JP5572352B2 - Uninterruptible power system - Google Patents

Uninterruptible power system Download PDF

Info

Publication number
JP5572352B2
JP5572352B2 JP2009222580A JP2009222580A JP5572352B2 JP 5572352 B2 JP5572352 B2 JP 5572352B2 JP 2009222580 A JP2009222580 A JP 2009222580A JP 2009222580 A JP2009222580 A JP 2009222580A JP 5572352 B2 JP5572352 B2 JP 5572352B2
Authority
JP
Japan
Prior art keywords
discharge
time
battery
voltage
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009222580A
Other languages
Japanese (ja)
Other versions
JP2011072155A (en
Inventor
和孝 沖崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2009222580A priority Critical patent/JP5572352B2/en
Publication of JP2011072155A publication Critical patent/JP2011072155A/en
Application granted granted Critical
Publication of JP5572352B2 publication Critical patent/JP5572352B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inverter Devices (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、交流入力電源の停電時にはバッテリに蓄積されたエネルギを放電し、交流入力電源の復電時には前記バッテリを充電する無停電電源装置に係り、特にバッテリ放電電流の大小に関わらず、バッテリからの放電エネルギをなるべく一定値に保つことができる無停電電源装置に関する。   The present invention relates to an uninterruptible power supply that discharges energy stored in a battery when a power failure occurs in an AC input power supply and charges the battery when power is restored from the AC input power supply. It is related with the uninterruptible power supply which can keep the discharge energy from a constant value as much as possible.

特許文献1には、コンピュータ等の重要負荷に交流電力を安定的に供給するための電源装置として、無停電電源装置が開示されている。これは、交流入力電源の停電時にはバッテリに蓄積されたエネルギを放電し、この放電エネルギを負荷に供給して交流入力電源の停電時でも常に電力を供給できるようにしたものである。なお、交流入力電源の復電時(正常時)にはバッテリを充電するようになっている。   Patent Document 1 discloses an uninterruptible power supply as a power supply for stably supplying AC power to an important load such as a computer. This discharges the energy stored in the battery at the time of a power failure of the AC input power supply and supplies this discharge energy to the load so that the power can always be supplied even at the time of the power failure of the AC input power supply. The battery is charged when the AC input power is restored (normal).

このような構成の無停電電源装置にあっては、バッテリが常に正常で、その寿命が長く維持できるように管理することは重要なことである。   In an uninterruptible power supply having such a configuration, it is important to manage the battery so that the battery is always normal and its life can be maintained for a long time.

以下この点について、考慮されている従来の無停電電源装置について、図5から図7を参照して説明する。   Hereinafter, a conventional uninterruptible power supply that is considered in this regard will be described with reference to FIGS.

図5は、従来の無停電電源装置の第1の例を説明するための概略構成図であり、バッテリ20の放電電圧を電圧検出器12により検出し、この検出電圧と放電終止電圧設定器55で定める放電終止電圧を比較器50で比較し、比較器50の出力である、チョッパゲート信号60を昇降圧チョッパ8に与えるように構成したものである。   FIG. 5 is a schematic configuration diagram for explaining a first example of a conventional uninterruptible power supply. The discharge voltage of the battery 20 is detected by the voltage detector 12, and the detected voltage and the end-of-discharge voltage setting device 55 are detected. The end-of-discharge voltage determined in (1) is compared by the comparator 50, and the chopper gate signal 60, which is the output of the comparator 50, is supplied to the step-up / step-down chopper 8.

図5において、交流入力電源31の停電時はコンバータ3が停止し、昇降圧チョッパ8は放電動作になりバッテリ20を放電する。そして、放電が進行するにつれバッテリ20の放電電圧が徐々に低下し、この放電電圧を電圧検出器12により検出し、この検出電圧が放電終止電圧設定器55で定める放電終止電圧を下回り、比較器50の出力であるチョッパゲート信号60が1から0に変わって昇降圧チョッパ8が放電動作を停止する。   In FIG. 5, the converter 3 is stopped during a power failure of the AC input power supply 31, and the step-up / step-down chopper 8 is discharged to discharge the battery 20. As the discharge progresses, the discharge voltage of the battery 20 gradually decreases, and this discharge voltage is detected by the voltage detector 12, and this detected voltage falls below the discharge end voltage set by the discharge end voltage setting unit 55, and the comparator The chopper gate signal 60 which is an output of 50 changes from 1 to 0, and the step-up / step-down chopper 8 stops the discharging operation.

ここで、放電終止電圧とは、放電にあたりバッテリ20が許容できる最低電圧のことで、その値は放電電流(放電の時間率)によらず一定値であることがもっぱらであった。   Here, the end-of-discharge voltage is the lowest voltage that can be allowed by the battery 20 during discharge, and its value is exclusively a constant value irrespective of the discharge current (discharge time rate).

なお、図5には、以上述べた構成以外に、交流入力電源31と負荷32の間に、無停電電源装置の主たる構成である、入力スイッチ1、入力フィルタ2、交流電力を直流電力に変換するコンバータ3、直流電解コンデンサ4、直流電力を交流電力に変換するインバータ5、出力フィルタ6が接続され、これらの入力フィルタ2、コンバータ3、直流電解コンデンサ4、インバータ5、出力フィルタ6の直列回路に並列にバイパススイッチ7が接続され、また昇降圧チョッパ8とバッテリ20との間に、直流リアクトル9が接続されている。   In addition to the configuration described above, FIG. 5 shows the main configuration of the uninterruptible power supply between the AC input power supply 31 and the load 32, which is the input switch 1, the input filter 2, and converts AC power into DC power. Converter 3, DC electrolytic capacitor 4, inverter 5 for converting DC power to AC power, and output filter 6 are connected, and these input filter 2, converter 3, DC electrolytic capacitor 4, inverter 5, and output filter 6 are connected in series. In parallel, a bypass switch 7 is connected, and a DC reactor 9 is connected between the step-up / step-down chopper 8 and the battery 20.

図6は、従来の無停電電源装置の第2の例を説明するための概略構成図であり、これは無停電電源装置の主たる構成は図5と同じであるが、図5の放電終止電圧設定器55の代りに、負荷32に入力される電流を検出する出力電流センサ10と、出力電流センサ10の検出電流を入力することでこれに対応する放電終止電圧を出力する放電終止電圧調整器56とを設けたものである。   FIG. 6 is a schematic configuration diagram for explaining a second example of the conventional uninterruptible power supply. This is the same as FIG. 5 in the main configuration of the uninterruptible power supply, but the discharge end voltage of FIG. Instead of the setting device 55, an output current sensor 10 that detects a current input to the load 32, and a discharge end voltage regulator that outputs a discharge end voltage corresponding to the output current sensor 10 by inputting the detection current of the output current sensor 10. 56 is provided.

図6において、交流入力電源31の停電時の基本的動作は図5と同じである。図6で無停電電源装置の出力電流が低い場合はバッテリ20の放電電流も低くなる。一般にバッテリは放電電流が低いとその電圧の低下が遅くなり、放電終止までの間にバッテリから取り出せるエネルギ(バッテリ電圧×放電電流×放電時間)が大きい深放電状態になる。この場合バッテリ20は回復充電に時間がかかるか、最悪は回復充電ができないほどのダメージを受けることがある。放電電流が無停電電源装置の出力電流に概ね比例することから、出力電流センサ10で無停電電源装置の出力電流を検出し、放電終止電圧調整器56で出力電流が低いときほどバッテリ20の放電終止電圧を高く設定し、出力電流の大小によらずバッテリ20から取り出せるエネルギをなるべく一定にすることによって深放電状態を回避できる。   In FIG. 6, the basic operation at the time of a power failure of the AC input power supply 31 is the same as that in FIG. In FIG. 6, when the output current of the uninterruptible power supply is low, the discharge current of the battery 20 is also low. In general, when the discharge current is low, the voltage of the battery slows down, and the battery is in a deep discharge state in which the energy (battery voltage × discharge current × discharge time) that can be extracted from the battery before the end of discharge is large. In this case, the battery 20 may take a long time for the recovery charge, or in the worst case, the battery 20 may be damaged such that the recovery charge cannot be performed. Since the discharge current is roughly proportional to the output current of the uninterruptible power supply, the output current of the uninterruptible power supply is detected by the output current sensor 10 and the discharge current of the battery 20 is discharged as the output current decreases by the discharge end voltage regulator 56. A deep discharge state can be avoided by setting the end voltage high and making the energy that can be extracted from the battery 20 as constant as possible regardless of the magnitude of the output current.

図7は、従来の無停電電源装置の第3の例を説明するための概略構成図であり、バッテリ20の電流を検出するバッテリ電流センサ11の出力と、電圧検出器12により検出したバッテリ検出電圧とを放電電力積算器57に入力し、放電電力積算器57で演算した放電電力と放電終止エネルギ設定器58とを比較器50で比較し、この比較結果を昇降圧チョッパ8に与えるように構成したものである。   FIG. 7 is a schematic configuration diagram for explaining a third example of the conventional uninterruptible power supply, in which the output of the battery current sensor 11 for detecting the current of the battery 20 and the battery detection detected by the voltage detector 12 are illustrated. The voltage is input to the discharge power integrator 57, the discharge power calculated by the discharge power integrator 57 and the discharge end energy setting device 58 are compared by the comparator 50, and this comparison result is given to the step-up / step-down chopper 8. It is composed.

図7において、交流入力電源31の停電時の基本的動作は図5や図6と同じである。図7では無停電電源装置の出力電流の大小に関わらず、放電電力積算器57によって、バッテリ20とバッテリ電流センサ11で得られたバッテリ電流の積を時間積算することによって放電エネルギを算出できる。これを放電終止エネルギ設定器58が指定する許容放電エネルギと比較器50で比較した結果、放電エネルギが許容値を上回ればバッテリ20の放電を停止することができて、出力電流の大小によらずバッテリ20から取り出せるエネルギをなるべく一定にすることによって深放電状態を回避できる。   In FIG. 7, the basic operation at the time of a power failure of the AC input power supply 31 is the same as that in FIGS. In FIG. 7, the discharge energy can be calculated by time-integrating the product of the battery current obtained by the battery 20 and the battery current sensor 11 by the discharge power integrator 57 regardless of the output current of the uninterruptible power supply. As a result of comparing the allowable discharge energy designated by the discharge end energy setting device 58 with the comparator 50, the discharge of the battery 20 can be stopped if the discharge energy exceeds the allowable value, regardless of the magnitude of the output current. A deep discharge state can be avoided by making the energy that can be extracted from the battery 20 as constant as possible.

特開2006−109603号公報JP 2006-109603 A

図5に示す従来例は、放電終止電圧を一定値に設定した、いわゆる一次元管理の無停電電源装置であり、これにあっては次のような問題点がある。すなわち、バッテリ20の放電終止電圧を一律に放電中のバッテリ電圧の監視だけであるので、放電電流が小さい時(軽負荷時)に、放電終止までの間にバッテリ20の放電エネルギが大きく深放電状態になるため、バッテリ20の復電後の回復充電に時間がかかるか、最悪は回復充電ができないほどのダメージを受ける問題があった。   The conventional example shown in FIG. 5 is a so-called one-dimensional uninterruptible power supply device in which the discharge end voltage is set to a constant value, and this has the following problems. That is, since the discharge end voltage of the battery 20 is uniformly monitored only when the battery voltage is being discharged, the discharge energy of the battery 20 increases greatly until the discharge ends when the discharge current is small (light load). Therefore, there is a problem that it takes time for the recovery charge after the power recovery of the battery 20, or in the worst case, the battery 20 is damaged such that the recovery charge cannot be performed.

図6に示す従来例は、放電終止電圧を出力電流が低いほど放電終止電圧を高くした、いわゆる二次元管理の無停電電源装置であり、これにあっては次のような問題点がある。すなわち、出力電流の大小に応じてバッテリ20の放電終止電圧を操作できるため、深放電が回避できる。出力電流センサ10はインバータ5の過電流保護や過負荷保護などの目的で、無停電電源装置として元々具備されている場合が殆どなので、既存の構成要素を用いて深放電回避できる利点がある。しかし図6中の増設バッテリ21が追加された場合のようにバッテリ20が複数(例えば2〜5並列)個並列接続されると、該無停電電源装置の出力電流が定格電流近辺であっても、並列接続の各々のバッテリ20にとっては放電電流が低くなり、結局バッテリ20の放電エネルギが大きく深放電状態になる。従って、図6の従来例でも図5の従来例と同じ問題が完全には回避できない。   The conventional example shown in FIG. 6 is a so-called two-dimensionally managed uninterruptible power supply device in which the discharge end voltage is increased as the output current is lower, and this has the following problems. That is, since the discharge end voltage of the battery 20 can be manipulated according to the magnitude of the output current, deep discharge can be avoided. Since the output current sensor 10 is mostly provided as an uninterruptible power supply for the purpose of overcurrent protection and overload protection of the inverter 5, there is an advantage that deep discharge can be avoided by using existing components. However, when a plurality of (for example, 2 to 5 parallel) batteries 20 are connected in parallel as in the case where the additional battery 21 in FIG. 6 is added, even if the output current of the uninterruptible power supply is near the rated current. For each battery 20 connected in parallel, the discharge current is low, and eventually the discharge energy of the battery 20 is large and the battery 20 is in a deep discharge state. Therefore, the same problem as in the conventional example of FIG. 5 cannot be completely avoided in the conventional example of FIG.

図7に示す従来例は、バッテリ電圧と放電終止電圧を比較するのではなく、バッテリ20の放電電力を時間積算し、許容できる放電終止エネルギを超えた場含に放電を停止させる、いわゆる三次元管理の無停電電源装置であり、これにあっては次のような問題点がある。すなわち、常設のバッテリ20のバンクに加え、増設バッテリ21のバンクが並列接続されても、放電電流は分流されて、バッテリバンク毎の電流センサ11はバッテリバンク1個分の放電電流を検出できるので、放電電力積算器57もバッテリバンク1個分の放電エネルギを概算できる。従ってバッテリ20のバンクないし増設バッテリ21のバンクの深放電は本質的に回避できる。しかし、図7の従来例は、バッテリの並列数が例えば2〜5ある場合に各バッテリバンク毎に電流センサ11を必要とし、また放電電力積算器57は放電時間の経過と共に変化するバッテリバンクの電圧と電流を極めて短い時間間隔で積算演算しなければならないことから、制御回路には演算処理の負担が大きく、場合によってはプロセッサの追加を要する場合もある。   The conventional example shown in FIG. 7 does not compare the battery voltage and the end-of-discharge voltage, but integrates the discharge power of the battery 20 over time, so as to stop the discharge when the allowable end-of-discharge energy is exceeded. This is a managed uninterruptible power supply, which has the following problems. That is, even if the bank of the additional battery 21 is connected in parallel to the bank of the permanent battery 20, the discharge current is shunted, and the current sensor 11 for each battery bank can detect the discharge current for one battery bank. The discharge power integrator 57 can also estimate the discharge energy for one battery bank. Therefore, deep discharge of the bank of the battery 20 or the bank of the additional battery 21 can be essentially avoided. However, the conventional example of FIG. 7 requires a current sensor 11 for each battery bank when the number of parallel batteries is 2 to 5, for example, and the discharge power integrator 57 has a battery bank that changes as the discharge time elapses. Since the voltage and current must be integrated and calculated at extremely short time intervals, the control circuit is heavily burdened with arithmetic processing, and in some cases, an additional processor may be required.

本発明は上記の問題点を解決するためになされたもので、負荷に供給される出力電流の大小やバッテリの並列接続構成によらず、既存の回路構成要素を利用して新たに追加する構成要素をあまり増やすことなく、バッテリの深放電をより確実に回避することができる無停電電源装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and is a configuration that is newly added using existing circuit components regardless of the magnitude of the output current supplied to the load or the parallel connection configuration of the batteries. An object of the present invention is to provide an uninterruptible power supply that can more reliably avoid deep battery discharge without increasing the number of elements.

本発明は前記目的を達成するために、請求項1に対応する発明は、交流入力電源が正常時は、交流電力を直流電力に変換しかつ直流電力を交流電力に変換する電力変換器を介して負荷に交流電力を供給すると共にバッテリを充電し、前記交流入力電源が停電時は前記電力変換器を介して前記バッテリの放電電力を前記負荷に対して供給停止可能にするバッテリ充放電回路を有する無停電電源装置において、
前記バッテリの放電電圧を検出する放電電圧検出手段と、
前記バッテリの充電時間を計測する充電時間計測手段と、
前記バッテリの放電時間を計測する放電時間計測手段と、
前記バッテリの放電時間に対する放電終止電圧を換算可能で、正味の放電時間を入力することで、この正味の放電時間に対する放電終止電圧を出力する放電終止電圧換算手段と、
前記充電時間計測手段の出力である計測充電時間及び前記放電時間計測手段の出力である計測放電時間を入力し、満充電に要する時間から前記計測充電時間を引いて満充電に必要だった時間を得て、この時間を放電時間相当に換算し、前記計測放電時間を加えることで前記正味の放電時間を得、前記正味の放電時間を、前記バッテリが満充電状態から放電した時間に相当するものとして前記放電終止電圧換算手段の正味の放電時間として入力する充放電時間換算器と、
前記放電終止電圧換算手段の出力である放電終止電圧と、前記放電電圧検出手段で検出した検出放電電圧を比較し、前記検出放電電圧が前記放電終止電圧以下のとき、前記バッテリに対して放電停止するための放電停止指令を出力する比較手段と、
を備えたことを特徴とする無停電電源装置である。
In order to achieve the above object, the invention corresponding to claim 1 is based on a power converter that converts AC power into DC power and converts DC power into AC power when the AC input power supply is normal. A battery charging / discharging circuit that supplies AC power to the load and charges the battery, and that can stop supply of the discharged power of the battery to the load via the power converter when the AC input power is out of power. In the uninterruptible power supply
A discharge voltage detecting means for detecting a discharge voltage of the battery;
Charging time measuring means for measuring the charging time of the battery;
A discharge time measuring means for measuring the discharge time of the battery;
The discharge end voltage can be converted with respect to the discharge time of the battery, and by inputting the net discharge time, the discharge end voltage converting means for outputting the discharge end voltage with respect to the net discharge time, and
Input the measured charging time that is the output of the charging time measuring means and the measured discharging time that is the output of the discharging time measuring means, and subtract the measured charging time from the time required for full charging to calculate the time required for full charging. The time is converted into the discharge time, and the measured discharge time is added to obtain the net discharge time. The net discharge time is equivalent to the time when the battery is discharged from the fully charged state. A charge / discharge time converter for inputting as a net discharge time of the discharge end voltage conversion means,
The discharge end voltage, which is the output of the discharge end voltage conversion means, is compared with the detected discharge voltage detected by the discharge voltage detection means. Comparing means for outputting a discharge stop command for
It is an uninterruptible power supply characterized by comprising.

本発明によれば、負荷に供給される出力電流の大小やバッテリの並列接続構成によらず、既存の回路構成要素を利用して新たに追加する構成要素をあまり増やすことなく、バッテリの深放電をより確実に回避することができる無停電電源装置を提供すること。   According to the present invention, regardless of the magnitude of the output current supplied to the load or the parallel connection configuration of the battery, the battery can be deeply discharged without increasing the number of newly added components using existing circuit components. To provide an uninterruptible power supply that can avoid the problem more reliably.

本発明の無停電電源装置の実施形態1を説明するための概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic block diagram for demonstrating Embodiment 1 of the uninterruptible power supply device of this invention. 図1の要部を説明するための概略構成図。The schematic block diagram for demonstrating the principal part of FIG. 本発明の無停電電源装置の実施形態2を説明するための概略構成図。The schematic block diagram for demonstrating Embodiment 2 of the uninterruptible power supply device of this invention. 図3の要部を説明するための概略構成図。The schematic block diagram for demonstrating the principal part of FIG. 従来の無停電電源装置の第1の例を説明するための概略構成図。The schematic block diagram for demonstrating the 1st example of the conventional uninterruptible power supply. 従来の無停電電源装置の第2の例を説明するための概略構成図。The schematic block diagram for demonstrating the 2nd example of the conventional uninterruptible power supply. 従来の無停電電源装置の第3の例を説明するための概略構成図。The schematic block diagram for demonstrating the 3rd example of the conventional uninterruptible power supply.

以下、本発明の無停電電源装置の実施形態1について、図1及び図2を参照して説明するが、ここでは前述した図5〜図7と同一の構成要素については、同一の符号を付してその説明を省略する。   Hereinafter, Embodiment 1 of the uninterruptible power supply apparatus according to the present invention will be described with reference to FIGS. 1 and 2. Here, the same components as those in FIGS. Therefore, the description is omitted.

交流入力電源31が正常時は、交流電力を直流電力に変換しかつ直流電力を交流電力に変換する電力変換器(例えばコンバータ3とインバータ5と直流電解コンデンサを備えたもの)を介して負荷32に交流電力を供給すると共にバッテリ20を充電し、交流入力電源31が停電時は電力変換器を介してバッテリ20の放電電力を前記負荷に供給可能にするバッテリ充放電回路(例えば昇降圧チョッパ8及び直流リアクトル9を含む回路)を有する無停電電源装置において、次のようにしたものである。   When the AC input power supply 31 is normal, the load 32 is converted via a power converter (for example, a converter 3, an inverter 5, and a DC electrolytic capacitor) that converts AC power into DC power and converts DC power into AC power. A battery charge / discharge circuit (for example, the step-up / down chopper 8) that supplies the AC power to the battery 20 and charges the battery 20 so that the AC input power supply 31 can supply the discharge power of the battery 20 to the load via a power converter when a power failure occurs. And an uninterruptible power supply device having a circuit including a DC reactor 9).

すなわち、バッテリ20の放電電圧を検出する放電電圧検出手段例えば放電電圧検出器12と、バッテリ20の放電時間を計測する放電時間計測手段例えば放電時間カウンタ52と、バッテリ20の放電時間に対する放電終止電圧を換算可能で、放電時間カウンタ52で計測された放電時間を入力することで、この放電時間に対する放電終止電圧を出力する放電終止電圧換算手段例えば放電終止電圧換算器51と、放電終止電圧換算器51の出力である放電終止電圧と、放電電圧検出器12で検出した検出放電電圧を比較し、前記検出放電電圧が所定値以下のとき、バッテリ20に対して、具体的には昇降圧チョッパ8に放電停止するための放電停止指令例えばチョッパケート信号60を出力する比較手段例えば比較器50とを備えたものである。   That is, a discharge voltage detecting means for detecting the discharge voltage of the battery 20, for example, a discharge voltage detector 12, a discharge time measuring means for measuring the discharge time of the battery 20, for example, a discharge time counter 52, and a discharge end voltage with respect to the discharge time of the battery 20 By inputting the discharge time measured by the discharge time counter 52, discharge end voltage conversion means for outputting a discharge end voltage for this discharge time, for example, a discharge end voltage converter 51, and a discharge end voltage converter The discharge end voltage which is the output of 51 and the detected discharge voltage detected by the discharge voltage detector 12 are compared, and when the detected discharge voltage is equal to or lower than a predetermined value, specifically, the step-up / down chopper 8 is supplied to the battery 20. Comparing means, for example, a comparator 50, for outputting a discharge stop command, for example, a chopper karate signal 60, for stopping the discharge. That.

放電終止電圧換算器51は、種類の異なるバッテリを複数個それぞれ試験を行うか、又はシミュレーション或いは実際の装置におけるデータデータベース化して作成する。図1の放電終止電圧換算器51は、その一例を示すもので、最初から所定時間までは、放電終止電圧は一定であり、その後放電時間が経過する毎に放電終止電圧は徐々に増加していくような特性となっている。実際に、この特性は、一次関数、二次関数の場合もある。   The end-of-discharge voltage converter 51 is created by testing a plurality of different types of batteries, or by making a simulation or creating a data database in an actual device. The discharge end voltage converter 51 of FIG. 1 shows an example. The discharge end voltage is constant from the beginning to a predetermined time, and the discharge end voltage gradually increases every time the discharge time elapses thereafter. The characteristics are as follows. Actually, this characteristic may be a linear function or a quadratic function.

図2は、図1の実施形態と従来使用されている無停電電源装置の制御回路500を説明するための概略図であり、次の構成を備えている。交流入力電源31の入力電圧を検出する入力電圧検出回路501と、この検出電圧と停電検出レベル設定器503で設定した停電検出レベルとを比較器502で比較し、停電を検出している。この場合の停電検出ロジックは、「1」で交流入力電源31は停電を示し、「0」で交流入力電源31は正常を示している。制御回路500内には基準クロックパルスを出力する水晶発信器504と、水晶発信器504からの基準クロックパルスに基き、バッテリ20の保守診断のためにあるカウンタを放電時間カウンタ52として利用し、比較器502の出力に基き放電開始タイミングはカウント開始のトリガとする。このように構成された放電時間カウンタ52で計測される放電時間を放電終止電圧換算器51に入力するようになっている。   FIG. 2 is a schematic diagram for explaining the control circuit 500 of the uninterruptible power supply apparatus conventionally used with the embodiment of FIG. 1, and has the following configuration. The input voltage detection circuit 501 that detects the input voltage of the AC input power supply 31 and the power failure detection level set by the power failure detection level setting unit 503 are compared by the comparator 502 to detect a power failure. The power failure detection logic in this case is “1”, the AC input power supply 31 indicates a power failure, and “0” indicates the AC input power supply 31 is normal. In the control circuit 500, a crystal oscillator 504 that outputs a reference clock pulse and a counter for maintenance diagnosis of the battery 20 based on the reference clock pulse from the crystal oscillator 504 are used as a discharge time counter 52 for comparison. The discharge start timing based on the output of the detector 502 is used as a trigger for starting counting. The discharge time measured by the discharge time counter 52 configured as described above is input to the discharge end voltage converter 51.

本発明の実施形態1によれば下記の効果が得られる。交流入力電源31が停電してバッテリ20の放電が開始されると、放電時間カウンタ52が放電時間を計測し、放電時間61を放電終止電圧換算器51に与える。一般に該無停電電源装置の制御回路にはマイコン等の時間計測可能な放電時間計測手段が予め具備されていることがもっぱらで、放電時間力ウンタ52に相当する手段は簡単に実現できる。   According to Embodiment 1 of the present invention, the following effects can be obtained. When the AC input power supply 31 is interrupted and the battery 20 starts to be discharged, the discharge time counter 52 measures the discharge time and gives the discharge time 61 to the discharge end voltage converter 51. In general, the control circuit of the uninterruptible power supply apparatus is preliminarily equipped with a discharge time measuring means capable of measuring time such as a microcomputer, and means corresponding to the discharge time force counter 52 can be easily realized.

負荷32の電流が低い場合や、図6の増設バッテリ21の追加などの理由でバッテリ20の放電電流が低ければ、放電時間は長時間になるため、放電終止電圧換算器51は徐々に放電終止電圧を高く設定してゆく。   When the current of the load 32 is low or when the discharge current of the battery 20 is low due to the addition of the additional battery 21 in FIG. 6 or the like, the discharge time becomes long, so the discharge end voltage converter 51 gradually stops the discharge. Set the voltage higher.

これにより比較器50は、従来の実施形態第1で示すような一定値の放電終止電圧よりも高い電圧で放電を停止させる信号を昇降圧チョッパ8に与える。   Thereby, the comparator 50 gives the step-up / step-down chopper 8 a signal for stopping the discharge at a voltage higher than the constant discharge end voltage as shown in the first embodiment.

この結果バッテリ20は、前述した第1及び第2の従来例よりも早めの時間でバッテリ20の放電停止が行われる。この場合、バッテリ20の、放電電圧×放電電流×放電時間の3者の積のうち、放電電圧×放電電流の積の部分を検出する手段のうち、図6に示す出力電流センサ10とか、図7に示すバッテリ電流センサ11がなくても、従来制御回路に必ず有するバックアップの保守診断のために有するカウンタを、放電時間カウンタ52
として利用し、新たに追加する構成要素としては放電終止電圧換算器51だけで、放電時間を適宜短縮できて、バッテリ20の放電終止に至るまでの放電エネルギを概ね一定に保つことができる。従って、本発明の実施形態1によれば、図7に示す従来例のように三次元管理であり、バッテリ電流センサ11や放電電力積算器57のような構成要素を何ら必要とせず、図7と同様にバッテリ20の深放電をより確実に回避でき、また、構成要素を少なくできることから製品のコストダウンを図る上でも有利となる。
As a result, the battery 20 stops discharging the battery 20 in a time earlier than the first and second conventional examples described above. In this case, among the means for detecting the product of discharge voltage × discharge current × discharge time and the product of discharge voltage × discharge current, the output current sensor 10 shown in FIG. Even if the battery current sensor 11 shown in FIG.
As a newly added component, the discharge end voltage converter 51 alone can reduce the discharge time as appropriate, and the discharge energy until the battery 20 reaches the end of discharge can be kept substantially constant. Therefore, according to the first embodiment of the present invention, three-dimensional management is performed as in the conventional example shown in FIG. 7, and no components such as the battery current sensor 11 and the discharge power integrator 57 are required. Similarly to the above, deep discharge of the battery 20 can be avoided more reliably, and the number of components can be reduced, which is advantageous in reducing the cost of the product.

次に、本発明の無停電電源装置の実施形態2について、図3及び図4を参照して説明する。既に説明した図5〜図7や実施形態1と同一の構成要素については、同一の符号をつけてその説明を省略する。   Next, Embodiment 2 of the uninterruptible power supply apparatus of the present invention will be described with reference to FIGS. 3 and 4. The same components as those already described with reference to FIGS. 5 to 7 and Embodiment 1 are denoted by the same reference numerals, and the description thereof is omitted.

図3は、本発明の無停電電源装置の実施形態2を説明するための概略構成図であり、
ここでは実施形態1と同様に単に放電時間61の経過だけを追うのではなく、放電時間61から充電時間62を加味した時間で終止電圧を適当に操作することによって、充電途上の放電ならば早めに終止電圧を上昇させてバッテリの深放電防止がより良い精度で実現できるように、実施形態1に充電時間カウンタ53と、満充電時間設定器54aと比較器54bとプラスリミタ54cと定数器54dと加算器54eを有する充放電時間換算器54を追加したものである。
具体的には、図4に示すように比較器502の出力端子と放電時間カウンタ52の入力端子の接続回路を途中から分岐してインバータ505を設け、インバータ505の出力端子に充電時間カウンタ53を設け、充電時間カウンタ53の出力である、充電時間62と、放電時間カウンタ52の出力である、放電時間61を充放電時間換算器54に入力させるように構成ものである。
FIG. 3 is a schematic configuration diagram for explaining Embodiment 2 of the uninterruptible power supply device of the present invention,
Here, as in the first embodiment, the discharge time 61 is not simply followed, but the discharge voltage 61 is appropriately manipulated with the charge time 62 taken into account to expedite the discharge during charging. In the first embodiment, the charging time counter 53, the full charge time setting unit 54a, the comparator 54b, the plus limiter 54c, and the constant unit 54d are arranged so that the end voltage is raised and the deep discharge prevention of the battery can be realized with better accuracy. A charge / discharge time converter 54 having an adder 54e is added.
Specifically, as shown in FIG. 4, a connection circuit between the output terminal of the comparator 502 and the input terminal of the discharge time counter 52 is branched halfway to provide an inverter 505, and the charge time counter 53 is connected to the output terminal of the inverter 505. The charge time 62 that is the output of the charge time counter 53 and the discharge time 61 that is the output of the discharge time counter 52 are input to the charge / discharge time converter 54.

このような構成の実施形態2では、バッテリ20が、過去の放電後の回復充電途上で満充電に達していなかった場合、再び放電開始するまでの充電時間62を充電時間カウンタ53で計測し、充放電時間換算器54に与える。   In Embodiment 2 having such a configuration, when the battery 20 has not reached full charge during recovery charging in the past, the charging time 62 until the discharge starts again is measured by the charging time counter 53. The charge / discharge time converter 54 is given.

充放電時間換算器54は、満充電に要する時間から充電時間62を引いて満充電に必要だった時間を得て、この時間を放電時間相当に換算して、新たな放電時間61に加えることで正味の放電時間63を得る。この正味の放電時間63は、バッテリ20が満充電状態から放電した時間に相当する。なお、既にバッテリ20が満充電に達していた場合は、前期満充電に必要だった時間はリミッタによりゼロになり、放電時間61には加算されない。   The charge / discharge time converter 54 obtains the time required for full charge by subtracting the charge time 62 from the time required for full charge, converts this time to equivalent to the discharge time, and adds it to the new discharge time 61. A net discharge time 63 is obtained. This net discharge time 63 corresponds to the time when the battery 20 is discharged from the fully charged state. If the battery 20 has already reached full charge, the time required for full charge in the previous period is zeroed by the limiter and is not added to the discharge time 61.

放電終止電圧換算器51は実施形態1で説明したのと同様に、放電時間の経過に従って、正味の放電時間63に応じて徐々に放電終止電圧を高く設定してゆく。 As described in the first embodiment, the discharge end voltage converter 51 gradually sets the discharge end voltage higher in accordance with the net discharge time 63 as the discharge time elapses.

以上によりバッテリ20は、正味の放電時間63に応じて放電終止電圧が調整されることにより、充電途上の放電であっても放電終止に至るまでの放電エネルギを概ね一定に保つことができる。   As described above, the battery 20 can keep the discharge energy until the end of the discharge substantially constant even if the discharge is in the middle of charging by adjusting the discharge end voltage according to the net discharge time 63.

従って、実施形態2でも実施形態1と同様に、構成要素を増やすことなく、無停電電源装置の性能向上、直接的にはバッテリ20の深放電が回避でき、これによりバッテリ20の寿命を延ばすことができる。   Accordingly, in the second embodiment, as in the first embodiment, the performance of the uninterruptible power supply can be improved without increasing the number of components, and deep discharge of the battery 20 can be avoided directly, thereby extending the life of the battery 20. Can do.

以上述べた実施形態で、放電エネルギJは、放電電圧V、電流Iの積の時間積分になる。従って、
J=∫(V・I)dt≒V・I・T
と簡略表現できるが、電圧電流積V・Iに応じて放電停止する代わりに、放電時間Tが延びるに連れて放電停止を早めてやれば、等価的に放電エネルギJを監視できる。
In the embodiment described above, the discharge energy J is a time integral of the product of the discharge voltage V and the current I. Therefore,
J = ∫ (V · I) dt≈V · I · T
However, instead of stopping the discharge according to the voltage-current product V · I, the discharge energy J can be monitored equivalently if the discharge stop is advanced as the discharge time T extends.

1…入力スイッチ、2…入力フィルタ、3…コンバータ、4…直流電解コンデンサ、5…インバータ、6…出力フィルタ、7…バイパススイッチ、8…昇降圧チョッパ、9…直流リアクトル、10…出力電流センサ、11…バッテリ電流センサ、12…放電電圧検出器、20…バッテリ、21…増設バッテリ、31…交流入力電源、32…負荷、50…比較器、51…放電終止電圧換算器、52…放電時間カウンタ、53…充電時間カウンタ、
54a…満充電時間設定器、54b…比較器、54c…プラスリミタ、54d…定数器、54e…加算器、54…充放電時間換算器、55…放電終止電圧設定器、56…放電終止電圧調整器、57…放電電力積算器、58…放電終止エネルギ設定器、61…放電時間、62…充電時間、63…放電時間、500…制御回路、501…入力電圧検出回路、502…比較器、503…停電検出レベル設定器、504…水晶発信器、505…インバータ。
DESCRIPTION OF SYMBOLS 1 ... Input switch, 2 ... Input filter, 3 ... Converter, 4 ... DC electrolytic capacitor, 5 ... Inverter, 6 ... Output filter, 7 ... Bypass switch, 8 ... Buck-boost chopper, 9 ... DC reactor, 10 ... Output current sensor , 11 ... battery current sensor, 12 ... discharge voltage detector, 20 ... battery, 21 ... additional battery, 31 ... AC input power supply, 32 ... load, 50 ... comparator, 51 ... discharge end voltage converter, 52 ... discharge time Counter, 53 ... Charging time counter,
54a ... full charge time setter, 54b ... comparator, 54c ... plus limiter, 54d ... constant, 54e ... adder, 54 ... charge / discharge time converter, 55 ... discharge end voltage setter, 56 ... discharge end voltage adjuster 57 ... Discharge power integrator, 58 ... Discharge end energy setting device, 61 ... Discharge time, 62 ... Charge time, 63 ... Discharge time, 500 ... Control circuit, 501 ... Input voltage detection circuit, 502 ... Comparator, 503 ... Power failure detection level setting device, 504... Crystal transmitter, 505.

Claims (1)

交流入力電源が正常時は、交流電力を直流電力に変換しかつ直流電力を交流電力に変換する電力変換器を介して負荷に交流電力を供給すると共にバッテリを充電し、前記交流入力電源が停電時は前記電力変換器を介して前記バッテリの放電電力を前記負荷に対して供給停止可能にするバッテリ充放電回路を有する無停電電源装置において、
前記バッテリの放電電圧を検出する放電電圧検出手段と、
前記バッテリの充電時間を計測する充電時間計測手段と、
前記バッテリの放電時間を計測する放電時間計測手段と、
前記バッテリの放電時間に対する放電終止電圧を換算可能で、正味の放電時間を入力することで、この正味の放電時間に対する放電終止電圧を出力する放電終止電圧換算手段と、
前記充電時間計測手段の出力である計測充電時間及び前記放電時間計測手段の出力である計測放電時間を入力し、満充電に要する時間から前記計測充電時間を引いて満充電に必要だった時間を得て、この時間を放電時間相当に換算し、前記計測放電時間を加えることで前記正味の放電時間を得、前記正味の放電時間を、前記バッテリが満充電状態から放電した時間に相当するものとして前記放電終止電圧換算手段の正味の放電時間として入力する充放電時間換算器と、
前記放電終止電圧換算手段の出力である放電終止電圧と、前記放電電圧検出手段で検出した検出放電電圧を比較し、前記検出放電電圧が前記放電終止電圧以下のとき、前記バッテリに対して放電停止するための放電停止指令を出力する比較手段と、
を備えたことを特徴とする無停電電源装置。
When AC input power is normal, AC power is supplied to the load and the battery is charged via a power converter that converts AC power to DC power and DC power to AC power. In an uninterruptible power supply having a battery charging / discharging circuit that enables the supply of the discharge power of the battery to the load via the power converter,
A discharge voltage detecting means for detecting a discharge voltage of the battery;
Charging time measuring means for measuring the charging time of the battery;
A discharge time measuring means for measuring the discharge time of the battery;
The discharge end voltage can be converted with respect to the discharge time of the battery, and by inputting the net discharge time, the discharge end voltage converting means for outputting the discharge end voltage with respect to the net discharge time, and
Input the measured charging time that is the output of the charging time measuring means and the measured discharging time that is the output of the discharging time measuring means, and subtract the measured charging time from the time required for full charging to calculate the time required for full charging. The time is converted into the discharge time, and the measured discharge time is added to obtain the net discharge time. The net discharge time is equivalent to the time when the battery is discharged from the fully charged state. A charge / discharge time converter for inputting as a net discharge time of the discharge end voltage conversion means,
The discharge end voltage, which is the output of the discharge end voltage conversion means, is compared with the detected discharge voltage detected by the discharge voltage detection means. Comparing means for outputting a discharge stop command for
An uninterruptible power supply characterized by comprising:
JP2009222580A 2009-09-28 2009-09-28 Uninterruptible power system Active JP5572352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009222580A JP5572352B2 (en) 2009-09-28 2009-09-28 Uninterruptible power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009222580A JP5572352B2 (en) 2009-09-28 2009-09-28 Uninterruptible power system

Publications (2)

Publication Number Publication Date
JP2011072155A JP2011072155A (en) 2011-04-07
JP5572352B2 true JP5572352B2 (en) 2014-08-13

Family

ID=44016864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009222580A Active JP5572352B2 (en) 2009-09-28 2009-09-28 Uninterruptible power system

Country Status (1)

Country Link
JP (1) JP5572352B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6174209B2 (en) * 2016-08-16 2017-08-02 東芝三菱電機産業システム株式会社 Uninterruptible power system
JP6886082B1 (en) 2019-12-26 2021-06-16 東芝三菱電機産業システム株式会社 Power supply

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05207642A (en) * 1992-01-23 1993-08-13 Fujitsu Ltd Discharge state detector for battery
JP3433469B2 (en) * 1993-04-23 2003-08-04 オムロン株式会社 Uninterruptible power system
JPH09261892A (en) * 1996-03-19 1997-10-03 Fuji Electric Co Ltd Control of uninterruptible power supply

Also Published As

Publication number Publication date
JP2011072155A (en) 2011-04-07

Similar Documents

Publication Publication Date Title
KR101820807B1 (en) Refresh charging method of battery assembly composed of lead-acid battery and charging device
JP5519665B2 (en) Battery control device and battery control method
EP2441153B1 (en) Charge control device and method for secondary battery module
TWI404291B (en) System and method for balancing battery cells
EP2720052A2 (en) System and method for automated failure detection of hold-up power storage devices
US20070035290A1 (en) Device for covering the peak load
TWI474532B (en) Systems, controllers and methods for battery controlling
US20150333554A1 (en) System and method for monitoring a battery in an uninterruptible power supply
CN1776956A (en) Charging system of spare cell and method for providing system management and support srevice
JP5814056B2 (en) Power converter
WO2014126744A1 (en) Method for determining a state of charge and remaining operation life of a battery
US9494658B2 (en) Approach for generation of power failure warning signal to maximize useable hold-up time with AC/DC rectifiers
JP7228949B2 (en) power converter
KR20120113165A (en) Method for controlling charging current
KR20080104861A (en) Inverter logic for estimating state of health and apparatus for control thereof
JP5572352B2 (en) Uninterruptible power system
JP2001157364A (en) System power stabilization device and controlling method thereof
JP3523706B2 (en) Power converter
JP2014054150A (en) Charge/discharge controller
US11336103B2 (en) Storage battery system with state of charge estimator capable of outputting status signal to power supply control circuit, method, and computer program product
JP5587941B2 (en) Uninterruptible power supply and uninterruptible power supply method
JP5410211B2 (en) Uninterruptible power system
JP5862815B1 (en) Battery life detection device, power storage device, battery life detection method and program
JP5682370B2 (en) Rectifier system
KR101254982B1 (en) Uninterruptable power supply apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120919

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140630

R150 Certificate of patent or registration of utility model

Ref document number: 5572352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250