JP5578056B2 - Steel sheet having excellent corrosion resistance and method for producing the same - Google Patents
Steel sheet having excellent corrosion resistance and method for producing the same Download PDFInfo
- Publication number
- JP5578056B2 JP5578056B2 JP2010277922A JP2010277922A JP5578056B2 JP 5578056 B2 JP5578056 B2 JP 5578056B2 JP 2010277922 A JP2010277922 A JP 2010277922A JP 2010277922 A JP2010277922 A JP 2010277922A JP 5578056 B2 JP5578056 B2 JP 5578056B2
- Authority
- JP
- Japan
- Prior art keywords
- oxide layer
- region
- steel sheet
- corrosion resistance
- steel plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 61
- 239000010959 steel Substances 0.000 title claims description 61
- 230000007797 corrosion Effects 0.000 title claims description 36
- 238000005260 corrosion Methods 0.000 title claims description 36
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000007864 aqueous solution Substances 0.000 claims description 22
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 20
- 229910052721 tungsten Inorganic materials 0.000 claims description 15
- 239000011780 sodium chloride Substances 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 8
- 238000005406 washing Methods 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 5
- 239000010937 tungsten Substances 0.000 claims description 5
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 48
- 239000010410 layer Substances 0.000 description 48
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 6
- 239000010960 cold rolled steel Substances 0.000 description 6
- 238000004381 surface treatment Methods 0.000 description 6
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical group [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 description 6
- 238000000576 coating method Methods 0.000 description 5
- 238000007654 immersion Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000007747 plating Methods 0.000 description 5
- 230000010287 polarization Effects 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 238000005728 strengthening Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 238000010422 painting Methods 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- -1 chlorine ions Chemical class 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- CUPCBVUMRUSXIU-UHFFFAOYSA-N [Fe].OOO Chemical compound [Fe].OOO CUPCBVUMRUSXIU-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005536 corrosion prevention Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- SSWAPIFTNSBXIS-UHFFFAOYSA-N dioxido(dioxo)tungsten;iron(2+) Chemical compound [Fe+2].[O-][W]([O-])(=O)=O SSWAPIFTNSBXIS-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 235000014413 iron hydroxide Nutrition 0.000 description 1
- 229910021519 iron(III) oxide-hydroxide Inorganic materials 0.000 description 1
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 1
- XMVONEAAOPAGAO-UHFFFAOYSA-N sodium tungstate Chemical compound [Na+].[Na+].[O-][W]([O-])(=O)=O XMVONEAAOPAGAO-UHFFFAOYSA-N 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Chemical Treatment Of Metals (AREA)
Description
本発明は、自動車や家電製品の内・外パネルなどに適用可能で、加工、あるいはめっきや塗装などの表面処理を行うまでに、塩分の高い高湿潤環境下に長期間曝された場合でも優れた耐食性を有する鋼板およびその製造方法に関する。 The present invention can be applied to inner and outer panels of automobiles and home appliances, and is excellent even when exposed to a high-humidity environment with a high salt content for a long time before processing or surface treatment such as plating or painting. The present invention relates to a steel plate having high corrosion resistance and a method for producing the same.
鋼材の耐食性を向上させることは、鉄鋼材料が利用されるほとんどすべての分野で重要な課題である。そのため、防錆油塗布やめっき技術をはじめとするさまざまな技術が研究・開発されてきた。なかでも、加工、あるいはめっきや塗装などの表面処理を行うまでに、冷延鋼板や熱延鋼板を保管している際に鋼板表面に発生する腐食を抑制することは、製品の表面外観劣化、あるいは表面処理時のめっき剥離などを防止するために重要である。 Improving the corrosion resistance of steel is an important issue in almost all fields where steel materials are used. Therefore, various technologies including rust preventive oil coating and plating technologies have been researched and developed. In particular, suppressing the corrosion that occurs on the steel sheet surface when storing cold-rolled steel sheets or hot-rolled steel sheets before processing or surface treatment such as plating or painting is effective for deterioration of the surface appearance of the product, Or it is important to prevent plating peeling during surface treatment.
近年、コイル状の冷延鋼板や熱延鋼板を東南アジアなどに輸出して客先で加工や表面処理を行うことが増加するにともない、輸送中あるいは現地において塩分の高い高湿潤環境下に長期間保管中に起こる腐食の問題がクローズアップされている。こうした塩分の高い高湿潤環境下に長期間曝されて起こる腐食の対策として、非特許文献1に記載されている塗油の強化、梱包の強化、あるいは現地での鋼板保管環境の管理などがあげられる。しかし、塗油の強化はより除去しにくい油を付与することになり、鋼板使用前の洗浄で除去できなかった油成分が鋼板表面の欠陥を発生させることがある。また、塗油の強化は廃液など環境面の負荷も増加させることになるとともに、塩分の高い高湿潤環境下では腐食を十分に抑制できない場合がある。一方、梱包の強化や現地での鋼板保管環境の管理は、コスト面での負荷が多く、また、客先における鋼板保管環境の管理は困難をともなうことが多い。
In recent years, as coiled cold-rolled steel sheets and hot-rolled steel sheets have been exported to Southeast Asia, etc., and processing and surface treatment at customers have increased, they have been transported for long periods in high humidity environments with high salinity. Corrosion problems that occur during storage are highlighted. As countermeasures against corrosion that occurs due to long-term exposure to such a high-humidity environment with high salinity, strengthening of oil coating, strengthening of packaging, or management of local steel sheet storage environment as described in Non-Patent
塗油や梱包を用いない耐食性向上技術としては、腐食生成物を利用した非特許文献2に記載されているステンレス鋼板や非特許文献3に記載されているクロム(Cr)、銅(Cu)、リン(P)などを添加した耐候性鋼板など、塩分の高い高湿潤環境下においても優れた耐食性を有する鋼板が知られている。しかし、前者では高価な合金元素を多量に添加するためコスト高であり、また、後者では腐食生成物層の厚みを100μm程度以上にする必要があるため板厚の薄い冷延鋼板には適用できないという問題がある。 As the corrosion resistance improvement technology without using oil coating and packaging, the stainless steel plate described in Non-Patent Document 2 using corrosion products and chromium (Cr), copper (Cu) described in Non-Patent Document 3, Steel sheets having excellent corrosion resistance even in a high-humidity environment with a high salt content, such as weather-resistant steel sheets to which phosphorus (P) or the like is added, are known. However, the former is expensive because a large amount of expensive alloy elements are added, and the latter is not applicable to a cold-rolled steel sheet with a small thickness because the thickness of the corrosion product layer needs to be about 100 μm or more. There is a problem.
本発明は、自動車や家電製品の内・外パネルなどに適用可能で、加工、あるいはめっきや塗装などの表面処理を行うまでに、塩分の高い高湿潤環境下に長期間曝された場合でも優れた耐食性を有する安価な鋼板およびその製造方法を提供することを目的とする。 The present invention can be applied to inner and outer panels of automobiles and home appliances, and is excellent even when exposed to a high-humidity environment with a high salt content for a long time before processing or surface treatment such as plating or painting. An object of the present invention is to provide an inexpensive steel plate having corrosion resistance and a method for producing the same.
本発明者らは、上記目的を達成すべく鋭意検討した結果、鋼板面に、6価のタングステン(W)を含む鉄(Fe)酸化層を形成し、Fe酸化層の表面近傍のW濃度を鋼板面との界面近傍のW濃度より高くすれば、1μm以下の薄いFe酸化層でも、塩分が高い高湿潤環境下で優れた耐食性を有することを見出した。 As a result of intensive studies to achieve the above object, the present inventors formed an iron (Fe) oxide layer containing hexavalent tungsten (W) on the steel plate surface, and the W concentration near the surface of the Fe oxide layer was determined. It has been found that if the W concentration near the interface with the steel plate is higher, even a thin Fe oxide layer of 1 μm or less has excellent corrosion resistance in a high-humidity environment with high salinity.
本発明は、このような知見に基づいてなされたものであり、鋼板面に、6価のWを含むFe酸化層を有し、前記Fe酸化層の鋼板面との界面から2nmまでの領域IのCW/(CW+CFe)をA、前記Fe酸化層の表面から2nmまでの領域SのCW/(CW+CFe)をBとしたとき、A<Bを満足することを特徴とする優れた耐食性を有する鋼板を提供する。ここで、CW、CFeは、それぞれFe酸化層の領域Iあるいは領域SにおけるW、Feの原子濃度を表す。 The present invention has been made based on such knowledge, and has a Fe oxide layer containing hexavalent W on the steel plate surface, and a region I from the interface of the Fe oxide layer with the steel plate surface to 2 nm. C W / when the (C W + C Fe) of the a, C W / region S from the surface of the Fe oxide layer to 2nm a (C W + C Fe) B , to satisfy the a <B of A steel sheet having excellent corrosion resistance is provided. Here, C W and C Fe represent the atomic concentrations of W and Fe in the region I or the region S of the Fe oxide layer, respectively.
本発明の優れた耐食性を有する鋼板では、B≧0.010で、かつB-0.001≧Aを満足することが好ましく、さらにB≧0.050であることがより好ましい。 In the steel sheet having excellent corrosion resistance according to the present invention, it is preferable that B ≧ 0.010 and B−0.001 ≧ A are satisfied, and more preferably B ≧ 0.050.
本発明の優れた耐食性を有する鋼板は、鋼板表面にFe酸化層を形成後、タングステン酸を含む水溶液に接触させ、水洗および乾燥を行う方法、より具体的には、鋼板を、Feが酸化する雰囲気中で300〜800℃の温度範囲に1〜300秒加熱後、あるいは3〜10質量%の塩化ナトリウム(NaCl)水溶液に1秒以上接触させ、Feが酸化する雰囲気中に1秒以上放置後、次いで、0.01〜1mol/L(リットル)のタングステン酸を含む水溶液に1秒以上接触させ、水洗および乾燥を行う方法により製造できる。 The steel sheet having excellent corrosion resistance according to the present invention is a method in which an Fe oxide layer is formed on the steel sheet surface, and then contacted with an aqueous solution containing tungstic acid, followed by washing and drying. More specifically, Fe oxidizes the steel sheet. After heating for 1 to 300 seconds in a temperature range of 300 to 800 ° C in an atmosphere, or after contact with a 3 to 10% by weight sodium chloride (NaCl) aqueous solution for 1 second or more and leaving it in an atmosphere where Fe is oxidized for 1 second or more Then, it can be produced by a method in which it is brought into contact with an aqueous solution containing 0.01 to 1 mol / L (liter) of tungstic acid for 1 second or longer, followed by washing and drying.
本発明により、自動車や家電製品の内・外パネルなどに適用可能で、塩分の高い高湿潤環境下に長期間曝された場合でも優れた耐食性を有する鋼板を安価に製造できるようになった。 According to the present invention, a steel sheet that can be applied to inner and outer panels of automobiles and home appliances and has excellent corrosion resistance even when exposed to a high humidity environment with a high salt content for a long period of time can be manufactured at low cost.
本発明の特徴は、鋼板面に、6価のWを含み、Feの含有量が90質量%以上の鉄酸化物、水酸化鉄、オキシ水酸化鉄などのFe酸化層を形成し、Fe酸化層の安定化を図るとともに、Fe酸化層の表面近傍のW濃度を鋼板面との界面近傍のW濃度より高くすることにより塩分が高い高湿潤環境下で耐食性を大きく向上させたことにある。 A feature of the present invention is that a Fe oxide layer such as iron oxide, iron hydroxide or iron oxyhydroxide containing hexavalent W and having a Fe content of 90% by mass or more is formed on the steel plate surface, and Fe oxidation In addition to stabilizing the layer, the W concentration in the vicinity of the surface of the Fe oxide layer is made higher than the W concentration in the vicinity of the interface with the steel plate surface, thereby greatly improving the corrosion resistance in a highly humid environment with high salinity.
この理由は次のように考えられる。すなわち、塩分の高い高湿潤環境下では、Feが溶解する腐食アノード部では鋼板側からFeが溶解し、Fe2+となり、外側から塩素イオン(Cl-)が浸入し、腐食が進行する。しかし、鋼板表面に6価のWを含むFe主体のFe酸化層を設け、Fe酸化層の表面近傍のW濃度を鋼板面との界面近傍のW濃度より高くすると、Wは、タングステン酸イオン(WO4 2-)としてFe酸化層の表面近傍に存在して、表面近傍は負の電荷を帯び、相対的に鋼板面との界面近傍は正となり、上層が負で下層が正の分極構造を有する。そして、この分極構造は外部からのCl-の浸入を抑制するとともに、Feの溶解を抑制するために耐食性が向上する。 The reason is considered as follows. That is, in a highly humid environment with high salinity, in the corrosion anode part where Fe dissolves, Fe dissolves from the steel sheet side and becomes Fe 2+ , and chlorine ions (Cl − ) enter from the outside, and corrosion progresses. However, when a Fe-based Fe oxide layer containing hexavalent W is provided on the steel plate surface and the W concentration near the surface of the Fe oxide layer is higher than the W concentration near the interface with the steel plate surface, W is tungstate ion ( WO 4 2- ) is present near the surface of the Fe oxide layer, has a negative charge near the surface, is relatively positive near the interface with the steel plate surface, has a negative polarization structure in which the upper layer is negative and the lower layer is positive. Have. Then, the polarization structure Cl from outside - as well as inhibit the penetration of the corrosion resistance is improved in order to suppress the dissolution of Fe.
Fe酸化層の表面近傍のW濃度を鋼板面との界面近傍のW濃度より高くするには、図1に示すようなW濃度の異なるFe酸化層を二層以上設けて多層構造としてもよく、また、厚み方向にW濃度の傾斜を設けたFe酸化層の単層構造としてもよい。いずれの場合も、Fe酸化層の表面近傍、特に表面から2nmまでの領域SのCW/(CW+CFe)(=B)を、鋼板面との界面近傍、特に界面から2nmまでの領域IのCW/(CW+CFe)(=A)より高くすれば、本発明の効果が発揮される。したがって、多層構造の場合は最上層と最下層の厚みを2nm以上に、単層構造の場合は層の厚みを4nm以上とする必要がある。また、Fe酸化層全体の厚みは、1μm以下でも本発明の効果が発揮される。そのため、本発明は板厚の薄い冷延鋼板へ適用できるとともに、Wの使用量やFe酸化層の形成時間を低減でき、製造コスト高を招くことはない。 In order to make the W concentration near the surface of the Fe oxide layer higher than the W concentration near the interface with the steel plate surface, a multilayer structure may be provided by providing two or more Fe oxide layers having different W concentrations as shown in FIG. Moreover, it is good also as a single layer structure of the Fe oxide layer which provided the inclination of W concentration in the thickness direction. In any case, C W / (C W + C Fe ) (= B) in the vicinity of the surface of the Fe oxide layer, particularly from the surface to 2 nm, near the interface with the steel sheet surface, particularly from the interface to 2 nm. If it is higher than C W / (C W + C Fe ) (= A) in region I, the effect of the present invention will be exhibited. Therefore, in the case of a multilayer structure, the thickness of the uppermost layer and the lowermost layer needs to be 2 nm or more, and in the case of a single layer structure, the thickness of the layer needs to be 4 nm or more. Further, the effect of the present invention is exhibited even when the thickness of the entire Fe oxide layer is 1 μm or less. Therefore, the present invention can be applied to a cold-rolled steel sheet having a thin plate thickness, can reduce the amount of W used and the formation time of the Fe oxide layer, and does not increase the manufacturing cost.
耐食性のさらなる向上には、B≧0.010で、かつB-0.001≧Aを満足させることが望ましい。特に、B≧0.050であることがより望ましい。Bの上限は、特に設けないが、0.9を超えるとタングステン酸鉄(FeWO4)構造の結晶性のよいFe酸化層が形成され、結晶粒界としてイオンの透過を容易にする欠陥部が多く存在するようになるので、表面の保護効果、すなわちCl-浸入の抑制効果が不十分となりやすくなるため、Bは0.9以下であることが好ましい。 For further improvement of corrosion resistance, it is desirable to satisfy B ≧ 0.010 and B−0.001 ≧ A. In particular, it is more desirable that B ≧ 0.050. The upper limit of B is not particularly set, but if it exceeds 0.9, an iron oxide layer with an iron tungstate (FeWO 4 ) structure with good crystallinity is formed, and there are many defects as crystal grain boundaries that facilitate the permeation of ions. since that way, the protective effect of the surface, i.e. Cl - for suppression of penetration is likely to be insufficient, B is preferably 0.9 or less.
Fe酸化層の厚みやCW/(CW+CFe)は、収束イオンビーム法などで鋼板断面の薄片試料を作製し、X線分光器を備えた透過電子顕微鏡により、あるいはFe酸化層を厚み方向にアルゴン(Ar)イオンスパッタリングしながらオージェ電子分光法やX線光電子分光法により測定できる。 For the thickness of the Fe oxide layer and C W / (C W + C Fe ), a thin-section sample of the cross section of the steel sheet was prepared by the focused ion beam method, etc., and the Fe oxide layer was measured by a transmission electron microscope equipped with an X-ray spectrometer. It can be measured by Auger electron spectroscopy or X-ray photoelectron spectroscopy while sputtering argon (Ar) ions in the thickness direction.
本発明である優れた耐食性を有する鋼板には、各種の表面処理や塗装を問題なく行うことができる
本発明である優れた耐食性を有する鋼板は、鋼板表面に加熱や溶液処理によりFe酸化層を形成後、可溶性のタングステン酸塩、例えばタングステン酸ナトリウム(Na2WO4)の水溶液に接触させ、すなわち水溶液を塗布あるいは水溶液に浸漬し、水洗および乾燥を行う方法により製造できる。このとき、加熱や溶液処理の時間を調整することによりFe酸化層の厚みを、また、タングステン酸塩の濃度、水溶液の温度あるいは水溶液との接触時間を調整することでFe酸化層厚み方向のW濃度を変えることができる。
The steel sheet with excellent corrosion resistance according to the present invention can be subjected to various surface treatments and coatings without problems. The steel sheet with excellent corrosion resistance according to the present invention has a Fe oxide layer on the steel sheet surface by heating or solution treatment. After the formation, it can be produced by a method in which it is brought into contact with an aqueous solution of a soluble tungstate, for example, sodium tungstate (Na 2 WO 4 ), that is, the aqueous solution is applied or immersed in an aqueous solution, followed by washing and drying. At this time, the thickness of the Fe oxide layer is adjusted by adjusting the time of heating and solution treatment, and the W in the Fe oxide layer thickness direction is adjusted by adjusting the concentration of tungstate, the temperature of the aqueous solution, or the contact time with the aqueous solution. The concentration can be changed.
具体的には、鋼板を、大気などのFeが酸化する雰囲気中で300〜800℃の温度範囲に1〜300秒加熱後、あるいは3〜10質量%のNaCl水溶液に1秒以上接触させ、大気などのFeが酸化する雰囲気中に1秒以上放置後、次いで、0.01〜1mol/Lのタングステン酸塩を含む水溶液に1秒以上接触させ、水洗および乾燥を行う方法により製造できる。このとき、Feが酸化する雰囲気中の加熱温度が300℃未満であったり、加熱時間が1秒未満だと安定した酸化層の形成が困難になり、Feが酸化する雰囲気中の加熱温度が800℃超えであったり、加熱時間が300秒超えだと酸化層が厚く成長しすぎる。また、NaCl水溶液の濃度が3質量%未満であると酸化層の形成が十分でなく、10質量%超えだと酸化層の形成が速く制御が困難になる。NaCl水溶液との接触時間が1秒未満であったり、接触後のFeが酸化する雰囲気中における放置時間が1秒未満だと安定した制御が困難になる。さらに、タングステン酸塩水溶液の濃度が0.01mol/L未満だったり、接触時間が1秒未満だと望ましい量のWを鋼板表面に付与できない。タングステン酸塩水溶液の濃度が1mol/L超えだとW濃度が高くなりすぎる。 Specifically, the steel sheet is heated in a temperature range of 300 to 800 ° C. for 1 to 300 seconds in an atmosphere where Fe is oxidized, such as air, or is brought into contact with a 3 to 10% by mass NaCl aqueous solution for 1 second or more. After being left in an atmosphere in which Fe is oxidized for 1 second or longer, it is then brought into contact with an aqueous solution containing 0.01 to 1 mol / L tungstate for 1 second or longer, followed by washing with water and drying. At this time, if the heating temperature in the atmosphere in which Fe is oxidized is less than 300 ° C. or if the heating time is less than 1 second, it becomes difficult to form a stable oxide layer, and the heating temperature in the atmosphere in which Fe is oxidized is 800 If it exceeds ℃ or heating time exceeds 300 seconds, the oxide layer grows too thick. Also, if the concentration of the NaCl aqueous solution is less than 3% by mass, the formation of the oxide layer is not sufficient, and if it exceeds 10% by mass, the formation of the oxide layer is fast and difficult to control. If the contact time with the NaCl aqueous solution is less than 1 second, or the standing time in the atmosphere where Fe after contact is oxidized is less than 1 second, stable control becomes difficult. Furthermore, if the concentration of the tungstate aqueous solution is less than 0.01 mol / L or the contact time is less than 1 second, a desirable amount of W cannot be imparted to the steel sheet surface. If the concentration of the tungstate aqueous solution exceeds 1 mol / L, the W concentration becomes too high.
板厚2mmの冷延鋼板(C:0.15質量%、Si:0.28質量%、Mn:1.18質量%含有)を、3質量%のNaCl水溶液に20秒以上浸漬し、大気中で20秒放置後、表1に示す濃度のNa2WO4水溶液に600秒浸漬し、水洗および乾燥して、鋼板表面にWを含む上下2層構造の平均厚み5〜6nmのFe酸化層を有する試料No.1〜6を作製した。そして、各試料において、上記に方法により上下Fe酸化層の平均厚みや領域I、SのFe酸化層におけるAおよびBを測定した。また、塩分の高い高湿潤環境をシミュレートした5質量%のNaCl水溶液中でアノード分極測定を行い、浸漬電位やアノード電流の低下の有無を求めた。なお、アノード電流の低下の有無とは、電位-400mV以上において、電流密度が試料No.6(Wを含まないFe酸化層のみの比較例)の電流密度の1/2より小さくなる電位領域が存在する場合を有、存在しな場合を無とし、耐食性を評価した。有の場合が無の場合に比べより高い耐食性を示すといえる。 A cold-rolled steel sheet with a thickness of 2 mm (C: 0.15% by mass, Si: 0.28% by mass, Mn: 1.18% by mass contained) was immersed in a 3% by mass NaCl aqueous solution for 20 seconds or more, and left in the atmosphere for 20 seconds. Sample No.1-having an iron oxide layer with an average thickness of 5-6 nm of an upper and lower two-layer structure containing W on the steel sheet surface, immersed in an aqueous Na 2 WO 4 solution having a concentration shown in Table 1 for 600 seconds, washed with water and dried 6 was produced. Then, in each sample, the average thickness of the upper and lower Fe oxide layers and A and B in the Fe oxide layers in regions I and S were measured by the method described above. In addition, anodic polarization measurement was performed in a 5% by mass NaCl aqueous solution simulating a high-humidity environment with high salinity, and the presence or absence of a decrease in immersion potential or anode current was determined. In addition, the presence or absence of a decrease in anode current means that a potential region where the current density is smaller than 1/2 of the current density of sample No. 6 (comparative example only of Fe oxide layer not containing W) at a potential of −400 mV or more. The corrosion resistance was evaluated with the case where it was present and the case where it was not present. It can be said that it shows higher corrosion resistance than the case where it is present.
結果を図2および表1に示す。 The results are shown in FIG.
図2に示すように、本発明例である試料No.2では、比較例である試料No.6に比較して、浸漬電位が貴に変化しており、優れた耐食性が得られていることがわかる。また、表1に示すように、Bが0.05以上の試料No.3、4では、浸漬電位の変化に加えて電位-400mVでのアノード電流が試料No.6に比較して1桁以上低下しており、高い耐食性を有することがわかった。 As shown in FIG. 2, in the sample No. 2 which is an example of the present invention, the immersion potential is changed preciously compared to the sample No. 6 which is a comparative example, and excellent corrosion resistance is obtained. I understand. As shown in Table 1, in Samples Nos. 3 and 4 with B of 0.05 or more, in addition to the change in immersion potential, the anode current at a potential of -400 mV decreased by an order of magnitude or more compared to Sample No. 6. It was found to have high corrosion resistance.
なお、試料No.1〜5のWの価数は、XPSで調べたところ、いずれも6価であった。 In addition, when the valence of W of sample No. 1-5 was investigated by XPS, all were 6 valences.
板厚0.7mmの軟質冷延鋼板(C:0.018質量%、Si:0.010質量%、Mn:0.140質量%含有)を、大気中で300℃、500℃および800℃で2分加熱後、0.3mol/LのNa2WO4水溶液に15分浸漬し、水洗および乾燥して、鋼板表面にFe酸化層を有する試料を作製した。このとき、300℃加熱の試料1では、Fe酸化層の厚みが8nm、Bが0.10、Aが0.06、500℃加熱の試料2では、Fe酸化層の厚みが38nm、Bが0.12、Aが0.06、800℃加熱の試料3では、Fe酸化層の厚みが1μm、Bが0.13、Aが0.03であった。また、5%の塩酸に1秒間浸漬し、ロールにより液を絞ったあと、液がついたまま室温で乾燥させた後に、水洗および乾燥して表面を酸化させた後、0.3mol/LのNa2WO4水溶液に15分浸漬し、水洗および乾燥した試料4を作製した。この試料のFe酸化層の厚みが0.8μm、Bが0.15、Aが0.04であった。Wの価数は、いずれも6価であった。これらの4種類の試料1〜4と処理を施していない原板の試料5を、3.5質量%のNaCl水溶液中でアノード分極測定を行った。
A soft cold-rolled steel sheet with a thickness of 0.7 mm (C: 0.018% by mass, Si: 0.010% by mass, Mn: 0.140% by mass) heated in the atmosphere at 300 ° C, 500 ° C and 800 ° C for 2 minutes, then 0.3 mol A sample having an Fe oxide layer on the steel sheet surface was prepared by immersing in an aqueous solution of Na 2 WO 4 / L for 15 minutes, washing with water and drying. At this time, in
その結果を表2に示す。本発明の試料1〜4は、処理を施していない比較例の試料5に比べて浸漬電位が上昇している。また、本発明の試料1〜4の電位-460mVと電位-300mV両方あるいは一方での電流密度が試料5よりも小さくなっていることから、処理をしていない試料5と比較して優れた耐食性を示すことが明らかになった。特に、800℃で酸化させた試料3および酸浸漬により酸化させた試料4では、-460mVと-300mVアノード電流が、原板の試料5の値の1/2から1/100程度と低いことから、高い耐食性を示すことが明らかになった。
The results are shown in Table 2.
Claims (6)
ここで、C W 、C Fe は、それぞれFe酸化層の領域Iあるいは領域SにおけるW、Feの原子濃度を表す。 After forming the Fe oxide layer on the steel plate surface, it is brought into contact with an aqueous solution containing tungstic acid, washed with water and dried, and has a Fe oxide layer containing hexavalent tungsten (W) on the steel plate surface, C W / (C W + C Fe ) in region I from the interface with the steel plate surface of the Fe oxide layer to 2 nm is A, and C W / (C W + C Fe in region S from the surface of the Fe oxide layer to 2 nm. ) Is B, a method for producing a steel sheet having excellent corrosion resistance satisfying A <B .
Here, C W and C Fe represent the atomic concentrations of W and Fe in the region I or the region S of the Fe oxide layer, respectively.
ここで、C W 、C Fe は、それぞれFe酸化層の領域Iあるいは領域SにおけるW、Feの原子濃度を表す。 After heating the steel sheet for 1 to 300 seconds in a temperature range of 300 to 800 ° C. in an atmosphere where Fe is oxidized, the steel sheet is then contacted with an aqueous solution containing 0.01 to 1 mol / L (liter) of tungstic acid for 1 second or more. Washing and drying are performed , the steel plate surface has a Fe oxide layer containing hexavalent tungsten (W), and the C W in region I is 2 nm from the interface with the steel plate surface of the Fe oxide layer. / when a (C W + C Fe) was a, C W / a (C W + C Fe) B region S from the surface of the Fe oxide layer to 2 nm, the steel plate having excellent corrosion resistance that satisfies a <B Manufacturing method.
Here, C W and C Fe represent the atomic concentrations of W and Fe in the region I or the region S of the Fe oxide layer, respectively.
ここで、C W 、C Fe は、それぞれFe酸化層の領域Iあるいは領域SにおけるW、Feの原子濃度を表す。 The steel sheet was brought into contact with a 3 to 10 mass% sodium chloride (NaCl) aqueous solution for 1 second or longer, left in an atmosphere in which Fe was oxidized for 1 second or longer, and then 0.01 to 1 mol / L (liter) of tungstic acid. Contacted with an aqueous solution containing at least 1 second, washed with water and dried , having a Fe oxide layer containing hexavalent tungsten (W) on the steel plate surface, and the steel plate surface of the Fe oxide layer when C W / region I from the interface to 2nm a (C W + C Fe) a , was C W / a (C W + C Fe) B region S from the surface of the Fe oxide layer to 2nm, a < A method for producing a steel sheet having excellent corrosion resistance satisfying B.
Here, C W and C Fe represent the atomic concentrations of W and Fe in the region I or the region S of the Fe oxide layer, respectively.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010277922A JP5578056B2 (en) | 2010-12-14 | 2010-12-14 | Steel sheet having excellent corrosion resistance and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010277922A JP5578056B2 (en) | 2010-12-14 | 2010-12-14 | Steel sheet having excellent corrosion resistance and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012126941A JP2012126941A (en) | 2012-07-05 |
JP5578056B2 true JP5578056B2 (en) | 2014-08-27 |
Family
ID=46644304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010277922A Active JP5578056B2 (en) | 2010-12-14 | 2010-12-14 | Steel sheet having excellent corrosion resistance and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5578056B2 (en) |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2311104A1 (en) * | 1975-04-14 | 1976-12-10 | Produits Ind Cie Fse | METHOD AND SOLUTION FOR PHOSPHATION OF METAL SURFACES |
JPH01162780A (en) * | 1987-12-18 | 1989-06-27 | Nippon Paint Co Ltd | Zinc phosphate treatment of surface of metal for coating |
JPH0247270A (en) * | 1988-08-08 | 1990-02-16 | Kawasaki Steel Corp | Surface treated steel sheet having excellent secondary adhesive property of coated film and production thereof |
JPH10195678A (en) * | 1997-01-08 | 1998-07-28 | Hitachi Ltd | Formation of anticorrosive coating |
JPH11350156A (en) * | 1998-06-03 | 1999-12-21 | Kawasaki Steel Corp | Surface treated steel material with excellent weather resistance |
JP4415449B2 (en) * | 2000-04-25 | 2010-02-17 | Jfeスチール株式会社 | Method for producing surface-treated steel with excellent weather resistance |
JP3578056B2 (en) * | 2000-07-11 | 2004-10-20 | Jfeスチール株式会社 | Surface treated steel with excellent weather resistance and uniform appearance |
JP3597118B2 (en) * | 2000-07-11 | 2004-12-02 | Jfeスチール株式会社 | Surface treatment agent |
JP2003277943A (en) * | 2002-03-20 | 2003-10-02 | Jfe Steel Kk | Surface treated steel having excellent weather resistance and appearance uniformity |
JP2009256699A (en) * | 2008-04-14 | 2009-11-05 | Jfe Steel Corp | Method for manufacturing of chemical-converted steel, organic resine-coated steel, and surface treatment apparatus |
JP5365153B2 (en) * | 2008-11-19 | 2013-12-11 | Jfeスチール株式会社 | Surface-treated steel with excellent corrosion resistance |
JP5453840B2 (en) * | 2009-02-25 | 2014-03-26 | Jfeスチール株式会社 | Marine steel with excellent corrosion resistance |
-
2010
- 2010-12-14 JP JP2010277922A patent/JP5578056B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012126941A (en) | 2012-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019159794A1 (en) | Surface-treated steel sheet for battery containers and method for producing surface-treated steel sheet for battery containers | |
JP6368362B2 (en) | Method for treating metal sheet to reduce blackening or discoloration during storage, and metal sheet treated in this way | |
WO2015001817A1 (en) | Electromagnetic wave shield-use metal foil, electromagnetic wave shield material and shield cable | |
JP6493519B2 (en) | Steel plate for can and manufacturing method thereof | |
JP6601574B2 (en) | Steel plate for can and manufacturing method thereof | |
JP5527860B2 (en) | How to passivate stainless steel | |
Emelyanenko et al. | Superhydrophobic corrosion resistant coatings for copper via IR nanosecond laser processing | |
JP2013542325A (en) | Method for producing an iron-tin alloy layer on a wrapping steel substrate | |
US20150218705A1 (en) | Conversion coating composition, surface treated steel sheet, and method for manufacturing the same | |
JP2015508451A5 (en) | ||
JP6103139B2 (en) | Chemical conversion treated steel sheet and method for producing chemical conversion treated steel sheet | |
US10704157B2 (en) | Solution for reducing the blackening or tarnishing of a metal sheet and metal sheet | |
Ahmadi et al. | Effect of practical parameters on the structure and corrosion behavior of vanadium/zirconium conversion coating on AA 2024 aluminum alloy | |
JP5578056B2 (en) | Steel sheet having excellent corrosion resistance and method for producing the same | |
WO2010005041A1 (en) | Tin-plated steel sheet and method for producing same | |
CN111699284B (en) | Steel sheet for container and method for producing steel sheet for container | |
JP6119931B2 (en) | Steel plate for container and method for producing steel plate for container | |
JP6079891B2 (en) | Steel plate for containers | |
JP5092332B2 (en) | Surface-treated steel sheet and manufacturing method thereof | |
CN105579616B (en) | Steel plate for container | |
JP4038171B2 (en) | Titanium with excellent discoloration resistance in the atmospheric environment | |
JP2005146411A (en) | Surface treatment agent for electroless nickel plating film, protective film, product having the protective film, and their production method | |
JP4300100B2 (en) | Black anti-rust treated metal, black anti-rust coating forming treatment liquid set, and black anti-rust coating forming method using the same | |
JP3476997B2 (en) | Resin chromate treated metal plate | |
JPWO2019004163A1 (en) | Anticorrosion member and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130823 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140311 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140401 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140521 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140610 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140623 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5578056 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |