JP5575629B2 - Iron-based sintered material and method for producing the same - Google Patents

Iron-based sintered material and method for producing the same Download PDF

Info

Publication number
JP5575629B2
JP5575629B2 JP2010276326A JP2010276326A JP5575629B2 JP 5575629 B2 JP5575629 B2 JP 5575629B2 JP 2010276326 A JP2010276326 A JP 2010276326A JP 2010276326 A JP2010276326 A JP 2010276326A JP 5575629 B2 JP5575629 B2 JP 5575629B2
Authority
JP
Japan
Prior art keywords
iron
based sintered
sintered material
amount
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010276326A
Other languages
Japanese (ja)
Other versions
JP2012122127A (en
Inventor
伸彦 松本
幹夫 近藤
賢武 三宅
昌揮 杉山
和通 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2010276326A priority Critical patent/JP5575629B2/en
Publication of JP2012122127A publication Critical patent/JP2012122127A/en
Application granted granted Critical
Publication of JP5575629B2 publication Critical patent/JP5575629B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、環境負荷低減やコスト低減と機械的特性の確保とを両立し得る鉄基焼結材およびその製造方法に関するものである。 The present invention relates to an iron-based sintered material that can achieve both environmental load reduction, cost reduction, and securing of mechanical properties, and a method for manufacturing the same.

各部材の製造コストを削減するために、鉄系粉末の成形体を焼結させた素材または部材(以下単に「鉄基焼結材」という。)が利用される。この鉄基焼結材は最終形状に近いため、機械加工の削減や歩留りの向上等によって製造コストを低減し得る。 In order to reduce the manufacturing cost of each member, a material or a member obtained by sintering an iron-based powder compact (hereinafter simply referred to as “iron-based sintered material ”) is used. Since this iron-based sintered material is close to the final shape, the manufacturing cost can be reduced by reducing machining or improving yield.

これまでの鉄基焼結材は、強度等の機械的特性を確保するために、種々の合金元素を多く含有していた。特に銅(Cu)やニッケル(Ni)は、鉄基焼結材にとってほぼ必須元素のように考えられていた。しかし、合金元素量の増加は鉄基焼結材の材料コストを上昇させる。また、鉄系スクラップのリサイクル性を阻害するCuやアレルギー性元素であるNiの使用は好ましくはない。 Conventional iron-based sintered materials contain a large amount of various alloy elements in order to ensure mechanical properties such as strength. In particular, copper (Cu) and nickel (Ni) were considered to be almost essential elements for the iron-based sintered material . However, an increase in the amount of alloy elements increases the material cost of the iron-based sintered material . Also, it is not preferable to use Cu or Ni that is an allergic element that inhibits the recyclability of iron-based scrap.

特公昭58−10962号公報Japanese Patent Publication No.58-10962 特許3446322号公報Japanese Patent No. 3446322

上記の特許文献には、Cu、Niや他の合金元素の含有量を抑制した鉄基焼結材用の合金粉が提案されている。しかし、これらの合金粉でも、未だクロム(Cr)やモリブデン(Mo)の含有量が多く、少量ながら多種の合金元素を含有している。 In the above patent document, an alloy powder for an iron-based sintered material in which the content of Cu, Ni and other alloy elements is suppressed is proposed. However, these alloy powders still contain a large amount of chromium (Cr) and molybdenum (Mo), and contain a variety of alloy elements in small amounts.

本発明はこのような事情のもと、使用する合金元素の種類および量を制限して、原料コストを含む製造コストを一層低減しつつ、高強度を維持できる鉄基焼結材を提供することを目的とする。また、その鉄基焼結材の製造に適した製造方法を併せて提供することを目的とする。 Under such circumstances, the present invention provides an iron-based sintered material capable of maintaining high strength while further reducing production costs including raw material costs by limiting the type and amount of alloy elements to be used. With the goal. Moreover, it aims at providing the manufacturing method suitable for manufacture of the iron-based sintered material collectively .

本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、適量の炭素(C)が存在することを前提に、少量のバナジウム(V)を加えるだけでも、高強度の鉄基焼結材が得られることを新たに見出した。この成果を発展させることにより、以降に述べる本発明が完成するに至った。 The present inventor has intensively studied to solve this problem, and as a result of repeated trial and error, high-strength iron can be obtained by adding a small amount of vanadium (V) on the assumption that an appropriate amount of carbon (C) is present. It was newly found that a base sintered material can be obtained. By developing this result, the present invention described below has been completed.

鉄基焼結材
(1)本発明の鉄基焼結材は、Feを主成分とする原料粉末を加圧成形した成形体を焼結させた焼結体からなる鉄基焼結材であって、全体を100質量%としたときに、0.05〜0.6質量%のVと、0.1〜1.0質量%のCと、残部であるFeおよび不可避不純物と、からなることを特徴とする。
Iron-based sintered material
(1) ferrous sintered material of the present invention is a ferrous sintered member formed of a sintered body obtained by sintering a molded body by pressure molding a raw material powder mainly composed of Fe, the entire 100 It is characterized by comprising 0.05 to 0.6% by mass of V, 0.1 to 1.0% by mass of C, and the balance of Fe and unavoidable impurities.

(2)本発明によれば、主成分であるFe以外の元素が適量のCと少量のVのみであっても、少なくとも強度が従来の焼結鋼材と同等以上で、相応の伸びを有する鉄基焼結材が得られる。この鉄基焼結材によれば、原料コストを含む製造コストの削減と、機械的特性の確保との両立が図られる。勿論、本発明の鉄基焼結材はCuやNi等を実質的に含まないので、スクラップ材のリサイクル性の向上と環境負荷の低減とを図れる。 (2) According to the present invention, even if the elements other than Fe, which is the main component, are only an appropriate amount of C and a small amount of V, at least the strength is equal to or higher than that of a conventional sintered steel material and the iron has a corresponding elongation. A base sintered material is obtained. According to this iron-based sintered material, it is possible to achieve both reduction in manufacturing costs including raw material costs and securing of mechanical characteristics. Of course, since the iron-based sintered material of the present invention does not substantially contain Cu, Ni or the like, it is possible to improve the recyclability of the scrap material and reduce the environmental load.

(3)もっとも本発明の鉄基焼結材が優れた機械的特性を発現するメカニズム等は必ずしも定かではない。現状では次のように考えられる。本発明者が鉄基焼結鋼の金属組織を顕微鏡観察したところ、微細化したパーライト相と小径化したフェライト相とが観察された。これは、Vが鉄基焼結鋼の基地中にバナジウム炭化物(VC)として微細にかつ均一に析出したためと考えられる。なお、Vは少量のため、仮に焼結時間が短い場合でも偏析することなく、基地中に均一に拡散して鉄基焼結材を均質的に高強度化する。 (3) However, the mechanism etc. in which the iron-based sintered material of the present invention exhibits excellent mechanical properties are not necessarily clear. The current situation is considered as follows. When the inventor observed the metal structure of the iron-based sintered steel under a microscope, a refined pearlite phase and a reduced ferrite phase were observed. This is presumably because V was finely and uniformly deposited as vanadium carbide (VC) in the base of the iron-based sintered steel. In addition, since V is a small amount, even if the sintering time is short, segregation does not occur, and the iron-based sintered material is uniformly increased in strength without being segregated.

(4)このようなVの効果は、モリブデン(Mo)、マンガン(Mn)またはケイ素(Si)の一種以上が共存する場合でも発現し得る。さらにいえば、Vが、Mo、MnまたはSiの一種以上と共存することによって、鉄基焼結材の機械的特性は一層向上し得る。 (4) Such an effect of V can be exhibited even when one or more of molybdenum (Mo), manganese (Mn), and silicon (Si) coexist. Furthermore, when V coexists with one or more of Mo, Mn, or Si, the mechanical properties of the iron-based sintered material can be further improved.

原料コスト低減の観点から、これら合金元素の合計量(V+Mo+Mn+Si)を、鉄基焼結材全体を100質量%としたときに高々1.5質量%以下、1.2質量%以下、1質量%以下さらには0.8質量%以下としても、鉄基焼結材は十分な機械的特性を発現する。なお、単に総量規制だけではなく、高価なVやMoの一部を安価なMnやSiで置換すれば、原料コストのさらなる低減が可能となり、従来と同等以上の鉄基焼結材をより一層安価に提供可能となる。なお、本明細書では、特に断らない限り、組成に関して質量%を用い、以降では単に「%」と表記する。 From the viewpoint of reducing raw material costs, the total amount of these alloy elements (V + Mo + Mn + Si) is 1.5% by mass or less, 1.2% by mass or less, 1% by mass when the total amount of the iron-based sintered material is 100% by mass. The iron-based sintered material exhibits sufficient mechanical properties even when the content is 0.8% by mass or less. Not only the total amount regulation but also replacing some of the expensive V and Mo with cheap Mn and Si makes it possible to further reduce the raw material cost, and further increase the iron-based sintered material equivalent to or better than the conventional one. It can be provided at low cost. In the present specification, unless otherwise specified, mass% is used for the composition, and hereinafter simply expressed as “%”.

鉄基焼結材の製造方法》
本発明は上述の鉄基焼結材のみならず、その製造方法としても把握できる。すなわち本発明は、原料粉末を加圧成形した成形体を得る成形工程と、該成形体を酸化防止雰囲気で加熱して焼結体を得る焼結工程とを備え、上述の鉄基焼結材が得られることを特徴とする鉄基焼結材の製造方法でもよい。
《Method for producing iron-based sintered material
The present invention can be grasped not only as the iron-based sintered material described above but also as a manufacturing method thereof. That is, the present invention includes a molding step of obtaining a molded body by pressure molding the raw material powder, and a sintering step of heating the molded product in oxidation atmosphere to obtain a sintered body, the above-described ferrous sintered material It may be a method for producing an iron-based sintered material characterized in that

《その他》
(1)本明細書でいう「不可避不純物」は、原料粉末中にまたは鉄基焼結材中に含まれるFe、C、V、Mo、MnおよびSi以外の元素である。このような元素は種々あり、元素の種類により含有許容量(上限値)は異なる。
<Others>
(1) “Inevitable impurities” as used herein are elements other than Fe, C, V, Mo, Mn, and Si contained in the raw material powder or in the iron-based sintered material . There are various such elements, and the allowable content (upper limit) varies depending on the type of element.

例えば、リン(P):0.03%以下、硫黄(S):0.03%以下、クロム(Cr):0.1%以下、アルミニウム(Al):0.1%以下、ニオブ(Nb):0.1%以下、コバルト(Co):0.1%以下、銅(Cu):0.2%以下、ニッケル(Ni):0.1%以下、タングステン(W):0.1%以下、酸素(O):0.25%以下、ホウ素(B):0.03%以下等である。   For example, phosphorus (P): 0.03% or less, sulfur (S): 0.03% or less, chromium (Cr): 0.1% or less, aluminum (Al): 0.1% or less, niobium (Nb) : 0.1% or less, cobalt (Co): 0.1% or less, copper (Cu): 0.2% or less, nickel (Ni): 0.1% or less, tungsten (W): 0.1% or less Oxygen (O): 0.25% or less, boron (B): 0.03% or less, and the like.

また本発明に係る原料粉末または鉄基焼結材は、Fe、C、V、Mo、MnおよびSi以外に、鉄基焼結材の特性を改善し得る有効な元素(改質元素)を含み得る。改善される特性は問わないが、例えば、強度、靱性、延性、寸法安定性等である。改質元素の種類、組合せ、組成等は任意である。もっとも、コスト低減の観点から改質元素は微量であると好ましい。なお、改質元素は、不可避不純物として例示した元素(例えばCr等)であってもよい。 In addition to the Fe, C, V, Mo, Mn, and Si, the raw material powder or the iron- based sintered material according to the present invention includes an effective element (modifying element) that can improve the properties of the iron- based sintered material. obtain. There are no limitations on the properties to be improved, but examples include strength, toughness, ductility, and dimensional stability. The type, combination, composition, etc. of the modifying element are arbitrary. However, from the viewpoint of cost reduction, the amount of the modifying element is preferably a trace amount. The modifying element may be an element exemplified as an inevitable impurity (for example, Cr).

(2)本発明の「鉄基焼結材」は、その形態を問わず、鉄基焼結鋼からなる素材または部材の両方を含む。鉄基焼結鋼からなる素材は、例えば、バルク状、棒状、管状、板状等がある。鉄基焼結鋼からなる部材は、最終製品でもそれに近い製品でも良い。 (2) The “ iron-based sintered material ” of the present invention includes both a material or a member made of iron-based sintered steel regardless of its form. Examples of the material made of iron-based sintered steel include a bulk shape, a rod shape, a tubular shape, and a plate shape. The member made of iron-based sintered steel may be a final product or a product close thereto.

(3)鉄基焼結材の「機械的特性」には種々あるが、引張強さや伸びが代表的である。本発明の鉄基焼結材の引張強さは、例えば、600MPa以上、700MPa以上、800MPa以上、850MPa以上さらには900MPa以上であると好ましい。また本発明の鉄基焼結材の伸びは、例えば、2%以上、3%以上、4%以上、5%以上さらには6%以上であると好ましい。 (3) There are various “mechanical properties” of iron-based sintered materials , but tensile strength and elongation are typical. The tensile strength of the iron-based sintered material of the present invention is preferably, for example, 600 MPa or more, 700 MPa or more, 800 MPa or more, 850 MPa or more, further 900 MPa or more. The elongation of the iron-based sintered material of the present invention is preferably 2% or more, 3% or more, 4% or more, 5% or more, and further 6% or more.

(4)特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の下限値または上限値は、任意に組合わされて「a〜b」のような範囲を構成し得る。さらに本明細書に記載した数値範囲内の任意の数値を上限値または下限値として、新たな数値範囲を設定することができる。 (4) Unless otherwise specified, “x to y” in this specification includes a lower limit value x and an upper limit value y. The various lower limit values or upper limit values described in the present specification may be arbitrarily combined to constitute a range such as “ab”. Furthermore, a new numerical value range can be set by using an arbitrary numerical value within the numerical value range described in the present specification as an upper limit value or a lower limit value.

試料No.1−1の金属顕微鏡写真である。Sample No. It is a metallographic micrograph of 1-1. 試料No.1−4の金属顕微鏡写真である。Sample No. It is a metallographic microscope photograph of 1-4. 試料No.1−27の金属顕微鏡写真である。Sample No. It is a metallographic micrograph of 1-27. V量の異なる各試料(焼結温度:1150℃)の引張強さとMo量との関係を示すグラフである。It is a graph which shows the relationship between the tensile strength of each sample (sintering temperature: 1150 degreeC) from which V amount differs, and Mo amount. V量の異なる各試料(焼結温度:1150℃)の伸びとMo量との関係を示すグラフである。It is a graph which shows the relationship between the elongation of each sample (sintering temperature: 1150 degreeC) from which V amount differs, and Mo amount. V量の異なる各試料(焼結温度:1250℃)の引張強さとMo量との関係を示すグラフである。It is a graph which shows the relationship between the tensile strength of each sample (sintering temperature: 1250 degreeC) from which V amount differs, and Mo amount. V量の異なる各試料(焼結温度:1250℃)の伸びとMo量との関係を示すグラフである。It is a graph which shows the relationship between the elongation of each sample (sintering temperature: 1250 degreeC) from which V amount differs, and Mo amount. V量およびGr量の異なる各試料(焼結温度:1150℃)の引張強さとMo量との関係を示すグラフである。It is a graph which shows the relationship between the tensile strength and Mo amount of each sample (sintering temperature: 1150 degreeC) from which V amount and Gr amount differ. V量およびGr量の異なる各試料(焼結温度:1150℃)の伸びとMo量との関係を示すグラフである。It is a graph which shows the relationship between the elongation of each sample (sintering temperature: 1150 degreeC) from which V amount and Gr amount differ, and Mo amount. V量およびGr量の異なる各試料(焼結温度:1250℃)の引張強さとMo量との関係を示すグラフである。It is a graph which shows the relationship between the tensile strength and Mo amount of each sample (sintering temperature: 1250 degreeC) from which V amount and Gr amount differ. V量およびGr量の異なる各試料(焼結温度:1250℃)の伸びとMo量との関係を示すグラフである。It is a graph which shows the relationship between the elongation of each sample (sintering temperature: 1250 degreeC) from which V amount and Gr amount differ, and Mo amount. Mo/V量の異なる各試料の引張強さを対比した棒グラフである。It is the bar graph which contrasted the tensile strength of each sample from which Mo / V amount differs. Mo/V量の異なる各試料の伸びを対比した棒グラフである。It is the bar graph which contrasted the elongation of each sample from which Mo / V amount differs. (Mn+Si)/V量の異なる各試料の引張強さを対比した棒グラフである。It is the bar graph which contrasted the tensile strength of each sample from which the amount of (Mn + Si) / V differs. (Mn+Si)/V量の異なる各試料の伸びを対比した棒グラフである。It is the bar graph which contrasted the elongation of each sample from which (Mn + Si) / V amount differs. (Mn+Si)/Mo量の異なる各試料(V:0.1%)の引張強さを対比した棒グラフである。It is the bar graph which contrasted the tensile strength of each sample (V: 0.1%) from which the amount of (Mn + Si) / Mo differs. (Mn+Si)/Mo量の異なる各試料(V:0.1%)の伸びを対比した棒グラフである。It is the bar graph which contrasted the elongation of each sample (V: 0.1%) from which the amount of (Mn + Si) / Mo differs. (Mn+Si)/Mo量の異なる各試料(V:0.2%)の引張強さを対比した棒グラフである。It is the bar graph which contrasted the tensile strength of each sample (V: 0.2%) from which (Mn + Si) / Mo amount differs. (Mn+Si)/Mo量の異なる各試料(V:0.2%)の伸びを対比した棒グラフである。It is the bar graph which contrasted the elongation of each sample (V: 0.2%) from which (Mn + Si) / Mo amount differs. 成形圧力および冷却速度の異なる各試料(焼結温度:1150℃)の引張強さとMo/V量との関係を示すグラフである。It is a graph which shows the relationship between the tensile strength and Mo / V amount of each sample (sintering temperature: 1150 degreeC) from which a shaping | molding pressure and a cooling rate differ. 成形圧力および冷却速度の異なる各試料(焼結温度:1150℃)の伸びとMo/V量との関係を示すグラフである。It is a graph which shows the relationship between the elongation of each sample (sintering temperature: 1150 degreeC) from which a shaping | molding pressure and a cooling rate differ, and Mo / V amount. 成形圧力および冷却速度の異なる各試料(焼結温度:1250℃)の引張強さとMo/V量との関係を示すグラフである。It is a graph which shows the relationship between the tensile strength and Mo / V amount of each sample (sintering temperature: 1250 degreeC) from which a shaping | molding pressure and a cooling rate differ. 成形圧力および冷却速度の異なる各試料(焼結温度:1250℃)の伸びとMo/V量との関係を示すグラフである。It is a graph which shows the relationship between the elongation of each sample (sintering temperature: 1250 degreeC) from which a shaping | molding pressure and a cooling rate differ, and Mo / V amount.

F フェライト相
P パーライト相
F Ferrite phase P Pearlite phase

発明の実施形態を挙げて本発明をより詳しく説明する。なお、以下の実施形態を含めて本明細書で説明する内容は、本発明に係る鉄基焼結材のみならず、その製造方法にも適宜適用され得る。製造方法に関する構成は、プロダクトバイプロセスとして理解すれば物に関する構成ともなり得る。本明細書中から任意に抽出した一つまたは二つ以上の構成は、上述した本発明の構成に付加され得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。 The present invention will be described in more detail with reference to embodiments of the invention. In addition, the content demonstrated by this specification including the following embodiment can be suitably applied not only to the iron-based sintered material according to the present invention but also to the manufacturing method thereof. A configuration related to a manufacturing method can be a configuration related to an object if understood as a product-by-process. One or more configurations arbitrarily extracted from the present specification can be added to the configuration of the present invention described above. Which embodiment is the best depends on the target, required performance, and the like.

《原料粉末》
(1)本発明の鉄基焼結材は、原料粉末の成形体を焼結させてなる。この原料粉末は単種の粉末でも複数種の粉末からなる混合粉末でもよい。原料粉末が混合粉末である場合、純鉄粉、低合金鋼粉、バナジウム炭化物粉、モリブデン炭化物粉、グラファイト(Gr)粉、Fe−Mn−Si合金粉(FeMS粉)、Fe−Mn−Si−C合金粉(FeMSC粉)等を用いて、鉄基焼結材の所望組成に配合される。
<Raw material powder>
(1) The iron-based sintered material of the present invention is obtained by sintering a compact of a raw material powder. This raw material powder may be a single type of powder or a mixed powder composed of a plurality of types of powder. When the raw material powder is a mixed powder, pure iron powder, low alloy steel powder, vanadium carbide powder, molybdenum carbide powder, graphite (Gr) powder, Fe-Mn-Si alloy powder (FeMS powder), Fe-Mn-Si- C alloy powder (FeMSC powder) or the like is used to blend the desired composition of the iron- based sintered material .

各粉末の粒径は問わないが、鉄基焼結材の成形性(高密度化)や取扱性等から、ベースとなる純鉄粉や低合金鋼粉は80〜100μm、各炭化物粉、Gr粉、FeMS粉、FeMSC粉は1〜10μmであると好ましい。ちなみに、ここでいう粒径は、粒子を一定の粒径間隔ごとに質量割合で表した粒子の頻度曲線において、累積重量割合の50%となるD50により特定される。 The particle size of each powder is not limited, but due to the formability (high density) and handling properties of the iron-based sintered material , the base pure iron powder and low alloy steel powder are 80-100 μm, each carbide powder, Gr Powder, FeMS powder, and FeMSC powder are preferably 1 to 10 μm. Incidentally, the particle size referred to here is specified by D50 which is 50% of the cumulative weight ratio in the particle frequency curve in which the particles are expressed in mass ratio at every fixed particle size interval.

(2)原料粉末は、鉄基焼結材の機械的特性(特に引張強さ)の確保と原料コストの低減の観点から調製されると好ましい。原料粉末中のVは、原料粉末全体を100質量%としたときに、0.05〜0.6%、0.1〜0.5%、0.15〜0.4%さらには0.2〜0.35%であるとより好ましい。 (2) The raw material powder is preferably prepared from the viewpoint of securing the mechanical properties (particularly tensile strength) of the iron-based sintered material and reducing the raw material cost. V in the raw material powder is 0.05 to 0.6%, 0.1 to 0.5%, 0.15 to 0.4%, or 0.2 if the entire raw material powder is 100% by mass. It is more preferable in it being -0.35%.

このような範囲内のVと共に、Mo、MnまたはSiが鉄基焼結材中に共存していると、その金属組織(フェライト相やパーライト相)の微細化、機械的特性の向上をさらに図り得る。具体的にいうと、原料粉末全体を100質量%として、Moは0.05〜0.5%、0.1〜0.45%、0.15〜0.4%さらには0.25〜0.35%であると好ましい。Mnは0.03〜0.6%、0.1〜0.5%さらには0.2〜0.4%であると好ましい。Siは0.01〜0.2%、0.03〜0.15%さらには0.05〜0.1%であると好ましい。いずれの場合も、各元素が過少ではその効果が十分に得られず、過多では原料コストが増大する。 When Mo, Mn or Si coexists in the iron-based sintered material together with V in such a range, the metal structure (ferrite phase and pearlite phase) is further refined and mechanical properties are further improved. obtain. Specifically, Mo is 0.05 to 0.5%, 0.1 to 0.45%, 0.15 to 0.4%, and further 0.25 to 0, based on 100% by mass of the entire raw material powder. .35% is preferable. Mn is preferably 0.03 to 0.6%, 0.1 to 0.5%, and more preferably 0.2 to 0.4%. Si is preferably 0.01 to 0.2%, 0.03 to 0.15%, and more preferably 0.05 to 0.1%. In any case, if the amount of each element is too small, the effect cannot be obtained sufficiently, and if it is excessive, the raw material cost increases.

但し、VやMoに比較して、MnやSiは鋼の一般的な合金元素であり、安価で入手も容易である。従って、鉄基焼結材の所望特性の確保を前提に、MnやSiの配合量を増加させつつ、VやMoの配合量を減少させると好適である。ちなみに、MnおよびSiの供給源として、単体粉末を用いても良いが、FeMS粉等を用いると原料コストの低減を図れる。このようにMnとSiを同時添加する場合なら、原料粉末全体を100質量%としたときに、それらの合計(Mn+Si)が0.1〜0.8%、0.2〜0.7%さらには0.25〜0.6%であると好ましい。 However, compared with V and Mo, Mn and Si are general alloy elements of steel, and are inexpensive and easily available. Therefore, it is preferable to reduce the blending amount of V and Mo while increasing the blending amount of Mn and Si on the premise of securing desired characteristics of the iron-based sintered material . Incidentally, a single powder may be used as a supply source of Mn and Si, but the use of FeMS powder or the like can reduce the raw material cost. Thus, when adding Mn and Si simultaneously, when the whole raw material powder is 100 mass%, those total (Mn + Si) are 0.1-0.8%, 0.2-0.7% Is preferably 0.25 to 0.6%.

《製造工程》
本発明の鉄基焼結材は、主に成形工程と焼結工程を経て得られる。以下、これら工程について説明する。
"Manufacturing process"
The iron-based sintered material of the present invention is obtained mainly through a molding process and a sintering process. Hereinafter, these steps will be described.

(1)成形工程
成形工程は、上述の原料粉末を加圧成形した成形体を得る工程である。成形圧力の調整により、成形体密度(ひいては鉄基焼結材の密度)を調整し得る。この成形圧力は、例えば、400MPa以上、500MPa以上、600MPaさらには700MPa以上と高くなるほど、成形体ひいては鉄基焼結材の高密度化を図れる。成形工程は、冷間成形(室温成形)でも温間成形でも良い。また、原料粉末中に内部潤滑剤を添加しても良い。なお、本明細書では、内部潤滑剤を原料粉末に含めて考える。
(1) Molding process A molding process is a process of obtaining the molded object which pressure-molded the above-mentioned raw material powder. By adjusting the molding pressure, the density of the compact (and consequently the density of the iron-based sintered material ) can be adjusted. For example, as the molding pressure increases to 400 MPa or more, 500 MPa or more, 600 MPa, or 700 MPa or more, it is possible to increase the density of the molded body and thus the iron-based sintered material . The forming process may be cold forming (room temperature forming) or warm forming. An internal lubricant may be added to the raw material powder. In this specification, the internal lubricant is considered to be included in the raw material powder.

ところで、金型寿命を確保しつつ高圧成形する際は、金型潤滑温間加圧成形法(詳細は特許3309970号公報等を参照)を用いると良い。この成形方法によれば、成形圧力が700MPa程度の場合は勿論、800MPa以上、900MPa以上さらには1000MPa以上といった超高圧成形も容易に行える。しかも金型潤滑温間加圧成形法は、内部潤滑剤を使用する必要がないので、得られた成形体を焼結した際に炉内が汚染等されることもなく、環境性能に優れる。   By the way, when high pressure molding is performed while ensuring the mold life, a mold lubrication warm pressure molding method (for details, refer to Japanese Patent No. 3309970) may be used. According to this molding method, not only when the molding pressure is about 700 MPa, ultrahigh pressure molding such as 800 MPa or more, 900 MPa or more, further 1000 MPa or more can be easily performed. In addition, the mold lubrication warm pressure molding method does not require the use of an internal lubricant, and therefore, the interior of the furnace is not contaminated when the obtained molded body is sintered, and is excellent in environmental performance.

(2)焼結工程
焼結工程は、成形体を加熱して焼結体を得る工程である。焼結温度および焼結時間は、鉄基焼結材の所望特性、生産性等を考慮して適宜選択されるが、それらが過大ではエネルギーコストが増大し、それらが過小では機械的特性の確保が困難となる。焼結温度は、例えば、1050℃〜1350℃以上さらには1100〜1300℃が好ましい。焼結時間は、例えば、0.1〜3時間さらには0.3〜1時間であると好ましい。
(2) Sintering process A sintering process is a process of heating a molded object and obtaining a sintered compact. The sintering temperature and sintering time are appropriately selected in consideration of the desired properties and productivity of the iron-based sintered material. However, if they are too large, the energy cost increases, and if they are too small, the mechanical properties are secured. It becomes difficult. For example, the sintering temperature is preferably 1050 ° C. to 1350 ° C. or higher, and more preferably 1100 to 1300 ° C. For example, the sintering time is preferably 0.1 to 3 hours, and more preferably 0.3 to 1 hour.

焼結工程は酸化防止雰囲気でなされると好ましい。鉄基焼結材中に酸化物が介在すると、その機械的特性が劣化し得るからである。酸化防止雰囲気には、例えば、真空雰囲気、不活性ガス雰囲気、窒素ガス雰囲気等がある。 The sintering process is preferably performed in an oxidation-preventing atmosphere. This is because if an oxide is present in the iron-based sintered material, its mechanical properties may deteriorate. Examples of the oxidation prevention atmosphere include a vacuum atmosphere, an inert gas atmosphere, and a nitrogen gas atmosphere.

原料粉末が特に酸化され易いV、Mn若しくはSiを含む場合、焼結雰囲気はハイレベルな酸化防止雰囲気であると好ましい。このような酸化防止雰囲気として、例えば、窒素ガスに水素ガスを2〜5体積%程度混合した還元雰囲気がある。また水素ガスを使用しない場合なら、焼結雰囲気は、酸素分圧が10−19Pa以下(CO濃度で100ppm以下)に相当する極低酸素分圧の不活性ガス雰囲気であると好ましい。なお、この極低酸素分圧の不活性ガス(N2ガス)雰囲気は、例えば、関東冶金工業株式会社製オキシノン炉を用いて得られる。 When the raw material powder contains V, Mn, or Si that is particularly easily oxidized, the sintering atmosphere is preferably a high-level antioxidant atmosphere. As such an antioxidant atmosphere, for example, there is a reducing atmosphere in which hydrogen gas is mixed with nitrogen gas in an amount of about 2 to 5% by volume. If hydrogen gas is not used, the sintering atmosphere is preferably an inert gas atmosphere having an extremely low oxygen partial pressure corresponding to an oxygen partial pressure of 10 −19 Pa or less (CO concentration of 100 ppm or less). In addition, this inert gas (N2 gas) atmosphere of the extremely low oxygen partial pressure is obtained, for example, using an oxynon furnace manufactured by Kanto Yakin Kogyo Co., Ltd.

(3)冷却工程または焼入工程(シンターハードニング)
高温の焼結体を急冷する冷却工程を行ってもよい。これにより焼結体は焼入れ(シンターハードニング)され、さらに高強度化し得る。この工程は焼結工程に続けて行うと効率的である。具体的には次の通りである。
(3) Cooling process or quenching process (sinter hardening)
A cooling step for rapidly cooling the high-temperature sintered body may be performed. As a result, the sintered body is quenched (sinter hardened) and can be further strengthened. This step is efficient if performed after the sintering step. Specifically, it is as follows.

焼結工程後の焼結体は、通常、A1変態点(約730℃)以上の高温状態となっている。この焼結体を、その高温域から室温域まで(Ms点以下まで)急冷する(冷却工程)。これにより焼結体は焼き入れ(シンターハードニング)される。その際の冷却速度は、25〜200℃/分(0.4〜3.3℃/秒)、40〜150℃/分(0.67〜2.5℃/秒)さらには80〜120℃/分(1.3〜2℃/秒)であると好ましい。冷却速度が過小では焼入れが不十分となり十分な高強度化を図れない。過大な冷却速度の実現は製造コストを上昇させる。   The sintered body after the sintering step is usually in a high temperature state at or above the A1 transformation point (about 730 ° C.). The sintered body is rapidly cooled from the high temperature range to the room temperature range (to the Ms point or less) (cooling step). Thereby, the sintered body is quenched (sinter hardened). The cooling rate at that time is 25 to 200 ° C./min (0.4 to 3.3 ° C./sec), 40 to 150 ° C./min (0.67 to 2.5 ° C./sec), and further 80 to 120 ° C. / Min (1.3-2 ° C./second). If the cooling rate is too low, quenching becomes insufficient and sufficient strength cannot be achieved. The realization of an excessive cooling rate increases the manufacturing cost.

鉄基焼結材
(1)本発明の鉄基焼結材は、要求仕様に応じて、焼鈍、焼準、時効、調質(焼き入れ、焼き戻し)、浸炭、窒化等の熱処理を適宜施して、金属組織の調整がなされても良い。
Iron-based sintered material
(1) The iron-based sintered material of the present invention is appropriately subjected to a heat treatment such as annealing, normalizing, aging, tempering (quenching, tempering), carburizing, nitriding, etc. according to the required specifications. Adjustments may be made.

(2)本発明の鉄基焼結材は、その用途を問わないが、例えば、各種プーリー、変速機のシンクロハブ、エンジンのコンロッド、ハブスリーブ、スプロケット、リングギヤ、パーキングギヤ、ピニオンギヤ、サンギヤ、ドライブギヤ、ドリブンギヤ、リダクションギヤ等の素材や製品に用いることができる。 (2) The iron-based sintered material of the present invention may be used for any purpose, for example, various pulleys, transmission synchro hub, engine connecting rod, hub sleeve, sprocket, ring gear, parking gear, pinion gear, sun gear, drive It can be used for materials and products such as gears, driven gears and reduction gears.

実施例を挙げて本発明をより具体的に説明する。
《試験片の製造》
(1)原料粉末の調製
原料粉末を調製するために、次の各種粉末を用意した。先ず、主たるFe源として純鉄粉(ヘガネスAB社製ASC100.29、粒径20〜180μm)、主たるC源として黒鉛(Gr)粉末(日本黒鉛社製JCPB、平均粒径は5μm以下)を用意した。次に、V源としてバナジウム炭化物(VC)粉末(日本新金属社製:粒度1〜3μm)、Mo源としてモリブデン炭化物(MoC)粉末(日本新金属社製:粒度1〜2μm)を用意した。さらに、Mn源およびSi源としてFe−65%Mn−16%Si−2%C粉末(東洋電化社製:5μm以下)を用意した。特に断らない限り、組成に関する「%」は質量%を意味する(以下同様)。
The present invention will be described more specifically with reference to examples.
<Manufacture of test pieces>
(1) Preparation of raw material powder In order to prepare raw material powder, the following various powders were prepared. First, pure iron powder (ASC 100.29 manufactured by Höganäs AB, particle size 20 to 180 μm) is prepared as the main Fe source, and graphite (Gr) powder (JCPB manufactured by Nippon Graphite Co., average particle size is 5 μm or less) is prepared as the main C source. did. Next, vanadium carbide (VC) powder (manufactured by Nippon Shin Metal Co., Ltd .: particle size 1 to 3 μm) is prepared as a V source, and molybdenum carbide (Mo 2 C) powder (manufactured by Nippon Shin Metal Co., Ltd .: particle size 1 to 2 μm) is prepared as a Mo source. did. Further, Fe-65% Mn-16% Si-2% C powder (manufactured by Toyo Denka Co., Ltd .: 5 μm or less) was prepared as a Mn source and a Si source. Unless otherwise specified, “%” in terms of composition means mass% (the same applies hereinafter).

これらの各種粉末を各表に示す組成となるように配合し、ボールミル式回転混合を30分間行って、試料毎に均一な混合粉末(原料粉末)を調製した。   These various powders were blended so as to have the composition shown in each table, and ball mill type rotary mixing was performed for 30 minutes to prepare a uniform mixed powder (raw material powder) for each sample.

(2)成形工程
成形工程は、上述した金型潤滑温間加圧成形法により行った。具体的には以下の通りである。試験片の形状に応じたキャビティを有する超硬製金型を用意した。金型の内周面には予めTiNコート処理を施し、その表面粗さを0.4Zとした。金型はバンドヒータで予め150℃に加熱しておいた。加熱した金型の内周面に、高級脂肪酸系潤滑剤であるステアリン酸リチウム(LiSt)を分散させた水溶液を、スプレーガンにて1cm/秒程度の割合で均一に塗布した(塗布工程)。これにより、金型の内周面には約1μm程度のLiStの被膜が形成された。
(2) Molding process The molding process was performed by the above-described mold lubrication warm pressure molding method. Specifically, it is as follows. A cemented carbide mold having a cavity corresponding to the shape of the test piece was prepared. The inner peripheral surface of the mold was previously subjected to TiN coating treatment, and the surface roughness was set to 0.4Z. The mold was previously heated to 150 ° C. with a band heater. An aqueous solution in which lithium stearate (LiSt), which is a higher fatty acid lubricant, is dispersed is uniformly applied to the inner peripheral surface of the heated mold with a spray gun at a rate of about 1 cm 3 / second (application process). . Thereby, a LiSt film of about 1 μm was formed on the inner peripheral surface of the mold.

なお、用いた水溶液は、界面活性剤と消泡剤とを添加した水に、LiStを分散させたものである。界面活性剤には、ポリオキシエチレンノニルフェニルエーテル(EO)6、(EO)10及びホウ酸エステルエマルボンT−80を用いた。それらを水溶液全体(100体積%)に対して1体積%ずつ添加した。消泡剤には、FSアンチフォーム80を用いた。これを水溶液全体(100体積%)に対して0.2体積%添加した。   The aqueous solution used was obtained by dispersing LiSt in water to which a surfactant and an antifoaming agent were added. As the surfactant, polyoxyethylene nonylphenyl ether (EO) 6, (EO) 10 and borate ester Emulbon T-80 were used. They were added by 1% by volume with respect to the whole aqueous solution (100% by volume). FS antifoam 80 was used as the antifoaming agent. 0.2 volume% of this was added with respect to the whole aqueous solution (100 volume%).

LiStには、融点が約225℃で、平均粒径が20μmのものを用いた。その分散量は上記の水溶液100cmに対して25gとした。LiStを分散させた水溶液をさらにボールミル式粉砕装置で微細化処理(テフロンコート鋼球:100時間)した。こうして得られた原液を20倍に希釈した最終濃度1%の水溶液を、上記塗布工程に供した。 LiSt having a melting point of about 225 ° C. and an average particle size of 20 μm was used. The amount of dispersion was 25 g with respect to 100 cm 3 of the aqueous solution. The aqueous solution in which LiSt was dispersed was further refined with a ball mill pulverizer (Teflon-coated steel balls: 100 hours). An aqueous solution having a final concentration of 1% obtained by diluting the stock solution thus obtained 20 times was subjected to the coating step.

LiStの均一な被膜が内面に形成された金型のキャビティへ、各原料粉末(予熱なし)を自然充填した(充填工程)。この原料粉末を各表に示す成形圧力(490〜784MPa)で成形した。得られた各成形体は、金型の内面にかじり等を生じることなく、低い抜出力で金型から容易に取出すことができた。   Each raw material powder (without preheating) was naturally filled into a mold cavity in which a uniform LiSt film was formed on the inner surface (filling step). This raw material powder was molded at a molding pressure (490 to 784 MPa) shown in each table. Each of the obtained molded bodies could be easily removed from the mold with low output without causing galling or the like on the inner surface of the mold.

(3)焼結工程
各成形体を、連続焼結炉(関東冶金工業製オキシノン炉)を用いて、1150℃または1250℃の窒素ガス雰囲気中で焼結させた(焼結工程)。均熱保持時間は30分とし、焼結後の冷却速度は100℃/min(1.67℃/秒)または50℃/min(0.83℃/秒)とした。なお、その焼結炉内は、露点−50〜−65℃程度のNガス雰囲気とした。こうして鉄基焼結材からなる各試験片を得た。
(3) Sintering step Each compact was sintered in a nitrogen gas atmosphere at 1150 ° C or 1250 ° C using a continuous sintering furnace (Oxynon furnace manufactured by Kanto Metallurgical Industry) (sintering process). The soaking time was 30 minutes, and the cooling rate after sintering was 100 ° C./min (1.67 ° C./sec) or 50 ° C./min (0.83 ° C./sec). The inside of the sintering furnace was an N 2 gas atmosphere having a dew point of about −50 to −65 ° C. Thus, each test piece made of an iron-based sintered material was obtained.

《測定》
(1)密度および寸法変化
各試料の円柱状試験片(φ23×7mm)を用いて、焼結体の重量と焼結前後の寸法(外径)を測定した。これらの測定値から、焼結体の密度と寸法変化(外径変化)を求め、それらの値を各表に併せて記載した。なお、各表に示した寸法変化は、100×{(焼結後の外径)−(焼結前の外径)}/(焼結前の外径)により求めた。
<Measurement>
(1) Density and Dimensional Change Using the cylindrical test piece (φ23 × 7 mm) of each sample, the weight of the sintered body and the dimensions (outer diameter) before and after sintering were measured. From these measured values, the density and dimensional change (outer diameter change) of the sintered body were obtained, and those values were listed in each table. In addition, the dimensional change shown in each table | surface was calculated | required by 100x {(outer diameter after sintering)-(outer diameter before sintering)} / (outer diameter before sintering).

(2)引張強さおよび伸び
各試料の平板状引張試験片(55×10×3mm)を用いて引張試験を行った。これにより、各試験片が破断するまでの強度(引張強さ)と伸びを求め、その値を各表に併せて記載した。
(2) Tensile strength and elongation Tensile tests were performed using flat tensile test pieces (55 × 10 × 3 mm) of each sample. Thereby, the strength (tensile strength) and elongation until each test piece broke was determined, and the values were listed in each table.

(3)ヤング率
各試料の円柱状試験片(φ23×7mm)を用いて、超音波法によりヤング率を測定し、その値を各表に併せて記載した。なお超音波法は、縦波および横波のパルスエコーの伝播時間および円柱状試験片の厚さから求めた超音波の音速と、試験片の密度とからヤング率を算出する方法である。
(3) Young's modulus Young's modulus was measured by an ultrasonic method using a columnar test piece (φ23 × 7 mm) of each sample, and the values were listed in each table. The ultrasonic method is a method of calculating the Young's modulus from the acoustic velocity of the ultrasonic wave obtained from the propagation time of longitudinal and transverse pulse echoes and the thickness of the cylindrical specimen and the density of the specimen.

《評価》
〈金属組織〉
表1Aおよび表1B(両表を併せて単に「表1」という。)から抽出した試料の金属顕微鏡写真を図1A〜図1Cに示した。写真中、白色部分(F)はフェライト相を、灰色部分(P)はパーライト相を示す。
<Evaluation>
<Metallic structure>
Metal micrographs of samples extracted from Table 1A and Table 1B (both tables are simply referred to as “Table 1”) are shown in FIGS. 1A to 1C. In the photograph, the white portion (F) indicates the ferrite phase, and the gray portion (P) indicates the pearlite phase.

Fe−0.6%Grの組織(図1A)は、フェライト相およびパーライト相が粗い。0.5%Vをさらに含む組織(図1B)では、パーライト相が微細化し、フェライト相も小径化している。0.3%Moをさらに含む組織、つまりV−Moの複合添加組織(図1C)では、フェライト相またはパーライト相がより微細化する傾向を示した。そして、金属組織がこのように微細化するほど、引張強さが大きくなることが表1からわかる。   The structure of Fe-0.6% Gr (FIG. 1A) has a coarse ferrite phase and pearlite phase. In the structure further containing 0.5% V (FIG. 1B), the pearlite phase is refined and the ferrite phase is also reduced in diameter. In the structure further containing 0.3% Mo, that is, the composite addition structure of V-Mo (FIG. 1C), the ferrite phase or the pearlite phase tended to be further refined. It can be seen from Table 1 that the tensile strength increases as the metal structure becomes finer in this way.

〈機械的特性〉
(1)表1に示した各試料(Gr:0.6%)の機械的特性(引張強さと伸び)を、図2A〜図3Bにグラフ化して示した。これから次のことがわかった。先ず、Vが0.1%程度でも加わると、引張強さが急激に度向上し、Vが0.5%に近づくほど引張強さは大きくなった。もっとも、引張強さの向上は、Vが0.5%程度で、ほぼ飽和する傾向となった。
<Mechanical properties>
(1) The mechanical properties (tensile strength and elongation) of each sample (Gr: 0.6%) shown in Table 1 are shown in graphs in FIGS. 2A to 3B. From this, we found the following. First, when V was added even at about 0.1%, the tensile strength improved rapidly, and the tensile strength increased as V approached 0.5%. However, the improvement in tensile strength tended to be almost saturated when V was about 0.5%.

次に、このVによる強度向上効果は、Mo量が変化しても同様の傾向を示すが、Moが0.1〜0.6%さらには0.15〜0.5%で、極大傾向を示した。さらに、焼結温度が高いと引張強さは大きくなり、焼結温度が低いと伸びが安定して高くなった。   Next, this strength improvement effect by V shows the same tendency even if the amount of Mo changes, but Mo is 0.1 to 0.6%, further 0.15 to 0.5%, and the maximum tendency is shown. Indicated. Furthermore, the tensile strength increased when the sintering temperature was high, and the elongation increased stably when the sintering temperature was low.

(2)表1および表2から抽出した各試料(Gr:0.6%とGr:0.8%)の機械的特性(引張強さと伸び)を、図4A〜図5Bにグラフ化して示した。先ず、焼結温度が1150℃の場合でも1250℃の場合でも、Gr量が多いと、引張強さは大きく、伸びは小さくなった。 (2) The mechanical properties (tensile strength and elongation) of each sample (Gr: 0.6% and Gr: 0.8%) extracted from Table 1 and Table 2 are shown as graphs in FIGS. 4A to 5B. It was. First, when the sintering temperature was 1150 ° C. or 1250 ° C., the tensile strength was large and the elongation was small when the amount of Gr was large.

(3)表1および表2から抽出した各試料(V+Mo=0.5%)の機械的特性(引張強さと伸び)を、図6Aおよび図6Bにグラフ化して示した。これから次のことがわかった。Vの方がMoよりも引張強さの向上効果が大きく、Mo/Vが4〜0(0.4/0.1〜0/0.5)のとき、強度が大きく向上した。特にMo/Vが1.5(0.3/0.2)前後(例えば、Mo/V=2〜1)のとき、引張強さが大きくなり、伸びも十分であった。 (3) The mechanical properties (tensile strength and elongation) of each sample (V + Mo = 0.5%) extracted from Table 1 and Table 2 are shown in a graph in FIGS. 6A and 6B. From this, we found the following. V had a greater effect of improving tensile strength than Mo, and when Mo / V was 4 to 0 (0.4 / 0.1 to 0 / 0.5), the strength was greatly improved. In particular, when Mo / V was around 1.5 (0.3 / 0.2) (for example, Mo / V = 2 to 1), the tensile strength increased and the elongation was sufficient.

(4)表3から抽出した各試料(V+Mn+Si=0.5%)の機械的特性(引張強さと伸び)を、図7Aおよび図7Bにグラフ化して示した。これから次のことがわかった。Moを(Mn+Si)に置換しても、図6Aおよび図6Bの場合と同様の傾向を示した。但し、Vが0.1〜0.5%の範囲で観ると、(Mn+Si)よりもMoの方が、引張強さおよび伸びの向上効果が少し大きかった。 (4) The mechanical properties (tensile strength and elongation) of each sample (V + Mn + Si = 0.5%) extracted from Table 3 are shown in a graph in FIGS. 7A and 7B. From this, we found the following. Even when Mo was replaced with (Mn + Si), the same tendency as in FIGS. 6A and 6B was shown. However, when viewed in the range of 0.1 to 0.5% of V, Mo had a slightly greater effect of improving tensile strength and elongation than (Mn + Si).

(5)表3から抽出した各試料(V+Mo+Mn+Si=0.5%)の機械的特性(引張強さと伸び)を、図8A〜図9Bにグラフ化して示した。これから次のことがわかった。V、Mo、MnおよびSiを含む場合でも、すなわち、(V+Mo)の一部を(Mn+Si)で置換した場合でも、引張強さおよび伸びは十分であった。 (5) The mechanical properties (tensile strength and elongation) of each sample (V + Mo + Mn + Si = 0.5%) extracted from Table 3 are shown as graphs in FIGS. 8A to 9B. From this, we found the following. Even when V, Mo, Mn and Si were included, that is, even when a part of (V + Mo) was replaced with (Mn + Si), the tensile strength and elongation were sufficient.

(6)表4Aおよび表4B(両表を併せて単に「表4」という。)から抽出した各試料の機械的特性(引張強さと伸び)を、図10A〜図11Bにグラフ化して示した。これから次のことがわかった。成形圧力や焼結後の冷却速度が変化しても、各試料の引張強さや伸びは、図6Aまたは図6Bに示した場合とほぼ同様な傾向を示した。但し、引張強さは、成形圧力や冷却速度が大きくなるほど向上した。また伸びも成形圧力が大きくなるほど向上したが、冷却速度にはあまり影響しなかった。 (6) The mechanical properties (tensile strength and elongation) of each sample extracted from Table 4A and Table 4B (both tables are simply referred to as “Table 4”) are shown as graphs in FIGS. 10A to 11B. . From this, we found the following. Even when the molding pressure and the cooling rate after sintering changed, the tensile strength and elongation of each sample showed almost the same tendency as the case shown in FIG. 6A or 6B. However, the tensile strength improved as the molding pressure and cooling rate increased. Elongation also improved as the molding pressure increased, but did not significantly affect the cooling rate.

Claims (7)

鉄(Fe)を主成分とする原料粉末を加圧成形した成形体を焼結させた焼結体からなる鉄基焼結材であって、
全体を100質量%としたときに、
0.05〜0.6質量%のバナジウム(V)と、
0.1〜1.0質量%の炭素(C)と、
残部であるFeおよび不可避不純物と、
からなることを特徴とする鉄基焼結材
An iron- based sintered material composed of a sintered body obtained by sintering a molded body obtained by press-molding a raw material powder containing iron (Fe) as a main component,
When the total is 100% by mass,
0.05 to 0.6 mass% vanadium (V);
0.1-1.0% by mass of carbon (C);
The balance Fe and inevitable impurities,
An iron-based sintered material comprising:
さらに、モリブデン(Mo)を0.05〜0.5質量%含む請求項1に記載の鉄基焼結材The iron-based sintered material according to claim 1, further comprising 0.05 to 0.5 mass% of molybdenum (Mo). さらに、マンガン(Mn)を0.03〜0.6質量%含む請求項に記載の鉄基焼結材The iron-based sintered material according to claim 2 , further comprising 0.03 to 0.6 mass% of manganese (Mn). さらに、ケイ素(Si)を0.01〜0.2質量%含む請求項1または2に記載の鉄基焼結材Further, ferrous sintered material according to claim 1 or 2 silicon the (Si) containing 0.01 to 0.2 wt%. さらに、Mnを0.03〜0.6質量%およびSiを0.01〜0.2質量%含む請求項1に記載の鉄基焼結材。The iron-based sintered material according to claim 1, further comprising 0.03 to 0.6 mass% of Mn and 0.01 to 0.2 mass% of Si. V、Mo、MnまたはSiの一種以上からなる合金元素の合計量は1.5質量%以下である請求項2〜5のいずれかに記載の鉄基焼結材The iron-based sintered material according to any one of claims 2 to 5, wherein the total amount of alloy elements composed of one or more of V, Mo, Mn, or Si is 1.5 mass% or less. 原料粉末を加圧成形した成形体を得る成形工程と、
該成形体を加熱して焼結体を得る焼結工程とを備え、
請求項1〜に記載したいずれかの鉄基焼結材が得られることを特徴とする鉄基焼結材の製造方法。
A molding step of obtaining a molded body obtained by pressure-molding the raw material powder;
A heating step of heating the molded body to obtain a sintered body,
A method for producing an iron-based sintered material , wherein the iron-based sintered material according to any one of claims 1 to 6 is obtained.
JP2010276326A 2010-12-10 2010-12-10 Iron-based sintered material and method for producing the same Expired - Fee Related JP5575629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010276326A JP5575629B2 (en) 2010-12-10 2010-12-10 Iron-based sintered material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010276326A JP5575629B2 (en) 2010-12-10 2010-12-10 Iron-based sintered material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012122127A JP2012122127A (en) 2012-06-28
JP5575629B2 true JP5575629B2 (en) 2014-08-20

Family

ID=46503884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010276326A Expired - Fee Related JP5575629B2 (en) 2010-12-10 2010-12-10 Iron-based sintered material and method for producing the same

Country Status (1)

Country Link
JP (1) JP5575629B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016094635A (en) * 2014-11-12 2016-05-26 住友電工焼結合金株式会社 Sinter hardening method
JP6450213B2 (en) * 2015-02-13 2019-01-09 株式会社豊田中央研究所 Warm forming method
CA3122303C (en) * 2019-03-14 2024-04-23 Hoeganaes Corporation Metallurgical compositions for press-and-sinter and additive manufacturing

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665693A (en) * 1992-08-20 1994-03-08 Sumitomo Electric Ind Ltd High strength low alloy sintered steel and its manufacture
JPH0711377A (en) * 1993-06-24 1995-01-13 Daido Steel Co Ltd Production of sintered tool steel
JP3446322B2 (en) * 1994-08-03 2003-09-16 Jfeスチール株式会社 Alloy steel powder for powder metallurgy
WO2010107372A1 (en) * 2009-03-20 2010-09-23 Höganäs Aktiebolag (Publ) Iron vanadium powder alloy

Also Published As

Publication number Publication date
JP2012122127A (en) 2012-06-28

Similar Documents

Publication Publication Date Title
JP4440163B2 (en) Iron-based sintered alloy and method for producing the same
JP5147184B2 (en) Iron-based sintered alloy and method for producing the same
JP6688287B2 (en) Pre-alloyed iron-based powder, iron-based powder mixture containing pre-alloyed iron-based powder, and method of manufacturing press-formed and sintered parts from the iron-based powder mixture
JP5535576B2 (en) Iron-based sintered alloy, method for producing the same, and iron-based sintered alloy member
JP5113555B2 (en) Iron-based sintered alloy and method for producing the same
JP5595980B2 (en) Carburized sintered body and manufacturing method thereof
JP5575629B2 (en) Iron-based sintered material and method for producing the same
JP6515955B2 (en) Method of manufacturing mixed powder for powder metallurgy and iron-based sintered body
JP5125158B2 (en) Alloy steel powder for powder metallurgy
JP6271310B2 (en) Iron-based sintered material and method for producing the same
CN110267754B (en) Mixed powder for powder metallurgy, sintered body, and method for producing sintered body
JP6645631B1 (en) Alloy steel powder for powder metallurgy and iron-base mixed powder for powder metallurgy
JP2018123428A (en) Iron-based powdery mixture for powder metallurgy and production method therefor, and sintered compact excellent in tensile strength and shock resistance
JP5929320B2 (en) Alloy steel powder for powder metallurgy and method for producing alloy steel powder for powder metallurgy
JP6743720B2 (en) Iron-based mixed powder for powder metallurgy, method for producing the same, and sintered body excellent in tensile strength and impact resistance
WO2018143088A1 (en) Mixed powder for powder metallurgy, sintered body, and method for producing sintered body
KR102533137B1 (en) Iron-based mixed powder for powder metallurgy and iron-based sintered body
CN110234448B (en) Mixed powder for powder metallurgy, sintered body, and method for producing sintered body
WO2023157386A1 (en) Iron-based mixed powder for powder metallurgy, and iron-based sintered body
KR20240095297A (en) Iron mixed powder and iron sintered body for powder metallurgy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140702

R150 Certificate of patent or registration of utility model

Ref document number: 5575629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees