JP2012058140A - Optical sensor - Google Patents

Optical sensor Download PDF

Info

Publication number
JP2012058140A
JP2012058140A JP2010203294A JP2010203294A JP2012058140A JP 2012058140 A JP2012058140 A JP 2012058140A JP 2010203294 A JP2010203294 A JP 2010203294A JP 2010203294 A JP2010203294 A JP 2010203294A JP 2012058140 A JP2012058140 A JP 2012058140A
Authority
JP
Japan
Prior art keywords
light receiving
light
opening
receiving element
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010203294A
Other languages
Japanese (ja)
Inventor
Katsunori Michiyama
勝教 道山
Takamasa Okura
孝允 大倉
Noboru Endo
昇 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010203294A priority Critical patent/JP2012058140A/en
Priority to DE112011103016.9T priority patent/DE112011103016B4/en
Priority to CN201180027918.XA priority patent/CN103038883B/en
Priority to PCT/JP2011/004949 priority patent/WO2012032753A1/en
Priority to US13/637,545 priority patent/US8901480B2/en
Publication of JP2012058140A publication Critical patent/JP2012058140A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an optical sensor that suppresses difficulties in detecting the intensity and angle of light by widening directivity.SOLUTION: The optical sensor includes a plurality of light receiving elements formed on one surface side of a semiconductor substrate and converting light into an electric signal, a translucent film formed on one surface of the semiconductor substrate, a light-shielding film formed on the one surface of the semiconductor substrate with the translucent film interposed, and a plurality of openings formed in the light-shielding film and introducing light into the corresponding light receiving elements. A first virtual straight line extending from the center of a first light receiving element to the center of a first opening corresponding to the first light receiving element, and a second virtual straight line extending from the center of a second light receiving element to the center of a second opening corresponding to the first light receiving element are different in at least one of an elevation angle and a right-left angle; and the light reception surface area of the first light receiving element is larger than the opening area of the first opening, and the light reception surface area of the second light receiving element is larger than the opening area of the second opening.

Description

本発明は、半導体基板に、光を電気信号に変換する受光素子が複数形成され、半導体基板における受光素子の形成面上に、透光膜を介して遮光膜が形成され、遮光膜に、受光素子それぞれに対応した透光用の開口部が形成された光センサに関するものである。   In the present invention, a plurality of light receiving elements for converting light into an electrical signal are formed on a semiconductor substrate, a light shielding film is formed on the surface of the semiconductor substrate on which the light receiving elements are formed via a light transmitting film, and the light receiving film receives light on the light shielding film. The present invention relates to an optical sensor in which a light-transmitting opening corresponding to each element is formed.

従来、例えば特許文献1に示されるように、半導体基板にフォトダイオードが複数形成され、その形成面上に透光性を有する透光層が形成され、その透光層に遮光性を有する遮光マスクが形成され、その遮光マスクに光伝播エリアが複数形成された光センサが提案されている。この光センサでは、遮光マスクの光伝播エリアによって、フォトダイオードの受光面に入射する光の範囲が、規定されている。   Conventionally, as shown in, for example, Patent Document 1, a plurality of photodiodes are formed on a semiconductor substrate, a light-transmitting light-transmitting layer is formed on the formation surface, and the light-transmitting layer has a light-blocking property. There has been proposed an optical sensor in which a plurality of light propagation areas are formed on the light shielding mask. In this optical sensor, the range of light incident on the light receiving surface of the photodiode is defined by the light propagation area of the light shielding mask.

米国特許6875974号明細書US Pat. No. 6,875,974

ところで、特許文献1に示される光センサでは、特許文献1の図1に示されるように、フォトダイオードの受光面と光伝播エリアの面積とがほぼ同一となっている。そのため、各フォトダイオードの受光面に入射する光の角度範囲(指向性)が狭くなり、ある角度を有する光をフォトダイオードによって検出することができない、という不具合が生じる虞がある。したがって、特許文献1に記載の光センサの構造の場合、各フォトダイオードの出力信号に基づいて、光の強度(入射量)や角度(仰角や左右角)を検出することが困難となる虞がある。   By the way, in the optical sensor shown in Patent Document 1, as shown in FIG. 1 of Patent Document 1, the light receiving surface of the photodiode and the area of the light propagation area are substantially the same. For this reason, the angular range (directivity) of light incident on the light receiving surface of each photodiode is narrowed, and there is a risk that light having a certain angle cannot be detected by the photodiode. Therefore, in the case of the structure of the optical sensor described in Patent Document 1, it may be difficult to detect the intensity (incident amount) and angle (elevation angle and left / right angle) of light based on the output signal of each photodiode. is there.

そこで、本発明は上記問題点に鑑み、指向性を広くすることで、光の強度や角度を検出することが困難となることが抑制された光センサを提供することを目的とする。   In view of the above problems, an object of the present invention is to provide an optical sensor in which it is difficult to detect the intensity and angle of light by widening directivity.

上記した目的を達成するために、請求項1に記載の発明は、半導体基板の一面側に形成され、光を電気信号に変換する複数の受光素子と、半導体基板の一面上に形成され、光透過性を有する透光膜と、半導体基板の一面上に透光膜を介して形成され、光遮光性を有する遮光膜と、遮光膜に形成され、対応する受光素子に光を導入するための複数の開口部と、を備える光センサであって、受光素子は、第1の受光素子と、第2の受光素子とを有し、開口部は、第1の受光素子に対応する第1の開口部と、第2の受光素子に対応する第2の開口部とを有し、第1の受光素子の中心から第1の開口部の中心へ延びる第1の仮想直線と、第2の受光素子の中心から第2の開口部の中心へ延びる第2の仮想直線とは、仰角及び左右角の少なくとも一方が異なっており、第1の受光素子の受光面積が第1の開口部の開口面積よりも大きく、第2の受光素子の受光面積が第2の開口部の開口面積よりも大きいことを特徴とする。   In order to achieve the above-described object, the invention according to claim 1 is formed on one surface side of a semiconductor substrate, formed on one surface of the semiconductor substrate, and a plurality of light receiving elements for converting light into an electrical signal. A light-transmitting film having transparency, formed on one surface of the semiconductor substrate via the light-transmitting film, and having a light-shielding property, and formed on the light-shielding film, for introducing light into the corresponding light receiving element A light receiving element having a first light receiving element and a second light receiving element, wherein the opening corresponds to the first light receiving element. A first imaginary straight line having an opening and a second opening corresponding to the second light receiving element and extending from the center of the first light receiving element to the center of the first opening; and a second light receiving The second imaginary straight line extending from the center of the element to the center of the second opening is defined by at least one of an elevation angle and a left / right angle. The light receiving area of the first light receiving element is larger than the opening area of the first opening, and the light receiving area of the second light receiving element is larger than the opening area of the second opening. .

このように本発明によれば、複数の受光素子の中心と、各受光素子に対応する開口部の中心とを結ぶ仮想直線それぞれの仰角及び左右角の少なくとも一方が異なっている。これにより、光の強度と角度とを含む、それぞれの値が異なる出力信号を、複数得ることができる。   Thus, according to the present invention, at least one of the elevation angle and the left-right angle of the virtual straight line connecting the center of the plurality of light receiving elements and the center of the opening corresponding to each light receiving element is different. Thereby, a plurality of output signals having different values including the light intensity and angle can be obtained.

また、本発明では、受光素子の受光面積が、対応する開口部の開口面積よりも大きくなっている。これにより、受光面積と開口面積とが等しい構成と比べて、受光素子の受光面に入射する光の角度範囲(指向性)が広くなり、ある角度を有する光を受光素子によって検出することができない、という不具合が生じることが抑制される。以上により、各受光素子の出力信号に基づいて、光の強度(入射量)や角度(仰角や左右角)を検出することが困難となることが抑制される。   In the present invention, the light receiving area of the light receiving element is larger than the opening area of the corresponding opening. As a result, the angle range (directivity) of light incident on the light receiving surface of the light receiving element is widened compared to a configuration in which the light receiving area and the opening area are equal, and light having a certain angle cannot be detected by the light receiving element. The occurrence of the problem is suppressed. As described above, it is suppressed that it is difficult to detect the intensity (incident amount) and angle (elevation angle and left / right angle) of light based on the output signal of each light receiving element.

ところで、請求項1では、2つの受光素子が半導体基板の一面側に形成され、2つの開口部が遮光膜に形成された例を示した。しかしながら、受光素子及び開口部それぞれの数は上記例に限定されない。例えば、請求項2に記載のように、3つの受光素子が半導体基板の一面側に形成され、3つの開口部が遮光膜に形成されても良い。また、請求項3に記載のように、4つの受光素子が半導体基板の一面側に形成され、4つの開口部が遮光膜に形成されても良い。   By the way, in claim 1, an example in which two light receiving elements are formed on one surface side of the semiconductor substrate and two openings are formed in the light shielding film is shown. However, the numbers of the light receiving elements and the openings are not limited to the above example. For example, as described in claim 2, three light receiving elements may be formed on one surface side of the semiconductor substrate, and three openings may be formed in the light shielding film. According to a third aspect of the present invention, four light receiving elements may be formed on one surface side of the semiconductor substrate, and four openings may be formed in the light shielding film.

なお、請求項2では、第3の受光素子の中心から第3の開口部の中心へ延びる第3の仮想直線と第1の仮想直線及び第2の仮想直線とは、それぞれ仰角及び左右角の少なくとも一方が異なっており、第3の受光素子の受光面積が第3の開口部の開口面積よりも大きくなっている。また、請求項3では、第4の受光素子の中心から第4の開口部の中心へ延びる第4の仮想直線と第1〜第3の仮想直線とは、仰角及び左右角の少なくとも一方が異なっており、第4の受光素子の受光面積が第4の開口部の開口面積よりも大きくなっている。   In the present invention, the third imaginary straight line, the first imaginary straight line, and the second imaginary straight line extending from the center of the third light receiving element to the center of the third opening are respectively an elevation angle and a right and left angle. At least one of them is different, and the light receiving area of the third light receiving element is larger than the opening area of the third opening. According to a third aspect of the present invention, the fourth imaginary straight line extending from the center of the fourth light receiving element to the center of the fourth opening and the first to third imaginary straight lines are different in at least one of an elevation angle and a left / right angle. The light receiving area of the fourth light receiving element is larger than the opening area of the fourth opening.

上記した光の強度や角度は、請求項4に記載の算出部によって行われる。また、上記した仰角は、受光素子の受光面に平行な直線と光の進行方向とが成す角度であり、左右角は、半導体基板における基準点周りの角度である。   The intensity and angle of the light described above are performed by the calculation unit according to claim 4. The elevation angle described above is an angle formed by a straight line parallel to the light receiving surface of the light receiving element and the light traveling direction, and the left and right angles are angles around a reference point on the semiconductor substrate.

請求項5に記載のように、遮光膜は、透光膜に多層に形成され、各層の遮光膜に形成された開口部によって、光の仰角が規定されており、各層の遮光膜それぞれに形成された開口部の開口面積が、半導体基板の形成面に近づくにつれて、大きくなる構成が好ましい。   According to a fifth aspect of the present invention, the light-shielding film is formed in multiple layers in the light-transmitting film, and the elevation angle of light is defined by the opening formed in the light-shielding film of each layer, and is formed in each light-shielding film of each layer A configuration in which the opening area of the formed opening portion increases as it approaches the formation surface of the semiconductor substrate is preferable.

これによれば、ある開口部から入射した光が、その開口部と対応する受光素子以外の受光素子に入射することが抑制される。これにより、各受光素子の出力信号に、意図しない入射光からの外乱出力が含まれることが抑制される。   According to this, it is suppressed that the light which entered from a certain opening part enters into light receiving elements other than the light receiving element corresponding to the opening part. Thereby, it is suppressed that the disturbance signal from the unintended incident light is contained in the output signal of each light receiving element.

また、本発明では、各層の遮光膜に形成された開口部の開口面積が、半導体基板の形成面に近づくにつれて、大きくなっている。これによれば、各層の遮光膜の開口部の開口面積が等しい構成、若しくは、形成面に近づくにつれて、開口面積が小さくなる構成とは異なり、各層の遮光膜それぞれに形成された開口部によって、光の指向性が狭まることが抑制される。   In the present invention, the opening area of the opening formed in the light shielding film of each layer increases as the surface of the semiconductor substrate is formed. According to this, unlike the configuration in which the opening area of the opening portion of the light shielding film of each layer is equal, or the structure in which the opening area becomes smaller as approaching the formation surface, by the opening formed in each of the light shielding films of each layer, Narrowing of the directivity of light is suppressed.

第1実施形態に係る光センサの概略構成を示す平面図である。It is a top view which shows schematic structure of the optical sensor which concerns on 1st Embodiment. 図1のII−II線に沿う断面図である。It is sectional drawing which follows the II-II line | wire of FIG. 図1のIII−III線に沿う断面図である。It is sectional drawing which follows the III-III line of FIG. 算出部を説明するための概略的な回路図である。It is a schematic circuit diagram for demonstrating a calculation part. 光の角度範囲を説明するための断面図であり、(a)は、本実施形態の角度範囲を示し、(b)は、受光素子の受光面積が、対応する開口部の開口面積と等しい場合の角度範囲を示している。It is sectional drawing for demonstrating the angle range of light, (a) shows the angle range of this embodiment, (b) is the case where the light-receiving area of a light receiving element is equal to the opening area of a corresponding opening part The angle range is shown. 光センサの変形例を説明するための平面図である。It is a top view for demonstrating the modification of an optical sensor. 光センサの変形例を説明するための平面図である。It is a top view for demonstrating the modification of an optical sensor. 開口部の変形例を示す断面図である。It is sectional drawing which shows the modification of an opening part.

以下、本発明の実施の形態を図に基づいて説明する。
(第1実施形態)
図1は、第1実施形態に係る光センサの概略構成を示す平面図である。図2は、図1のII−II線に沿う断面図である。図3は、図1のIII−III線に沿う断面図である。図4は、算出部を説明するための概略的な回路図である。図5は、光の角度範囲を説明するための断面図であり、(a)は、本実施形態の角度範囲を示し、(b)は、受光素子の受光面積が、対応する開口部の開口面積と等しい場合の角度範囲を示している。なお、図1では、後述する受光素子20a〜20cを破線で示し、図2及び図3では、透光膜30における、開口部41a〜41cを介して形成面10aに入射する光の範囲を白抜きとして示している。また、図1〜図3では、算出部50を省略している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a plan view showing a schematic configuration of the photosensor according to the first embodiment. 2 is a cross-sectional view taken along line II-II in FIG. 3 is a cross-sectional view taken along line III-III in FIG. FIG. 4 is a schematic circuit diagram for explaining the calculation unit. 5A and 5B are cross-sectional views for explaining the angle range of light, where FIG. 5A shows the angle range of the present embodiment, and FIG. 5B shows the opening of the corresponding opening portion corresponding to the light receiving area of the light receiving element. The angle range when equal to the area is shown. In FIG. 1, light receiving elements 20 a to 20 c to be described later are indicated by broken lines, and in FIGS. 2 and 3, the range of light incident on the formation surface 10 a through the openings 41 a to 41 c in the light-transmitting film 30 is white. Shown as unplugged. Moreover, the calculation part 50 is abbreviate | omitted in FIGS. 1-3.

図1〜図4に示すように、光センサ100は、要部として、半導体基板10と、受光素子20と、透光膜30と、遮光膜40と、算出部50と、を有する。半導体基板10の一面側に受光素子20が形成され、その受光素子20の形成面10a上に透光膜30が形成され、その透光膜30に遮光膜40が形成されている。そして、遮光膜40には、透光用の開口部41が形成されており、この開口部41を介して、光が受光素子20に入射するようになっている。受光素子20と算出部50とは電気的に接続されており、受光素子20の出力信号は、算出部50によって処理される。以下においては、先ず、光センサ100の要部10〜50の概略構成を示した後に、光センサ100の特徴点とその作用効果を説明する。   As shown in FIGS. 1 to 4, the optical sensor 100 includes a semiconductor substrate 10, a light receiving element 20, a translucent film 30, a light shielding film 40, and a calculation unit 50 as main parts. The light receiving element 20 is formed on one surface side of the semiconductor substrate 10, the light transmitting film 30 is formed on the forming surface 10 a of the light receiving element 20, and the light shielding film 40 is formed on the light transmitting film 30. A light-transmitting opening 41 is formed in the light shielding film 40, and light enters the light receiving element 20 through the opening 41. The light receiving element 20 and the calculation unit 50 are electrically connected, and the output signal of the light receiving element 20 is processed by the calculation unit 50. In the following, first, after showing the schematic configuration of the main parts 10 to 50 of the optical sensor 100, the characteristic points of the optical sensor 100 and the functions and effects thereof will be described.

半導体基板10は、矩形状を成し、上記した受光素子20や、図4に示す算出部50を構成する電子素子(図示略)が形成されている。これら電子素子は、半導体基板10に形成された配線パターン(図示略)を介して電気的に接続されている。   The semiconductor substrate 10 has a rectangular shape, and the above-described light receiving element 20 and electronic elements (not shown) constituting the calculation unit 50 shown in FIG. 4 are formed. These electronic elements are electrically connected via a wiring pattern (not shown) formed on the semiconductor substrate 10.

受光素子20は、光を電気信号に変換するものである。本実施形態に係る受光素子20は、PN接合を有するフォトダイオードである。図1〜図3に示すように、3つの受光素子20a〜20cが、半導体基板10に形成されている。   The light receiving element 20 converts light into an electrical signal. The light receiving element 20 according to this embodiment is a photodiode having a PN junction. As shown in FIGS. 1 to 3, three light receiving elements 20 a to 20 c are formed on the semiconductor substrate 10.

透光膜30は、光透過性と絶縁性とを有する材料から成る。このような性質を有する材料としては、例えば半導体プロセスで使用される層間絶縁膜SiOがある。図2及び図3に示すように、透光膜30は、形成面10a上に、多層に形成されている。本実施形態では、3層の透光膜30が形成面10a上に形成されている。 The translucent film 30 is made of a material having optical transparency and insulating properties. As a material having such a property, for example, there is an interlayer insulating film SiO 2 used in a semiconductor process. As shown in FIGS. 2 and 3, the translucent film 30 is formed in multiple layers on the formation surface 10a. In the present embodiment, the three layers of light-transmitting film 30 are formed on the formation surface 10a.

遮光膜40は、遮光性と導電性を有する材料から成る。このような性質を有する材料としては、例えばアルミニウムがある。図2及び図3に示すように、遮光膜40は、2層の透光膜30の間に形成されており、多層の遮光膜40が、透光膜30を介して形成面10a上に形成されている。本実施形態では、2つの遮光膜40が透光膜30に形成されており、各層の遮光膜40それぞれに、受光素子20a〜20cそれぞれに対応した、開口部41a〜41cが形成されている。本実施形態では、各遮光膜40に形成された開口部41a〜41cの開口面積が等しくなっており、これら各層の開口部41a〜41cによって、受光素子20a〜20cそれぞれの受光面21に平行な直線と光の進行方向とによって形成される光の仰角が規定されている。なお、図示しないが、遮光膜40は、半導体基板10に形成された配線パターンと電気的に接続しており、各電子素子を電気的に接続する配線としての機能も果たすようになっている。   The light shielding film 40 is made of a material having light shielding properties and conductivity. An example of a material having such properties is aluminum. As shown in FIGS. 2 and 3, the light shielding film 40 is formed between the two light-transmitting films 30, and the multilayer light-shielding film 40 is formed on the formation surface 10 a via the light-transmitting film 30. Has been. In the present embodiment, two light shielding films 40 are formed on the light transmitting film 30, and openings 41 a to 41 c corresponding to the light receiving elements 20 a to 20 c are formed in the light shielding films 40 of the respective layers. In this embodiment, the opening areas of the openings 41a to 41c formed in each light shielding film 40 are equal, and the openings 41a to 41c of these layers are parallel to the light receiving surfaces 21 of the light receiving elements 20a to 20c. The elevation angle of light formed by the straight line and the traveling direction of light is defined. Although not shown, the light shielding film 40 is electrically connected to a wiring pattern formed on the semiconductor substrate 10 and functions as a wiring for electrically connecting each electronic element.

算出部50は、各受光素子20a〜20cの出力信号に基づいて、光センサ100に入射する光の入射量、仰角、及び左右角を算出するものである。図4に示すように、算出部50は、各受光素子20a〜20cの出力信号を増幅する増幅部51a〜51cと、該増幅部51a〜51cの出力信号を演算することで、光センサ100に入射する光の入射量、仰角、及び左右角を算出する演算部52と、を有する。   The calculation unit 50 calculates the amount of incident light, the elevation angle, and the left and right angles of light incident on the optical sensor 100 based on the output signals of the light receiving elements 20a to 20c. As illustrated in FIG. 4, the calculation unit 50 calculates the output signals of the light receiving elements 20 a to 20 c and the amplification units 51 a to 51 c and the output signals of the amplification units 51 a to 51 c, thereby calculating the optical sensor 100. And an arithmetic unit 52 that calculates an incident amount, an elevation angle, and a left / right angle of incident light.

次に、本実施形態に係る光センサ100の特徴点とその作用効果を説明する。図1に示すように、第1受光素子20aは、バツ印で記された半導体基板10の基準点Pに位置している。そして、第2受光素子20bは、基準点Pを通り形成面10aに平行な基準線Q上に位置し、第3受光素子20cは、基準点Pを回転中心として基準線Qを時計回りに90°回転した回転線R上に位置している。また、第1受光素子20aに対応する第1開口部41aは基準点Pに位置し、第2受光素子20bに対応する第2開口部41bは基準線Q上に位置し、第3受光素子20cに対応する第3開口部41cは回転線R上に位置している。これにより、基準点P周りの角度(左右角)を、基準線Qと基準点Pを通る任意の線との成す角度と定義すると、第1受光素子20aと第2受光素子20bそれぞれの受光面21に入射する光の左右角が0°となり、第3受光素子20cの受光面21に入射する光の左右角が90°となっている。   Next, feature points and operational effects of the optical sensor 100 according to the present embodiment will be described. As shown in FIG. 1, the first light receiving element 20a is located at the reference point P of the semiconductor substrate 10 indicated by a cross. The second light receiving element 20b is positioned on a reference line Q that passes through the reference point P and is parallel to the forming surface 10a, and the third light receiving element 20c is 90 degrees clockwise with the reference point P as the rotation center. It is located on the rotated rotation line R. The first opening 41a corresponding to the first light receiving element 20a is located at the reference point P, the second opening 41b corresponding to the second light receiving element 20b is located on the reference line Q, and the third light receiving element 20c. The third opening 41c corresponding to is located on the rotation line R. Thus, when the angle (left and right angle) around the reference point P is defined as an angle formed by the reference line Q and an arbitrary line passing through the reference point P, the light receiving surfaces of the first light receiving element 20a and the second light receiving element 20b, respectively. The left and right angles of light incident on 21 are 0 °, and the left and right angles of light incident on the light receiving surface 21 of the third light receiving element 20c are 90 °.

図1〜図3に示すように、第1受光素子20aの中心と第1開口部41aの中心とが基準点Pに位置しており、それぞれの中心を結ぶ第1仮想直線Aと形成面10aとの成す角度(仰角)が90°となっている。これに対して、第2受光素子20bが基準点P側となるように、第2受光素子20bの中心と第2開口部41bの中心とが基準線Q上で離れており、それぞれの中心を結ぶ第2仮想直線Bの仰角が45°となっている。また、第3受光素子20cが基準点P側となるように、第3受光素子20cの中心と第3開口部41cの中心とが回転線R上で離れており、それぞれの中心を結ぶ第3仮想直線Cの仰角が45°となっている。   As shown in FIGS. 1-3, the center of the 1st light receiving element 20a and the center of the 1st opening part 41a are located in the reference point P, The 1st virtual straight line A which connects each center, and the formation surface 10a The angle (elevation angle) formed by is 90 °. On the other hand, the center of the second light receiving element 20b and the center of the second opening 41b are separated on the reference line Q so that the second light receiving element 20b is on the reference point P side. The elevation angle of the second virtual straight line B to be connected is 45 °. Further, the center of the third light receiving element 20c and the center of the third opening 41c are separated on the rotation line R so that the third light receiving element 20c is on the reference point P side, and the third connecting the respective centers. The elevation angle of the virtual straight line C is 45 °.

以上により、第1仮想直線Aの仰角が90°、左右角が0°、第2仮想直線Bの仰角が45°、左右角が0°、第3仮想直線Cの仰角が45°、左右角が90°となっている。これにより、第1受光素子20aの受光面21に入射する光の角度範囲(指向性)が仰角90°、左右角0°を含み、第2受光素子20bの指向性が仰角45°、左右角0°を含み、第3受光素子20cの指向性が仰角45°、左右角90°を含むこととなる。このように、上記構成の場合、仰角及び左右角の少なくとも一方が異なる3つの出力信号を得ることができるので、これら3つの出力信号を算出部50にて演算することで、光の強度(入射量)や角度(仰角や左右角)を検出することができる。   As described above, the elevation angle of the first virtual straight line A is 90 °, the left-right angle is 0 °, the elevation angle of the second virtual straight line B is 45 °, the left-right angle is 0 °, the elevation angle of the third virtual straight line C is 45 °, and the left-right angle Is 90 °. Thereby, the angular range (directivity) of light incident on the light receiving surface 21 of the first light receiving element 20a includes an elevation angle of 90 ° and a left / right angle of 0 °, and the directivity of the second light receiving element 20b is an elevation angle of 45 ° and a left / right angle. Including 0 °, the directivity of the third light receiving element 20c includes an elevation angle of 45 ° and a horizontal angle of 90 °. As described above, in the case of the above configuration, three output signals having at least one of an elevation angle and a right and left angle can be obtained. Therefore, by calculating these three output signals by the calculation unit 50, the light intensity (incident Quantity) and angle (elevation angle and left / right angle) can be detected.

また、図2、図3、及び図5に示すように、各受光素子20a〜20cの受光面積が、対応する開口部41a〜41cの開口面積よりも大きくなっている。これにより、図5に示すように、破線で示す2つの線によって構成される角度θによって規定される、受光面21に入射する光の角度範囲(指向性)が、受光面積と開口面積とが等しい構成と比べて広くなっている。すなわち、角度θが角度θよりも大きく、角度θが角度θよりも大きくなっている。したがって、ある角度を有する光を受光素子によって検出することができない、という不具合が生じることが抑制され、各受光素子20a〜20cの出力信号に基づいて、光の強度(入射量)や角度(仰角や左右角)を検出することが困難となることが抑制される。 In addition, as shown in FIGS. 2, 3, and 5, the light receiving areas of the respective light receiving elements 20a to 20c are larger than the opening areas of the corresponding openings 41a to 41c. As a result, as shown in FIG. 5, the angle range (directivity) of the light incident on the light receiving surface 21 defined by the angle θ formed by the two lines indicated by the broken lines is such that the light receiving area and the opening area are It is wider than an equal configuration. That is, the angle θ 1 is larger than the angle θ 3 and the angle θ 2 is larger than the angle θ 4 . Accordingly, it is possible to suppress the occurrence of the problem that light having a certain angle cannot be detected by the light receiving element, and based on the output signals of the light receiving elements 20a to 20c, the light intensity (incident amount) and angle (elevation angle). And the left and right corners) are prevented from being difficult to detect.

本実施形態では、透光膜30に遮光膜40が多層に形成され、隣接する開口部41の間に、多層の遮光膜40が形成されている。これにより、一層の遮光膜に開口部が形成された構成と比べて、半導体基板10に入射する光の範囲を狭めることができる。これにより、例えば、図2に実線矢印で示す仰角を有する光が、第2開口部41bを介して、第2開口部41bと対応しない第1受光素子20aに入射することが抑制される。この結果、各受光素子20の出力信号に、意図しない入射光からの外乱出力が含まれることが抑制される。   In the present embodiment, the light-shielding film 40 is formed in a multilayer on the light-transmitting film 30, and the multilayer light-shielding film 40 is formed between the adjacent openings 41. Thereby, the range of light incident on the semiconductor substrate 10 can be narrowed compared to a configuration in which an opening is formed in a single light-shielding film. Thereby, for example, light having an elevation angle indicated by a solid arrow in FIG. 2 is suppressed from entering the first light receiving element 20a that does not correspond to the second opening 41b via the second opening 41b. As a result, the output signal of each light receiving element 20 is suppressed from including disturbance output from unintended incident light.

以上、本発明の好ましい実施形態について説明したが、本発明は上記した実施形態になんら制限されることなく、本発明の主旨を逸脱しない範囲において、種々変形して実施することが可能である。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

本実施形態では、3つの受光素子20a〜20cが半導体基板10に形成された例を示した。しかしながら、受光素子20の数としては、複数であればよく、上記例に限定されない。また、受光素子20とそれに対応する開口部41とがそれぞれ4つ以上の場合、これら複数の受光素子20とそれに対応する開口部41それぞれの中心を結ぶ仮想直線それぞれの仰角及び左右角の少なくとも一方が異なっていれば良い。例えば、図6に示すように、4つの受光素子20a〜20dが半導体基板10に形成された構成、若しくは、図7に示すように、8つの受光素子20a〜20hが半導体基板10に形成された構成を採用することもできる。   In the present embodiment, an example in which the three light receiving elements 20 a to 20 c are formed on the semiconductor substrate 10 has been described. However, the number of light receiving elements 20 is not limited to the above example as long as it is plural. Further, when there are four or more light receiving elements 20 and corresponding opening portions 41, at least one of the elevation angle and the left and right angles of the virtual straight lines connecting the centers of the plurality of light receiving elements 20 and the corresponding opening portions 41, respectively. Should be different. For example, as shown in FIG. 6, four light receiving elements 20 a to 20 d are formed on the semiconductor substrate 10, or as shown in FIG. 7, eight light receiving elements 20 a to 20 h are formed on the semiconductor substrate 10. A configuration can also be adopted.

図6に示す変形例では、基準点Pを回転中心として基準線Qを反時計回りに90°(−90°)回転した回転線S上に、第4受光素子20dと第4開口部41dとが形成されている。そして、第4受光素子20dが基準点P側となるように、第4受光素子20dの中心と第4開口部41dの中心とが回転線S上で離れており、それぞれの中心を結ぶ第4仮想直線(図示略)の仰角が45°となっている。これにより、第4仮想直線の仰角が45°、左右角が−90°となり、第4受光素子20dの指向性が仰角45°、左右角−90°を含むようになっている。図6は、光センサの変形例を説明するための平面図である。   In the modification shown in FIG. 6, the fourth light receiving element 20d and the fourth opening 41d are arranged on a rotation line S obtained by rotating the reference line Q by 90 ° (−90 °) counterclockwise with the reference point P as the rotation center. Is formed. Then, the center of the fourth light receiving element 20d and the center of the fourth opening 41d are separated on the rotation line S so that the fourth light receiving element 20d is on the reference point P side, and the fourth connecting the respective centers. The elevation angle of a virtual straight line (not shown) is 45 °. Thereby, the elevation angle of the fourth virtual straight line is 45 ° and the left-right angle is −90 °, and the directivity of the fourth light receiving element 20d includes the elevation angle of 45 ° and the left-right angle of −90 °. FIG. 6 is a plan view for explaining a modification of the optical sensor.

また、図7に示す変形例では、開口部41が基準点P側となるように、受光素子20と開口部41とが、基準点Pから放射状に延びる複数の仮想直線(図示略)上に位置しており、各受光素子20a〜20hに対応する開口部41a〜41hによって規定される仰角が異なるようになっている。図7に示す構成であれば、基準点P側から入射してくる光を、指向性の異なる8つの受光素子20によって検出することができる。これにより、基準点P側から入射してくる光の入射量、仰角、左右角の検出精度を高めることができる。図7は、光センサの変形例を説明するための平面図である。   In the modification shown in FIG. 7, the light receiving element 20 and the opening 41 are on a plurality of virtual straight lines (not shown) extending radially from the reference point P so that the opening 41 is on the reference point P side. The elevation angles defined by the openings 41a to 41h corresponding to the light receiving elements 20a to 20h are different. With the configuration shown in FIG. 7, light incident from the reference point P side can be detected by the eight light receiving elements 20 having different directivities. Thereby, the detection accuracy of the incident amount, the elevation angle, and the left and right angles of the light incident from the reference point P side can be increased. FIG. 7 is a plan view for explaining a modification of the optical sensor.

本実施形態では、透光膜30が3層であり、遮光膜40が2層である例を示した。しかしながら、透光膜30及び遮光膜40それぞれの層数は上記例に限定されず、例えば、図8に示すように、透光膜30が4層であり、遮光膜40が3層である構成を採用することもできる。   In the present embodiment, an example in which the light transmissive film 30 has three layers and the light shielding film 40 has two layers has been described. However, the number of layers of each of the light-transmitting film 30 and the light-shielding film 40 is not limited to the above example. For example, as shown in FIG. 8, the light-transmitting film 30 has four layers and the light-shielding film 40 has three layers. Can also be adopted.

また、本実施形態では、各層の遮光膜40の開口部41の開口面積が等しい例を示した。しかしながら、各層の開口部41の開口面積は、異なっていても良い。例えば、図8に示すように、各層の開口部41の開口面積が、形成面10aに近づくにつれて大きくなっても良い。換言すれば、形成面10aに近い開口部41の開口面積が、形成面10aから離れた開口部41の開口面積よりも大きくても良い。これによれば、各層の遮光膜40の開口部41の開口面積が等しい構成、若しくは、形成面10aに近づくにつれて、開口面積が小さくなる構成とは異なり、各層の遮光膜40それぞれに形成された開口部41によって、光の指向性が著しく狭まる(形成面10aに入射する光の範囲が、受光面21の受光面積よりも小さくなる)ことが抑制される。図8は、開口部の変形例を示す断面図である。なお、図8では、透光膜30における、開口部41を介して形成面10aに入射する光の範囲を白抜きとして示している。   In the present embodiment, an example in which the opening areas of the opening portions 41 of the light shielding films 40 of the respective layers are equal is shown. However, the opening area of the opening 41 of each layer may be different. For example, as shown in FIG. 8, the opening area of the opening 41 of each layer may increase as it approaches the formation surface 10a. In other words, the opening area of the opening 41 close to the formation surface 10a may be larger than the opening area of the opening 41 away from the formation surface 10a. According to this, unlike the configuration in which the opening areas of the opening portions 41 of the light shielding film 40 of each layer are equal or the configuration in which the opening area becomes smaller as the formation surface 10a is approached, each of the light shielding films 40 of each layer is formed. Due to the opening 41, the directivity of light is remarkably reduced (the range of light incident on the formation surface 10a is smaller than the light receiving area of the light receiving surface 21). FIG. 8 is a cross-sectional view showing a modification of the opening. In FIG. 8, the range of light incident on the formation surface 10 a through the opening 41 in the translucent film 30 is shown as white.

本実施形態では、遮光膜40が、遮光性と導電性を有する材料から成る例を示した。しかしながら、遮光膜40によって、半導体基板10に形成された各電子素子を電気的に接続しなくとも良い場合、遮光膜40を、光を吸収する性質を有する材料によって形成しても良い。   In this embodiment, the example which the light shielding film 40 consists of a material which has light-shielding property and electroconductivity was shown. However, when the electronic elements formed on the semiconductor substrate 10 do not have to be electrically connected by the light shielding film 40, the light shielding film 40 may be formed of a material that absorbs light.

10・・・半導体基板
20・・・受光素子
21・・・受光面
30・・・透光膜
40・・・遮光膜
41・・・開口部
100・・・光センサ
DESCRIPTION OF SYMBOLS 10 ... Semiconductor substrate 20 ... Light receiving element 21 ... Light receiving surface 30 ... Translucent film 40 ... Light shielding film 41 ... Opening part 100 ... Optical sensor

Claims (5)

半導体基板の一面側に形成され、光を電気信号に変換する複数の受光素子と、
前記半導体基板の一面上に形成され、光透過性を有する透光膜と、
前記半導体基板の一面上に前記透光膜を介して形成され、光遮光性を有する遮光膜と、
前記遮光膜に形成され、対応する前記受光素子に光を導入するための複数の開口部と、を備える光センサであって、
前記受光素子は、第1の受光素子と、第2の受光素子とを有し、
前記開口部は、前記第1の受光素子に対応する第1の開口部と、前記第2の受光素子に対応する第2の開口部とを有し、
前記第1の受光素子の中心から前記第1の開口部の中心へ延びる第1の仮想直線と、前記第2の受光素子の中心から前記第2の開口部の中心へ延びる第2の仮想直線とは、仰角及び左右角の少なくとも一方が異なっており、
前記第1の受光素子の受光面積が前記第1の開口部の開口面積よりも大きく、前記第2の受光素子の受光面積が前記第2の開口部の開口面積よりも大きいことを特徴とする光センサ。
A plurality of light receiving elements that are formed on one side of the semiconductor substrate and convert light into an electrical signal;
A light-transmitting film formed on one surface of the semiconductor substrate and having light transmittance;
A light-shielding film which is formed on one surface of the semiconductor substrate via the light-transmitting film and has a light-shielding property;
A plurality of openings formed in the light shielding film for introducing light into the corresponding light receiving elements,
The light receiving element includes a first light receiving element and a second light receiving element,
The opening has a first opening corresponding to the first light receiving element and a second opening corresponding to the second light receiving element;
A first virtual line extending from the center of the first light receiving element to the center of the first opening, and a second virtual line extending from the center of the second light receiving element to the center of the second opening. Is different from at least one of the elevation angle and the left and right angles,
The light receiving area of the first light receiving element is larger than the opening area of the first opening, and the light receiving area of the second light receiving element is larger than the opening area of the second opening. Optical sensor.
前記受光素子は、前記第1の受光素子と前記第2の受光素子と共に、第3の受光素子を有し、
前記開口部は、前記第1の開口部と前記第2の開口部と共に、前記第3の受光素子に対応する第3の開口部を有し、
前記第3の受光素子の中心から前記第3の開口部の中心へ延びる第3の仮想直線と前記第1の仮想直線及び前記第2の仮想直線とは、それぞれ仰角及び左右角の少なくとも一方が異なっており、
前記第3の受光素子の受光面積が前記第3の開口部の開口面積よりも大きいことを特徴とする請求項1に記載の光センサ。
The light receiving element has a third light receiving element together with the first light receiving element and the second light receiving element,
The opening has a third opening corresponding to the third light receiving element, together with the first opening and the second opening,
The third imaginary straight line extending from the center of the third light receiving element to the center of the third opening, the first imaginary straight line, and the second imaginary straight line each have at least one of an elevation angle and a right and left angle. Is different,
The light sensor according to claim 1, wherein a light receiving area of the third light receiving element is larger than an opening area of the third opening.
前記受光素子は、前記第1〜第3の受光素子と共に、第4の受光素子を有し、
前記開口部は、前記第1〜第3の開口部と共に、前記第4の受光素子に対応する第4の開口部を有し、
前記第4の受光素子の中心から前記第4の開口部の中心へ延びる第4の仮想直線と前記第1〜第3の仮想直線とは、仰角及び左右角の少なくとも一方が異なっており、
前記第4の受光素子の受光面積が前記第4の開口部の開口面積よりも大きいことを特徴とする請求項2に記載の光センサ。
The light receiving element has a fourth light receiving element together with the first to third light receiving elements,
The opening has a fourth opening corresponding to the fourth light receiving element together with the first to third openings.
The fourth imaginary straight line extending from the center of the fourth light receiving element to the center of the fourth opening and the first to third imaginary straight lines differ in at least one of an elevation angle and a right and left angle,
The light sensor according to claim 2, wherein a light receiving area of the fourth light receiving element is larger than an opening area of the fourth opening.
各受光素子の出力信号に基づいて、前記半導体基板に入射する光の仰角、左右角、及び入射量を算出する算出部を有することを特徴とする請求項2又は請求項3に記載の光センサ。   4. The optical sensor according to claim 2, further comprising a calculating unit that calculates an elevation angle, a left-right angle, and an incident amount of light incident on the semiconductor substrate based on an output signal of each light receiving element. . 前記遮光膜は、前記透光膜に多層に形成され、各層の遮光膜に形成された開口部によって、光の仰角が規定されており、
各層の遮光膜に形成された開口部の開口面積が、前記半導体基板の形成面に近づくにつれて、大きくなることを特徴とする請求項1〜4いずれか1項に記載の光センサ。
The light-shielding film is formed in multiple layers on the light-transmitting film, and an elevation angle of light is defined by an opening formed in the light-shielding film of each layer,
5. The optical sensor according to claim 1, wherein an opening area of an opening formed in the light shielding film of each layer increases as the surface of the semiconductor substrate is formed.
JP2010203294A 2010-09-10 2010-09-10 Optical sensor Pending JP2012058140A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010203294A JP2012058140A (en) 2010-09-10 2010-09-10 Optical sensor
DE112011103016.9T DE112011103016B4 (en) 2010-09-10 2011-09-05 Optical sensor
CN201180027918.XA CN103038883B (en) 2010-09-10 2011-09-05 Optical sensor
PCT/JP2011/004949 WO2012032753A1 (en) 2010-09-10 2011-09-05 Optical sensor
US13/637,545 US8901480B2 (en) 2010-09-10 2011-09-05 Optical sensor having a blocking film disposed over light receiving elements on a semiconductor substrate via a light transparent film for detecting an incident angle of light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010203294A JP2012058140A (en) 2010-09-10 2010-09-10 Optical sensor

Publications (1)

Publication Number Publication Date
JP2012058140A true JP2012058140A (en) 2012-03-22

Family

ID=46055403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010203294A Pending JP2012058140A (en) 2010-09-10 2010-09-10 Optical sensor

Country Status (1)

Country Link
JP (1) JP2012058140A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014081204A (en) * 2012-10-12 2014-05-08 Asahi Kasei Electronics Co Ltd Infrared sensor device and far or near determination device
JP2016063496A (en) * 2014-09-19 2016-04-25 株式会社リコー Photoelectric conversion element, image reading device, and image forming apparatus
CN110783372A (en) * 2018-07-31 2020-02-11 株式会社日本有机雷特显示器 Light emitting device and electronic apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006093292A (en) * 2004-09-22 2006-04-06 Matsushita Electric Ind Co Ltd Solid state imaging apparatus
JP2008545976A (en) * 2005-06-09 2008-12-18 ワング,チェングウェイ Optical tracking sensor and sunlight tracking system thereof
WO2009053905A2 (en) * 2007-10-26 2009-04-30 Koninklijke Philips Electronics N.V. A light angle selecting light detector device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006093292A (en) * 2004-09-22 2006-04-06 Matsushita Electric Ind Co Ltd Solid state imaging apparatus
JP2008545976A (en) * 2005-06-09 2008-12-18 ワング,チェングウェイ Optical tracking sensor and sunlight tracking system thereof
WO2009053905A2 (en) * 2007-10-26 2009-04-30 Koninklijke Philips Electronics N.V. A light angle selecting light detector device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014081204A (en) * 2012-10-12 2014-05-08 Asahi Kasei Electronics Co Ltd Infrared sensor device and far or near determination device
JP2016063496A (en) * 2014-09-19 2016-04-25 株式会社リコー Photoelectric conversion element, image reading device, and image forming apparatus
EP2998995B1 (en) * 2014-09-19 2020-11-04 Ricoh Company, Ltd. Photoelectric conversion element, image reading device, and image forming apparatus
CN110783372A (en) * 2018-07-31 2020-02-11 株式会社日本有机雷特显示器 Light emitting device and electronic apparatus
CN110783372B (en) * 2018-07-31 2023-10-03 日本显示器设计开发合同会社 Light emitting device and electronic apparatus

Similar Documents

Publication Publication Date Title
CN108140125B (en) Optical fingerprint imaging system and area array sensor
JP6198860B2 (en) Image sensor
JP5651746B2 (en) Image sensing device
JP5631176B2 (en) Solid-state image sensor and camera
US20180239018A1 (en) Optical apparatus and light sensitive device with micro-lens
CN106899790B (en) Image pickup device and camera
US9565381B2 (en) Solid-state image sensor and image-capturing device
JP2012058140A (en) Optical sensor
JPWO2016103365A1 (en) Solid-state imaging device and imaging device
JP5375840B2 (en) Optical sensor
JP2004340612A (en) Photoelectric type encoder
JP2015005665A (en) Imaging apparatus and design method and manufacturing method for the same
TWI597512B (en) Fingerprint sensing module
JP5510217B2 (en) Optical sensor
JP5724384B2 (en) Optical sensor
JP5402893B2 (en) Optical sensor
JP5578138B2 (en) Optical sensor and manufacturing method thereof
JP5633486B2 (en) Optical sensor
WO2017204331A1 (en) Photosensor
JP2013012609A (en) Optical sensor
WO2022027194A1 (en) Image sensor, image processing method and apparatus, and imaging system
TWI715538B (en) Back-side incident type solid-state imaging device
JP2015008535A (en) Solid state image sensor and camera
JP5821400B2 (en) Spectroscopic sensor and angle limiting filter
WO2021192600A1 (en) Solid-state imaging element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140805