播エリアによって、フォトダイオードの受光面に入射する光の範囲が規定されている。   Conventionally, as shown in, for example, Patent Document 1, a plurality of photodiodes are formed on a semiconductor substrate, a light-transmitting light-transmitting layer is formed on the formation surface, and the light-transmitting layer has a light-blocking property. There has been proposed an optical sensor in which a plurality of light propagation areas are formed on the light shielding mask. In this optical sensor, the range of light incident on the light receiving surface of the photodiode is defined by the light propagation area of the light shielding mask.

米国特許6875974号明細書US Pat. No. 6,875,974

特許文献1に示される光センサでは、対を成す2つのフォトダイオードが左右方向に隣接しており、これら2つのフォトダイオードそれぞれの受光面に入射する光の範囲が、2つのフォトダイオードの上方に位置する1つの光伝播エリアによって規定されている。したがって、左方から光センサに光が入射した場合、右方のフォトダイオードの出力信号が、左方のフォトダイオードの出力信号よりも大きくなる。これとは反対に、右方から光センサに光が入射した場合、左方のフォトダイオードの出力信号が、右方のフォトダイオードの出力信号よりも大きくなる。したがって、対を成す2つのフォトダイオードの出力信号を比べることで、光が左方から入射しているのか、右方から入射しているのかを検出することが可能となっている。   In the optical sensor shown in Patent Document 1, two photodiodes forming a pair are adjacent in the left-right direction, and the range of light incident on the light receiving surface of each of the two photodiodes is above the two photodiodes. It is defined by one located light propagation area. Therefore, when light enters the optical sensor from the left, the output signal of the right photodiode is larger than the output signal of the left photodiode. On the contrary, when light enters the optical sensor from the right side, the output signal of the left photodiode is larger than the output signal of the right photodiode. Therefore, it is possible to detect whether light is incident from the left side or from the right side by comparing the output signals of the two photodiodes forming a pair.

ところで、上記構成では、左方のフォトダイオードの出力信号を、対を成す2つのフォトダイオードの出力信号の総和によって割った値(第1の値)と、右方のフォトダイオードの出力信号を、対を成す2つのフォトダイオードの出力信号の総和によって割った値(第2の値)と、を算出し、これら2つの値の比をとることで、光が、光センサに対して左方からどれくらい入射しているのか、若しくは、右方からどれくらい入射しているのか、を検出することができる。すなわち、光の左右比を検出することができる。   By the way, in the above configuration, the value (first value) obtained by dividing the output signal of the left photodiode by the sum of the output signals of the two photodiodes forming the pair, and the output signal of the right photodiode, By calculating the value (second value) divided by the sum of the output signals of the two photodiodes that make a pair, and taking the ratio of these two values, the light from the left side of the photosensor It is possible to detect how much is incident or how much is incident from the right side. That is, the right / left ratio of light can be detected.

しかしながら、上記したように、特許文献1では、フォトダイオードの形成面(受光面)上に、透光層を介して遮光マスクが形成され、その遮光マスクに光伝播エリアが形成されている。この光伝播エリアに製造バラツキが生じると、上記した左右比の検出精度が低下する虞がある。   However, as described above, in Patent Document 1, a light-shielding mask is formed on a photodiode formation surface (light-receiving surface) via a light-transmitting layer, and a light propagation area is formed in the light-shielding mask. If manufacturing variations occur in this light propagation area, there is a risk that the detection accuracy of the above-described left-right ratio will be reduced.

そこで、本発明は上記問題点に鑑み、光の左右比の検出精度の低下が抑制された光センサ、及び、その製造方法を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide an optical sensor in which a decrease in detection accuracy of the right / left ratio of light is suppressed, and a manufacturing method thereof.

上記した目的を達成するために、請求項1に記載の発明は、半導体基板(10)に受光素子(20)が複数形成され、半導体基板(10)における受光素子(20)の形成面(10a)上に、透光膜(30)を介して遮光膜(40)が形成され、該遮光膜(40)に、透光用の開口部(50)が形成され、該開口部(50)を介した光を受光素子(20)にて受光する光センサであって、形成面(10a)の一方向に沿う仮想直線(VL)を介して線対称の関係にある一対の受光素子(21,22)が半導体基板(10)に形成され、仮想直線(VL)を介して線対称の関係にある一対の開口部(51,52)が、一対の受光素子(21,22)に対応して遮光膜(40)に形成され、形成面(10a)に直交する高さ方向に沿って、形成面(10a)へ投影された一対の開口部(51,52)それぞれの投影面の一部が対応する受光素子の受光面に重なっており、高さ方向に沿う光を、開口部(51,52)を介して受光素子(21,22)に照射した際に、一対の受光素子(21,22)から出力される出力信号に基づいて、高さ方向に沿う光が開口部(51,52)を介して受光素子(21,22)に入射した際に出力される一対の受光素子(21,22)それぞれの出力信号が互いに一致するように、各出力信号を補正する補正部(60)を有し、一対の受光素子(21,22)の内の一方の受光素子(21)の出力信号をS1、他方の出力信号をS2、高さ方向に沿う光が開口部(51,52)を介して受光素子(21,21)に入射した際の出力信号S1をSV1、出力信号S2をSV2とすると、補正部(60)は、第1補正数ΔG1=(SV2−SV1)/(SV1+SV2)を記憶しており、(1+ΔG1)を出力信号S1に乗算し、(1−ΔG1)を出力信号S2に乗算することで、各出力信号S1,S2を補正することを特徴とする。 In order to achieve the above object, according to the first aspect of the present invention, a plurality of light receiving elements (20) are formed on a semiconductor substrate (10), and a formation surface (10a) of the light receiving elements (20) on the semiconductor substrate (10). ), A light-shielding film (40) is formed on the light-shielding film (30), and a light-transmitting opening (50) is formed on the light-shielding film (40). A pair of light receiving elements (21, 21) having a line-symmetrical relationship via a virtual straight line (VL) along one direction of the formation surface (10a). 22) is formed in the semiconductor substrate (10), and a pair of openings (51, 52) having a line-symmetrical relationship via a virtual straight line (VL) correspond to the pair of light receiving elements (21, 22). Formed on the light-shielding film (40) and along the height direction perpendicular to the formation surface (10a) Part of the projection surface of each of the pair of openings (51, 52) projected onto 10a) is overlapped with the light receiving surface of the corresponding light receiving element, and light along the height direction is passed through the openings (51, 52). When the light receiving element (21, 22) is irradiated through the light, the light along the height direction is directed to the opening (51, 52) based on the output signals output from the pair of light receiving elements (21, 22). A correction unit (60) for correcting each output signal so that the output signals of the pair of light receiving elements (21, 22) output when the light enters the light receiving element (21, 22) via The output signal of one light receiving element (21) of the pair of light receiving elements (21, 22) is S1, the other output signal is S2, and the light along the height direction passes through the openings (51, 52). The output signal S1 when incident on the light receiving element (21, 21) is SV1, Assuming that the signal S2 is SV2, the correction unit (60) stores the first correction number ΔG1 = (SV2−SV1) / (SV1 + SV2), and multiplies the output signal S1 by (1−ΔG1). ) Is multiplied by the output signal S2 to correct the output signals S1 and S2 .

このように本発明によれば、一対の受光素子(21,22)及び一対の開口部(51,52)それぞれが仮想直線(VL)を介して線対称となっている。そして、開口部(51,52)の投影面の一部が対応する受光素子(21,22)の受光面に重なっている。これによれば、高さ方向に沿う光が、開口部(51,52)を介して受光素子(21,22)に入射した際に、一対の受光素子(21,22)それぞれから出力される出力信号(以下、基準信号と示す)が、同一となることが期待される。しかしながら、上記した開口部(51,52)に製造バラツキが生じると、その製造ばらつきの分、受光面と投影面との重なり面積が異なり、基準信号が異なることとなる。この結果、一方の受光素子(21)の出力信号を2つの受光素子(21,22)の出力信号の総和によって割った値(第1の値)と、他方の受光素子(22)の出力信号を2つの受光素子(21,22)の出力信号の総和によって割った値(第2の値)とが異なり、これら2つの値の比である、光の左右比の検出精度が低下する虞がある。   Thus, according to the present invention, each of the pair of light receiving elements (21, 22) and the pair of openings (51, 52) is line symmetric via the virtual straight line (VL). A part of the projection surface of the opening (51, 52) overlaps the light receiving surface of the corresponding light receiving element (21, 22). According to this, when light along the height direction enters the light receiving element (21, 22) through the opening (51, 52), it is output from each of the pair of light receiving elements (21, 22). The output signals (hereinafter referred to as reference signals) are expected to be the same. However, if manufacturing variations occur in the openings (51, 52), the overlapping areas of the light receiving surface and the projection surface are different and the reference signals are different due to the manufacturing variation. As a result, a value (first value) obtained by dividing the output signal of one light receiving element (21) by the sum of the output signals of the two light receiving elements (21, 22) and the output signal of the other light receiving element (22). Is different from the value (second value) divided by the sum of the output signals of the two light receiving elements (21, 22), and the detection accuracy of the right / left ratio of light, which is the ratio of these two values, may be reduced. is there.

これに対して、請求項1に記載の発明では、一対の受光素子(21,22)それぞれの基準信号に基づいて、基準信号が一致するように、各受光素子(21,22)の出力信号を補正する。これによれば、各受光素子(21,22)の出力信号に含まれていた、開口部(51,52)の製造バラツキが補正されるので、光の左右比の検出精度の低下が抑制される。   On the other hand, according to the first aspect of the present invention, the output signals of the light receiving elements (21, 22) so that the reference signals are matched based on the reference signals of the pair of light receiving elements (21, 22). Correct. According to this, since the manufacturing variation of the openings (51, 52) included in the output signal of each light receiving element (21, 22) is corrected, a decrease in the detection accuracy of the right / left ratio of light is suppressed. The

また請求項1では、一対の受光素子(21,22)の内の一方の受光素子(21)の出力信号をS1、他方の出力信号をS2、高さ方向に沿う光が開口部(51,52)を介して受光素子(21,21)に入射した際の出力信号S1をSV1、出力信号S2をSV2とすると、補正部(60)は、第1補正数ΔG1=(SV2−SV1)/(SV1+SV2)を記憶しており、(1+ΔG1)を出力信号S1に乗算し、(1−ΔG1)を出力信号S2に乗算することで、各出力信号S1,S2を補正する。 Further, in claim 1 , the output signal of one light receiving element (21) of the pair of light receiving elements (21, 22) is S1, the other output signal is S2, and the light along the height direction is the opening (51, 52), when the output signal S1 when incident on the light receiving element (21, 21) is SV1 and the output signal S2 is SV2, the correction unit (60) has the first correction number ΔG1 = (SV2−SV1) / (SV1 + SV2) stores a (1 + .DELTA.G1) multiplies the output signal S1, and by multiplying the output signal S2 of (1-.DELTA.G1), you correct each output signals S1, S2.

請求項1に記載のように、形成面(10a)に透光膜(30)と遮光膜(40)とが積層されているが、これらを積層する過程において、設計時の膜(30,40)形状及び開口部(51,52)の形状を維持した状態で平行移動するように、膜(30,40)の配置位置がずれる虞がある。配置位置がずれると、一対の受光素子(21,22)の内の一方の受光素子(21)の受光面と対応する開口部(51)の投影面との重なり面積(以下、第1重なり面積J1と示す)が減少し、他方の受光素子(22)の受光面と対応する開口部(52)の投影面との重なり面積(以下、第2重なり面積J2と示す)が増大する。   As described in claim 1, the light-transmitting film (30) and the light-shielding film (40) are laminated on the formation surface (10a). In the process of laminating them, the films (30, 40 at the time of design) are stacked. ) There is a possibility that the arrangement position of the film (30, 40) may be shifted so that the shape and the shape of the opening (51, 52) are maintained in parallel. When the arrangement position is shifted, the overlapping area (hereinafter referred to as the first overlapping area) between the light receiving surface of one of the light receiving elements (21) of the pair of light receiving elements (21, 22) and the projection surface of the corresponding opening (51). J1) decreases, and the overlapping area (hereinafter referred to as second overlapping area J2) between the light receiving surface of the other light receiving element (22) and the projection surface of the corresponding opening (52) increases.

減少量と増大量とは同一であり、その量は、配置位置のずれ(開口部の製造ばらつき)に一致する(以下、ずれ量をΔJと示す)。したがって、製造ばらつきのない場合の重なり面積(設計面積)をJとすると、J1=J−ΔJ,J2=J+ΔJが成立する。   The amount of decrease and the amount of increase are the same, and the amount corresponds to the displacement of the arrangement position (manufacturing variation of the opening) (hereinafter, the amount of displacement is denoted by ΔJ). Therefore, if the overlapping area (design area) when there is no manufacturing variation is J, J1 = J−ΔJ and J2 = J + ΔJ are established.

重なり面積J1,J2と出力信号SV1,SV2とは比例関係にある。そのため、近似的に、SV1/SV2=J1/J2が成立する。この式に、J1=J−ΔJ,J2=J+ΔJを代入して、ΔJについて解くと、ΔJ=J×(SV2−SV1)/(SV1+SV2)=JΔG1となる。したがって、製造ばらつきのない場合の受光素子(21,22)の出力信号をSVとすると、製造ばらつきによる出力信号のずれ量ΔSは、SVΔG1と表される。   The overlapping areas J1 and J2 and the output signals SV1 and SV2 are in a proportional relationship. Therefore, approximately SV1 / SV2 = J1 / J2 is established. Substituting J1 = J−ΔJ and J2 = J + ΔJ into this equation and solving for ΔJ, ΔJ = J × (SV2−SV1) / (SV1 + SV2) = JΔG1. Therefore, when the output signal of the light receiving element (21, 22) when there is no manufacturing variation is SV, the deviation ΔS of the output signal due to the manufacturing variation is expressed as SVΔG1.

一方の受光素子(21)では、重なり面積が減少したので、出力信号がΔSだけ減ったことになる。したがって、一方の出力信号S1にΔSだけ加算すれば、製造ばらつきが補正される。その値は、近似的に(1+ΔG1)S1と表される。反対に、他方の受光素子(22)では、重なり面積が増大したので、出力信号がΔSだけ増えたことになる。したがって、他方の出力信号S2からΔSだけ差分すれば、製造ばらつきが補正される。その値は、近似的に(1−ΔG1)S2と表される。   In one light receiving element (21), since the overlapping area is reduced, the output signal is reduced by ΔS. Therefore, if ΔS is added to one output signal S1, the manufacturing variation is corrected. The value is approximately expressed as (1 + ΔG1) S1. On the other hand, in the other light receiving element (22), since the overlapping area is increased, the output signal is increased by ΔS. Therefore, if the difference is ΔS from the other output signal S2, the manufacturing variation is corrected. The value is approximately expressed as (1-ΔG1) S2.

以上、示したように、(1+ΔG1)を出力信号S1に乗算し、(1−ΔG1)を出力信号S2に乗算することで、各出力信号S1,S2が補正される。なお、上記した重なり面積の減少と増大とは、出力信号SV1、SV2を比較すれば判定することができる。   As described above, the output signals S1 and S2 are corrected by multiplying the output signal S1 by (1 + ΔG1) and multiplying the output signal S2 by (1−ΔG1). Note that the decrease and increase in the overlap area can be determined by comparing the output signals SV1 and SV2.

請求項に記載のように、形成面(10a)に沿い、仮想直線(VL)に直交する方向に投影面の一部が受光面から突出して、投影面と受光面とが形成面(10a)上に成す平面形状が略凸形状を成した構成が好適である。 According to a second aspect of the present invention, along the formation surface (10a), a part of the projection surface protrudes from the light receiving surface in a direction perpendicular to the virtual straight line (VL), and the projection surface and the light receiving surface are formed into the formation surface (10a). A configuration in which the planar shape formed on the upper surface is substantially convex is preferable.

説明を簡便とするために、仮想直線(VL)に沿う方向を前後方向、形成面(10a)に沿い、仮想直線(VL)に直交する方向を左右方向と示す。これによれば、投影面と受光面とが成す平面形状が、投影面の一部が左右方向に突出する、略凸形状を成していることとなる。この構成の場合、投影面の前後方向に、受光面が位置するので、透光膜(30)と遮光膜(40)の配置位置が、左右方向だけではなく、前後方向にずれていたとしても、前後方向へのずれによって、重なり面積が増減することが抑制される。これにより、左右比の検出精度が、製造ばらつきによって低下することがより効果的に抑制される。   For ease of explanation, the direction along the virtual straight line (VL) is indicated as the front-rear direction, the direction along the formation surface (10a), and the direction perpendicular to the virtual straight line (VL) is indicated as the left-right direction. According to this, the planar shape formed by the projection surface and the light receiving surface is a substantially convex shape in which a part of the projection surface protrudes in the left-right direction. In the case of this configuration, since the light receiving surface is located in the front-rear direction of the projection surface, the arrangement positions of the light-transmitting film (30) and the light-shielding film (40) may be shifted not only in the left-right direction but also in the front-rear direction. The overlap area is suppressed from increasing or decreasing due to the shift in the front-rear direction. This more effectively suppresses the left / right ratio detection accuracy from being reduced due to manufacturing variations.

請求項に記載のように、遮光膜(40)は、透光膜(30)に多層に形成され、各層の遮光膜(40)に形成された開口部(50)によって、光の仰角が規定された構成が良い。これによれば、一対の受光素子(21,22)の間に、多層の遮光膜(40)が位置するので、ある開口部(51)から入射した光が、その開口部(51)と対応する受光素子(21)以外の受光素子(22)に入射することが抑制される。これにより、各受光素子(21,22)の出力信号に、外乱ノイズが含まれることが抑制される。 According to a third aspect of the present invention, the light shielding film (40) is formed in multiple layers on the light transmissive film (30), and the opening angle (50) formed in the light shielding film (40) of each layer increases the elevation angle of light. The specified configuration is good. According to this, since the multilayer light shielding film (40) is located between the pair of light receiving elements (21, 22), the light incident from the certain opening (51) corresponds to the opening (51). Incident light receiving elements (22) other than the receiving light receiving element (21) are suppressed. Thereby, it is suppressed that disturbance noise is contained in the output signal of each light receiving element (21, 22).

請求項に記載の発明の作用効果は、請求項1〜いずれかに記載の発明の作用効果と同等なので、その記載を省略する。 The operational effects of the inventions according to claims 4 to 6 are the same as the operational effects of the invention according to any one of claims 1 to 3, so the description thereof is omitted.

第1実施形態に係る光センサの概略構成を示す平面図である。It is a top view which shows schematic structure of the optical sensor which concerns on 1st Embodiment. 図1のII−II線に沿う断面図である。It is sectional drawing which follows the II-II line | wire of FIG. 補正部の概略構成を説明するためのブロック図である。It is a block diagram for demonstrating schematic structure of a correction | amendment part. 光センサの変形例を示す平面図である。It is a top view which shows the modification of an optical sensor. 光センサの変形例を示す平面図である。It is a top view which shows the modification of an optical sensor.

以下、本発明に係る光センサを車両に搭載した場合の実施の形態を図に基づいて説明する。
(第1実施形態)
図1は、第1実施形態に係る光センサの概略構成を示す平面図である。図2は、図1のII−II線に沿う断面図である。図3は、補正部の概略構成を説明するためのブロック図である。なお、図1では、後述する受光素子21,22を破線で示し、重なり面積J1,J2にハッチングを入れ、補正部60を省略している。また、以下においては、受光素子20の形成面10aに沿い、車両の前後を貫く方向を前後方向、形成面10aに沿い、車両の左右を貫く方向を左右方向と示す。そして、形成面10aに直交する方向を高さ方向と示す。
DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment when an optical sensor according to the present invention is mounted on a vehicle will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a plan view showing a schematic configuration of the photosensor according to the first embodiment. 2 is a cross-sectional view taken along line II-II in FIG. FIG. 3 is a block diagram for explaining a schematic configuration of the correction unit. In FIG. 1, light receiving elements 21 and 22 described later are indicated by broken lines, the overlapping areas J1 and J2 are hatched, and the correction unit 60 is omitted. In the following, the direction passing through the front and rear of the vehicle along the formation surface 10a of the light receiving element 20 is indicated as the front-rear direction, and the direction passing through the left and right of the vehicle along the formation surface 10a is indicated as the left and right direction. And the direction orthogonal to the formation surface 10a is shown as a height direction.

光センサ100は、車両のフロントパネルに搭載され、主として、太陽の位置を検出するのに使用される。光センサ100は、図1〜図3に示すように、要部として、半導体基板10と、受光素子20と、透光膜30と、遮光膜40と、開口部50と、補正部60と、を有する。半導体基板10の形成面10a側に受光素子20が形成され、受光素子20の形成面10a上に透光膜30が形成され、透光膜30に遮光膜40が形成されている。そして、遮光膜40には、透光用の開口部50が形成され、この開口部50を介して、光が受光素子20に入射するようになっている。受光素子20の出力信号は、AD変換回路(図示略)にてデジタル信号に変換された後、補正部60に出力され、補正部60にて補正された後、外部素子(図示略)に出力される。   The optical sensor 100 is mounted on the front panel of the vehicle and is mainly used to detect the position of the sun. As shown in FIGS. 1 to 3, the optical sensor 100 includes, as main parts, a semiconductor substrate 10, a light receiving element 20, a light transmissive film 30, a light shielding film 40, an opening 50, a correction unit 60, Have The light receiving element 20 is formed on the formation surface 10 a side of the semiconductor substrate 10, the light transmitting film 30 is formed on the formation surface 10 a of the light receiving element 20, and the light shielding film 40 is formed on the light transmitting film 30. A light-transmitting opening 50 is formed in the light shielding film 40, and light enters the light receiving element 20 through the opening 50. The output signal of the light receiving element 20 is converted into a digital signal by an AD conversion circuit (not shown), then output to the correction unit 60, corrected by the correction unit 60, and then output to an external element (not shown). Is done.

半導体基板10は、矩形状を成し、上記した受光素子20や、補正部60を構成する電子素子(図示略)が形成されている。これら電子素子は、半導体基板10に形成された配線パターン(図示略)を介して電気的に接続されている。   The semiconductor substrate 10 has a rectangular shape, and the above-described light receiving element 20 and electronic elements (not shown) constituting the correction unit 60 are formed. These electronic elements are electrically connected via a wiring pattern (not shown) formed on the semiconductor substrate 10.

受光素子20は、光を電気信号に変換するものである。本実施形態に係る受光素子20は、PN接合を有するフォトダイオードであり、半導体基板10の形成面10a側に形成されている。図1に示すように、形成面10aには、前後方向に沿う仮想直線VLを介して線対称の関係にある一対の受光素子21,22が形成されている。   The light receiving element 20 converts light into an electrical signal. The light receiving element 20 according to the present embodiment is a photodiode having a PN junction, and is formed on the formation surface 10 a side of the semiconductor substrate 10. As shown in FIG. 1, a pair of light receiving elements 21 and 22 are formed on the forming surface 10 a in a line-symmetric relationship via a virtual straight line VL along the front-rear direction.

透光膜30は、光透過性と絶縁性とを有する材料から成る。このような性質を有する材料としては、例えばアクリル樹脂がある。図2に示すように、透光膜30は、形成面10a上に、一層形成されている。   The translucent film 30 is made of a material having optical transparency and insulating properties. An example of a material having such properties is an acrylic resin. As shown in FIG. 2, the translucent film 30 is formed as a single layer on the formation surface 10a.

遮光膜40は、遮光性と導電性を有する材料から成る。このような性質を有する材料としては、例えばアルミニウムがある。図2に示すように、遮光膜40は、透光膜30に一層形成され、透光用の開口部50が形成されている。なお、図示しないが、遮光膜40は、半導体基板10に形成された配線パターンと電気的に接続しており、各電子素子を電気的に接続する配線としての機能も果たすようになっている。   The light shielding film 40 is made of a material having light shielding properties and conductivity. An example of a material having such properties is aluminum. As shown in FIG. 2, the light shielding film 40 is formed in a single layer on the light transmitting film 30, and an opening 50 for light transmission is formed. Although not shown, the light shielding film 40 is electrically connected to a wiring pattern formed on the semiconductor substrate 10 and functions as a wiring for electrically connecting each electronic element.

開口部50は、受光素子20に入射する光を規定するものである。図1に示すように、遮光膜40には、仮想直線VLを介して線対称の関係にある一対の開口部51,52が形成されている。これら開口部51,52によって、受光素子21,22に入射する光の仰角が規定され、開口部51,52と受光素子21,22との配置位置によって、受光素子21,22に入射する光の左右角が規定されている。   The opening 50 defines light incident on the light receiving element 20. As shown in FIG. 1, the light shielding film 40 is formed with a pair of openings 51 and 52 that are in a line-symmetric relationship via a virtual straight line VL. These openings 51 and 52 define the elevation angle of light incident on the light receiving elements 21 and 22, and the position of the openings 51 and 52 and the light receiving elements 21 and 22 determines the light incident on the light receiving elements 21 and 22. Left and right corners are defined.

補正部60は、受光素子21,22の出力信号S1,S2を補正するものである。補正部60は、後述する第1補正数ΔG1を記憶し、第1補正数ΔG1を入力信号に乗算する乗算部61と、受光素子21,22の出力信号と乗算部61の出力信号とを演算する演算部62と、を有する。   The correction unit 60 corrects the output signals S1, S2 of the light receiving elements 21, 22. The correction unit 60 stores a later-described first correction number ΔG1 and calculates a multiplication unit 61 that multiplies the input signal by the first correction number ΔG1, and outputs signals from the light receiving elements 21 and 22 and an output signal from the multiplication unit 61. And an arithmetic unit 62.

次に、本実施形態に係る光センサ100の製造方法を説明する。先ず、仮想直線VLを介して線対称となるように、一対の受光素子21,22を形成面10a側に形成する。以上が、素子形成工程である。   Next, a method for manufacturing the optical sensor 100 according to the present embodiment will be described. First, the pair of light receiving elements 21 and 22 are formed on the formation surface 10a side so as to be line symmetric via the virtual straight line VL. The above is the element forming process.

該素子形成工程後、一対の開口部51,52が仮想直線VLを介して線対称となるように、透光膜30と遮光膜40を形成面10a上に形成する。以上が、膜形成工程である。   After the element formation step, the light-transmitting film 30 and the light-shielding film 40 are formed on the formation surface 10a so that the pair of openings 51 and 52 are symmetric with respect to the virtual straight line VL. The above is the film forming process.

該膜形成工程後、高さ方向に沿う光を、開口部51,52を介して受光素子21,22に照射して、一対の受光素子21,21それぞれの出力信号SV1,SV2を検出する。そして、SV1とSV2とを比較し、SV1がSV2よりも低い場合、第1補正数ΔG1として、(SV2−SV1)/(SV1+SV2)を乗算部61に記憶する。そして、演算部62が、乗算部61の出力信号ΔG1S1とS1を加算した(1+ΔG1)S1、及び、乗算部61の出力信号ΔG1S2とS2を差分した(1−ΔG1)S2を演算するようにプログラムする。反対に、SV1がSV2よりも大きい場合、第1補正数ΔG1として、(SV1−SV2)/(SV1+SV2)を乗算部61に記憶する。そして、演算部62が(1−ΔG1)S1、及び、(1+ΔG1)S2を演算するようにプログラムする。以上が、記憶工程である。   After the film forming step, light along the height direction is irradiated to the light receiving elements 21 and 22 through the openings 51 and 52, and the output signals SV1 and SV2 of the pair of light receiving elements 21 and 21 are detected. Then, SV1 and SV2 are compared, and when SV1 is lower than SV2, (SV2−SV1) / (SV1 + SV2) is stored in the multiplier 61 as the first correction number ΔG1. The calculation unit 62 is programmed to calculate (1 + ΔG1) S1 obtained by adding the output signals ΔG1S1 and S1 of the multiplication unit 61 and (1−ΔG1) S2 obtained by subtracting the output signals ΔG1S2 and S2 of the multiplication unit 61. To do. On the contrary, when SV1 is larger than SV2, (SV1−SV2) / (SV1 + SV2) is stored in the multiplier 61 as the first correction number ΔG1. Then, the calculation unit 62 is programmed to calculate (1−ΔG1) S1 and (1 + ΔG1) S2. The above is the storage process.

以上の工程を実施することで、光センサ100が製造される。本実施形態では、SV1がSV2よりも低く、乗算部61には、第1補正数ΔG1=(SV2−SV1)/(SV1+SV2)が記憶されているとする。また、演算部62は(1+ΔG1)S1、及び、(1−ΔG1)S2を演算するようにプログラムされているとする。   The optical sensor 100 is manufactured by performing the above processes. In the present embodiment, it is assumed that SV1 is lower than SV2, and the first correction number ΔG1 = (SV2−SV1) / (SV1 + SV2) is stored in the multiplier 61. Further, it is assumed that the calculation unit 62 is programmed to calculate (1 + ΔG1) S1 and (1−ΔG1) S2.

次に、本実施形態に係る光センサ100の特徴点を説明する。上記したように、対を成す受光素子21,22は仮想直線VLに対して線対称となり、対を成す開口部51,52は、仮想直線VLに対して線対称となっている。そして、第1受光素子21が仮想直線VLから左方に位置し、第2受光素子22が仮想直線VLから右方に位置している。同じく、第1開口部51が仮想直線VLから左方に位置し、第2開口部52が仮想直線VLから右方に位置している。   Next, feature points of the optical sensor 100 according to the present embodiment will be described. As described above, the pair of light receiving elements 21 and 22 are line symmetric with respect to the virtual line VL, and the pair of openings 51 and 52 are line symmetric with respect to the virtual line VL. The first light receiving element 21 is located on the left side from the virtual straight line VL, and the second light receiving element 22 is located on the right side from the virtual straight line VL. Similarly, the first opening 51 is located to the left from the virtual straight line VL, and the second opening 52 is located to the right from the virtual straight line VL.

図1に示すように、高さ方向に沿う光によって形成面10aに投影された、開口部51,52の投影面の一部が、対応する受光素子21,22の受光面に重なっている。これにより、高さ方向に沿う光を、開口部51,52を介して受光素子21,22に照射した際に、受光素子21,22から出力される出力信号SV1,SV2が同一となることが期待される。   As shown in FIG. 1, a part of the projection surface of the openings 51 and 52 projected onto the formation surface 10 a by light along the height direction overlaps with the light receiving surfaces of the corresponding light receiving elements 21 and 22. Thereby, when the light receiving elements 21 and 22 are irradiated with light along the height direction through the openings 51 and 52, the output signals SV1 and SV2 output from the light receiving elements 21 and 22 may be the same. Be expected.

また、図1に示すように、投影面の残りの一部が、左右方向に沿って、受光面から仮想直線VL側に突出して、投影面と受光面とが形成面10a上に成す平面形状が略凸形状を成している。この形状により、第1受光素子21は、第1開口部51を介して右方から入射してくる光を受光し易く、左方から入射してくる光を受光し難くなっている。反対に、第2受光素子22は、第2開口部52を介して左方から入射してくる光を受光し易く、右方から入射してくる光を受光し難くなっている。また、第1受光素子21は、第1開口部51を介して右前方及び右後方から入射してくる光を、右方から入射してくる光と同程度に受光し、光の前後方向の成分に依存し難くなっている。同じく、第2受光素子22は、第2開口部52を介して左前方及び左後方から入射してくる光を、左方から入射してくる光と同程度に受光し、光の前後方向の成分に依存し難くなっている。   Further, as shown in FIG. 1, the remaining part of the projection surface protrudes from the light receiving surface toward the virtual straight line VL along the left-right direction, and the projection surface and the light receiving surface are formed on the formation surface 10a. Has a substantially convex shape. Due to this shape, the first light receiving element 21 easily receives light incident from the right side through the first opening 51 and hardly receives light incident from the left side. On the other hand, the second light receiving element 22 is easy to receive light incident from the left through the second opening 52 and is difficult to receive light incident from the right. Further, the first light receiving element 21 receives light incident from the right front and right rear through the first opening 51 to the same extent as light incident from the right, and in the front-rear direction of the light It becomes difficult to depend on ingredients. Similarly, the second light receiving element 22 receives light incident from the left front and left rear via the second opening 52 to the same extent as light incident from the left, and in the longitudinal direction of the light. It becomes difficult to depend on ingredients.

補正部60は、出力信号SV1,SV2に基づいて、出力信号SV1,SV2が互いに一致するように、受光素子21,22の出力信号S1,S2を補正するものである。乗算部61からは、ΔG1が出力信号S1,S2に乗算された、ΔG1S1,ΔG1S2が出力され、この出力信号が演算部62に入力される。演算部62は、乗算部61の出力信号ΔG1S1とS1を加算した(1+ΔG1)S1、及び、乗算部61の出力信号ΔG1S2とS2を差分した(1−ΔG1)S2を演算し、演算した信号を外部素子に出力する。なお、この演算が、特許請求の範囲に記載の「(1+ΔG1)を出力信号S1に乗算し、(1−ΔG1)を出力信号S2に乗算する」、に相当する。   The correction unit 60 corrects the output signals S1 and S2 of the light receiving elements 21 and 22 based on the output signals SV1 and SV2 so that the output signals SV1 and SV2 coincide with each other. The multiplication unit 61 outputs ΔG1S1 and ΔG1S2 obtained by multiplying the output signals S1 and S2 by ΔG1, and this output signal is input to the calculation unit 62. The calculating unit 62 calculates (1 + ΔG1) S1 obtained by adding the output signals ΔG1S1 and S1 of the multiplying unit 61 and (1−ΔG1) S2 obtained by subtracting the output signals ΔG1S2 and S2 of the multiplying unit 61, and outputs the calculated signal. Output to external element. This calculation corresponds to “(1 + ΔG1) multiplied by the output signal S1 and (1−ΔG1) multiplied by the output signal S2” described in the claims.

外部素子では、演算部62の出力信号、すなわち、補正部60によって補正された受光素子21,22の出力信号(1+ΔG1)S1,(1−ΔG1)S2に基づいて、補正後の第1受光素子21の出力信号を補正後の2つの受光素子21,22の出力信号の総和によって割った値(第1の値)と、補正後の第2受光素子22の出力信号を補正後の2つの受光素子21,22の出力信号の総和によって割った値(第2の値)とを算出する。そして、これら2つの値の比である、光の左右比を算出する。この左右比によって、光の入射角度を概算する。また、左右比と、補正後の受光素子21,22の出力信号(1+ΔG1)S1,(1−ΔG1)S2とに基づいて、光の照射量を概算する。   In the external element, the corrected first light-receiving element based on the output signal of the calculation unit 62, that is, the output signals (1 + ΔG1) S1 and (1-ΔG1) S2 of the light-receiving elements 21 and 22 corrected by the correction unit 60 21 (the first value) obtained by dividing the output signal 21 by the sum of the output signals of the two light receiving elements 21 and 22 after correction, and the two light receptions after correcting the output signal of the second light receiving element 22 after correction. A value (second value) divided by the sum of the output signals of the elements 21 and 22 is calculated. Then, the right / left ratio of light, which is the ratio of these two values, is calculated. The incident angle of light is approximated by this left / right ratio. Further, based on the left / right ratio and the corrected output signals (1 + ΔG1) S1 and (1−ΔG1) S2 of the light receiving elements 21 and 22, the light irradiation amount is estimated.

次に、本実施形態に係る光センサ100の作用効果を説明する。上記したように、高さ方向に沿う光を、開口部51,52を介して受光素子21,22に照射した際に、受光素子21,22から出力される出力信号SV1,SV2が同一となることが期待される。しかしながら、開口部51,52に製造バラツキが生じると、その製造ばらつきの分、受光面と投影面との重なり面積が異なり、出力信号SV1,SV2が異なることとなる。この結果、上記した第1の値と第2の値とが異なり、これら2つの値の比である、光の左右比の検出精度が低下する虞がある。   Next, functions and effects of the optical sensor 100 according to the present embodiment will be described. As described above, when the light receiving elements 21 and 22 are irradiated with light along the height direction through the openings 51 and 52, the output signals SV1 and SV2 output from the light receiving elements 21 and 22 are the same. It is expected. However, if manufacturing variations occur in the openings 51 and 52, the overlapping areas of the light receiving surface and the projection surface differ and the output signals SV1 and SV2 differ due to the manufacturing variation. As a result, the first value and the second value described above are different, and the detection accuracy of the right / left ratio of light, which is the ratio of these two values, may be reduced.

これに対して、本実施形態では、出力信号SV1,SV2に基づいて、出力信号SV1,SV2が互いに一致するように、出力信号S1,S2を補正する。これによれば、各受光素子21,22の出力信号に含まれていた、開口部51,52の製造バラツキが補正されるので、光の左右比の検出精度の低下が抑制される。   On the other hand, in the present embodiment, the output signals S1 and S2 are corrected based on the output signals SV1 and SV2 so that the output signals SV1 and SV2 coincide with each other. According to this, since the manufacturing variation of the openings 51 and 52 included in the output signals of the light receiving elements 21 and 22 is corrected, a decrease in the detection accuracy of the right / left ratio of light is suppressed.

乗算部61は、第1補正数ΔG1=(SV2−SV1)/(SV1+SV2)を記憶し、ΔG1を出力信号S1,S2に乗算して出力し、演算部62は、乗算部61の出力信号ΔG1S1とS1を加算した(1+ΔG1)S1、及び、乗算部61の出力信号ΔG1S2とS2を差分した(1−ΔG1)S2を演算する。   The multiplication unit 61 stores the first correction number ΔG1 = (SV2−SV1) / (SV1 + SV2), multiplies ΔG1 by the output signals S1 and S2, and outputs the output signal ΔG1S1 of the multiplication unit 61. And (1 + ΔG1) S1, and (1−ΔG1) S2 is calculated by subtracting the output signals ΔG1S2 and S2 of the multiplier 61 from each other.

形成面10aに透光膜30と遮光膜40とが積層されているが、これらを積層する過程において、設計時の膜30,40の形状及び開口部50の形状を維持した状態で平行移動するように、膜30,40の配置位置がずれる虞がある。配置位置がずれると、第1受光素子21の受光面と対応する第1開口部51の投影面との重なり面積(以下、第1重なり面積J1と示す)が減少し、第2受光素子22の受光面と対応する第2開口部52の投影面との重なり面積(以下、第2重なり面積J2と示す)が増大する。若しくは、第1重なり面積J1が増大し、第2重なり面積J2が減少する。重なり面積J1,J2と出力信号SV1,SV2とは比例関係にあり、本実施形態では、SV1がSV2よりも低くなっているので、第1重なり面積J1が減少し、第2重なり面積J2が増大していることとなる。   The light-transmitting film 30 and the light-shielding film 40 are laminated on the formation surface 10a. In the process of laminating them, the film 30 and 40 at the time of design and the shape of the opening 50 are maintained in parallel translation. As described above, the arrangement positions of the films 30 and 40 may be shifted. When the arrangement position is shifted, an overlapping area (hereinafter, referred to as a first overlapping area J1) between the light receiving surface of the first light receiving element 21 and the projection surface of the first opening 51 corresponding to the first light receiving element 21 is reduced. The overlapping area (hereinafter referred to as second overlapping area J2) between the light receiving surface and the corresponding projection surface of the second opening 52 increases. Alternatively, the first overlapping area J1 increases and the second overlapping area J2 decreases. The overlapping areas J1 and J2 and the output signals SV1 and SV2 are in a proportional relationship. In this embodiment, since SV1 is lower than SV2, the first overlapping area J1 decreases and the second overlapping area J2 increases. Will be doing.

減少量と増大量とは同一であり、その量は、配置位置のずれ(開口部50の製造ばらつき)に一致する(以下、ずれ量をΔJと示す)。したがって、製造ばらつきのない場合の重なり面積(設計面積)をJとすると、J1=J−ΔJ,J2=J+ΔJが成立する。   The amount of decrease and the amount of increase are the same, and the amount corresponds to the displacement of the arrangement position (manufacturing variation of the opening 50) (hereinafter, the amount of displacement is denoted by ΔJ). Therefore, if the overlapping area (design area) when there is no manufacturing variation is J, J1 = J−ΔJ and J2 = J + ΔJ are established.

上記したように、重なり面積J1,J2と出力信号SV1,SV2とは比例関係にある。そのため、近似的に、SV1/SV2=J1/J2が成立する。この式に、J1=J−ΔJ,J2=J+ΔJを代入して、ΔJについて解くと、ΔJ=J×(SV2−SV1)/(SV1+SV2)=JΔG1となる。したがって、製造ばらつきのない場合の受光素子21,22の出力信号をSVとすると、製造ばらつきによる出力信号のずれ量ΔSは、SVΔG1と表される。   As described above, the overlapping areas J1 and J2 and the output signals SV1 and SV2 are in a proportional relationship. Therefore, approximately SV1 / SV2 = J1 / J2 is established. Substituting J1 = J−ΔJ and J2 = J + ΔJ into this equation and solving for ΔJ, ΔJ = J × (SV2−SV1) / (SV1 + SV2) = JΔG1. Therefore, when the output signal of the light receiving elements 21 and 22 when there is no manufacturing variation is SV, the output signal shift amount ΔS due to the manufacturing variation is expressed as SVΔG1.

第1受光素子21では、重なり面積が減少したので、出力信号がΔSだけ減ったことになる。したがって、出力信号S1にΔSだけ加算すれば、製造ばらつきが補正される。その値は、近似的に(1+ΔG1)S1と表される。反対に、第2受光素子22では、重なり面積が増大したので、出力信号がΔSだけ増えたことになる。したがって、出力信号S2からΔSだけ差分すれば、製造ばらつきが補正される。その値は、近似的に(1−ΔG1)S2と表される。   In the first light receiving element 21, since the overlapping area is reduced, the output signal is reduced by ΔS. Accordingly, if ΔS is added to the output signal S1, the manufacturing variation is corrected. The value is approximately expressed as (1 + ΔG1) S1. On the contrary, in the second light receiving element 22, since the overlapping area is increased, the output signal is increased by ΔS. Therefore, if the difference is ΔS from the output signal S2, the manufacturing variation is corrected. The value is approximately expressed as (1-ΔG1) S2.

以上、示したように、(1+ΔG1)S1を演算し、(1−ΔG1)S2に演算することで、各出力信号S1,S2が補正される。   As described above, each output signal S1, S2 is corrected by calculating (1 + ΔG1) S1 and calculating (1−ΔG1) S2.

図1に示すように、投影面と受光面とが成す平面形状が、投影面の一部が左右方向に突出する、略凸形状を成している。この構成の場合、投影面の前後方向に、受光面が位置するので、透光膜30と遮光膜40の配置位置が、左右方向だけではなく、前後方向にずれていたとしても、前後方向へのずれによって、重なり面積が増減することが抑制される。これにより、左右比の検出精度が、製造ばらつきによって低下することがより効果的に抑制される。   As shown in FIG. 1, the planar shape formed by the projection surface and the light receiving surface has a substantially convex shape in which a part of the projection surface protrudes in the left-right direction. In the case of this configuration, since the light receiving surface is positioned in the front-rear direction of the projection surface, even if the arrangement positions of the light-transmitting film 30 and the light-shielding film 40 are shifted not only in the left-right direction but also in the front-rear direction. The overlap area is prevented from increasing or decreasing due to the deviation. This more effectively suppresses the left / right ratio detection accuracy from being reduced due to manufacturing variations.

以上、本発明の好ましい実施形態について説明したが、本発明は上記した実施形態になんら制限されることなく、本発明の主旨を逸脱しない範囲において、種々変形して実施することが可能である。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

本実施形態では、光センサ100が車両に搭載された例を示した。しかしながら、光センサ100の適用としては、上記例に限定されない。   In the present embodiment, an example in which the optical sensor 100 is mounted on a vehicle is shown. However, the application of the optical sensor 100 is not limited to the above example.

本実施形態では、乗算部61からは、ΔG1が出力信号S1,S2に乗算された、ΔG1S1,ΔG1S2が出力される例を示した。しかしながら、乗算部61は、出力信号S1,S2が入力される度に、第2補正数ΔG2=(S2−S1)/(S1+S2)+ΔG1を算出し、これを乗算したΔG2S1,ΔG2S2を出力してもよい。この場合、演算部62は、乗算部61の出力信号ΔG2S1とS1を加算した(1+ΔG2)S1、及び、乗算部61の出力信号ΔG2S2とS2を差分した(1−ΔG2)S2を演算し、演算した信号を外部素子に出力する。   In the present embodiment, an example in which ΔG1S1 and ΔG1S2 obtained by multiplying the output signals S1 and S2 by ΔG1 is output from the multiplication unit 61 is shown. However, each time the output signals S1 and S2 are input, the multiplication unit 61 calculates the second correction number ΔG2 = (S2−S1) / (S1 + S2) + ΔG1, and outputs ΔG2S1 and ΔG2S2 obtained by multiplying them. Also good. In this case, the calculating unit 62 calculates (1 + ΔG2) S1 obtained by adding the output signals ΔG2S1 and S1 of the multiplying unit 61 and (1−ΔG2) S2 obtained by subtracting the output signals ΔG2S2 and S2 of the multiplying unit 61 to calculate The signal is output to an external element.

上記した(1+ΔG2)は2S2/(S1+S2)+ΔG1、(1−ΔG2)は2S1/(S1+S2)+ΔG1と表すことができる。これらの第2項は、製造ばらつきを補正する項であり、第1項は、補正前の第1受光素子21の出力信号を補正前の2つの受光素子21,22の出力信号の総和によって割った値(第1の値)と、補正前の第2受光素子22の出力信号を補正前の2つの受光素子21,22の出力信号の総和によって割った値(第2の値)の2倍の値である。光の入射角度が、高さ方向から左右に変化すると、光の入射面積が変動し、出力信号S1、S2の絶対値が変動する。その変動量は、上記した光の入射角度に比例し、その入射角度は、上記した第1の値、第2の値によって、概略的に表される。したがって、上記したように、(1+ΔG2)S1を演算し、(1−ΔG2)S2を演算することで、製造ばらつきが抑制され、且つ、光の入射角度に依存し難い出力信号を得ることができる。これにより、光の日射量を検出することができる。   The above (1 + ΔG2) can be expressed as 2S2 / (S1 + S2) + ΔG1, and (1−ΔG2) can be expressed as 2S1 / (S1 + S2) + ΔG1. These second terms are terms for correcting manufacturing variations, and the first term is obtained by dividing the output signal of the first light receiving element 21 before correction by the sum of the output signals of the two light receiving elements 21 and 22 before correction. Twice the first value and the value (second value) obtained by dividing the output signal of the second light receiving element 22 before correction by the sum of the output signals of the two light receiving elements 21 and 22 before correction. Is the value of When the incident angle of light changes from the height direction to the left and right, the incident area of the light varies, and the absolute values of the output signals S1 and S2 vary. The amount of variation is proportional to the incident angle of the light, and the incident angle is schematically represented by the first value and the second value. Therefore, as described above, by calculating (1 + ΔG2) S1 and calculating (1−ΔG2) S2, it is possible to obtain an output signal in which manufacturing variation is suppressed and it is difficult to depend on the incident angle of light. . Thereby, the amount of solar radiation can be detected.

本実施形態では、図1に示すように、一対の受光素子21,22及び一対の開口部51,52が左右方向に並んだ例を示した。しかしながら、一対の受光素子21,22及び一対の開口部51,52それぞれの形状が線対称な構造を有していれば良く、それぞれの配置位置は上記例に限定されない。図4に示すように、一対の受光素子21,22及び一対の開口部51,52が、前後方向にずれて、左右方向に並んでいなくとも良い。図4は、光センサの変形例を示す平面図である。   In the present embodiment, as shown in FIG. 1, an example in which a pair of light receiving elements 21 and 22 and a pair of openings 51 and 52 are arranged in the left-right direction is shown. However, it is only necessary that the shapes of the pair of light receiving elements 21 and 22 and the pair of openings 51 and 52 have a line-symmetric structure, and the respective arrangement positions are not limited to the above example. As shown in FIG. 4, the pair of light receiving elements 21 and 22 and the pair of openings 51 and 52 do not have to be shifted in the front-rear direction and aligned in the left-right direction. FIG. 4 is a plan view showing a modification of the optical sensor.

本実施形態では、一対の受光素子21,22が半導体基板10に形成された例を示した。しかしながら、対を成す受光素子20の組み数としては、2組以上でもよい。例えば、図5に示すように、前後方向に対を成す受光素子23,24が形成されても良い。図5は、光センサの変形例を示す平面図である。   In the present embodiment, an example in which the pair of light receiving elements 21 and 22 are formed on the semiconductor substrate 10 is shown. However, the number of pairs of light receiving elements 20 forming a pair may be two or more. For example, as shown in FIG. 5, light receiving elements 23 and 24 that are paired in the front-rear direction may be formed. FIG. 5 is a plan view showing a modification of the optical sensor.

本実施形態では、透光膜30が1層であり、遮光膜40が1層である例を示した。しかしながら、透光膜30及び遮光膜40それぞれの層数は上記例に限定されず、例えば、透光膜30が2層であり、遮光膜40が2層である構成を採用することもできる。これによれば、一対の受光素子21,22の間に、多層の遮光膜40が位置するので、ある開口部50から入射した光が、その開口部50と対応する受光素子20以外の受光素子20に入射することが抑制される。これにより、各受光素子20の出力信号に、外乱ノイズが含まれることが抑制される。   In the present embodiment, an example in which the light-transmitting film 30 is one layer and the light-shielding film 40 is one layer is shown. However, the number of layers of each of the light transmitting film 30 and the light shielding film 40 is not limited to the above example. For example, a configuration in which the light transmitting film 30 has two layers and the light shielding film 40 has two layers may be employed. According to this, since the multilayer light shielding film 40 is located between the pair of light receiving elements 21 and 22, light incident from a certain opening 50 is a light receiving element other than the light receiving element 20 corresponding to the opening 50. 20 is suppressed from entering. Thereby, it is suppressed that disturbance noise is included in the output signal of each light receiving element 20.

本実施形態では、遮光膜40が、遮光性と導電性を有する材料から成る例を示した。しかしながら、遮光膜40によって、半導体基板10に形成された各電子素子を電気的に接続しなくとも良い場合、遮光膜40を、光を吸収する性質を有する材料によって形成しても良い。   In this embodiment, the example which the light shielding film 40 consists of a material which has light-shielding property and electroconductivity was shown. However, when the electronic elements formed on the semiconductor substrate 10 do not have to be electrically connected by the light shielding film 40, the light shielding film 40 may be formed of a material that absorbs light.

10・・・半導体基板
20・・・受光素子
30・・・透光膜
40・・・遮光膜
50・・・開口部
60・・・補正部
100・・・光センサ
DESCRIPTION OF SYMBOLS 10 ... Semiconductor substrate 20 ... Light receiving element 30 ... Translucent film 40 ... Light shielding film 50 ... Opening 60 ... Correction | amendment part 100 ... Optical sensor

Claims (6)

半導体基板(10)に受光素子(20)が複数形成され、前記半導体基板(10)における前記受光素子(20)の形成面(10a)上に、透光膜(30)を介して遮光膜(40)が形成され、該遮光膜(40)に、透光用の開口部(50)が形成され、該開口部(50)を介した光を前記受光素子(20)にて受光する光センサであって、
前記形成面(10a)の一方向に沿う仮想直線(VL)を介して線対称の関係にある一対の前記受光素子(21,22)が前記半導体基板(10)に形成され、
前記仮想直線(VL)を介して線対称の関係にある一対の前記開口部(51,52)が、一対の前記受光素子(21,22)に対応して前記遮光膜(40)に形成され、
前記形成面(10a)に直交する高さ方向に沿って、前記形成面(10a)へ投影された一対の前記開口部(51,52)それぞれの投影面の一部が対応する前記受光素子の受光面に重なっており、
前記高さ方向に沿う光を、前記開口部(51,52)を介して前記受光素子(21,22)に照射した際に、一対の前記受光素子(21,22)から出力される出力信号に基づいて、前記高さ方向に沿う光が前記開口部(51,52)を介して前記受光素子(21,22)に入射した際に出力される一対の前記受光素子(21,22)それぞれの出力信号が互いに一致するように、各出力信号を補正する補正部(60)を有し、
一対の前記受光素子(21,22)の内の一方の前記受光素子(21)の出力信号をS1、他方の出力信号をS2、前記高さ方向に沿う光が前記開口部(51,52)を介して前記受光素子(21,21)に入射した際の出力信号S1をSV1、出力信号S2をSV2とすると、前記補正部(60)は、第1補正数ΔG1=(SV2−SV1)/(SV1+SV2)を記憶しており、(1+ΔG1)を出力信号S1に乗算し、(1−ΔG1)を出力信号S2に乗算することで、各出力信号S1,S2を補正することを特徴とする光センサ。
A plurality of light receiving elements (20) are formed on the semiconductor substrate (10), and a light shielding film (30) is formed on the formation surface (10a) of the light receiving element (20) in the semiconductor substrate (10) via a light transmitting film (30). 40), a light-transmitting opening (50) is formed in the light shielding film (40), and the light sensor (20) receives light through the opening (50). Because
A pair of the light receiving elements (21, 22) having a line symmetrical relationship via a virtual straight line (VL) along one direction of the formation surface (10a) is formed on the semiconductor substrate (10),
A pair of openings (51, 52) having a line-symmetric relationship via the virtual straight line (VL) is formed in the light shielding film (40) corresponding to the pair of light receiving elements (21, 22). ,
A part of the projection surface of each of the pair of openings (51, 52) projected onto the formation surface (10a) along the height direction orthogonal to the formation surface (10a) corresponds to the corresponding light receiving element. It overlaps the light receiving surface,
Output signals output from the pair of light receiving elements (21, 22) when the light along the height direction is irradiated to the light receiving elements (21, 22) through the openings (51, 52). The pair of light receiving elements (21, 22) output when light along the height direction enters the light receiving elements (21, 22) through the openings (51, 52), respectively. as the output signal of coincide with each other, have a correction unit (60) for correcting the respective output signals,
Of the pair of light receiving elements (21, 22), the output signal of one of the light receiving elements (21) is S1, the other output signal is S2, and the light along the height direction is the opening (51, 52). Assuming that the output signal S1 when incident on the light receiving element (21, 21) via SV1 is SV1 and the output signal S2 is SV2, the correction unit (60) has the first correction number ΔG1 = (SV2−SV1) / (SV1 + SV2) is stored, and (1 + ΔG1) is multiplied by the output signal S1, and (1-ΔG1) is multiplied by the output signal S2, thereby correcting each output signal S1, S2. Sensor.
前記形成面(10a)に沿い、前記仮想直線(VL)に直交する方向に前記投影面の一部が前記受光面から突出して、前記投影面と前記受光面とが前記形成面(10a)上に成す平面形状が略凸形状を成していることを特徴とする請求項1に記載の光センサ。 A part of the projection surface protrudes from the light receiving surface in a direction perpendicular to the virtual straight line (VL) along the forming surface (10a), and the projection surface and the light receiving surface are on the forming surface (10a). the optical sensor of claim 1 in which the planar shape is characterized that you have forms a substantially convex shape formed on. 前記遮光膜(40)は、前記透光膜(30)に多層に形成され、各層の遮光膜(40)に形成された前記開口部(50)によって、光の仰角が規定されていることを特徴とする請求項1または請求項2に記載の光センサ。 It said light shielding film (40), the formed multilayer on transparent film (30), by the opening formed in each layer of the light shielding film (40) (50), the Rukoto elevation of the light is defined the optical sensor of claim 1 or claim 2, characterized. 請求項1に記載の光センサの製造方法であって、
前記高さ方向に沿う光が前記開口部(51,52)を介して前記受光素子(21,22)に入射した際に、一対の前記受光素子(21,22)の内の一方の前記受光素子(21)の出力信号をSV1,他方の出力信号をSV2とすると、第1補正数ΔG1=(SV2−SV1)/(SV1+SV2)を算出して、記憶しておく記憶工程を有することを特徴とする光センサの製造方法
A method for manufacturing an optical sensor according to claim 1,
When light along the height direction enters the light receiving element (21, 22) through the opening (51, 52), one of the light receiving elements of the pair of light receiving elements (21, 22) is received. When the output signal of the device (21) SV1, the other output signal SV2, to calculate the first correction number .DELTA.G1 = a (SV2-SV1) / (SV1 + SV2), having a memory to keep storing step Rukoto the method of manufacturing an optical sensor you characterized.
一対の前記開口部(51,52)が前記仮想直線(VL)を介して線対称となり、前記高さ方向に沿って前記形成面(10a)へ投影された一対の前記開口部(51,52)それぞれの投影面の一部が対応する前記受光素子の受光面に重なるように、前記遮光膜(40)及び前記透光膜(30)を前記形成面(10a)に形成する膜形成工程を有し、
該膜形成工程において、前記形成面(10a)に沿い、前記仮想直線(VL)に直交する方向に前記投影面の一部が前記受光面から突出して、前記投影面と前記受光面とが前記形成面(10a)上に成す平面形状が略凸形状を成すように、前記遮光膜(40)及び前記透光膜(30)を形成することを特徴とする請求項に記載の光センサの製造方法
The pair of openings (51, 52) are symmetrical with respect to the virtual straight line (VL), and the pair of openings (51, 52) projected onto the formation surface (10a) along the height direction. A film forming step of forming the light-shielding film (40) and the light-transmitting film (30) on the formation surface (10a) such that a part of each projection surface overlaps the light-receiving surface of the corresponding light-receiving element. Have
In the film forming step, a part of the projection surface protrudes from the light receiving surface along the formation surface (10a) in a direction perpendicular to the virtual straight line (VL), and the projection surface and the light receiving surface are the optical sensor of claim 4 planar shape formed on the forming surface (10a) is to form a generally convex shape, characterized that you form the light shielding film (40) and said transparent film (30) Manufacturing method .
前記膜形成工程において、前記遮光膜(40)を前記透光膜(30)に多層に形成し、各層の遮光膜(40)に形成された前記開口部(50)によって、光の仰角を規定することを特徴とする請求項5に記載の光センサの製造方法。 In the film forming step, the light shielding film (40) is formed in multiple layers on the light transmitting film (30), and the elevation angle of light is defined by the opening (50) formed in the light shielding film (40) of each layer. the method of manufacturing an optical sensor according to claim 5, wherein to Rukoto.
JP2011139686A 2011-06-23 2011-06-23 Optical sensor and manufacturing method thereof Expired - Fee Related JP5578138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011139686A JP5578138B2 (en) 2011-06-23 2011-06-23 Optical sensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011139686A JP5578138B2 (en) 2011-06-23 2011-06-23 Optical sensor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013007621A JP2013007621A (en) 2013-01-10
JP5578138B2 true JP5578138B2 (en) 2014-08-27

Family

ID=47675093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011139686A Expired - Fee Related JP5578138B2 (en) 2011-06-23 2011-06-23 Optical sensor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5578138B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3537118B1 (en) * 2018-03-08 2024-04-03 MEAS France Radiation sensor, vehicle sensor arrangement, and assembly method
US11927474B2 (en) 2019-02-20 2024-03-12 Saint-Gobain Glass France Composite pane with an integrated light sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933759Y2 (en) * 1979-05-04 1984-09-19 三菱電機株式会社 sun sensor
JPH08264826A (en) * 1995-03-24 1996-10-11 Hamamatsu Photonics Kk Photodetector and light incident angle detector
JP3429965B2 (en) * 1997-01-10 2003-07-28 スタンレー電気株式会社 Tilt sensor

Also Published As

Publication number Publication date
JP2013007621A (en) 2013-01-10

Similar Documents

Publication Publication Date Title
TWI647471B (en) Optoelectronic module operable to identify false reflections and compensate for errors caused by false reflections
US10866648B2 (en) Display substrate and method for manufacturing the same
CN111052140B (en) Fingerprint identification device and electronic equipment
JP6616571B2 (en) Photodetector and electronic device
US9250125B2 (en) Optical sensor for use with output circuit that corrects a sensitivity difference between filter for high sensitivity and low sensitivity photodiodes
JP5578138B2 (en) Optical sensor and manufacturing method thereof
JP6093061B2 (en) Optical sensor and output circuit thereof
CN111868563B (en) Sensor at lower part of display
WO2019054351A1 (en) Radiation detector and radiation detecting system
US20160290870A1 (en) Infrared sensor and infrared sensor array
JP2012254194A5 (en)
TWI551846B (en) Sensing element and optical distance measurement system
US20220341761A1 (en) Lower Display Sensor
TWI597512B (en) Fingerprint sensing module
JP5375840B2 (en) Optical sensor
JP2012058140A (en) Optical sensor
JP5510217B2 (en) Optical sensor
JP5724384B2 (en) Optical sensor
WO2013111419A1 (en) Solid-state image pickup apparatus
JP2013012609A (en) Optical sensor
JP5633486B2 (en) Optical sensor
CN113690330A (en) Light sensing module
JP5402893B2 (en) Optical sensor
CN111089612B (en) Optical sensor and optical sensing system
JP7058291B2 (en) Sensor device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140623

R151 Written notification of patent or utility model registration

Ref document number: 5578138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees