JP5573042B2 - Magnetic encoder - Google Patents

Magnetic encoder Download PDF

Info

Publication number
JP5573042B2
JP5573042B2 JP2009183038A JP2009183038A JP5573042B2 JP 5573042 B2 JP5573042 B2 JP 5573042B2 JP 2009183038 A JP2009183038 A JP 2009183038A JP 2009183038 A JP2009183038 A JP 2009183038A JP 5573042 B2 JP5573042 B2 JP 5573042B2
Authority
JP
Japan
Prior art keywords
magnetic field
field detection
magnetic
detection element
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009183038A
Other languages
Japanese (ja)
Other versions
JP2011033595A (en
Inventor
正信 原田
吉田  康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2009183038A priority Critical patent/JP5573042B2/en
Publication of JP2011033595A publication Critical patent/JP2011033595A/en
Application granted granted Critical
Publication of JP5573042B2 publication Critical patent/JP5573042B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

本発明は、モータなどの回転体の回転位置や回転速度を検出する磁気式エンコーダに関する。 The present invention relates to a magnetic encoder that detects a rotational position and a rotational speed of a rotating body such as a motor.

従来の角度検出装置あるいは磁気式エンコーダの検出部は、検出対象の回転磁界中にあるため、検出部の導線から信号処理部に至る回路ループにより発生する誘起電圧が検出信号に重畳し、角度検出の誤差になるという問題があった。この対策として、図15に示すように基台180に固定された磁気検出素子130、131と、基台180の外周に円筒上の回転体120と、回転体120に固定された永久磁石122、124とで構成された回転角度検出装置において、回転体の角度を検出する磁気検出素子130、131の導線と制御手段ECU182との間で形成する回路ループに発生する誘起電圧の位相を、それぞれの磁気検出素子の検出信号と同相になるようにし、また検出信号となる、90度位相の異なるA相信号、B相信号に重畳される誘起電圧が同程度になるように引出部と配線部からなる導線の配線を工夫することによって誘起電圧の影響を小さくし精度高めた回転角度検出装置が開示されている(例えば特許文献1参照)。
Since the detection unit of the conventional angle detection device or magnetic encoder is in the rotating magnetic field to be detected, the induced voltage generated by the circuit loop from the lead wire of the detection unit to the signal processing unit is superimposed on the detection signal to detect the angle. There was a problem of becoming an error. As countermeasures, as shown in FIG. 15, magnetic detection elements 130 and 131 fixed to the base 180, a cylindrical rotating body 120 on the outer periphery of the base 180, and a permanent magnet 122 fixed to the rotating body 120, 124, the phase of the induced voltage generated in the circuit loop formed between the conductors of the magnetic detection elements 130 and 131 for detecting the angle of the rotating body and the control means ECU 182 is respectively determined. From the lead-out portion and the wiring portion so that the induced signals superimposed on the A-phase signal and B-phase signal, which are 90 degrees out of phase, become the same phase as the detection signal of the magnetic detection element. There has been disclosed a rotation angle detection device in which the influence of the induced voltage is reduced and the accuracy is improved by devising the wiring of the conductive wire (see, for example, Patent Document 1).

特開2007−218592号公報(第10頁、図1)JP 2007-218592 A (page 10, FIG. 1)

しかしながら、前記従来例では、検出信号と誘起電圧を全く同位相とするには、磁気検出素子の感磁面と前記配線部の面を正確に平行に合わせる必要があり、この平衡度が崩れると検出信号に対して誘起電圧の位相ズレがでる。位相の異なる誘起電圧が検出信号に重畳すると、振幅と併せて位相の変化も検出信号に出るため角度演算処理で誤差になるという問題があった。   However, in the conventional example, in order for the detection signal and the induced voltage to have exactly the same phase, it is necessary to accurately align the magnetic sensing surface of the magnetic detection element and the surface of the wiring portion in parallel. There is a phase shift of the induced voltage with respect to the detection signal. When induced voltages having different phases are superimposed on the detection signal, there is a problem that an error is caused in the angle calculation process because a change in the phase together with the amplitude appears in the detection signal.

本発明はこのような問題点に鑑みてなされたものであり、磁気検出部から信号処理部までの配線用導体が磁束中にある場合においても、検出信号に重畳した誘起電圧の影響を受けず、角度誤差を生じない高精度の磁気式エンコーダを提供することを目的とする。
The present invention has been made in view of such problems, and is not affected by the induced voltage superimposed on the detection signal even when the wiring conductor from the magnetic detection unit to the signal processing unit is in the magnetic flux. An object of the present invention is to provide a highly accurate magnetic encoder that does not cause an angular error.

記問題を解決するため、本発明は、次のように構成したものである。
発明は、回転軸に取り付けられ軸方向と垂直な一方向に磁化された円板状またはリング状の永久磁石と、前記永久磁石と空隙を介して設けられたリング状の固定体と、前記固定体内側に配置された複数の磁界検出素子と、前記複数の磁界検出素子の信号を伝え回転角度演算処理を行う回路基板を備え、前記回路基板が前記固定体の上方に固定配置された磁気式エンコーダにおいて、前記複数の磁界検出素子は機械角で90度おきに順に配置された第1、第2.第3、第4の磁界検出素子からなり、前記磁界検出素子は感磁面と平行な平面状に伸びた直線状の端子引出部を有し、前記端子引出部を介して前記回路基板に接続され、前記回転軸に対して対向する位置に取り付けられて対となる磁界検出素子は出力正端子同士および出力負端子同士を接続し、対となる一方の電源正端子と他方の電源負端子を接続することを特徴とするものである。
また、発明は、前記第1磁界検出素子の電源正端子と前記第3磁界検出素子の電源負端子、前記第2磁界検出素子の電源正端子と前記第4磁界検出素子の電源負端子を接続し、前記第1磁界検出素子の電源負端子と前記第3の磁界検出素子の電源正端子、前記第2磁界検出素子の電源負端子と前記第4磁界検出素子の電源正端子を接続し、
前記第1磁界検出素子の出力正端子と第3磁界検出素子の出力正端子を接続し、第1の差動増幅器の一方の入力端子に接続し、前記第1磁界検出素子の出力負端子と前記第3の磁界検出素子の出力負端子を接続し、第1の差動増幅器の他方の入力端子に接続し、前記第2磁界検出素子の出力正端子と前記第4磁界検出素子の出力正端子を接続し、第2の差動増幅器の一方の入力端子に接続し、第2磁界検出素子の出力負端子と第4の磁界検出素子の出力負端子を接続し、第2の差動増幅器の他方の入力端子に接続し、前記第1、第2の差動増幅器出力信号から回転角度を演算することを特徴とするものである。
また、発明は、回転軸に取り付けられ軸方向と垂直な一方向に磁化された円板状またはリング状の永久磁石と、前記永久磁石と空隙を介して設けられたリング状の固定体と、前記固定体内側に配置された複数の磁界検出素子と、前記固定体の上方に設けられ、前記複数の磁気検出素子の検出信号を伝送する複数層の導線パターンを有する回路基板と、前記複数の磁気検出素子の検出信号から回転角度位置を検出する磁気式エンコーダにおいて、前記複数の磁界検出素子は機械角で90度おきに順に配置された第1、第2.第3、第4の磁界検出素子からなり、対となる対向した前記磁気検出素子の出力正端子同士、および出力負端子同士を回転軸を中心として同心円状に形成した前記回路基板の導線パターンで結線したことを特徴とするものである。
また、発明は、前記回路基板の対となる導線パターンを、前記回路基板の別々の層で、回転軸を中心として同一径で同心円状に重なるように形成したことを特徴とするものである。
また、発明は、前記磁界検出素子がホール素子であることを特徴とするものである。
To solve the above SL problem, the present invention is constructed as follows.
The present invention is a disk-shaped or ring-shaped permanent magnet attached to a rotating shaft and magnetized in one direction perpendicular to the axial direction, a ring-shaped fixed body provided through the permanent magnet and a gap, A plurality of magnetic field detection elements disposed inside the fixed body, and a circuit board that transmits signals of the plurality of magnetic field detection elements and performs rotation angle calculation processing, wherein the circuit board is fixedly disposed above the fixed body In the encoder, the plurality of magnetic field detection elements are arranged in order at intervals of 90 degrees in mechanical angle. It comprises third and fourth magnetic field detection elements, and the magnetic field detection element has a linear terminal lead portion extending in a plane parallel to the magnetosensitive surface, and is connected to the circuit board via the terminal lead portion. The pair of magnetic field detection elements attached to the position opposed to the rotation axis connect the output positive terminals and the output negative terminals, and connect one power positive terminal and the other power negative terminal that form a pair. It is characterized by connecting.
Further, the present invention provides a power supply positive terminal of the first magnetic field detection element, a power supply negative terminal of the third magnetic field detection element, a power supply positive terminal of the second magnetic field detection element, and a power supply negative terminal of the fourth magnetic field detection element. And connecting a power supply negative terminal of the first magnetic field detection element and a power supply positive terminal of the third magnetic field detection element, and a power supply negative terminal of the second magnetic field detection element and a power supply positive terminal of the fourth magnetic field detection element. ,
An output positive terminal of the first magnetic field detection element and an output positive terminal of the third magnetic field detection element are connected, connected to one input terminal of the first differential amplifier, and an output negative terminal of the first magnetic field detection element An output negative terminal of the third magnetic field detection element is connected, connected to the other input terminal of the first differential amplifier, and an output positive terminal of the second magnetic field detection element and an output positive terminal of the fourth magnetic field detection element. A second terminal connected to one input terminal of the second differential amplifier, an output negative terminal of the second magnetic field detecting element and an output negative terminal of the fourth magnetic field detecting element, and a second differential amplifier; And the rotation angle is calculated from the output signals of the first and second differential amplifiers.
The present invention also provides a disk-shaped or ring-shaped permanent magnet attached to a rotating shaft and magnetized in one direction perpendicular to the axial direction, and a ring-shaped fixed body provided via the permanent magnet and a gap. A plurality of magnetic field detection elements arranged inside the fixed body, a circuit board provided above the fixed body and having a plurality of layers of conductive patterns for transmitting detection signals of the plurality of magnetic detection elements; In the magnetic encoder for detecting the rotational angle position from the detection signal of the magnetic detection element, the plurality of magnetic field detection elements are arranged in order at every 90 degrees in mechanical angle. A conductive wire pattern of the circuit board comprising the third and fourth magnetic field detecting elements, the output positive terminals of the opposing magnetic detecting elements forming a pair, and the output negative terminals being concentrically formed around the rotation axis. It is characterized by being connected.
Further, the present invention is characterized in that the conductive wire patterns that form a pair of the circuit boards are formed in separate layers of the circuit board so as to be concentrically overlapped with the same diameter around the rotation axis. .
Further, the present invention, the magnetic field detection element is characterized in that a Hall element.

発明によると、回転軸に対して対向する位置に取り付けられて対となる磁界検出素子の出力信号は同相で、各々の磁界検出素子の引出部に発生する誘起電圧は逆相とすることで検出信号の誘起電圧の重畳による振幅変化と位相変化をなくすことができ、検出信号から高精度な回転角度を得ることができる。
また、本発明によると、回路基板の導線パターンを回転軸を中心として同心円状に形成することで、円板状の永久磁石からの漏れ磁束による検出信号の導線パターンに重畳する誘起電圧を相殺することができるので、高精度な回転角度を得ることができる。
また、発明によると、磁気検出素子の対となる信号線を前記回路基板の別々の層で回転軸を中心として同一径で円状に重なるように形成したことで、外部磁界の回転軸方向成分により検出信号の導線パターンに重畳する誘起電圧を相殺することができるので、高精度な回転角度を得ることができる。
また、発明によると、磁気検出素子としてホール素子を用いるため、比較的安価に容易に構成することができる。
According to the present invention, the output signals of the paired magnetic field detection elements attached at positions facing the rotation axis are in phase, and the induced voltages generated in the lead portions of the magnetic field detection elements are in reverse phase. An amplitude change and a phase change due to superposition of an induced voltage of the detection signal can be eliminated, and a highly accurate rotation angle can be obtained from the detection signal.
Further , according to the present invention, by forming the conductor pattern of the circuit board concentrically around the rotation axis, the induced voltage superimposed on the conductor pattern of the detection signal due to the leakage magnetic flux from the disk-shaped permanent magnet is canceled out. Therefore, a highly accurate rotation angle can be obtained.
In addition, according to the present invention, the signal lines forming a pair of magnetic detection elements are formed in separate layers of the circuit board so as to overlap in a circular shape with the same diameter around the rotation axis, so that the rotation axis direction of the external magnetic field Since the induced voltage superimposed on the conductor pattern of the detection signal can be canceled by the component, a highly accurate rotation angle can be obtained.
In addition, according to the present invention, since the Hall element is used as the magnetic detection element, it can be easily configured at a relatively low cost.

本発明の第1実施例の構成を示す正面図The front view which shows the structure of 1st Example of this invention. 本発明の第1実施例の構成を示す側面図The side view which shows the structure of 1st Example of this invention. 本発明の第1実施例の対をなすホール素子形状図Shape of Hall element forming a pair of the first embodiment of the present invention 本発明の第1実施例の結線図Connection diagram of the first embodiment of the present invention 本発明の第1実施例の磁界方向を示す正面図The front view which shows the magnetic field direction of 1st Example of this invention. 本発明の第1実施例の磁界方向を示す側面図The side view which shows the magnetic field direction of 1st Example of this invention 本発明の第1実施例の磁界方向と信号方向を示す模式図The schematic diagram which shows the magnetic field direction and signal direction of 1st Example of this invention. 本発明の第2実施例の構成を示す斜視図The perspective view which shows the structure of 2nd Example of this invention. 本発明の第2実施例の回路基板の導線パターンを示す斜視図The perspective view which shows the conducting wire pattern of the circuit board of 2nd Example of this invention. 本発明の第2実施例の磁気検出素子の検出信号接続を示す図The figure which shows the detection signal connection of the magnetic detection element of 2nd Example of this invention. 本発明の第2実施例の動作を示す模式図Schematic diagram showing the operation of the second embodiment of the present invention. 本発明の第3実施例の回路基板の導線パターンを示す斜視図The perspective view which shows the conducting wire pattern of the circuit board of 3rd Example of this invention. 本発明の第3実施例の動作を示す模式図Schematic diagram showing the operation of the third embodiment of the present invention. 磁気式エンコーダ基板の漏れ磁束を示す模式図Schematic diagram showing the magnetic flux leakage of the magnetic encoder board 従来の磁気式エンコーダ構成を示す図Diagram showing conventional magnetic encoder configuration

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の第1実施例の構成を示す正面図、図2は、本発明の第1実施例の構成を示す側面図である。図において、回転軸11はモータなどのシャフトに取り付けられておりモータと一緒に回転する。永久磁石12は回転軸11に固定されている。永久磁石12から空隙を介して外周にリング状の固定体13がある。固定体13は、磁性体でも非磁性体でも構わないが、ホール素子の検出信号を大きくとるため磁性体の方が望ましい。磁性体である固定体13の内側には、永久磁石12の発生磁界を検出する磁界検出素子であるホール素子41、42、43、44が配置されている。ホール素子41と43および42と44はそれぞれ回転軸に対して対向し、さらにホール素子41と43の対はホール素子42と44の対と回転軸を中心に機械角90°ずらして配置されている。回路基板15は固定体13の上方にここでは図示しない支持体により固定され、ホール素子41,42,43,44のそれぞれの電源端子および出力端子が接続されており、ホール素子からの検出信号から回転角度検出の信号処理を行う。
図3は、対向位置に配置したホール素子42、44の形状を示す。パッケージの中心部に垂直方向の磁界を検出する感磁部90、91があり、端子(1)は電源正端子、端子(3)は電源負端子、端子(2)は出力正端子、端子(4)は出力負端子である。各々の端子よりパッケージと平行方向に信号を引出す引出部81〜84と85〜88がある。
この引出部を介してホール素子41,42,43,44は前記回路基板15に接続されている。
FIG. 1 is a front view showing the configuration of the first embodiment of the present invention, and FIG. 2 is a side view showing the configuration of the first embodiment of the present invention. In the figure, the rotating shaft 11 is attached to a shaft such as a motor and rotates together with the motor. The permanent magnet 12 is fixed to the rotating shaft 11. There is a ring-shaped fixed body 13 on the outer periphery from the permanent magnet 12 through a gap. The fixed body 13 may be either a magnetic body or a non-magnetic body, but a magnetic body is preferable because a detection signal of the Hall element is increased. Hall elements 41, 42, 43, and 44, which are magnetic field detection elements for detecting the magnetic field generated by the permanent magnet 12, are arranged inside the fixed body 13 that is a magnetic body. Hall elements 41 and 43 and 42 and 44 are opposed to the rotation axis, respectively, and the pair of Hall elements 41 and 43 are arranged with a mechanical angle of 90 ° shifted from the pair of Hall elements 42 and 44 around the rotation axis. Yes. The circuit board 15 is fixed above the fixed body 13 by a support body (not shown), and the power supply terminals and output terminals of the Hall elements 41, 42, 43, and 44 are connected. Signal processing for rotation angle detection is performed.
FIG. 3 shows the shapes of the Hall elements 42 and 44 arranged at the opposing positions. There are magnetic sensing portions 90 and 91 for detecting a magnetic field in the vertical direction at the center of the package, the terminal (1) is a power supply positive terminal, the terminal (3) is a power supply negative terminal, the terminal (2) is an output positive terminal, and a terminal ( 4) is an output negative terminal. There are lead-out portions 81 to 84 and 85 to 88 for drawing out signals from the respective terminals in a direction parallel to the package.
The hall elements 41, 42, 43, and 44 are connected to the circuit board 15 through the lead-out portion.

図4は、本発明の第1実施例によるホール素子42、44の結線図を示す。ホール素子42の端子(1)は+電源、端子(3)は−電源につながる。図2の永久磁石12の位置とホール素子42、44の関係で考えると、永久磁石12のN極側のホール素子42の出力正端子(2)は+出力となり、引出部82を介して回路基板15上の導線61へ繋がる。またホール素子42の出力負端子(4)は−出力となり、引出部84を介しては回路基板15上の導線62と繋がる。導線61と62は回路基板15上の第1の差動増幅器100へと繋がる。
次に、ホール素子42と回転軸11に対して対向するホール素子44の電源負端子(3)は+電源、電源正端子(1)は−電源につながる。永久磁石12のN極側のホール素子44の出力負端子(4)は−出力となり、引出部88を介して回路基板15上の導線64へ繋がる。またホール素子44の出力正端子(2)は+出力となり、引出部86を介して回路基板上の導線63と繋がる。導線64と63は回路基板15上の第1の差動増幅器100へと繋がる。ホール素子42、ホール素子44のそれぞれの出力正端子(2)同士、およびそれぞれの出力負端子(4)同士は結線され第1の差動増幅器に繋がれ、第1の差動増幅器の出力には回転角度に対して正弦波信号が得られる。ホール素子41、43の対についても前記ホール素子42,44と同様に構成、結線され第2の差動増幅器につながれ余弦波関数の出力信号を得る。
FIG. 4 is a connection diagram of the Hall elements 42 and 44 according to the first embodiment of the present invention. The terminal (1) of the Hall element 42 is connected to the + power supply, and the terminal (3) is connected to the −power supply. Considering the relationship between the position of the permanent magnet 12 in FIG. 2 and the Hall elements 42 and 44, the output positive terminal (2) of the Hall element 42 on the N-pole side of the permanent magnet 12 becomes + output, and the circuit is connected via the lead-out portion 82. It is connected to the conductive wire 61 on the substrate 15. Further, the negative output terminal (4) of the Hall element 42 becomes a negative output, and is connected to the conductive wire 62 on the circuit board 15 through the lead-out portion 84. The conducting wires 61 and 62 are connected to the first differential amplifier 100 on the circuit board 15.
Next, the power source negative terminal (3) of the Hall element 44 facing the Hall element 42 and the rotating shaft 11 is connected to a positive power source, and the power source positive terminal (1) is connected to a negative power source. The negative output terminal (4) of the Hall element 44 on the N-pole side of the permanent magnet 12 becomes a negative output and is connected to the conductive wire 64 on the circuit board 15 via the lead-out portion 88. Further, the positive output terminal (2) of the Hall element 44 becomes a positive output and is connected to the conductive wire 63 on the circuit board via the lead-out portion 86. The conductive wires 64 and 63 are connected to the first differential amplifier 100 on the circuit board 15. The positive output terminals (2) and the negative output terminals (4) of the Hall element 42 and the Hall element 44 are connected to each other and connected to the first differential amplifier, and output to the first differential amplifier. A sine wave signal is obtained with respect to the rotation angle. The pair of Hall elements 41 and 43 is configured and connected in the same manner as the Hall elements 42 and 44 and connected to the second differential amplifier to obtain an output signal of a cosine wave function.

次に本発明のホール素子の検出信号に重畳する誘起電圧を相殺する原理について述べる。
回転軸11が回転すると永久磁石12の半径方向磁界の変化を受けて各ホール素子には回転角度位置に応じた信号が検出される。
図5は本発明の第1実施例のある回転角度での磁界方向を示す正面図である。
図6は本発明の第1実施例のある回転角度での磁界方向を示す側面図である。
図7は本発明の第1実施例のある回転角度での磁界方向と信号方向を示す模式図であり、ホール素子42、44の感磁方向はいずれも紙面上向きである。
図7によるとホール素子42の感磁部付近の磁界方向は紙面上方向、ホール素子44の感磁部付近の磁界方向は紙面下方向である。このときホール素子42の出力負端子(4)は−電位、出力正端子(2)は+電位となり、ホール素子44の出力負端子(4)は−電位、出力正端子(2)は+電位となる。
Next, the principle of canceling the induced voltage superimposed on the detection signal of the Hall element of the present invention will be described.
When the rotating shaft 11 rotates, a signal corresponding to the rotational angle position is detected in each Hall element in response to a change in the radial magnetic field of the permanent magnet 12.
FIG. 5 is a front view showing the magnetic field direction at a certain rotation angle according to the first embodiment of the present invention.
FIG. 6 is a side view showing the magnetic field direction at a certain rotation angle according to the first embodiment of the present invention.
FIG. 7 is a schematic diagram showing a magnetic field direction and a signal direction at a certain rotation angle according to the first embodiment of the present invention, and the magnetic sensitive directions of the Hall elements 42 and 44 are all upward in the drawing.
According to FIG. 7, the magnetic field direction in the vicinity of the magnetic sensitive part of the Hall element 42 is an upward direction on the paper surface, and the magnetic field direction in the vicinity of the magnetic sensitive part of the Hall element 44 is a downward direction on the paper surface. At this time, the output negative terminal (4) of the Hall element 42 is -potential, the output positive terminal (2) is + potential, the output negative terminal (4) of the Hall element 44 is -potential, and the output positive terminal (2) is + potential. It becomes.

ところが、図6によると永久磁石12と磁性体である固定体13とで構成される磁気回路中にはホール素子42、44だけでなく、引出部81〜84、85〜88があり、引出部〜導線部で構成される回路ループには誘起電圧が発生する。なおここでは、電源端子81、83、85、87は図示していない。特に引出部に鎖交する磁束は、ホール素子で検出する磁束密度と同等の大きさであるので、ファラデーの法則から回路に鎖交する磁束の時間変化で表される誘起電圧が検出信号に重畳してしまう。
本発明構成の図6および図7によると、ホール素子42の引き出し部〜導線部で構成される回路ループの誘起電圧は引出部84側が+電位となり、ホール素子44の引出部〜導線部で構成される回路ループの誘起電圧は引出部86側が+電位となる。
However, according to FIG. 6, the magnetic circuit composed of the permanent magnet 12 and the fixed body 13 that is a magnetic body includes not only the Hall elements 42 and 44 but also the lead portions 81 to 84 and 85 to 88, and the lead portion An induced voltage is generated in a circuit loop composed of a conducting wire part. Here, the power supply terminals 81, 83, 85, 87 are not shown. In particular, the magnetic flux interlinked with the lead-out portion is as large as the magnetic flux density detected by the Hall element, so the induced voltage represented by the time change of the magnetic flux interlinked with the circuit is superimposed on the detection signal from Faraday's law. Resulting in.
According to FIGS. 6 and 7 of the configuration of the present invention, the induced voltage of the circuit loop composed of the lead portion to the lead wire portion of the Hall element 42 becomes a positive potential on the lead portion 84 side, and the lead voltage to the lead portion of the Hall element 44 is composed of The induced voltage of the circuit loop is a positive potential on the lead-out portion 86 side.

ここでホール素子42の検出信号の電圧を+Va1、ホール素子44検出信号の電圧を+Va2とすると、ホール素子42の引出部〜導線部で構成される回路ループの誘起電圧は −ve1、ホール素子44の引出部〜導線部で構成される回路ループの誘起電圧は +ve2となる。
誘起電圧の重畳したホール素子42、44の検出信号は第1の差動増幅器100の入力前での+入力と−入力間での信号で考えると差動増幅器100の増幅前信号Vaは、
Va={(Va1−ve1)+(Va2+ve2)}/2
このとき、誘起電圧の絶対値| ve1| 、| ve2|は、ホール素子42、44の引出部82、84と引出部86、88で形成する鎖交面積が同一となるため等しくなる。
すなわち第1の差動増幅器100の出力信号Vaoutは増幅率を1とすれば
Vaout=(Va1+Va2)/2
Here, if the voltage of the detection signal of the Hall element 42 is + Va1 and the voltage of the detection signal of the Hall element 44 is + Va2, the induced voltage of the circuit loop formed by the lead-out portion of the Hall element 42 is −ve1, and the Hall element The induced voltage of the circuit loop composed of the lead-out portion 44 to the lead wire portion is + ve2.
When the detection signals of the Hall elements 42 and 44 on which the induced voltage is superimposed are considered as signals between the + input and the − input before the input of the first differential amplifier 100, the signal Va before amplification of the differential amplifier 100 is
Va = {(Va1-ve1) + (Va2 + ve2)} / 2
At this time, the absolute values of induced voltages | ve1 | and | ve2 | are equal because the interlinkage areas formed by the lead portions 82 and 84 and the lead portions 86 and 88 of the Hall elements 42 and 44 are the same.
That is, the output signal Vaout of the first differential amplifier 100 is Vaout = (Va1 + Va2) / 2 if the amplification factor is 1.

つまり本発明では、回転軸に対して対向する対のホール素子信号経路に発生する誘起電圧の絶対値が等しく、検出信号に重畳する誘起電圧を相殺することができる。
ホール素子42,44に対して90度離れた位置にあるホール素子41、43のペアについても前記同様の構成とし、ホール素子42、44の検出信号の差動増幅器の出力をVaout、ホール素子41、43の検出信号の差動増幅器の出力をVbout、永久磁石の回転角度θとすると
Vaout= Vcosθ
Vbout= Vsinθ
となり、誘起電圧成分を含まず、したがって
θ=arctan(Vbout/Vaout)
の演算をすることで、引出部〜導線部の回路ループで発生する誘起電圧の重畳をなくした高精度な角度θを得ることができる。
That is, in the present invention, the absolute values of the induced voltages generated in the pair of Hall element signal paths facing the rotation axis are equal, and the induced voltage superimposed on the detection signal can be canceled.
The pair of Hall elements 41 and 43 located 90 degrees away from the Hall elements 42 and 44 has the same configuration as described above, and the output of the differential amplifier of the detection signal of the Hall elements 42 and 44 is Vaout, and the Hall element 41 , 43, the output of the differential amplifier is Vbout, and the rotation angle θ of the permanent magnet is Vaout = V 0 cos θ
Vbout = V 0 sin θ
And does not include the induced voltage component, and therefore θ = arctan (Vbout / Vaout)
By performing this calculation, it is possible to obtain a highly accurate angle θ that eliminates the superposition of the induced voltage generated in the circuit loop of the lead-out portion to the lead wire portion.

このように、回転軸に対して対向するホール素子の出力を並列に配線し、それぞれのホール素子の引出部をホール素子の感磁面と平行とすることで、ホール素子信号経路に発生する誘起電圧を相殺することができ、信号振幅と位相が変化することもなく、角度演算処理で検出誤差の少ない角度を得ることができる。 In this way, the outputs of the Hall elements facing the rotation axis are wired in parallel, and the lead portions of the Hall elements are parallel to the magnetic sensing surface of the Hall elements, thereby inducing the signal generated in the Hall element signal path. The voltage can be canceled, the signal amplitude and the phase are not changed, and an angle with a small detection error can be obtained by the angle calculation process.

なお、本実施例において、シャフトに貫通した中空円筒状の磁石の例を示したが、検出部近傍の磁束がその引出部と同一方向となる条件のもとでは、磁石の形状は、中実の円盤状磁石であっても、中空の円筒状磁石であってもかまわない。また、磁石を固定するシャフトも中実の形状であっても、中空の形状であってもかまわない。
In this embodiment, an example of a hollow cylindrical magnet penetrating the shaft has been shown. However, under the condition that the magnetic flux in the vicinity of the detection portion is in the same direction as the extraction portion, the shape of the magnet is solid. The disc-shaped magnet may be a hollow cylindrical magnet. Also, the shaft for fixing the magnet may be solid or hollow.

前述の図6に対して、図14に示すように、磁気検出素子としてのホール素子の近傍以外でも漏れ磁束が発生し、これらの磁束が回路基板15を貫く場合には、磁気検出素子と回路基板上の信号処理部からなる回路ループにより同様に誘起電圧が発生し、この誘起電圧が検出信号に重畳することで検出誤差が生じる恐れがある。本発明の第2実施例はこのような状況で発生する誘起電圧の影響を軽減するためのものである。
図8は、本発明の第2実施例の構成を示す斜視図である。 図において、11は回転軸で図示していないモータなどのシャフトに取り付けられ、モータなどのシャフトと一緒に回転する。12は永久磁石で前記回転軸11に固定されている。13はモータなどの固定子に固定されるリング状の形状をした固定体で、前記永久磁石12から空隙を介して外周に配置される。なお前記固定体13は、磁性体でも非磁性体でも構わないが、検出信号を大きくとるため本実施例では磁性体とする。前記固定体13の内側には、前記永久磁石12からの磁界を検出するホール素子41、42、43、44が配置されている。ホール素子41と43および42と44はそれぞれ回転軸に対して対向し、さらにホール素子41と43の対はホール素子42と44の対に対して回転軸を中心に機械角90°ずらして配置している。以上は第1実施例の構成と同じである。
15はガラスエポキシ基板材等からなる複数の層で構成される回路基板で、前記ホール素子41、42、43、44への電源供給や検出信号を伝送する導線パターン、さらには検出信号から回転角度位置を検出する検出信号処理回路が搭載されている。前記回路基板15は、前記固定体13の上方に配置され、固定体13に固定されている。前記回転軸11が回転すると前記回転軸11と一緒に回転する前記永久磁石12の磁界変化を受けて前記ホール素子41、42、43、44には回転角度位置に応じた信号が検出される。
In contrast to FIG. 6 described above, as shown in FIG. 14, when a magnetic flux leaks outside the vicinity of the Hall element as the magnetic detection element and these magnetic flux penetrates the circuit board 15, the magnetic detection element and the circuit Similarly, an induced voltage is generated by a circuit loop including a signal processing unit on the substrate, and this induced voltage may be superimposed on the detection signal to cause a detection error. The second embodiment of the present invention is for reducing the influence of the induced voltage generated in such a situation.
FIG. 8 is a perspective view showing the configuration of the second embodiment of the present invention. In the figure, reference numeral 11 denotes a rotating shaft which is attached to a shaft such as a motor (not shown) and rotates together with the shaft such as a motor. A permanent magnet 12 is fixed to the rotating shaft 11. Reference numeral 13 denotes a ring-shaped fixed body that is fixed to a stator such as a motor, and is arranged on the outer periphery from the permanent magnet 12 via a gap. The fixed body 13 may be either a magnetic body or a non-magnetic body. However, in order to obtain a large detection signal, the stationary body 13 is a magnetic body in this embodiment. Inside the fixed body 13, Hall elements 41, 42, 43 and 44 for detecting a magnetic field from the permanent magnet 12 are arranged. Hall elements 41 and 43 and 42 and 44 are opposed to the rotation axis, respectively, and the pair of Hall elements 41 and 43 is disposed with a mechanical angle of 90 ° about the rotation axis with respect to the pair of Hall elements 42 and 44. doing. The above is the same as the configuration of the first embodiment.
Reference numeral 15 denotes a circuit board composed of a plurality of layers made of a glass epoxy substrate material, etc., which is used to supply power to the Hall elements 41, 42, 43, and 44, to transmit a detection signal, and to rotate from the detection signal. A detection signal processing circuit for detecting the position is mounted. The circuit board 15 is disposed above the fixed body 13 and is fixed to the fixed body 13. When the rotating shaft 11 rotates, a signal corresponding to the rotational angle position is detected in the Hall elements 41, 42, 43, 44 in response to a change in the magnetic field of the permanent magnet 12 that rotates together with the rotating shaft 11.

図9は、本発明の第2実施例の回路基板15に形成した導線パターンを示す斜視図である。
図において、回路基板15は4層基板で、図の表面から順に第1層、第2層、第3層、第4層としている。第1層の導線パターンは実線で、第2層、第3層、第4層の導線パターンは破線で示す。なお、本図ではホール素子42と44の対の検出信号の導線パターンだけを示している。
前記回路基板15に設けた導線パターン61と62および63と64は、図10の接続図に示すようにホール素子42と44の(+)信号出力端子同士と、(−)信号出力端子同士をそれぞれ接続し、径方向に導線パターンが形成されている。導線61と62はそれぞれ基板の第2層、第3層に導線パターンが形成され、回転軸方向にほぼ同位置で重ねている。導線63と64はそれぞれ基板の第3層、第2層に導線パターンが形成され回転軸方向にほぼ同位置で重ねている。
FIG. 9 is a perspective view showing a conductor pattern formed on the circuit board 15 of the second embodiment of the present invention.
In the figure, a circuit board 15 is a four-layer board, which is a first layer, a second layer, a third layer, and a fourth layer in order from the surface of the figure. The conductor pattern of the first layer is indicated by a solid line, and the conductor patterns of the second layer, the third layer, and the fourth layer are indicated by a broken line. In this figure, only the conductive pattern of the detection signal of the pair of Hall elements 42 and 44 is shown.
The conductor patterns 61 and 62 and 63 and 64 provided on the circuit board 15 are formed by connecting the (+) signal output terminals of the Hall elements 42 and 44 and the (−) signal output terminals as shown in the connection diagram of FIG. Each is connected, and a conductive wire pattern is formed in the radial direction. Conductive wires 61 and 62 have conductive wire patterns formed on the second and third layers of the substrate, respectively, and are superposed at substantially the same position in the rotation axis direction. Conductive wires 63 and 64 are formed in the third layer and the second layer of the substrate, respectively, and are superposed at substantially the same position in the rotation axis direction.

さらに回転軸を中心として同心円状に異なる半径の導線パターン65と66が形成されている。前記導線パターン65と66はそれぞれ基板の第1層と第4層に形成されている。前記導線パターン61と64はスルーホールで導線パターン65に接続され、前記導線パターン62と63はスルーホールで導線パターン66に接続されている。なお、パターンを形成する層は特に第1層と第4層でなくても良い。前記同心円状の導線パターン65と66は検出信号処理回路18の増幅器の差動入力として接続されている。
Further, conductor patterns 65 and 66 having different radii concentrically around the rotation axis are formed. The conductor patterns 65 and 66 are formed on the first layer and the fourth layer of the substrate, respectively. The conductor patterns 61 and 64 are connected to the conductor pattern 65 through holes, and the conductor patterns 62 and 63 are connected to the conductor pattern 66 through holes. Note that the layer for forming the pattern may not be the first layer and the fourth layer. The concentric conductor patterns 65 and 66 are connected as differential inputs of the amplifier of the detection signal processing circuit 18.

次に本発明の基板導線パターン線上の誘起電圧が検出信号に重畳しない動作について述べる。
図11は、本発明の第2実施例の動作を示す模式図であり、図11(a)は前記永久磁石12の磁極が水平方向になった場合、図11(b)は前記永久磁石の磁極が垂直方向になった場合をそれぞれ示している。この図では前記永久磁石12の径方向の磁界と一緒に回路基板15を貫く漏れ磁束の回転軸方向成分の動きを示している。図において、501は磁石の磁極が水平方向の場合の前記回路基板15を貫く紙面上向きの漏れ磁束を、502は磁石の磁極が水平方向の場合の前記回路基板15を貫く紙面下向きの漏れ磁束を、503は磁石の磁極が垂直方向の場合の前記回路基板15を貫く紙面上向きの漏れ磁束を、504は磁石の磁極が垂直方向の場合の前記回路基板15を貫く紙面下向きの漏れ磁束を示している。ファラデーの電磁誘導の法則から、誘起電圧は導線で囲まれる面に鎖交する磁束の時間変化で発生するため、図11(a)に示す前記漏れ磁束501と502は導線パターン65に同じ大きさの誘起電圧を発生する。しかし導線パターン65は回転軸を中心として同心円状の導線パターンにしているため、前記漏れ磁束501と502による誘起電圧は逆の符号となり相殺することができる。同様に前記漏れ磁束503と504による誘起電圧も同様に相殺することができる。
Next, an operation in which the induced voltage on the substrate conductive pattern line of the present invention is not superimposed on the detection signal will be described.
FIG. 11 is a schematic view showing the operation of the second embodiment of the present invention. FIG. 11A shows a case where the magnetic pole of the permanent magnet 12 is in the horizontal direction, and FIG. 11B shows the operation of the permanent magnet. The cases where the magnetic poles are in the vertical direction are shown. This figure shows the movement of the rotational flux direction component of the leakage flux that penetrates the circuit board 15 together with the radial magnetic field of the permanent magnet 12. In the figure, reference numeral 501 denotes an upward leakage magnetic flux penetrating the circuit board 15 when the magnetic pole of the magnet is horizontal, and 502 is a downward leakage magnetic flux penetrating the circuit board 15 when the magnetic pole of the magnet is horizontal. , 503 is the upward magnetic flux leakage through the circuit board 15 when the magnetic pole of the magnet is vertical, and 504 is the downward magnetic flux leakage through the circuit board 15 when the magnetic pole of the magnet is vertical. Yes. According to Faraday's law of electromagnetic induction, the induced voltage is generated by the time change of the magnetic flux linked to the surface surrounded by the conductive wire. Therefore, the leakage magnetic fluxes 501 and 502 shown in FIG. The induced voltage is generated. However, since the conducting wire pattern 65 is a concentric conducting wire pattern with the rotation axis as the center, the induced voltage due to the leakage magnetic fluxes 501 and 502 has an opposite sign and can be canceled out. Similarly, the induced voltage caused by the leakage magnetic fluxes 503 and 504 can be canceled out in the same manner.

以上のように誘起電圧の重畳を無くした検出信号において、ホール素子42と44の検出信号をVa、ホール素子41と43の検出信号Vb、永久磁石の回転角度をθとすると、Va= Vcosθ、Vb= Vsinθとなり、前記検出信号処理回路18で演算することにより、誘起電圧の重畳をなくした高精度な角度θを得ることができる。 As described above, in the detection signal in which the induced voltage is not superimposed, if Va is the detection signal of the Hall elements 42 and 44, Vb is the detection signal Vb of the Hall elements 41 and 43, and θ is the rotation angle of the permanent magnet, Va = V 0. cos θ, Vb = V 0 sin θ, and calculation by the detection signal processing circuit 18 makes it possible to obtain a highly accurate angle θ without superposition of induced voltages.

なお、前記回路基板15の構成は本発明の要件を満たすならば、両面基板でも利用できる。また、前記永久磁石12を中実としているがリング状の永久磁石を利用して中空としてもよく、前記回路基板15も中空でなく中実としてもよい。   It should be noted that the configuration of the circuit board 15 can be used on a double-sided board as long as it satisfies the requirements of the present invention. Although the permanent magnet 12 is solid, it may be hollow using a ring-shaped permanent magnet, and the circuit board 15 may be solid instead of hollow.

本発明が第1実施例と異なる部分は、対となる磁気検出素子の+信号出力端子同士、および−信号出力端子同士を回転軸を中心として同心円状に形成した前記回路基板の導線パターンで結線したことである。これにより永久磁石の漏れ磁束が前記回路基板を貫くことにより発生する誘起電圧の影響を相殺することができ磁気式エンコーダの精度向上を図ることができる。
The present invention is different from the first embodiment in that the + signal output terminals of the paired magnetic detection elements and the − signal output terminals are connected by the conductor pattern of the circuit board formed concentrically around the rotation axis. It is that. As a result, the influence of the induced voltage generated when the leakage flux of the permanent magnet penetrates the circuit board can be offset, and the accuracy of the magnetic encoder can be improved.

図12は、本発明の第3実施例の回路基板15に形成した回路基板の導線パターンを示す斜視図である。本実施例が第2実施例と異なる点は、回路基板の異なる層に回転軸を中心として同心円状に導線パターンを重なるように形成したことで、回転軸に対して非対称な外部磁界の影響を軽減するものである。図において、回転軸を中心として同心円状に導線パターン65と66が形成され、前記導線パターン65と66はそれぞれ基板の第1層と第4層に形成され回転軸方向に対して同位置で重なっており、その他の構成および磁気検出素子の接続は第2実施例と同じであるので説明は省略する。 FIG. 12 is a perspective view showing a conductor pattern of a circuit board formed on the circuit board 15 of the third embodiment of the present invention. This embodiment is different from the second embodiment in that the conductive wire pattern is concentrically overlapped on different layers of the circuit board with the rotation axis as the center, so that the influence of an asymmetric external magnetic field with respect to the rotation axis is reduced. It is to reduce. In the figure, conductor patterns 65 and 66 are formed concentrically around the rotation axis, and the conductor patterns 65 and 66 are formed in the first and fourth layers of the substrate, respectively, and overlap at the same position with respect to the rotation axis direction. Since the other configurations and the connection of the magnetic detection elements are the same as those of the second embodiment, the description thereof is omitted.

次に回路基板15に対して垂直方向の外部磁界が貫いても導線パターンに発生する誘起電圧が相殺される動作について述べる。図13は、本発明の第3実施例の動作を示す模式図である。図において、前記回路基板15の導線パターン65と導線66はそれぞれ基板の別々の層に形成され、回転軸方向に対して同位置で重なるようにしている。その一部に破線で示す外部磁界が垂直方向に鎖交した場合、導線パターン65と66にはそれぞれ誘起電圧が発生するが、それぞれの誘起電圧は同振幅の逆相となるため相殺され、磁気式エンコーダの精度向上を更に図ることができる。
Next, an operation in which the induced voltage generated in the conductor pattern is canceled even if an external magnetic field perpendicular to the circuit board 15 penetrates will be described. FIG. 13 is a schematic diagram showing the operation of the third embodiment of the present invention. In the figure, the conductive pattern 65 and the conductive line 66 of the circuit board 15 are formed in separate layers of the substrate, respectively, and overlap at the same position with respect to the rotation axis direction. When an external magnetic field indicated by a broken line is partially linked in the vertical direction, an induced voltage is generated in each of the conductor patterns 65 and 66. However, each induced voltage is offset because it has an opposite phase of the same amplitude, and the magnetic field The accuracy of the encoder can be further improved.

11 回転軸
12 永久磁石
13 固定体
15 回路基板
18 検出信号処理回路
41、42、43、44 ホール素子 (磁気検出素子)
61、62、63、64、65、66 導線パターン
71、72、73、74、75、76 導線パターン
81〜84、85〜88 引出部
90、91 ホール素子感磁部
100 第1(第2)の差動増幅器
120 回転体
122,124 永久磁石
130,131 磁気検出素子
180 基台
182 ECU
DESCRIPTION OF SYMBOLS 11 Rotating shaft 12 Permanent magnet 13 Fixed body 15 Circuit board 18 Detection signal processing circuit 41, 42, 43, 44 Hall element (magnetic detection element)
61, 62, 63, 64, 65, 66 Conductive pattern 71, 72, 73, 74, 75, 76 Conductive pattern 81-84, 85-88 Lead part 90, 91 Hall element magnetic sensing part 100 1st (2nd) Differential amplifier 120 Rotating body 122, 124 Permanent magnet 130, 131 Magnetic detection element 180 Base 182 ECU

Claims (6)

回転軸に取り付けられ軸方向と垂直な一方向に磁化された円板状またはリング状の永久磁石と、前記永久磁石と空隙を介して設けられた複数の磁界検出素子と、前記複数の磁界検出素子の検出信号を伝え回転角度演算処理を行う回路基板とを備え、前記回路基板が前記磁界検出素子の上方に配置された磁気式エンコーダにおいて、
前記複数の磁界検出素子は前記回転軸を挟んで対向する位置に配置され、
前記磁界検出素子は感磁面と平行な平面状に伸びた直線状の端子引出部を有し、前記端子引出部を介して前記回路基板に接続され、
前記回転軸を挟んで対向する位置に配置されて対となる磁界検出素子は出力正端子同士および出力負端子同士が接続され
前記対となる磁界検出素子のうちの一方の磁界検出素子の電源正端子と他方の磁界検出素子の電源負端子とが接続されることを特徴とする磁気式エンコーダ。
A disk-shaped or ring-shaped permanent magnet attached to a rotating shaft and magnetized in one direction perpendicular to the axial direction, a plurality of magnetic field detecting elements provided via the permanent magnet and a gap, and the plurality of magnetic field detections A magnetic circuit board that transmits a detection signal of the element and performs a rotation angle calculation process, and the circuit board is disposed above the magnetic field detection element.
The plurality of magnetic field detection elements are arranged at positions facing each other across the rotation axis,
The magnetic field detecting element has a linear terminal lead portion extending in a plane parallel to the magnetic sensitive surface, and is connected to the circuit board via the terminal lead portion,
A pair of magnetic field detection elements arranged at positions facing each other across the rotation axis are connected between output positive terminals and output negative terminals ,
One of the magnetic encoder and the power supply negative terminal of the power supply positive terminal and the other magnetic field detecting element of the magnetic field detection element is characterized Rukoto connected among the magnetic field detection element forming the pair.
前記複数の磁界検出素子は、機械角で90度おきに順に配置された第1磁界検出素子、第2磁界検出素子、第3磁界検出素子、および、第4磁界検出素子からなることを特徴とする請求項記載の磁気式エンコーダ。 The plurality of magnetic field detection elements include a first magnetic field detection element, a second magnetic field detection element, a third magnetic field detection element, and a fourth magnetic field detection element that are arranged in order at every 90 degrees in mechanical angle. The magnetic encoder according to claim 1 . 前記第1磁界検出素子および前記第3磁界検出素子の出力正端子が第1の差動増幅器の一方の入力端子に接続され、
前記第1磁界検出素子および前記第3磁界検出素子の出力負端子が前記第1の差動増幅器の他方の入力端子に接続され、
前記第2磁界検出素子および前記第4磁界検出素子の出力正端子が第2の差動増幅器の一方の入力端子に接続され、
前記第2磁界検出素子および前記第4磁界検出素子の出力負端子が前記第2の差動増幅器の他方の入力端子に接続され、
前記第1の差動増幅器および前記第2の差動増幅器の出力信号から回転角度を演算することを特徴とする請求項記載の磁気式エンコーダ。
Output positive terminals of the first magnetic field detection element and the third magnetic field detection element are connected to one input terminal of the first differential amplifier,
Output negative terminals of the first magnetic field detection element and the third magnetic field detection element are connected to the other input terminal of the first differential amplifier,
The output positive terminals of the second magnetic field detection element and the fourth magnetic field detection element are connected to one input terminal of a second differential amplifier,
Output negative terminals of the second magnetic field detection element and the fourth magnetic field detection element are connected to the other input terminal of the second differential amplifier,
3. The magnetic encoder according to claim 2, wherein a rotation angle is calculated from output signals of the first differential amplifier and the second differential amplifier.
前記回路基板は、前記複数の磁界検出素子の検出信号を伝送する複数層の導線パターンを有し、
前記対となる磁界検出素子は、出力正端子同士、および、出力負端子同士が前記回転軸を中心として同心円状に形成された前記回路基板の前記導線パターンで結線されることを特徴とする請求項1ないし請求項のいずれか1項記載の磁気式エンコーダ。
The circuit board has a plurality of layers of conductive patterns that transmit detection signals of the plurality of magnetic field detection elements,
The pair of magnetic field detecting elements are connected by the conductive pattern of the circuit board in which output positive terminals and output negative terminals are concentrically formed around the rotation axis. The magnetic encoder according to any one of claims 1 to 3 .
前記対となる磁界検出素子の出力正端子同士を結線した前記導線パターンと、該対となる磁界検出素子の出力負端子同士を結線した前記導線パターンとを、前記複数層の導線パターンの別々の層で、前記回転軸を中心として同一径で同心円状に重なるように形成したことを特徴とする請求項記載の磁気式エンコーダ。 The conductor pattern in which the output positive terminals of the pair of magnetic field detection elements are connected to each other and the conductor pattern in which the output negative terminals of the pair of magnetic field detection elements are connected to each other in the plurality of layers of conductor patterns. 5. The magnetic encoder according to claim 4 , wherein the layers are formed so as to overlap concentrically with the same diameter around the rotation axis. 前記磁界検出素子がホール素子であることを特徴とする請求項1ないし請求項のいずれか1項記載の磁気式エンコーダ。 Magnetic encoder according to any one of claims 1 to 5 wherein the magnetic field detection element, characterized in that a Hall element.
JP2009183038A 2009-08-06 2009-08-06 Magnetic encoder Expired - Fee Related JP5573042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009183038A JP5573042B2 (en) 2009-08-06 2009-08-06 Magnetic encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009183038A JP5573042B2 (en) 2009-08-06 2009-08-06 Magnetic encoder

Publications (2)

Publication Number Publication Date
JP2011033595A JP2011033595A (en) 2011-02-17
JP5573042B2 true JP5573042B2 (en) 2014-08-20

Family

ID=43762792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009183038A Expired - Fee Related JP5573042B2 (en) 2009-08-06 2009-08-06 Magnetic encoder

Country Status (1)

Country Link
JP (1) JP5573042B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6132620B2 (en) 2013-03-29 2017-05-24 日本電産サンキョー株式会社 Magnetic sensor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4640708B2 (en) * 2006-02-14 2011-03-02 株式会社デンソー Rotation angle detector
WO2007132603A1 (en) * 2006-05-12 2007-11-22 Kabushiki Kaisha Yaskawa Denki Magnetic encoder

Also Published As

Publication number Publication date
JP2011033595A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
JP5666886B2 (en) Rotary encoder
JP4324813B2 (en) Rotation angle detector and rotating machine
JP5120384B2 (en) Rotation angle detection device, rotator, and rotation angle detection method
TWI579533B (en) Absolute encoder devices and motors
JP5245114B2 (en) Position detection device
JP5893134B2 (en) Magnetic rotation angle detector
JP5780744B2 (en) Rotary encoder
WO2017209271A1 (en) Linear motion and rotation detector, linear motion and rotation detector unit, and linear motion and rotation drive device
JP2021025851A (en) Rotation sensor
JPWO2007055135A1 (en) Magnetic encoder device
JP5201493B2 (en) Position detection device and linear drive device
TWI602475B (en) Install the substrate
JP4900838B2 (en) Position detection device and linear drive device
JP5573042B2 (en) Magnetic encoder
JP6480809B2 (en) Multi revolution detector
JP6132620B2 (en) Magnetic sensor device
JP2020088976A (en) motor
WO2017065307A1 (en) Linear motion and rotation detector
US20180226862A1 (en) Rotational position detection device and motor device
JP2013251982A (en) Motor
JP5135277B2 (en) Rotary position detector
JP7067404B2 (en) Torque sensor
JP2008014671A (en) Magnetic encoder device
JP2005172441A (en) Angle and angular velocity integrated detector
TW202316085A (en) motion detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120229

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140616

R150 Certificate of patent or registration of utility model

Ref document number: 5573042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees