JP5571927B2 - Coated paper - Google Patents

Coated paper Download PDF

Info

Publication number
JP5571927B2
JP5571927B2 JP2009214100A JP2009214100A JP5571927B2 JP 5571927 B2 JP5571927 B2 JP 5571927B2 JP 2009214100 A JP2009214100 A JP 2009214100A JP 2009214100 A JP2009214100 A JP 2009214100A JP 5571927 B2 JP5571927 B2 JP 5571927B2
Authority
JP
Japan
Prior art keywords
paper
particles
coated paper
coating layer
pulp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009214100A
Other languages
Japanese (ja)
Other versions
JP2011063899A (en
Inventor
悟 岸口
和也 田井野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daio Paper Corp
Original Assignee
Daio Paper Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daio Paper Corp filed Critical Daio Paper Corp
Priority to JP2009214100A priority Critical patent/JP5571927B2/en
Publication of JP2011063899A publication Critical patent/JP2011063899A/en
Application granted granted Critical
Publication of JP5571927B2 publication Critical patent/JP5571927B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、塗工紙において1斤量下(約6〜16g/m低減)であっても見栄えが低下せず、白色度、白紙光沢度、不透明度、剛度及び印刷適性に優れた塗工紙に関する。特に、坪量が111〜121g/mの塗工紙に関する。 The present invention does not deteriorate the appearance even when the coated paper is 1 kg (reduced by about 6 to 16 g / m 2 ), and is excellent in whiteness, white paper gloss, opacity, stiffness and printability. Regarding paper. In particular, the present invention relates to a coated paper having a basis weight of 111 to 121 g / m 2 .

近年、省資源化による環境負荷の低減、二酸化炭素排出量の削減の取り組みから、紙分野においては、従来と同程度の品質(白色度、白紙光沢度、剛度、不透明度)でありながら、より軽量である紙が求められている。塗工紙分野においては、高精細な印刷物を得るために印刷光沢度についても満足する必要がある。   In recent years, due to efforts to reduce environmental impact and reduce carbon dioxide emissions through resource conservation, in the paper field, while maintaining the same level of quality (whiteness, white paper glossiness, stiffness, opacity), more There is a need for lightweight paper. In the coated paper field, it is necessary to satisfy the printing gloss level in order to obtain a high-definition printed matter.

塗工紙は、塗工液の塗工量や塗工層表面の平坦化処理の度合い、要求品質に応じて、アート紙(A1グレード)、塗工紙(A2グレード)、軽量塗工紙(A3グレード)、微塗工紙に分類され、A1グレードの塗工紙は、高級美術書や、雑誌の表紙、口絵、カレンダー、ポスター、ラベル、煙草包装用などの、高精細な印刷を要求されるものに使用され、A2グレードの塗工紙はカタログ、パンフレット等の見栄えが必要とされる商業印刷等に使用され、A3グレードの塗工紙および微塗工紙は、チラシ等の商業印刷等に利用されている。   The coated paper can be used for art paper (A1 grade), coated paper (A2 grade), lightweight coated paper (depending on the amount of coating liquid applied, the degree of flattening of the coating layer surface, and the required quality. A3 grade), finely coated paper, and A1 grade coated paper is required for high-definition printing such as high-quality art books, magazine covers, pictures, calendars, posters, labels, and cigarette packaging. A2 grade coated paper is used for commercial printing etc. that need to look good in catalogs, brochures, etc., A3 grade coated paper and fine coated paper are used for commercial printing such as flyers, etc. Has been used.

近年の不況下において、より安価な塗工紙に対する要求が高くなっている。より安価な紙とは、単位面積あたりの重量(坪量)が少ない紙である。しかしながら単に紙の坪量を低下させると、特に紙の厚み(紙厚)、見栄え(白色度および白紙光沢度)、が低下する問題があり、さらには不透明度、剛度(紙腰)、印刷適性も低下する。   Under the recent recession, the demand for cheaper coated paper is increasing. Cheaper paper is paper that has less weight (basis weight) per unit area. However, simply reducing the basis weight of the paper has the problems of reducing the paper thickness (paper thickness) and appearance (whiteness and white paper gloss), as well as opacity, stiffness (paper stiffness), and printability. Also decreases.

特にA2グレードの塗工紙においては、現在84.9g/m、104.7g/m、127.9g/m、157g/mの坪量が一般的であるが、これらの塗工紙においては、例えば127.9g/mの塗工紙の代替として104.7g/mを使用し、坪量を約23g/m低減すると、上述した紙の厚み、見栄え(白色度および白紙光沢度)が大幅に低下しやすく、また、不透明度、剛度(紙腰)、印刷適性も低下する。 In particular, A2 grade coated paper, currently 84.9g / m 2, 104.7g / m 2, although the basis weight of 127.9g / m 2, 157g / m 2 is typical, these coating in the paper, for example, using 104.7 g / m 2 as an alternative to the coated paper 127.9 g / m 2, a basis weight when about 23 g / m 2 to reduce the thickness of the paper described above, appearance (whiteness and (Glossiness of white paper) is easily reduced, and opacity, stiffness (paper stiffness), and printability are also reduced.

このため、これら従来の坪量製品と比較して、紙厚、見栄え(白色度および白紙光沢度)、さらには剛度、不透明度が良好で、印刷適性が同程度でありながら、坪量を低減した塗工紙に対する要求が高くなっているが、上記品質を維持したまま単に坪量を低減する方法では、坪量を約5g/m程度低減することが限界であった。 Therefore, compared with these conventional basis weight products, paper thickness, appearance (whiteness and white paper glossiness), rigidity and opacity are good, and printability is similar, but basis weight is reduced. Although the demand for coated paper is increasing, the method of simply reducing the basis weight while maintaining the above-mentioned quality has the limit of reducing the basis weight by about 5 g / m 2 .

塗工紙の白紙光沢度を向上させる技術としては、塗工層に金属ロールや弾性ロールからなる平坦化設備にて平坦化処理(カレンダー処理)を施して塗工紙の印刷面を平坦にする方法が一般的だが、この方法によると、塗工紙が潰れやすくなり、紙厚が低下するだけでなく剛度も低下する。   As a technique to improve the glossiness of the coated paper, the printing surface of the coated paper is flattened by applying a flattening process (calendar process) to the coating layer using a flattening facility consisting of a metal roll or elastic roll. Although the method is general, according to this method, the coated paper is liable to be crushed and not only the paper thickness but also the stiffness is lowered.

紙厚の低下を防止する技術としては、嵩高剤を含有させて紙厚を向上させる方法があるが(引用文献1を参照)、嵩高剤は繊維の繊維間結合を阻害する薬品であるため、印刷時にブリスター(火ぶくれ)が発生しやすくなる問題がある。特にA2コート紙のごとく比較的高級印刷に用いられる塗工紙においてブリスターは重大な品質欠陥であり、また、一般にブリスターは坪量が高くなるほど発生しやすいため、坪量の高いA2コート紙においては、坪量の低いA3コート紙や微塗工紙に比べてブリスターが発生しやすい問題があり、嵩高剤を含有させることは好ましくない。紙厚および不透明度を向上させるため機械パルプを含有させる方法もあるが、機械パルプは剛直であり、全パルプの約35質量%以上と多く含有させると、毛羽立ちやラフニング(印刷後に繊維が浮き出る)が発生しやすくなり、印刷適性が低下しやすい。   As a technique for preventing a decrease in paper thickness, there is a method of improving the paper thickness by adding a bulking agent (see Cited Document 1), but the bulking agent is a chemical that inhibits fiber-to-fiber bonding. There is a problem that blisters are likely to occur during printing. In particular, blisters are a serious quality defect in coated paper used for relatively high-grade printing such as A2 coated paper, and generally blisters are more likely to occur as the basis weight increases. There is a problem that blisters are likely to occur as compared to A3 coated paper and fine coated paper with low basis weight, and it is not preferable to contain a bulking agent. There is a method to contain mechanical pulp to improve paper thickness and opacity, but mechanical pulp is rigid, and if it is contained in a large amount of about 35% by mass or more of the total pulp, fluffing and roughening (fibers emerge after printing) Is likely to occur, and printability is likely to deteriorate.

印刷適性が良い塗工紙を得るためには塗工量を増加させることが一般的であるが、無機粒子からなる塗工層はパルプからなる基紙に比べて密度が高く嵩が低いため、十分な紙厚を達成しにくい。
不透明性が高い塗工紙を得るためには、填料含有量を増加させることが一般的であるが、填料はパルプ繊維の絡み合いを阻害するため含有量が多くなると、基紙の内部強度が低下して印刷時にブリスター(火ぶくれ)欠陥が発生したり、塗工紙表面の強度が弱くなるため印刷物に印刷抜け(ピッキング)が発生するなどの問題がある。
In order to obtain coated paper with good printability, it is common to increase the coating amount, but the coating layer made of inorganic particles has a higher density and lower bulk than the base paper made of pulp, It is difficult to achieve a sufficient paper thickness.
In order to obtain coated paper with high opacity, it is common to increase the filler content. However, since the filler inhibits the entanglement of the pulp fibers, the internal strength of the base paper decreases as the content increases. As a result, there are problems such as blister defects at the time of printing, and printing omission (picking) in the printed matter due to weakened strength of the coated paper surface.

上述のとおり、特に紙の紙厚、見栄え(白紙光沢および印刷光沢)、さらには不透明度、印刷適性、剛度を維持しながら坪量を低減するためには、5g/m程度の低下が限界であった。例えば6g/m以上、さらには10g/m以上、特に16g/m程度坪量を低下させても上記品質を維持した塗工紙は、未だ得られていなかった。 As mentioned above, especially to reduce the basis weight while maintaining the paper thickness, appearance (blank gloss and print gloss), opacity, printability, and stiffness, a decrease of about 5 g / m 2 is the limit. Met. For example, a coated paper that has maintained the above-mentioned quality even if the basis weight is reduced by about 6 g / m 2 or more, further 10 g / m 2 or more, particularly about 16 g / m 2 has not yet been obtained.

特開2005−248379号公報JP 2005-248379 A 特開2009−079327号公報JP 2009-079327 A

本発明が解決しようとする主たる課題は、坪量が111〜121g/mと坪量が低い塗工紙でありながら、坪量が6g/m以上、さらには10g/m以上、特に16g/m以上と高い塗工紙と比較して、十分な紙厚を有し、白紙光沢度が良好であり、加えて白色度、不透明度、印刷適性及び剛度が低下しない塗工紙を提供することである。 The main problem to be solved by the present invention is that the basis weight is 111 to 121 g / m 2 and the coated paper has a low basis weight, but the basis weight is 6 g / m 2 or more, more preferably 10 g / m 2 or more. Compared with coated paper as high as 16 g / m 2 or more, a coated paper having sufficient paper thickness, good white paper gloss, and in which whiteness, opacity, printability and rigidity are not reduced. Is to provide.

本発明は、基紙上に、顔料および接着剤を含む塗工層を設けた塗工紙であって、坪量が111〜121g/m、紙厚が90〜110μm、JIS P 8142:2005「紙及び板紙−75度鏡面光沢度の測定方法」における白紙光沢度が70%以上であり、前記塗工紙をJIS P 8220:1998「パルプ−離解方法」で離解して得られたパルプ繊維について、重さ加重の繊維長分布を求め、繊維長0.05mmごとに集計し、繊維長0.10mm以上0.65mm未満の範囲に最大値を有し、前記基紙が填料としてシリカ複合再生粒子又はシリカ複合再生粒子凝集体を含むことを特徴とする、塗工紙である。 The present invention is a coated paper provided with a coating layer containing a pigment and an adhesive on a base paper, and has a basis weight of 111 to 121 g / m 2 , a paper thickness of 90 to 110 μm, JIS P 8142: 2005. Paper and paperboard-Pulp fibers having a blank paper glossiness of 70% or more in "Measurement method of 75-degree specular gloss" and disaggregating the coated paper according to JIS P 8220: 1998 "Pulp-Disaggregation method" The weight-weighted fiber length distribution is obtained, tabulated every 0.05 mm fiber length, and has a maximum value in the fiber length range of 0.10 mm to less than 0.65 mm, and the base paper is a silica composite regenerated particle as a filler Or it is a coated paper characterized by including a silica composite reproduction | regeneration particle | grain aggregate.

前記基紙に対する前記塗工層の質量割合が、0.23〜0.34であることが好ましい。   The mass ratio of the coating layer to the base paper is preferably 0.23 to 0.34.

前記顔料として、少なくともクレーおよび炭酸カルシウムを含有し、前記クレーおよび炭酸カルシウムが粒子径分布において、0.1μm以上1.0μm未満の範囲に全顔料の85%以上、好ましくは90%以上、1.0μm以上10.0μm未満の範囲に全顔料の15%以下、好ましくは10%以下含有することが好ましい。   The pigment contains at least clay and calcium carbonate, and the clay and calcium carbonate have a particle size distribution in the range of 0.1 μm or more and less than 1.0 μm, and 85% or more, preferably 90% or more of the total pigment. It is preferable to contain 15% or less, preferably 10% or less of the total pigment in the range of 0 μm or more and less than 10.0 μm.

前記基紙が填料を含み、前記填料の配合量が、前記基紙に含まれる全パルプ100質量部に対して2〜10質量部であり、前記填料が、シリカとシリカ以外の無機粒子とからなる複合粒子であることが好ましい。   The base paper contains a filler, the blending amount of the filler is 2 to 10 parts by mass with respect to 100 parts by mass of the total pulp contained in the base paper, and the filler is composed of silica and inorganic particles other than silica. The composite particles are preferably.

前記塗工層が少なくとも2層であり、前記基紙に接する下塗り塗工層の塗工量に対する、前記基紙から最も遠い最表層塗工層の塗工量の質量割合が、1.5〜1.9であることが好ましい。   The coating layer is at least two layers, and the mass ratio of the coating amount of the outermost coating layer farthest from the base paper to the coating amount of the undercoat coating layer in contact with the base paper is 1.5 to It is preferable that it is 1.9.

本発明によれば、坪量が111〜121g/mの塗工紙でありながら、坪量が6g/m以上、さらには10g/m以上、特に16g/m以上高い127.9g/mの塗工紙と比較して、十分な紙厚を有し、白紙光沢度が良好であり、加えて白色度、不透明度、印刷適性及び剛度が低下しない塗工紙を提供することができる。 According to the present invention, though it is coated paper having a basis weight of 111~121g / m 2, a basis weight of 6 g / m 2 or more, further 10 g / m 2 or more, especially 16g / m 2 or more high 127.9g To provide a coated paper having sufficient paper thickness and good white paper gloss as compared with coated paper of / m 2 , and in addition, whiteness, opacity, printability and rigidity are not reduced. Can do.

本発明で好適に用いる、再生粒子または再生粒子凝集体の製造設備の概要図である。1 is a schematic diagram of a production facility for regenerated particles or regenerated particle aggregates preferably used in the present invention. 第2燃焼炉の概要図で、(a)は縦断面図、(b)は内面の展開図である。It is a schematic diagram of a 2nd combustion furnace, (a) is a longitudinal cross-sectional view, (b) is an expanded view of an inner surface.

以下、本発明の実施の形態に係る塗工紙について説明する。なお、本発明は必ずしも以下の実施形態に限定されるものではなく、特許請求の範囲を逸脱しない範囲内において、その構成を適宜変更できることはいうまでもない。   Hereinafter, the coated paper according to the embodiment of the present invention will be described. In addition, this invention is not necessarily limited to the following embodiment, Of course, the structure can be changed suitably in the range which does not deviate from a claim.

本形態の塗工紙は、基紙の表面及び/又は裏面上に顔料及び接着剤を主成分とする塗工層が設けられたものである。
本発明では、塗工紙をJIS P 8220:1998「パルプ−離解方法」で離解して得られたパルプ繊維について、FiberLab.(Kajaani社)を用いて測定した中心線繊維長を、繊維長とした。
The coated paper of this embodiment is one in which a coating layer mainly composed of a pigment and an adhesive is provided on the front surface and / or the back surface of the base paper.
In the present invention, the fiber fibers obtained by disaggregating the coated paper according to JIS P 8220: 1998 “pulp-disaggregation method” are referred to as FiberLab. The centerline fiber length measured using (Kajaani) was defined as the fiber length.

ルンケル比についてもFiberLab.(Kajaani社)により測定された繊維幅および繊維壁厚より算出されたものである。本発明で用いるルンケル比は、R.O.H.Runkelが1940年にWachbl.Papierfabr.誌上で発表したパラメータであり、(ルンケル比)=(繊維壁厚の2倍)/(繊維内腔径)で算出される。ルンケル比が大きいほど剛直な繊維であることを示している。   The Runkel ratio is also calculated using FiberLab. It is calculated from the fiber width and the fiber wall thickness measured by Kajaani. The Runkel ratio used in the present invention is R.K. O. H. Runkel in 1940 on Wachbl. Papierfabr. This is a parameter published in the magazine, and is calculated as (Runkel ratio) = (twice the fiber wall thickness) / (fiber lumen diameter). A larger Runkel ratio indicates a stiffer fiber.

(パルプ)
本発明に用いるパルプは、塗工紙をJIS P 8220:1998「パルプ−離解方法」で離解して得られたパルプ繊維について、重さ加重の繊維長分布を求め、繊維長0.05mmごとに集計し、繊維長0.10mm以上0.65mm未満の範囲に最大値を有することが必須である。好ましくは0.15mm以上0.60mm未満の範囲に、より好ましくは0.20mm以上0.55mm未満の範囲に最大値を有することが好ましい。パルプ繊維の繊維長分布における最大値をこの範囲内とすることで、紙の白紙光沢度および紙厚、さらには印刷適性、剛度、白色度、不透明度を維持しながら、坪量を6g/m以上、さらには10g/m以上、特に16g/m以上低減することができる。
(pulp)
For the pulp used in the present invention, the weight-weighted fiber length distribution is obtained for pulp fibers obtained by disaggregating the coated paper by JIS P 8220: 1998 “pulp-disaggregation method”, and the fiber length is determined every 0.05 mm. It is essential that the fiber lengths are aggregated and have a maximum value in a range of fiber length of 0.10 mm or more and less than 0.65 mm. The maximum value is preferably in the range of 0.15 mm or more and less than 0.60 mm, more preferably in the range of 0.20 mm or more and less than 0.55 mm. By setting the maximum value in the fiber length distribution of the pulp fiber within this range, the basis weight is 6 g / m while maintaining the white paper glossiness and paper thickness as well as printability, rigidity, whiteness and opacity. 2 or more, further it can be 10 g / m 2 or more, to reduce particularly 16g / m 2 or more.

繊維長0.10mm未満の繊維が多く、繊維長0.10mm以上0.65mm未満の範囲に最大値を有していない場合は、微細繊維が多いため基紙が密に詰まり紙厚が低下しやすいだけでなく、充分な剛度が得られにくいため好ましくない。繊維長0.65mm以上の繊維が多く、繊維長0.10mm以上0.65mm未満の範囲に最大値を有していない場合は、長繊維が多く部分的に紙厚が増加しやすく、毛羽立ちやラフニングが発生して印刷適性(印刷後の見栄え)に劣りやすいため好ましくない。加えて、塗工層表面に長繊維が浮き出しやすくなるため白紙光沢度が低下しやすい。   If there are many fibers with a fiber length of less than 0.10 mm and the maximum value is not in the range of fiber lengths of 0.10 mm or more and less than 0.65 mm, the base paper is densely packed and the paper thickness is reduced because there are many fine fibers. Not only is it easy, but it is not preferable because sufficient rigidity is difficult to obtain. When there are many fibers with a fiber length of 0.65 mm or more and the maximum value is not in the range of fiber lengths of 0.10 mm or more and less than 0.65 mm, the paper thickness tends to increase partially due to many long fibers, Since roughening occurs and printing suitability (appearance after printing) tends to be inferior, it is not preferable. In addition, since the long fibers are easily raised on the surface of the coating layer, the glossiness of the white paper tends to be lowered.

繊維長分布で繊維長0.10mm以上0.65mm未満の範囲に最大値を有するパルプ繊維を好適に得るには、従来一般に使用されている叩解方法を用いてフリーネスを調整すれば良く、例えばビーター、コニカルリファイナー、円筒型リファイナー、ディスクリファイナー(SDR、DDR)を用いることができる。例えばDDRを用いてフリーネスを約30〜300mlにまで叩解すれば良い。叩解して得られたパルプ繊維は、異なる繊維長を有する他のパルプと混合して用いることもでき、その場合は混合後のパルプ繊維が、離解後の繊維長で0.10mm以上0.65mm未満の範囲に最大値を有するよう、繊維長の異なる他のパルプとの配合割合を調整すれば良い。   In order to suitably obtain a pulp fiber having a maximum fiber length distribution in the range of 0.10 mm or more and less than 0.65 mm, the freeness may be adjusted using a conventionally used beating method. For example, beater Conical refiners, cylindrical refiners, and disc refiners (SDR, DDR) can be used. For example, the freeness may be beaten to about 30 to 300 ml using DDR. The pulp fibers obtained by beating can also be used by mixing with other pulps having different fiber lengths, in which case the pulp fibers after mixing have a fiber length after disaggregation of 0.10 mm or more and 0.65 mm. What is necessary is just to adjust a compounding ratio with the other pulp from which fiber length differs so that it may have a maximum value in the range below.

本発明においては、離解パルプのルンケル比が0.4〜2.0であることが好ましく、0.6〜1.0であることが更に好ましい。ルンケル比が大きい(壁厚が大きい)ほど、剛直な繊維であり紙厚は高くなるが、一方で毛羽立ちおよびラフニングが悪化して印刷適性や白紙光沢度が低下しやすくなり、ルンケル比が小さい(壁厚が小さい)と、十分な紙厚や剛度が得られにくい。本発明においては、ルンケル比を好ましくは0.4〜2.0、より好ましくは0.6〜1.0とすることで、紙厚、不透明度、白紙光沢度、剛度が高く、毛羽立ちおよびラフニングが少なく印刷適性に優れる塗工紙が得られやすくなる。例えばルンケル比が0.4未満であったり、2.0を超過する場合に比べて、坪量を6g/m以上、さらには10g/m以上、特に16g/m以上低減しても、見栄えが低下せず、紙厚および白紙光沢度に優れ、さらには白色度、不透明度、剛度、印刷適性に優れた塗工紙が得られやすい。ルンケル比が0.4を下回ると、坪量が111〜121g/mの塗工紙では紙厚が90μm未満となりやすく、剛度も低下しやすいため好ましくない。ルンケル比が2.0を超過すると紙厚が高くなりやすいものの、塗工層表面に毛羽立ちやラフニングが発生しやすくなるため好ましくない。 In the present invention, the Runkel ratio of the disaggregated pulp is preferably 0.4 to 2.0, and more preferably 0.6 to 1.0. The larger the Runkel ratio (the larger the wall thickness), the more rigid the paper and the higher the paper thickness. On the other hand, the fuzzing and roughening deteriorates, the printability and white paper glossiness tend to decrease, and the Runkel ratio is small ( When the wall thickness is small, it is difficult to obtain sufficient paper thickness and rigidity. In the present invention, when the Runkel ratio is preferably 0.4 to 2.0, more preferably 0.6 to 1.0, paper thickness, opacity, white paper glossiness, and rigidity are high, and fluffing and roughening are performed. Therefore, it becomes easier to obtain a coated paper with less printability. For example, even if the Runkel ratio is less than 0.4 or exceeds 2.0, the basis weight may be reduced by 6 g / m 2 or more, further 10 g / m 2 or more, particularly 16 g / m 2 or more. In addition, the appearance is not deteriorated, the paper thickness and the white paper glossiness are excellent, and furthermore, coated paper excellent in whiteness, opacity, rigidity and printability is easily obtained. If the Runkel ratio is less than 0.4, the coated paper having a basis weight of 111 to 121 g / m 2 is not preferable because the paper thickness tends to be less than 90 μm and the rigidity tends to decrease. If the Runkel ratio exceeds 2.0, the paper thickness tends to increase, but it is not preferable because fuzzing or roughening tends to occur on the surface of the coating layer.

ルンケル比は、パルプの原料として用いる木材の樹種を選別することで調整できる。   The Runkel ratio can be adjusted by selecting the wood species used as the raw material of the pulp.

針葉樹では、クロマツやツガは繊維幅が小さく壁厚が大きいためルンケル比が大きく(約4以上)、一方、モミ、トドマツ、アカマツ、ヒメコマツは繊維幅が大きく壁厚が小さいためルンケル比が小さく(約1〜2)、カラマツ、エゾマツ、スギ、ヒノキ、ヒバは更に小さい(約1以下)。   In conifers, black and pine have a small fiber width and a large wall thickness, so the Runkel ratio is large (about 4 or more), while fir, todomatsu, red pine, and himekomatsu have a large fiber width and small wall thickness, so the Runkel ratio is small ( About 1-2), larch, spruce, cedar, hinoki and hiba are even smaller (about 1 or less).

広葉樹では、ブナ、アカガシはルンケル比が大きく(約4以上)、マカンバ、ミズナラ、カツラ、ハリギリ、ヤチダモはルンケル比が小さく(約1〜2)、ドロノキ、シナノキ、キリ、アスペン、バーチ、メープルは更に小さい(約1以下)。   In broad-leaved trees, the beech and red oak have a large Runkel ratio (about 4 or more), and the beech, mizunara, wig, sharpness, and yachidamo have a small Runkel ratio (about 1-2), and the drunk, linden, gill, aspen, birch, and maple are Even smaller (about 1 or less).

本発明に用いるパルプは、離解して得られたパルプ繊維の繊維長が0.10mm以上0.65mm未満の範囲に最大値を有することが必須であり、好ましくはルンケル比が0.4〜2.0、さらに好ましくは0.6〜1.0となるよう、繊維長が長い針葉樹を用いることが好ましい。本発明においては、坪量が111〜121g/mの塗工紙であるにもかかわらず、紙厚が90〜110μmと十分な紙厚を有するので、引張強度や引裂強度などの強度が低くなりやすくなる。強度の低下を防止するためには、本発明においては、離解後パルプのルンケル比が0.4〜2.0(より好ましくは0.6〜1.0)のパルプを用いることが好ましい。 It is essential that the pulp used in the present invention has a maximum value in the range where the fiber length of the pulp fiber obtained by disaggregation is 0.10 mm or more and less than 0.65 mm, and preferably the Runkel ratio is 0.4 to 2. It is preferable to use a conifer having a long fiber length so as to be 0.0, more preferably 0.6 to 1.0. In the present invention, even though the basis weight is 111 to 121 g / m 2 , the paper thickness is 90 to 110 μm and has a sufficient paper thickness, so the strength such as tensile strength and tear strength is low. It becomes easy to become. In order to prevent the strength from being lowered, in the present invention, it is preferable to use a pulp having a Runker ratio of 0.4 to 2.0 (more preferably 0.6 to 1.0) after pulping.

上記樹種からパルプを製造する方法は、従来一般に製紙用途で使用される方法を用いることができ、パルプとしては化学パルプ、機械パルプ等を使用することができる。   As a method for producing pulp from the above tree species, a method generally used for papermaking can be used, and chemical pulp, mechanical pulp, or the like can be used as pulp.

化学パルプとしては、例えば、未晒針葉樹パルプ(NUKP)、未晒広葉樹パルプ(LUKP)、晒針葉樹パルプ(NBKP)、晒広葉樹パルプ(LBKP)等を原料パルプとして使用することができるが、より白色度の高い塗工紙を得るためには、晒パルプであるNBKP、LBKPを用いることが好ましい。   As the chemical pulp, for example, unbleached softwood pulp (NUKP), unbleached hardwood pulp (LUKP), bleached softwood pulp (NBKP), bleached hardwood pulp (LBKP) and the like can be used as the raw material pulp, but whiter In order to obtain a highly coated paper, it is preferable to use NBKP and LBKP which are bleached pulp.

機械パルプとしては、例えば、ストーングランドパルプ(SGP)、加圧ストーングランドパルプ(PGW)、リファイナーグランドパルプ(RGP)、ケミグランドパルプ(CGP)、サーモグランドパルプ(TGP)、グランドパルプ(GP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)、リファイナーメカニカルパルプ(RMP)等が挙げられる。この中でもサーモメカニカルパルプを用いると、異物が少なく紙の強度(剛度)も高いため好ましい。   Examples of the mechanical pulp include stone grand pulp (SGP), pressurized stone grand pulp (PGW), refiner ground pulp (RGP), chemi-ground pulp (CGP), thermo grand pulp (TGP), ground pulp (GP), Thermo mechanical pulp (TMP), Chemi thermo mechanical pulp (CTMP), refiner mechanical pulp (RMP), etc. are mentioned. Among these, the use of thermomechanical pulp is preferable because there are few foreign matters and the strength (rigidity) of the paper is high.

また、化学パルプや機械パルプを使用した古紙から再生される古紙パルプも使用することができ、例えば、雑誌古紙、チラシ古紙、オフィス古紙、上白古紙等から製造される離解・脱墨古紙パルプ、離解・脱墨・漂白古紙パルプ等が挙げられる。   In addition, waste paper pulp regenerated from waste paper using chemical pulp or mechanical pulp can also be used, for example, disaggregated / deinked waste paper pulp manufactured from magazine waste paper, flyer waste paper, office waste paper, upper white waste paper, etc. Examples include disaggregation, deinking and bleached waste paper pulp.

上記パルプの中でも機械パルプを用いると、短繊維長の繊維が得られやすく、離解後の繊維長が0.10mm以上0.65mm未満の範囲となりやすいため好ましい。特にサーモメカニカルパルプやケミサーモメカニカルパルプを用いると、離解後の繊維長が0.10mm以上0.65mm未満の微細繊維が多い一方でシャイブ(結束繊維)が少なく、見栄えに優れるパルプおよび塗工紙が得られやすいため好ましい。   Among the above pulps, it is preferable to use mechanical pulp because short fiber lengths can be easily obtained and the fiber length after disaggregation tends to be in the range of 0.10 mm or more and less than 0.65 mm. In particular, when thermomechanical pulp or chemithermomechanical pulp is used, pulp and coated paper that have excellent fine appearance due to a large number of fine fibers having a fiber length after disaggregation of 0.10 mm or more and less than 0.65 mm but a small number of shives (binding fibers). Is preferable because it is easily obtained.

本発明の原料パルプには、例えば、内添サイズ剤、紙力増強剤、紙厚向上剤、歩留向上剤等の、通常塗工紙に配合される種々の添加剤を、その種類及び配合量を適宜調整して内添することができる。   In the raw material pulp of the present invention, for example, various additives that are usually blended in coated paper, such as an internal sizing agent, a paper strength enhancer, a paper thickness improver, a yield improver, etc. The amount can be adjusted appropriately and added internally.

(填料)
上記原料パルプに、内添の填料としてシリカとシリカ以外の無機粒子とからなる複合粒子を含有することが好ましい。シリカとシリカ以外の無機粒子とからなる複合粒子は、従来一般に使用される炭酸カルシウムやタルク、クレーとは、その構成成分や形状が異なり不透明性に優れるため、塗工紙の不透明性を維持したまま基紙中の填料使用量を低減することができる。填料の含有量を低減することにより、基紙中のパルプ繊維同士の絡み合いが良好となるため、得られる塗工紙の剛度および紙厚を向上させることができる。
シリカおよびシリカ以外の無機粒子とからなる複合粒子以外にも、本発明の効果を阻害しない範囲で、従来製紙用途で用られている填料を添加することができる。填料としては、例えば軽質炭酸カルシウム、タルク、二酸化チタン、クレー、焼成クレー、合成ゼオライト、シリカ等の無機填料や、ポリスチレンラテックス、尿素ホルマリン樹脂等が挙げられる。
(Filler)
The raw pulp preferably contains composite particles composed of silica and inorganic particles other than silica as an internal filler. The composite particles composed of silica and inorganic particles other than silica are different from the conventional calcium carbonate, talc, and clay in their constituent components and shape, and have excellent opacity, so the opacity of the coated paper is maintained. The amount of filler used in the base paper can be reduced. By reducing the filler content, the entanglement between the pulp fibers in the base paper becomes good, so that the rigidity and paper thickness of the resulting coated paper can be improved.
In addition to composite particles composed of silica and inorganic particles other than silica, fillers conventionally used in papermaking applications can be added as long as the effects of the present invention are not impaired. Examples of the filler include inorganic fillers such as light calcium carbonate, talc, titanium dioxide, clay, calcined clay, synthetic zeolite, and silica, polystyrene latex, urea formalin resin, and the like.

(再生粒子)
本発明では填料として、不透明度に優れたシリカとシリカ以外の無機粒子とからなる複合粒子を用いることが好ましく、シリカ以外の無機粒子としては再生粒子または再生粒子凝集体を使用すると、より填料使用量を低減でき、特に紙厚、不透明度および剛度に優れた塗工紙が得られるため好ましい。
(Regenerated particles)
In the present invention, as the filler, it is preferable to use composite particles composed of silica having excellent opacity and inorganic particles other than silica. When inorganic particles other than silica are used as regenerated particles or regenerated particle aggregates, the use of filler is more preferable. The amount can be reduced, and in particular, a coated paper excellent in paper thickness, opacity and rigidity can be obtained, which is preferable.

(再生粒子および再生粒子凝集体の製造工程)
再生粒子は、古紙パルプを製造する古紙処理設備の脱墨工程においてパルプ繊維から分離された脱墨フロスや、製紙工場の排水から分離された製紙スラッジを主原料として、前記主原料を脱水、乾燥、燃焼及び粉砕工程を経て得られる。製造方法は、例えば特許第3869455号公報の記載の製法を用いることができる。内添填料として用いる場合は、公知の粉砕方法により粒子径を0.5〜十数μmにまで粉砕して粒子径を調整することが好ましい。粒子径が0.5μmよりも小さいと歩留りが悪く抄紙機系内において異物化しやすいため好ましくなく、十数μmよりも大きいと地合が悪化したり、強度(引張強度や引裂強度)が低下する可能性があるため好ましくない。
ここで再生粒子の粒子径は、レーザー解析式粒度分布測定装置「SALD−2200型」島津製作所社製により測定した体積平均粒子径である。
(Production process of regenerated particles and regenerated particle aggregates)
Recycled particles are deinked floss separated from pulp fibers in the deinking process of waste paper processing equipment that produces waste paper pulp, and paper sludge separated from paper mill wastewater as the main raw material, and the main raw material is dehydrated and dried. It is obtained through a combustion and pulverization process. For example, the manufacturing method described in Japanese Patent No. 3869455 can be used as the manufacturing method. When used as an internal filler, it is preferable to adjust the particle size by pulverizing the particle size to 0.5 to tens of μm by a known pulverization method. If the particle size is smaller than 0.5 μm, the yield is poor and it is easy to form a foreign substance in the paper machine system, which is not preferable. If the particle size is larger than 10 μm, the formation deteriorates and the strength (tensile strength and tear strength) decreases. This is not preferable because there is a possibility.
Here, the particle diameter of the regenerated particles is a volume average particle diameter measured by a laser analysis type particle size distribution measuring apparatus “SALD-2200 type” manufactured by Shimadzu Corporation.

上記方法で製造した再生粒子は、個々の粒子が幾つか集まって凝集した再生粒子凝集体を形成しており、ランチュウの肉瘤状のような、不定形な形をしている。この不定形性により、基紙に含有させた場合は紙厚が出やすく、また、高不透明度の粒子であるため填料含有量を低減でき剛度が高くなりやすいため好ましい。   The regenerated particles produced by the above method form a regenerated particle aggregate in which several individual particles are aggregated, and have an irregular shape such as a lump-like mass. Due to this irregular shape, when it is contained in the base paper, the paper thickness is likely to be obtained, and since it is a highly opaque particle, the filler content can be reduced and the rigidity tends to be high, which is preferable.

これら再生粒子は、カルシウム、ケイ素及びアルミニウムを酸化物換算で30〜82:9〜35:9〜35の質量割合で含む。好ましくは、40〜82:9〜30:9〜30の質量割合、より好ましくは、60〜82:9〜20:9〜20の割合である。   These regenerated particles contain calcium, silicon, and aluminum at a mass ratio of 30 to 82: 9 to 35: 9 to 35 in terms of oxides. The mass ratio is preferably 40 to 82: 9 to 30: 9 to 30, more preferably 60 to 82: 9 to 20: 9 to 20.

焼成工程において、再生粒子または再生粒子凝集体のカルシウム、ケイ素及びアルミニウムの酸化物換算割合を調整するための方法としては、脱墨フロスにおける原料構成を調整することが本筋ではあるが、乾燥・分級工程、焼成工程において、出所が明確な塗工フロスや調整工程フロスをスプレー等で工程内に含有させる手段や、焼却炉スクラバー石灰を含有させる手段にて調整することも可能である。   As a method for adjusting the calcium, silicon, and aluminum oxide conversion ratio of regenerated particles or regenerated particle aggregates in the firing step, the main component is to adjust the raw material composition in the deinking floss, but drying and classification In the process and the baking process, it is possible to adjust the coating floss and the adjustment process floss with a clear origin by means of including in the process by spraying or by means of containing the incinerator scrubber lime.

例えば、再生粒子や無機粒子凝集体中のカルシウムの調整には、中性抄紙系の排水スラッジや、塗工紙製造工程の排水スラッジを用い、ケイ素の調整には、不透明度向上剤としてホワイトカーボンなどが多量に添加されている新聞用紙製造系の排水スラッジを、アルミニウムの調整には酸性抄紙系等の硫酸バンドの使用がある抄紙系の排水スラッジや、タルク使用の多い上質紙抄造工程における排水スラッジを適宜用いることができる。   For example, neutral papermaking wastewater sludge and wastewater sludge from the coated paper manufacturing process are used to adjust calcium in recycled particles and inorganic particle aggregates, and white carbon as an opacity improver is used to adjust silicon. Wastewater sludge from newsprint manufacturing systems that contain a large amount of additives, papermaking drainage sludge that uses sulfuric acid bands such as acidic papermaking to adjust aluminum, and wastewater from high-quality papermaking processes that often use talc. Sludge can be used as appropriate.

〔付帯工程〕
製造設備において、より品質の安定化を求めるには、再生粒子や再生粒子凝集体の粒度を、各工程で均一に揃えるための分級を行うことが好ましく、粗大や微小粒子を前工程にフィードバックすることでより品質の安定化を図ることができる。
[Attached process]
In order to obtain more stable quality in production facilities, it is preferable to classify the particle size of regenerated particles and regenerated particle aggregates uniformly in each step, and feed back coarse and fine particles to the previous step. In this way, quality can be further stabilized.

また、乾燥工程の前段階において、脱水処理を行った脱墨フロスを造粒することが好ましく、更には、造粒物の粒度を均一に揃えるための分級を行うことがより好ましく、粗大や微小の造粒粒子を前工程にフィードバックすることでより品質の安定化を図ることができる。造粒においては、公知の造粒設備を使用でき、回転式、攪拌式、押し出し式等の設備が好適である。   In addition, it is preferable to granulate the deinked floss that has been subjected to dehydration in the previous stage of the drying process, and it is more preferable to classify the granulated product to have a uniform particle size. It is possible to further stabilize the quality by feeding back the granulated particles to the previous process. In granulation, a known granulation facility can be used, and facilities such as a rotary type, a stirring type and an extrusion type are suitable.

製造設備においては、再生粒子や再生粒子凝集体以外の異物を除去することが好ましく、例えば古紙パルプ製造工程の脱墨工程に至る前段階のパルパーやスクリーン、クリーナー等で砂、プラスチック異物、金属等を除去することが、除去効率の面で好ましい。特に鉄分の混入は、鉄分が酸化により微粒子の白色度低下の起因物質になるため、鉄分の混入を避け、選択的に取り除くことが推奨され、各工程を鉄以外の素材で設計又はライニングし、磨滅等により鉄分が系内に混入することを防止するとともに、更に、乾燥・分級設備内等に磁石等の高磁性体を設置し選択的に鉄分を除去することが好ましい。   In production facilities, it is preferable to remove foreign substances other than regenerated particles and regenerated particle aggregates. For example, sand, plastic foreign materials, metals, etc. with pulpers, screens, cleaners, etc., before the deinking process of the used paper pulp manufacturing process It is preferable from the viewpoint of removal efficiency to remove. In particular, iron contamination is a substance that reduces the whiteness of fine particles due to oxidation, so it is recommended to avoid iron contamination and selectively remove it. Design or lining each process with materials other than iron, It is preferable to prevent iron from being mixed into the system due to abrasion or the like, and to further remove iron selectively by installing a high magnetic material such as a magnet in the drying / classifying equipment.

〔シリカ複合再生粒子、シリカ複合再生粒子凝集体〕
本発明においては、一般に製紙用途で使用する填料、すなわち、炭酸カルシウム(重質および軽質)、クレー、タルクなどをシリカで複合したシリカ複合無機粒子を用いることが好ましい。好ましくは、上述の再生粒子または再生粒子凝集体の表面をシリカで複合したシリカ複合再生粒子またはシリカ複合再生粒子凝集体を用いると、より嵩高で不透明度が高い粒子となるため、填料含有量を低減させることができ、高い紙厚および不透明性を有する塗工紙を得やすい。本発明において紙の剛度の低下を防止するためには、パルプ繊維同士の繊維間結合を阻害する填料を少なくすることが好ましいが、填料が減少すると不透明度が低下し易くなるため、不透明性と剛度とを両立させにくかった。しかしながら本発明において好ましくは、填料としてシリカおよびシリカ以外の無機粒子からなる複合粒子、特に不透明性に優れたシリカ複合再生粒子またはシリカ複合再生粒子凝集体を用いることで填料配合量を低減できるため、紙厚および白紙光沢度のみならず、不透明度、剛度、印刷適性にも優れた塗工紙が得られやすくなる。
[Silica composite regenerated particles, silica composite regenerated particles aggregate]
In the present invention, it is preferable to use fillers generally used for papermaking, that is, silica composite inorganic particles in which calcium carbonate (heavy and light), clay, talc and the like are combined with silica. Preferably, the use of silica composite regenerated particles or silica composite regenerated particle aggregates in which the surfaces of the above regenerated particles or regenerated particle aggregates are combined with silica results in more bulky and highly opaque particles. This makes it easy to obtain a coated paper having a high paper thickness and opacity. In order to prevent a decrease in paper stiffness in the present invention, it is preferable to reduce the amount of filler that inhibits interfiber bonding between pulp fibers. However, if the amount of filler decreases, opacity tends to decrease. It was difficult to balance stiffness. However, preferably in the present invention, the amount of filler can be reduced by using composite particles composed of silica and inorganic particles other than silica as filler, particularly silica composite regenerated particles or silica composite regenerated particle aggregates excellent in opacity. A coated paper excellent not only in paper thickness and white paper gloss, but also in opacity, rigidity, and printability is easily obtained.

再生粒子または再生粒子凝集体にシリカを析出させる好適な方策としては、特許第3907688号公報や、特許第3935496号公報に記載の方法で行うことが出来る。但し、次のとおり行うことで、より不透明性に優れたシリカ複合再生粒子またはシリカ複合再生粒子凝集体が得られるため好ましい。   As a suitable measure for precipitating silica on the regenerated particles or regenerated particle aggregates, the method described in Japanese Patent No. 3907688 or Japanese Patent No. 393596 can be used. However, it is preferable to carry out as follows because silica composite regenerated particles or silica composite regenerated particle aggregates having better opacity can be obtained.

<シリカ複合粒子>
次に本発明のシリカ複合粒子について、シリカ複合再生粒子を例に取り、製造方法も示しながらさらに詳説する。
<Silica composite particles>
Next, the silica composite particles of the present invention will be described in more detail while taking the silica composite regenerated particles as an example and showing the production method.

(シリカ複合処理工程)
上述のようにして製紙スラッジや脱墨フロスを主原料とする再生粒子を珪酸アルカリ水溶液に添加・分散しスラリーとするとともに、撹拌しながら50℃〜100℃の温度範囲で、鉱酸を添加する。より望ましくは少なくとも2段階に分けて添加し、シリカ複合の反応を行う。
(Silica composite treatment process)
As described above, regenerated particles mainly made of paper sludge and deinking floss are added to and dispersed in an alkali silicate aqueous solution, and a mineral acid is added in a temperature range of 50 ° C. to 100 ° C. while stirring. . More preferably, it is added in at least two stages to carry out a silica composite reaction.

本形態の再生粒子の填料用途等への好適な粒子径は、粒子径0.5μm〜十数μm、好適には1.0〜3.0μmである。粉砕工程後における再生粒子の粒子径は、レーザー解析式粒度分布測定装置「SALD−2200型」島津製作所社製により測定した体積平均粒子径である。   A suitable particle size of the regenerated particles of this embodiment for use as a filler is a particle size of 0.5 μm to several tens of μm, preferably 1.0 to 3.0 μm. The particle diameter of the regenerated particles after the pulverization step is a volume average particle diameter measured by a laser analysis type particle size distribution measuring apparatus “SALD-2200 type” manufactured by Shimadzu Corporation.

再生粒子の粒子径が0.5μmより過度に小さいと、シリカ複合時に十分な粒度がえられないおそれがあるほか、シリカを複合させる際にガラス状に目詰まりさせるおそれがある。本発明の範囲内であると、シリカ複合反応を十分に促進できる。他方、過度に大きい粒子径では過大なシリカ複合再生粒子が生じやすく、不透明性が低下する恐れがある。   If the particle diameter of the regenerated particles is excessively smaller than 0.5 μm, a sufficient particle size may not be obtained at the time of silica composite, and there is a possibility of clogging into a glass state when silica is composited. Within the scope of the present invention, the silica composite reaction can be sufficiently promoted. On the other hand, if the particle size is excessively large, excessively regenerated silica composite particles are likely to be produced, and the opacity may be lowered.

シリカ複合は、再生粒子表面に粒子径10〜20nm(走査型電子顕微鏡による実測の粒子径)のシリカゾル粒子を生成させる反応操作である。シリカゾル粒子の粒子径は、反応時の撹拌条件、鉱酸の添加条件などによりコントロール可能である。   Silica composite is a reaction operation for generating silica sol particles having a particle diameter of 10 to 20 nm (measured particle diameter by a scanning electron microscope) on the surface of regenerated particles. The particle size of the silica sol particles can be controlled by the stirring conditions during the reaction, the addition conditions of the mineral acid, and the like.

本発明者等は、従来は内添する微細粒子の全細孔による細孔容積が吸油量や不透明度の指標とされていた知見を越えて、実質の吸油性は無機微粒子の細孔容積だけでなく、無機微粒子の粒子間に油を保持する能力の寄与が高いことを知見し、鋭意検討を重ね、本発明にて好適に用いることができるシリカ複合再生粒子においては、細孔半径が10,000オングストローム以下の細孔が前記の実質の吸油性に大きく寄与していることを見出している。   The present inventors have surpassed the knowledge that the pore volume of all fine pores of the internally added fine particles has been regarded as an index of oil absorption and opacity, and the actual oil absorption is only the pore volume of inorganic fine particles. In addition, the silica composite regenerated particles that can be suitably used in the present invention have been found to have a high contribution of the ability to retain oil between the particles of inorganic fine particles. It has been found that pores of 1,000 angstroms or less greatly contribute to the substantial oil absorption.

本発明においてえられるシリカ複合再生粒子の細孔容積は、水銀圧入式ポロシメーター(テルモ社製「PASCAL 140/240」)を用いた測定値で、10,000Å以下の領域の細孔容積が0.30〜1.10cc/gであり、好適には0.43〜1.03cc/g、より好ましくは0.47〜1.00cc/gである。   The pore volume of the silica composite regenerated particles obtained in the present invention is a value measured using a mercury intrusion porosimeter (“PASCAL 140/240” manufactured by Terumo), and the pore volume in the region of 10,000 mm or less is 0.00. 30 to 1.10 cc / g, preferably 0.43 to 1.03 cc / g, more preferably 0.47 to 1.00 cc / g.

10,000Å以下の領域の細孔の細孔容積が0.30cc/g未満では、十分な吸油量の発現がえられず、1.10cc/gを超えると吸油量の向上が見られるものの、不透明度の低下が生じやすい。   If the pore volume of the pores in the region of 10,000 mm or less is less than 0.30 cc / g, sufficient oil absorption cannot be expressed, and if it exceeds 1.10 cc / g, the oil absorption is improved. Decrease in opacity is likely to occur.

本発明における好適な態様においては、えられるシリカ複合再生粒子の粒子径を1.0〜10.0μmの範囲とすること、さらにはシリカ複合再生粒子に含まれる酸化物換算でのシリカの比率を6.0〜42.0質量%とすることで、高い吸油量と不透明度向上効果をえることができる。   In a preferred embodiment of the present invention, the particle diameter of the obtained silica composite regenerated particles is in the range of 1.0 to 10.0 μm, and further the ratio of silica in terms of oxide contained in the silica composite regenerated particles is set. By setting the content to 6.0 to 42.0% by mass, a high oil absorption amount and an opacity improving effect can be obtained.

珪酸アルカリ水溶液に関しては特に限定されないが、珪酸ナトリウム溶液(3号水ガラス)が入手に容易である点で望ましい。珪酸アルカリ溶液の濃度は水溶液中の珪酸分(SiO換算)で3〜10質量%が好適である。10質量%を超えると再生粒子とシリカとが複合された複合体ではなく、再生粒子がホワイトカーボンで被覆されてしまい、芯部の再生粒子の多孔性、光学的特性が発揮されなくなってしまう危険性がある。また、3質量%未満では複合粒子中のシリカ成分が低下するため、シリカ複合再生粒子が形成しにくくなってしまう。 Although it does not specifically limit regarding alkali silicate aqueous solution, A sodium silicate solution (No. 3 water glass) is desirable at the point which is easy to acquire. The concentration of the alkali silicate solution is preferably 3 to 10% by mass in terms of the silicic acid content in the aqueous solution (in terms of SiO 2 ). If the amount exceeds 10% by mass, the regenerated particles are not a composite of regenerated particles and silica, but the regenerated particles are covered with white carbon, and the porosity and optical characteristics of the regenerated particles in the core may not be exhibited. There is sex. On the other hand, if the amount is less than 3% by mass, the silica component in the composite particles is lowered, so that it is difficult to form silica composite regenerated particles.

再生粒子または再生粒子凝集体を珪酸アルカリ水溶液に添加、分散しスラリーを調製する場合におけるスラリー濃度は、8〜14質量%が望ましい。スラリー濃度を調整することにより、形成される再生粒子のシリカ複合再生粒子の粒径がコントロールされると同時に再生粒子とシリカの組成比率が決まる。本発明で使用される鉱酸としては希硫酸、希塩酸、希硝酸などの鉱酸の希釈液等が挙げられるが、価格、ハンドリングの点で希硫酸が最も望ましい。さらに、希硫酸を使用する場合の添加時の濃度は、生産効率向上と複合シリカの均質性の面から4〜10N程度の濃度で鉱酸を添加することが好ましい。4N未満では反応が遅く、10Nを超えると局部的な反応が生じ、不定形や偏在するシリカ複合粒子が発生しやすい問題が生じる場合がある。また、鉱酸添加量が多いほど短時間内にシリカが析出するので、それらの条件に併せて添加速度を調整することが望ましい。5分以内の添加は、均一な反応系の構成が不十分になる。   The slurry concentration in the case where a regenerated particle or regenerated particle aggregate is added to and dispersed in an alkali silicate aqueous solution to prepare a slurry is preferably 8 to 14% by mass. By adjusting the slurry concentration, the particle size of the silica composite regenerated particles of the regenerated particles to be formed is controlled, and at the same time, the composition ratio of the regenerated particles and silica is determined. Mineral acids used in the present invention include dilute sulfuric acid, dilute hydrochloric acid, dilute nitric acid and other mineral acids, and dilute sulfuric acid is most desirable from the viewpoint of price and handling. Furthermore, when using diluted sulfuric acid, it is preferable to add the mineral acid at a concentration of about 4 to 10 N from the viewpoint of improving production efficiency and homogeneity of the composite silica. If it is less than 4N, the reaction is slow, and if it exceeds 10N, a local reaction occurs, and there may be a problem that amorphous composite particles that are unevenly distributed are likely to be generated. Moreover, since silica precipitates in a short time, so that there is much mineral acid addition amount, it is desirable to adjust an addition rate according to those conditions. Addition within 5 minutes makes the structure of the uniform reaction system insufficient.

本発明で好適に用いる再生粒子または再生粒子凝集体は、カルシウム、アルミニウム、シリカを構成元素として含有しているために、過度の濃度の鉱酸添加は、再生粒子の変質を生じる恐れがある。   Since the regenerated particles or regenerated particle aggregates preferably used in the present invention contain calcium, aluminum, and silica as constituent elements, addition of an excessive concentration of mineral acid may cause alteration of the regenerated particles.

前述のように、本発明は、再生粒子または再生粒子凝集体に対して珪酸アルカリ水溶液を固形分比で、100:5から100:15の割合で添加・分散しスラリーとするとともに、撹拌しながら50〜100℃の温度範囲で、鉱酸を少なくとも2段階に分けて添加し、シリカ複合の反応を行うものである。   As described above, in the present invention, an aqueous alkali silicate solution is added and dispersed at a solid content ratio of 100: 5 to 100: 15 with respect to regenerated particles or regenerated particle aggregates to form a slurry, while stirring. In the temperature range of 50 to 100 ° C., the mineral acid is added in at least two stages to perform a silica composite reaction.

再生粒子または再生粒子凝集体に対する珪酸アルカリ水溶液の割合が、固形分比で100:5より少ないと、えられるシリカ複合再生粒子のシリカ複合効果が低く不透明性の向上効果がえられにくく、100:15を超える割合では、吸油量が増加する傾向が顕著になるため、本件発明において好適に用いられる塗工紙の基紙として用いた場合に塗工液の基紙への浸透が過度になり、塗工面の平坦性や基紙表面の被覆性が損なわれ、印刷適性が低下する問題が生じやすい。   When the ratio of the alkali silicate aqueous solution to the regenerated particles or the regenerated particle aggregates is less than 100: 5 in terms of solid content, the silica composite effect of the obtained silica composite regenerated particles is low and the effect of improving opacity is difficult to obtain. When the ratio exceeds 15, the tendency to increase the oil absorption becomes remarkable, so that the penetration of the coating liquid into the base paper becomes excessive when used as the base paper of the coated paper suitably used in the present invention, The flatness of the coated surface and the covering property of the base paper surface are impaired, and a problem that printability is deteriorated easily occurs.

再生粒子を珪酸アルカリ水溶液に添加する段階において、珪酸アルカリ水溶液の温度を50℃以上の温度に加温することもできるし、その後に加熱することもできる。予め、珪酸アルカリ水溶液の温度を50℃以上の温度に加温した状態で、多孔性の再生粒子を添加すると、加熱による流動性が向上するため、スラリーを均質化させることが容易になり、より均質な珪酸アルカリおよび再生粒子の混合スラリーをえることができる。   In the step of adding the regenerated particles to the alkali silicate aqueous solution, the temperature of the alkali silicate aqueous solution can be heated to a temperature of 50 ° C. or higher, and then heated. When the porous regenerated particles are added in a state where the temperature of the aqueous alkali silicate solution is heated to 50 ° C. or higher in advance, the fluidity by heating is improved, so that the slurry can be easily homogenized. A homogeneous mixed slurry of alkali silicate and regenerated particles can be obtained.

他方で、均質化した珪酸アルカリと再生粒子のスラリーを調製した後に、加熱撹拌することもできる。この場合の熱源としては、公知の熱源が利用できるが、例えば工場内の生蒸気(例として13kg/m、120℃)を吹き込むことにより、昇温時間の短縮が図れるとともに、再生粒子スラリーを添加した際の温度低下を防ぎ、迅速に昇温と反応を進めることが可能になり、生産効率向上が図れる。 On the other hand, after preparing a homogenized alkali silicate and regenerated particle slurry, the mixture can be heated and stirred. As a heat source in this case, a known heat source can be used. For example, by blowing live steam (for example, 13 kg / m 2 , 120 ° C.) in the factory, the temperature raising time can be shortened, and the regenerated particle slurry can be used. It is possible to prevent the temperature from being reduced when added, and to rapidly increase the temperature and the reaction, thereby improving the production efficiency.

本発明でのシリカ複合再生粒子の製造時の反応温度に関しては、50〜100℃のスラリー温度範囲、特に50〜98℃のスラリー温度範囲が望ましい。本発明者らの鋭意検討の結果から、本発明に使用する再生粒子との反応温度はシリカの生成、結晶成長速度および形成されたシリカ複合再生粒子の力学的強度に影響を及ぼす。反応温度が50℃未満ではシリカの生成・成長速度が生じないかまたは遅く、シリカ複合再生粒子のシリカ複合性に劣り、充分に複合しにくく、填料内添紙の抄造時にかかる剪断力で複合が壊れやすい。100℃を超えると、水系反応であるためオートクレーブを使用しなければならないため反応工程が複雑になってしまう。しかも、過度に反応が進み、緻密なシリカ複合再生粒子形態となり、えられるシリカ複合再生粒子の不透明度が低下し目的のものが行われにくい。   Regarding the reaction temperature during the production of the silica composite regenerated particles in the present invention, a slurry temperature range of 50 to 100 ° C., particularly a slurry temperature range of 50 to 98 ° C. is desirable. As a result of intensive studies by the present inventors, the reaction temperature with the regenerated particles used in the present invention affects the formation of silica, the crystal growth rate, and the mechanical strength of the formed silica composite regenerated particles. When the reaction temperature is less than 50 ° C., the rate of silica formation / growth does not occur or is slow, the silica composite regenerated particles have poor silica composite properties, are difficult to combine sufficiently, and the composite is formed by the shearing force applied during the making of the filler-added paper. Fragile. If it exceeds 100 ° C., the reaction process becomes complicated because an autoclave must be used because it is an aqueous reaction. In addition, the reaction proceeds excessively to form a dense silica composite regenerated particle form, and the opacity of the obtained silica composite regenerated particle is lowered, so that the intended product is difficult to perform.

本発明では、鉱酸の少なくとも2段の添加と、その際の温度管理を行うのが望ましい。すなわち、第1段階目の鉱酸添加時のスラリー温度が50〜75℃であり、第2段階目以降の鉱酸添加時のスラリー温度が少なくとも第1段階目よりも10℃以上昇温することが望ましい。具体的に望ましい温度条件としては、第1段階の液温を50〜75℃、第2段階を70以上〜100℃と鉱酸の添加段数に併せて昇温させること、反応の最終段階で90℃以上で98℃以下の温度状態にすることであり、これらの温度条件によって、より均質なシリカ複合再生粒子をえることができる。   In the present invention, it is desirable to add at least two stages of mineral acid and to control the temperature at that time. That is, the slurry temperature at the time of adding the mineral acid in the first stage is 50 to 75 ° C., and the slurry temperature at the time of adding the mineral acid after the second stage is at least 10 ° C. higher than that at the first stage. Is desirable. Specifically, the desirable temperature conditions are that the liquid temperature in the first stage is 50 to 75 ° C., the temperature in the second stage is 70 to 100 ° C. in accordance with the number of mineral acid addition stages, and 90 in the final stage of the reaction. The temperature is set to a temperature of not lower than 98 ° C. and not higher than 98 ° C. Under these temperature conditions, more uniform silica composite regenerated particles can be obtained.

最終反応液のpHは8.0〜11.0が好ましく、8.3〜10.0がより好ましく、8.5〜9.0が最も好ましい。   The pH of the final reaction solution is preferably 8.0 to 11.0, more preferably 8.3 to 10.0, and most preferably 8.5 to 9.0.

従来の珪酸アルカリと鉱酸を反応させてえられるホワイトカーボンの製造においては、珪酸アルカリと鉱酸の反応を完了させるため、pH5.5〜7.0になるまで硅酸アルカリ中に鉱酸を添加する方法が採用されているが、pHが7.0以下と酸性領域になるまで鉱酸を添加すると、再生粒子に含まれるカルシウム成分が水酸化カルシウムに変化しやすくなり、えられるシリカ複合再生粒子の粒子径が過度に低下したり、形状が不均質になり、紙への歩留り低下や紙粉の発生、十分な不透明性がえられにくくなるため好ましくない。pHが11.0を超えると、硅酸アルカリと鉱酸の反応が鈍り、再生粒子表面にシリカが複合しにくくなるため、十分な不透明性がえられにくい問題が生じやすい。   In the production of white carbon obtained by reacting a conventional alkali silicate with a mineral acid, in order to complete the reaction between the alkali silicate and the mineral acid, the mineral acid is added to the alkali oxalate until the pH reaches 5.5 to 7.0. Addition method is adopted, but when mineral acid is added until the pH reaches 7.0 or less, the calcium component contained in the regenerated particles easily changes to calcium hydroxide, and the resulting silica composite regeneration This is not preferable because the particle diameter of the particles is excessively decreased, the shape is not uniform, the yield on paper is reduced, the generation of paper dust, and sufficient opacity are difficult to obtain. When the pH exceeds 11.0, the reaction between the alkali oxalate and the mineral acid becomes dull and it becomes difficult for silica to be combined with the surface of the regenerated particles.

鉱酸の添加を1段階で行う場合、鉱酸の添加時間を、pHが1低下するのに40分以上添加時間がかかるように添加量を設定することが好ましい。   When the mineral acid is added in one stage, it is preferable to set the addition amount of the mineral acid so that it takes 40 minutes or more for the pH to decrease by one.

本発明において前述のように鉱酸は2段階以上で添加するのが望ましい。この場合、各段階における鉱酸の添加量を均等に添加することが均質なシリカ複合をえるうえで好ましい。また、1段階の添加(硅酸アルカリ水溶液に対して鉱酸が20〜50%の中和率となるまでの添加)後に、5分〜20分程度の保留時間を作ることで、シリカ複合反応に保留状態を設け、再生粒子表面に均質にシリカを複合させ、第2段階目の鉱酸添加により、さらにシリカの積層複合化を促進させることが可能になり、再生粒子の表面に、より均一にシリカを複合することができる。   In the present invention, as described above, the mineral acid is preferably added in two or more stages. In this case, in order to obtain a homogeneous silica composite, it is preferable to uniformly add the mineral acid in each stage. In addition, after one stage of addition (addition until the mineral acid reaches a neutralization rate of 20 to 50% with respect to the aqueous alkali oxalate solution), a holding time of about 5 minutes to 20 minutes is made, so that the silica complex reaction In addition, the silica is homogeneously compounded on the surface of the regenerated particles, and the addition of the mineral acid in the second stage can further promote the formation of a composite layer of silica, which makes the surface of the regenerated particles more uniform. Silica can be composited with.

1段階の鉱酸添加時間は、10分〜45分の時間がかかるように添加量を設定することが、再生粒子表面にシリカを均等に複合させるにおいて好ましい。2段階以上で鉱酸を添加する場合も、鉱酸の添加時間をpHの変動においてpHが1低下するのに10〜120分程度の時間がかかるように添加量を設定することが、均質なシリカ複合に好ましい。   The addition amount of the mineral acid for one stage is preferably set so that it takes 10 minutes to 45 minutes in order to uniformly combine silica on the surface of the regenerated particles. Even when the mineral acid is added in two or more stages, it is homogeneous to set the addition amount so that it takes about 10 to 120 minutes for the pH of the mineral acid to decrease by 1 in the fluctuation of the pH. Preferred for silica composites.

本反応工程における撹拌は、例えば未反応ゾーンを作らないため、撹拌羽根を逆転させるなどして乱流を生じさせ、あるいは邪魔板を撹拌槽内に設けるなどの撹拌手段を採用することが好ましい。   In the agitation in this reaction step, for example, an unreacted zone is not formed. Therefore, it is preferable to employ an agitation means such as generating a turbulent flow by reversing the agitation blade or providing a baffle plate in the agitation tank.

えられるシリカ複合再生粒子の粒子径は0.5〜10.0μm、シリカ複合再生粒子は、好ましくは、カルシウム、ケイ素およびアルミニウムを、酸化物換算で40〜83:6〜42:7〜18の質量%割合とする。この成分分析は、堀場製作所製のX線マイクロアナライザーを用い、加速電圧(15KV)にて元素分析を行い、構成成分より酸化物換算した値である。   The obtained silica composite regenerated particles have a particle size of 0.5 to 10.0 μm, and the silica composite regenerated particles preferably have calcium, silicon and aluminum in an oxide conversion of 40 to 83: 6 to 42: 7 to 18. The mass% ratio. This component analysis is a value obtained by performing elemental analysis at an acceleration voltage (15 KV) using an X-ray microanalyzer manufactured by Horiba, Ltd., and converting the component to oxide.

えられるシリカ複合再生粒子のより好適な粒子径は0.6〜9.7μm、最も好適な範囲は1.3〜9.0μm、より好適には2.0〜8.8μmである。   The more preferable particle diameter of the obtained silica composite regenerated particles is 0.6 to 9.7 μm, the most preferable range is 1.3 to 9.0 μm, and more preferably 2.0 to 8.8 μm.

シリカ複合再生粒子の粒子径が0.5μm未満では、シリカ複合の効果が十分に発現できず、吸油量及び不透明度の向上効果が得にくい。シリカ複合再生粒子の粒子径が10.0μmを超えると、塗工紙用の基紙に用いる填料としては、塗工液の吸収能力が過大となり、塗工層表面の平坦性を阻害するだけでなく、引張り、引裂き等の所謂紙質強度の低下や紙粉、抄紙設備の汚損をまねく問題が発現しやすい。   When the particle diameter of the silica composite regenerated particles is less than 0.5 μm, the effect of silica composite cannot be sufficiently exhibited, and the effect of improving the oil absorption and opacity is difficult to obtain. When the particle diameter of the silica composite regenerated particles exceeds 10.0 μm, the filler used for the base paper for the coated paper becomes excessive in the absorption capacity of the coating liquid, and it simply inhibits the flatness of the coating layer surface. However, problems such as pulling, tearing, and so-called decrease in paper quality, paper dust, and papermaking equipment are likely to occur.

シリカ成分を複合させた後における、酸化物換算でのシリカ(珪素)の比率を6.0〜42.0質量%とすることで、えられるシリカ複合再生粒子を用いた塗工紙の印刷不透明度の向上効果をえることができる。   Printing of coated paper using silica composite regenerated particles obtained by making the ratio of silica (silicon) in terms of oxide after compounding the silica component 6.0 to 42.0% by mass The effect of improving transparency can be obtained.

好適にはシリカ成分の割合を38.0〜42.0質量%、さらに好適には39.0〜42.0質量%とすることが好ましい。シリカ成分の比率が6.0質量%未満では、十分にシリカ複合が行なえていないため、吸油量、不透明度の向上がえられにくく、シリカ成分の比率が42.0質量%を超えると微細なシリカ粒子の充填が過度となり吸油量、不透明度の低下をまねく問題が生じる場合がある。   The ratio of the silica component is preferably 38.0 to 42.0% by mass, and more preferably 39.0 to 42.0% by mass. If the ratio of the silica component is less than 6.0% by mass, the silica composite is not sufficiently performed. Therefore, it is difficult to improve the oil absorption and opacity. If the ratio of the silica component exceeds 42.0% by mass, the silica component is fine. There may be a problem that the silica particles are excessively filled, resulting in a decrease in oil absorption and opacity.

シリカ複合による付随効果として、シリカ複合により、白色度が向上する。白色度向上により白紙不透明度は低下する傾向が生じるものの、高い吸油量を有するシリカ複合再生粒子を用いることで、塗工紙に用いられるオフセットインクを用紙内部で吸収できるため、印刷不透明度をさらに向上させることができる。   As an incidental effect of the silica composite, the whiteness is improved by the silica composite. Although white paper opacity tends to decrease due to whiteness improvement, by using silica composite recycled particles with high oil absorption, offset ink used for coated paper can be absorbed inside the paper, further increasing printing opacity Can be improved.

シリカを再生粒子に複合させることで、再生粒子のもつカチオン性とシリカのアニオン性により繊維間結合を適度に阻害し、嵩高性を発揮する。   By combining the silica with the regenerated particles, the interfiber bonding is moderately inhibited by the cationic property of the regenerated particles and the anionic property of the silica, and the bulkiness is exhibited.

(用途または適用)
本発明のシリカ複合再生粒子は、元来ポーラスな再生粒子の表面をシリカで複合したものであることから比表面積が大きく、これを内添用の填料として使用すると、紙厚、白色度および不透明度が高い塗工紙をえることができる。
(Use or application)
The silica composite regenerated particles of the present invention have a large specific surface area because the surface of porous regenerated particles is originally composited with silica, and when this is used as a filler for internal addition, the paper thickness, whiteness, Highly transparent coated paper can be obtained.

さらに、シリカ複合再生粒子の吸油量は、50〜180ml/100gの範囲が好ましい。これは、この範囲のシリカ複合再生粒子を内添填料として使用する場合、紙層中において、シリカ複合再生粒子が紙層中に含浸されるインクのビヒクル分や有機溶剤等を吸収し、用紙の印刷不透明度が低下するのを抑制し、また、インクのビヒクル分や有機溶剤等を吸収することで、インク乾燥性やニジミの防止効果が顕著になるためである。一方、吸油量が50ml/100g未満の場合には上記の効果が十分でなく、シリカ複合再生粒子がインクの吸収・乾燥性を阻害する傾向が生じる場合がある。また吸油量が180ml/100gを超えると、インクの吸収性が高いためインクの沈みこみ、いわゆる発色性が劣る問題が生じる場合がある。   Furthermore, the oil absorption amount of the silica composite regenerated particles is preferably in the range of 50 to 180 ml / 100 g. This is because when the silica composite regenerated particles in this range are used as an internal filler, the silica composite regenerated particles in the paper layer absorb the ink, the organic solvent, etc. impregnated in the paper layer. This is because a decrease in printing opacity is suppressed, and the effect of preventing ink drying and blurring becomes conspicuous by absorbing the ink and the organic solvent. On the other hand, when the oil absorption is less than 50 ml / 100 g, the above effect is not sufficient, and the silica composite regenerated particles may tend to inhibit the ink absorption and drying properties. On the other hand, when the oil absorption exceeds 180 ml / 100 g, there is a case where the ink sinks and the so-called color developability is inferior due to high ink absorbability.

シリカ複合粒子の吸油量は、シリカ複合反応工程における反応温度、添加時間、保留時間、pH、粘度調整や、用いる再生粒子の燃焼手段、粒子径などにより調整可能であるが、シリカ複合反応において10,000Å以下の細孔容積が0.30〜1.10cc/gとなるように調整すると、高い吸油量を示し、紙の不透明度を向上できるシリカ複合再生粒子を得ることができ、このシリカ複合再生粒子を含有したシリカ複合再生粒子内添紙においては、高い不透明度を得ることができる。   The oil absorption amount of the silica composite particles can be adjusted by adjusting the reaction temperature, the addition time, the holding time, the pH, the viscosity, the combustion means of the regenerated particles used, the particle diameter, etc. in the silica composite reaction step. When adjusted so that the pore volume of 1,000 Å or less is 0.30 to 1.10 cc / g, it is possible to obtain silica composite regenerated particles that exhibit high oil absorption and can improve paper opacity. High opacity can be obtained in the silica composite regenerated particle-containing paper containing regenerated particles.

以上、再生粒子を例にシリカ複合再生粒子の製造方法を詳述したが、再生粒子の代わりに再生粒子凝集体や、従来一般に製紙用途で填料として使用している炭酸カルシウム(重質および軽質)、タルク、クレー等を用いて、シリカ複合無機粒子を製造し、塗工紙に内添することができる。
このようにシリカを複合した粒子は、粒子表面がシリカで複合されているためワイヤー磨耗度が低くでき、填料として好適に使用することができる。紙に内添する無機粒子においては、粒子が硬いと抄紙機のワイヤー(網部)を傷つけやすくなり、ワイヤー寿命を縮めるため好ましくない。しかしながら本発明のごとく、ワイヤーを傷つけにくい柔らかい無機粒子である、シリカで複合した無機粒子、好ましくはシリカ複合再生粒子やシリカ複合再生粒子凝集体を用いることで、ワイヤー寿命を延長させることができる。
As mentioned above, the production method of the silica composite regenerated particles has been described in detail by taking regenerated particles as an example. Recycled particle aggregates instead of regenerated particles, and calcium carbonate conventionally used as a filler for papermaking applications (heavy and light) Silica composite inorganic particles can be produced using talc, clay or the like and internally added to the coated paper.
Thus, the particle | grains which combined the silica can make a wire wear degree low, since the particle | grain surface is compounded with the silica, and can be used suitably as a filler. Inorganic particles added internally to paper, if the particles are hard, the wire (net part) of the paper machine is liable to be damaged, and the life of the wire is shortened. However, as in the present invention, the life of the wire can be extended by using inorganic particles composited with silica, preferably silica composite regenerated particles or silica composite regenerated particle aggregates, which are soft inorganic particles that do not easily damage the wire.

ワイヤー磨耗度は、フィルコン式ワイヤー磨耗度試験で評価することができる。シリカと複合させる無機粒子として、磨耗度が約80mgの再生粒子凝集体を用いると、シリカ複合により磨耗度を約20mgにまで低下させることができ、内添填料として充分に使用可能な粒子を得ることができる。尚、重質炭酸カルシウムのワイヤー磨耗度は100mg以上、軽質炭酸カルシウムは約50mg、ホワイトカーボンは約15mgであり、おおむね50mg以下であれば、内添填料として使用できる。   The degree of wire wear can be evaluated by a Filcon type wire wear degree test. When a regenerated particle aggregate having an abrasion degree of about 80 mg is used as inorganic particles to be combined with silica, the abrasion degree can be reduced to about 20 mg by silica combination, and particles that can be sufficiently used as an internal additive are obtained. be able to. In addition, the wire wear degree of heavy calcium carbonate is 100 mg or more, light calcium carbonate is about 50 mg, and white carbon is about 15 mg. If it is about 50 mg or less, it can be used as an internal filler.

上述のとおり、填料として、シリカおよびシリカ以外の無機粒子からなる複合粒子、好ましくはシリカ複合再生粒子凝集体を用いると、高い不透明性を有する塗工紙を得ることができるため好ましい。とくに高い不透明性および剛度が必要とされる塗工紙においては、填料の含有量を低減しても、毛羽立ちやラフニングが発生しにくく、不透明度および白紙光沢度に優れる塗工紙が得られるため好ましい。   As described above, it is preferable to use composite particles made of silica and inorganic particles other than silica, preferably silica composite regenerated particle aggregates, as the filler because a coated paper having high opacity can be obtained. Especially for coated papers that require high opacity and stiffness, even if the filler content is reduced, fluffing and roughening hardly occur, and coated papers with excellent opacity and white paper gloss can be obtained. preferable.

これら填料の含有量は特に限定されないが、基紙100質量%に対して2〜10質量%となるよう添加することが好ましく、さらには3〜8質量%がより好ましい。填料の配合量が10質量%を超過すると、パルプ繊維同士の結合が阻害されやすく剛度が低下しやすい。填料の含有量を2質量%未満とすると、不透明度が向上しないばかりか、嵩(紙厚)が高くなりすぎて紙に柔軟性がなくなり毛羽立ちやラフニングが発生しやすくなる。尚、上記填料の含有量は、JISP8251「紙、板紙及びパルプ−灰分試験方法−525℃燃焼法」に準じて測定した灰分含有量である。   The content of these fillers is not particularly limited, but is preferably added so as to be 2 to 10% by mass, and more preferably 3 to 8% by mass with respect to 100% by mass of the base paper. When the blending amount of the filler exceeds 10% by mass, the binding between the pulp fibers tends to be hindered, and the stiffness tends to decrease. When the filler content is less than 2% by mass, not only the opacity is not improved, but the bulk (paper thickness) becomes too high, and the paper becomes inflexible and fuzzing or roughening is likely to occur. In addition, content of the said filler is ash content measured according to JISP8251 "Paper, paperboard, and a pulp-ash content test method-525 degreeC combustion method."

本発明においては、上述のとおり、塗工紙をJIS P 8220:1998「パルプ−離解方法」で離解して得られたパルプ繊維を、繊維長0.05mmごとに分類して得られる繊維長分布において、繊維長0.10mm以上0.65mm未満の範囲に最大値を有することで、紙厚および白紙光沢度に優れ、さらには不透明度、白色度、印刷適性、剛度のいずれをも向上させることができる。好ましくは填料としてシリカおよびシリカ以外の無機粒子からなるシリカ複合無機粒子、好ましくはシリカおよび再生粒子を複合したシリカ複合再生粒子、またはシリカおよび再生粒子凝集体を複合したシリカ複合再生粒子凝集体を、基紙100質量%に対して2〜10質量%(より好ましくは3〜8質量%)含有させること、このシリカ複合粒子は、再生粒子または再生粒子凝集体に対して珪酸アルカリを100:5から100:15の割合で添加し、50〜100℃、特に50〜98℃の温度範囲で、鉱酸を好ましくは2段階に分けて添加し、シリカ被覆の反応を行って得られるものである。さらに好ましくは、50〜75℃で第1段階目の鉱酸を添加し、5分〜20分程度の保留時間の後、10℃以上昇温させ、好ましくは70〜100℃、特に好ましくは90℃以上で98℃以下で第2段階目以降の鉱酸を添加し、最終反応液のpHを8.0〜11.0、好ましくは8.3〜10.0、より好ましくは8.5〜9.0とすることで、粒子径が0.5〜10.0μm、好ましくは0.6〜9.7μm、さらに好ましくは1.3〜9.0μm、特に好ましくは2.0〜8.8μmであり、シリカ複合再生粒子に含まれる酸化物換算でのシリカの比率が6.0〜42.0質量%である、高い吸油量と不透明度向上効果を有するシリカ複合無機粒子をえることができる。   In the present invention, as described above, the fiber length distribution obtained by classifying the pulp fibers obtained by disaggregating the coated paper according to JIS P 8220: 1998 “pulp-disaggregation method” for each fiber length of 0.05 mm. The fiber length is 0.10 mm or more and less than 0.65 mm, so that the paper thickness and white paper glossiness are excellent, and further, opacity, whiteness, printability, and rigidity are all improved. Can do. Preferably, silica composite inorganic particles composed of silica and inorganic particles other than silica as a filler, preferably silica composite regenerated particles composed of silica and regenerated particles, or silica composite regenerated particle aggregates composed of silica and regenerated particle aggregates, The silica composite particles are contained in an amount of 2 to 10% by mass (more preferably 3 to 8% by mass) with respect to 100% by mass of the base paper. It is added at a ratio of 100: 15, and is obtained by carrying out a silica coating reaction by adding a mineral acid preferably in two stages in a temperature range of 50 to 100 ° C., particularly 50 to 98 ° C. More preferably, the mineral acid of the first stage is added at 50 to 75 ° C., and after a holding time of about 5 to 20 minutes, the temperature is raised by 10 ° C. or more, preferably 70 to 100 ° C., particularly preferably 90 The mineral acid from the second stage is added at a temperature of from ℃ .degree. C. to 98.degree. C. and the pH of the final reaction solution is 8.0 to 11.0, preferably 8.3 to 10.0, more preferably 8.5. By setting the value to 9.0, the particle size is 0.5 to 10.0 μm, preferably 0.6 to 9.7 μm, more preferably 1.3 to 9.0 μm, and particularly preferably 2.0 to 8.8 μm. It is possible to obtain silica composite inorganic particles having a high oil absorption and an effect of improving opacity, in which the ratio of silica in terms of oxide contained in the silica composite regenerated particles is 6.0 to 42.0% by mass. .

このようにパルプ繊維が繊維長分布で繊維長0.10mm以上0.65mm未満の範囲に最大値を有することで、紙厚および白紙光沢度のみならず、不透明度および剛度に優れた塗工紙が得られる。特に、上述の繊維長分布に加え、離解パルプのルンケル比が0.4〜2.0(より好ましくは0.6〜1.0)であること、シリカ複合無機粒子を填料として含有させることで、坪量が111〜121g/mの塗工紙において、坪量が6g/m以上、さらには10g/m以上、特に16g/m以上と高い127.9g/mの塗工紙と不透明度、白色度、紙厚、白紙光沢度、印刷適性、及び、剛度が同程度の塗工紙が得られやすいため好ましい。 As described above, the pulp fiber has a fiber length distribution and has a maximum value in a range of fiber length of 0.10 mm or more and less than 0.65 mm, so that the coated paper has excellent opacity and rigidity as well as paper thickness and white paper gloss. Is obtained. In particular, in addition to the fiber length distribution described above, the Runkel ratio of the disaggregated pulp is 0.4 to 2.0 (more preferably 0.6 to 1.0), and silica composite inorganic particles are contained as a filler. in coated paper having a basis weight of 111~121g / m 2, a basis weight of 6 g / m 2 or more, further 10 g / m 2 or more, in particular coating of 16g / m 2 or more and high 127.9 g / m 2 Since it is easy to obtain coated paper having the same degree of opacity, whiteness, paper thickness, white paper glossiness, printability, and rigidity as paper, it is preferable.

また、シリカ複合を施す粒子としては、再生粒子、再生粒子凝集体に限定されず、従来一般に製紙用途で使用する填料を用いることができる。すなわち、炭酸カルシウム(重質および軽質)、クレー、タルクなどを用いても良い。本発明においては、これら無機粒子を上述の方法でシリカ複合して得られたシリカ複合無機粒子を用いることができる。   Further, the particles to which the silica composite is applied are not limited to regenerated particles and regenerated particle aggregates, and conventionally used fillers generally used for papermaking can be used. That is, calcium carbonate (heavy and light), clay, talc and the like may be used. In this invention, the silica composite inorganic particle obtained by carrying out the silica composite of these inorganic particles by the above-mentioned method can be used.

本形態において使用できる抄紙設備としては、特に限定されないが、ギャップフォーマからなるワイヤーパート、オープンドローのないストレートスルー型からなるプレスパート、シングルデッキドライヤーからなるドライヤーパート、フィルム転写型のロール塗工によるコーターパート(下塗り塗工)、ソフトカレンダーからなるプレカレンダーパート、ブレードコーターによるコーターパート(上塗り塗工)を組み合わせることが好ましい。上記構成では、例えば1300m/分以上の高速抄造においても、地合いが良好で、かつ、幅方向、流れ方向の乾燥ムラが少なくなり、また、フィルム転写型の下塗り塗工を行い、プレカレンダーで平坦化処理するため、特に平滑性に優れた塗工紙となる。これにより、後に続く上塗り工程における塗工ムラを低減でき、塗工層最表層表面の平滑性が向上する結果、印刷後に印刷面と白紙面とが重なった場合、接触部が均等となり、局所的なコスレ汚れが発生し難いため、白紙面全体としてコスレ汚れが目立たず、高級感を損ねにくい塗工紙が得られやすい。各パートで得られる効果は次の通りである。   The papermaking equipment that can be used in the present embodiment is not particularly limited, but is a wire part made of a gap former, a press part made of a straight-through type without an open draw, a dryer part made of a single deck dryer, or a film transfer type roll coating. It is preferable to combine a coater part (undercoating), a pre-calendar part composed of a soft calendar, and a coater part (overcoating) using a blade coater. With the above configuration, for example, even in high-speed papermaking of 1300 m / min or more, the texture is good, and unevenness in drying in the width direction and the flow direction is reduced. Therefore, the coated paper is particularly excellent in smoothness. As a result, the coating unevenness in the subsequent overcoating process can be reduced, and as a result of improving the smoothness of the surface of the outermost layer of the coating layer, when the printed surface and the white paper surface overlap after printing, the contact area becomes uniform and local Therefore, it is easy to obtain coated paper that does not deteriorate the high-quality feeling. The effects obtained in each part are as follows.

(ワイヤーパート)
ワイヤーパートとしては、長網フォーマや、長網フォーマにオントップフォーマを組み合わせたもの、あるいはツインワイヤーフォーマなどを使用することが出来るが、ヘッドボックスから噴出された紙料ジェットを2枚のワイヤーで直ちに挟み込むギャップタイプのギャップフォーマが、両面から脱水するため表裏差が少なく、コスレ汚れに表裏差が発生し難いため好ましい。
(Wire part)
The wire part can be a long web former, a long web former combined with an on-top former, or a twin wire former, etc., but the paper jets ejected from the head box can be used with two wires. A gap-type gap former that is immediately sandwiched is preferable because there is little difference between the front and back because it dehydrates from both sides, and a difference in front and back is less likely to occur in the cosmetic stain.

(プレスパート)
ワイヤーパートでの紙層は、プレスパートに移行され、さらに脱水が行われる。プレス機としては、ストレートスルー型、インバー型、リバース型のいずれであってもよく、またこれらの組み合わせも使用することができるが、オープンドローを無くしたストレートスルー型が、紙を保持しやすく、断紙などの操業トラブルが少ないため、好ましい。脱水方式としては、通常行われているサクションロール方式やグルーブドプレス方式等の方法を使用することができるが、脱水性と平滑性とを向上できるシュープレスが、より好ましい。
(Press part)
The paper layer in the wire part is transferred to the press part and further dewatered. The press machine can be either a straight-through type, an invar type, or a reverse type, and a combination of these can also be used, but the straight-through type with no open draw is easy to hold the paper, This is preferable because there are few operational troubles such as paper breaks. As the dehydration method, a conventional method such as a suction roll method or a grooved press method can be used, but a shoe press capable of improving dehydration and smoothness is more preferable.

(ドライヤーパート)
プレスパートを通った湿紙は、シングルデッキ方式のプレドライヤーパートに移行し、乾燥が図られる。プレドライヤーパートは、断紙が少なく、嵩を落とすことなく高効率に乾燥を行える、ノーオープンドロー形式のシングルデッキドライヤーが好ましい。ダブルデッキ方式にて乾燥する方式も可能だが、キャンバスマーク、断紙、シワ、通紙等の操業性の面、また、幅方向、流れ方向のいずれでも均一な乾燥が得られる点で、シングルデッキ方式に劣る。
(Dryer part)
The wet paper that has passed through the press part is transferred to a single-deck pre-dryer part and dried. The pre-dryer part is preferably a no-open draw type single-deck dryer that has few paper breaks and can be dried efficiently without reducing the bulk. Although it is possible to dry with a double deck method, it is a single deck in terms of operability such as canvas marks, paper breaks, wrinkles, paper passing, etc., and uniform drying can be obtained in both the width direction and the flow direction. Inferior to the method.

(下塗り塗工)
以上のようにして製造された基紙に、表面の平滑性および白色度を向上させる目的で、顔料および接着剤を含む顔料塗工液を下塗り塗工することができる。下塗り塗工層は、単層でも良く、複数層であっても良い。
(Undercoating)
For the purpose of improving the smoothness and whiteness of the surface, it is possible to undercoat a pigment coating solution containing a pigment and an adhesive on the base paper produced as described above. The undercoat coating layer may be a single layer or a plurality of layers.

下塗り塗工層に用いる顔料は特に制限は無く、一般的に製紙用途に使用できるものを用いることができる。例えば、クレー(カオリン、ろう石)や炭酸カルシウム、タルク、サチンホワイト、亜硫酸カルシウム、石膏、硫酸バリウム、ホワイトカーボン、焼成カオリン、構造化カオリン、珪藻土、炭酸マグネシウム、二酸化チタン、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、水酸化亜鉛、酸化亜鉛、酸化マグネシウム、ベントナイト、セリサイト等の無機顔料や、ポリスチレン樹脂微粒子、尿素ホルマリン樹脂微粒子、微小中空粒子、多孔質微粒子等の有機顔料等の中から、一種又は二種以上を適宜選択して配合しても良い。   The pigment used for the undercoat coating layer is not particularly limited, and those generally usable for papermaking can be used. For example, clay (kaolin, wax), calcium carbonate, talc, satin white, calcium sulfite, gypsum, barium sulfate, white carbon, calcined kaolin, structured kaolin, diatomaceous earth, magnesium carbonate, titanium dioxide, aluminum hydroxide, hydroxide From inorganic pigments such as calcium, magnesium hydroxide, zinc hydroxide, zinc oxide, magnesium oxide, bentonite, and sericite, and organic pigments such as polystyrene resin fine particles, urea formalin resin fine particles, fine hollow particles, and porous fine particles One or two or more may be appropriately selected and blended.

以上の顔料とともに塗工液に配合される接着剤の種類についても特に限定はないが、例えば、カゼイン、大豆蛋白等の蛋白質類;スチレン−ブタジエン共重合体ラテックス、メチルメタクリレート−ブタジエン共重合体ラテックス、スチレン−メチルメタクリレート−ブタジエン共重合体ラテックス等の共役ジエン系ラテックス、アクリル酸エステル及び/又はメタクリル酸エステルの重合体ラテックス若しくは共重合体ラテックス等のアクリル系ラテックス、エチレン−酢酸ビニル重合体ラテックス等のビニル系ラテックス、あるいはこれらの各種共重合体ラテックスをカルボキシル基等の官能基含有単量体で変性したアルカリ部分溶解性又は非溶解性のラテックス等のラテックス類;ポリビニルアルコール、オレフィン−無水マレイン酸樹脂、メラミン樹脂、尿素樹脂、ウレタン樹脂等の合成樹脂系接着剤;酸化澱粉、陽性化澱粉、エステル化澱粉、デキストリン等の澱粉類;カルボキシメチルセルロース、ヒドロキシエチルセルロース等のセルロース誘導体等の、通常塗工紙に用いられる接着剤が挙げられ、これらの中から一種又は二種以上を適宜選択して使用することができる。   There are no particular limitations on the type of adhesive blended in the coating solution together with the above pigments, for example, proteins such as casein and soybean protein; styrene-butadiene copolymer latex, methyl methacrylate-butadiene copolymer latex Conjugated diene latex such as styrene-methyl methacrylate-butadiene copolymer latex, acrylic latex such as polymer latex or copolymer latex of acrylate ester and / or methacrylate ester, ethylene-vinyl acetate polymer latex, etc. Latexes such as alkali partially soluble or non-soluble latexes obtained by modifying these various latexes with various functional group-containing monomers such as carboxyl groups; polyvinyl alcohol, olefin-maleic anhydride Synthetic resin adhesives such as fats, melamine resins, urea resins, urethane resins; starches such as oxidized starch, positive starch, esterified starch, dextrin; cellulose derivatives such as carboxymethylcellulose, hydroxyethylcellulose, etc. Adhesives used for paper can be mentioned, and one or two or more of these can be appropriately selected and used.

下塗り塗工液中の顔料と接着剤との割合には特に限定がないが、好ましくは顔料100質量部に対して接着剤が固形分比で3〜17質量部であり、より好ましくは5〜15質量部である。接着剤の量が3質量部未満では、下塗り塗工層の形成性が低下し、表面強度が低下し、印刷時に紙表面がインキに取られて、白抜けが発生する。他方、17質量部を超えると、接着剤の量が多すぎて塗工層が硬くなるため、印刷適性が悪化する。   The ratio of the pigment and the adhesive in the undercoat coating liquid is not particularly limited, but the adhesive is preferably 3 to 17 parts by mass with respect to 100 parts by mass of the pigment, more preferably 5 to 5 parts by mass. 15 parts by mass. If the amount of the adhesive is less than 3 parts by mass, the formability of the undercoat coating layer is lowered, the surface strength is lowered, the paper surface is taken up by ink during printing, and white spots occur. On the other hand, when the amount exceeds 17 parts by mass, the amount of the adhesive is too large and the coating layer becomes hard, so that the printability is deteriorated.

さらに下塗り塗工液(顔料塗工液)には、例えば、蛍光増白剤や蛍光増白剤の定着剤、消泡剤、離型剤、着色剤、保水剤等の、通常使用される各種助剤を適宜配合することもできる。   Furthermore, for the undercoat coating liquid (pigment coating liquid), for example, fluorescent whitening agents, fluorescent whitening agent fixing agents, antifoaming agents, mold release agents, coloring agents, water retention agents and the like are usually used. Auxiliary agents can be appropriately blended.

基紙への下塗り塗工層の塗工量(固形分量)は、両面合計で、好ましくは7.8〜11.5g/m、より好ましくは8.5〜11.1g/m、特に好ましくは9.3〜10.7g/mである。下塗り塗工層の塗工量が7.8g/m未満では、基紙表面に未塗工部分が生じ易く、平滑性にムラが生じ、上塗り塗工後に白紙光沢度および印刷適性に劣りやすいため好ましくない。11.5g/mを超えると、上塗り塗工層との合計塗工量が多くなりやすく、基紙坪量が低下しやすく剛度に劣る可能性があるため好ましくない。 The coating amount (solid content) of the undercoat coating layer on the base paper is preferably 7.8 to 11.5 g / m 2 , more preferably 8.5 to 11.1 g / m 2 , particularly in terms of the total on both sides. Preferably it is 9.3-10.7 g / m < 2 >. If the coating amount of the undercoat coating layer is less than 7.8 g / m 2 , an uncoated portion is likely to occur on the surface of the base paper, unevenness in smoothness is likely to occur, and the white paper glossiness and printability are likely to be inferior after top coating. Therefore, it is not preferable. If it exceeds 11.5 g / m 2 , the total coating amount with the top coat layer tends to increase, and the basis weight of the base paper tends to decrease, which is not preferable.

形成される下塗り塗工層の厚さは特に限定されないが、上塗り塗工層を設けた後の密度や平滑性、印刷ムラを考慮すると、8〜12μmであることが好ましい。   Although the thickness of the undercoat coating layer to be formed is not particularly limited, it is preferably 8 to 12 μm in consideration of the density, smoothness, and printing unevenness after providing the topcoat coating layer.

このような下塗り塗工は、例えば、2ロールサイズプレスコーターやゲートロールコーター、ブレードメタリングサイズプレスコーター、ロッドメタリングサイズプレスコーター、又はシムサイザーやJFサイザー等のフィルム転写型ロールコーターや、ブレードコーター、エアーナイフコーター、カーテンコーター等の塗工装置を設けたオンマシンコーター又はオフマシンコーターによって、基紙上に一層又は多層に分けて塗工液が塗工される。但し、より下塗り塗工後の表面性を改善し、上塗り塗工後のコスレ汚れを低減するためには、被覆性が高く均一に塗工できる、フィルム転写型ロールコーターが好ましい。   Such undercoating is, for example, a two-roll size press coater, a gate roll coater, a blade metering size press coater, a rod metering size press coater, a film transfer type roll coater such as a shim sizer or a JF sizer, or a blade coater. The coating liquid is applied on the base paper in one or more layers by an on-machine coater or an off-machine coater provided with a coating device such as an air knife coater or a curtain coater. However, in order to further improve the surface properties after the undercoating and reduce the cosmetic stain after the overcoating, a film transfer type roll coater that has a high coverage and can be applied uniformly is preferable.

(プレカレンダーパート(平坦化処理))
下塗り塗工後の基紙は、上塗り塗工を行う前に、プレカレンダーによる平坦化処理を行うことが好ましい。平坦化処理を行うことで、下塗り塗工後の平滑性のムラを低減でき、上塗り塗工後の平滑性をも向上できる。特に本形態においては、離解パルプの繊維長が0.10mm以上0.65mm未満のパルプ繊維を多く含むため、下塗り塗工後にプレカレンダー処理を行うことで、上塗り塗工後の塗工紙における毛羽立ちやラフニングを抑制しやすいため好ましい。さらにルンケル比が0.4〜2.0のパルプ繊維を多く含む場合は、さらに印刷適性を向上できるため好ましい。
(Pre-calendar part (flattening process))
The base paper after the undercoating is preferably subjected to a flattening process using a precalender before the topcoating. By performing the flattening treatment, unevenness in smoothness after the undercoating can be reduced, and the smoothness after the overcoating can be improved. In particular, in this embodiment, since the fiber length of the disaggregated pulp contains many pulp fibers of 0.10 mm or more and less than 0.65 mm, fluffing in the coated paper after the top coating is performed by performing a precalender treatment after the undercoating. And roughening are preferable. Further, when a lot of pulp fibers having a Runkel ratio of 0.4 to 2.0 are included, it is preferable because printability can be further improved.

(上塗り塗工)
次に、基紙の一方又は双方の面に、顔料及び接着剤を含む塗工液を上塗り塗工して上塗り塗工層を設ける。なお、この上塗り塗工層を1層設ける場合は、下塗り塗工層を設けるか否かにかかわらず、この上塗り塗工層が最表層であり、この上塗り塗工層を2層以上設ける場合は、その中の最も外側に形成される層が最表層である。以下では、上塗り塗工層が1層の場合を例に説明する。
(Top coat coating)
Next, on one or both sides of the base paper, a coating solution containing a pigment and an adhesive is overcoated to provide an overcoating layer. In the case of providing one top coat layer, this top coat layer is the outermost layer regardless of whether or not an undercoat layer is provided, and when two or more top coat layers are provided. The outermost layer is the outermost layer. Below, the case where the top coat layer is one layer will be described as an example.

上塗り塗工層に用いる顔料としては、下塗り塗工層で例示した顔料を用いることができるが、この中でもクレーを多く含有すると、より白紙光沢度、印刷適性に優れた塗工紙が得られるため好ましい。   As the pigment used in the topcoat coating layer, the pigments exemplified in the undercoat coating layer can be used, but if a large amount of clay is included among these, a coated paper with more excellent white paper gloss and printability can be obtained. preferable.

クレーの含有量は上塗り塗工層に含まれる顔料100質量部のうち40〜90質量部が好ましく、50〜80質量部がより好ましい。40質量部を下回ると、充分な白紙光沢度、印刷適性が得られない可能性があるため好ましくない。90質量部を超過すると、塗料の流動性が悪くなりやすく、塗工ムラが発生し、毛羽立ちやラフニングを充分に防止しにくいため好ましくない。   The content of clay is preferably 40 to 90 parts by mass, more preferably 50 to 80 parts by mass, out of 100 parts by mass of the pigment contained in the topcoat coating layer. If it is less than 40 parts by mass, there is a possibility that sufficient blank paper glossiness and printability may not be obtained. If the amount exceeds 90 parts by mass, the fluidity of the coating tends to deteriorate, coating unevenness occurs, and it is difficult to prevent fuzzing and roughening sufficiently, such being undesirable.

顔料粒子は、平均粒子径が0.1μm以上1.0μm未満の小粒子径顔料と、平均粒子径1.0μm以上10.0μm未満の大粒子径顔料を併用することが好ましい。小粒子径顔料を配合することで、塗工層表面が充填されやすくなり、白紙光沢度、印刷適性が向上するが、一方で充填しやすいことで得られる塗工紙の比重が大きくなりやすく、嵩高な塗工紙が得られにくい。一方で大粒子径の粒子を配合すると、塗工層表面の被覆性が高くなりやすく塗工量を低減できるため密度の上昇を防止できる。一方で、表面が充填されにくく、白紙光沢度、印刷適性が低下しやすいため好ましくない。しかしながらこれら小粒子径顔料および大粒子径顔料を併用すると、塗工紙の密度を上昇させずに塗工層表面の被覆性および充填性を向上できるため、白紙光沢度、印刷適性に優れた塗工紙が得られやすい。   The pigment particles are preferably used in combination with a small particle size pigment having an average particle size of 0.1 μm or more and less than 1.0 μm and a large particle size pigment having an average particle size of 1.0 μm or more and less than 10.0 μm. By blending a small particle size pigment, the surface of the coating layer can be easily filled, and the glossiness of the blank paper and printability are improved. On the other hand, the specific gravity of the coated paper that is easily filled can easily be increased. Bulky coated paper is difficult to obtain. On the other hand, when particles having a large particle diameter are blended, the coverage of the coating layer surface tends to be high, and the coating amount can be reduced, thereby preventing an increase in density. On the other hand, it is not preferable because the surface is difficult to be filled, and the glossiness of white paper and the printability are liable to decrease. However, when these small particle size pigments and large particle size pigments are used in combination, the coverage and filling properties of the coating layer surface can be improved without increasing the density of the coated paper. Easy to obtain industrial paper.

小粒子径の顔料としては、粒子径分布で粒子径0.1μm以上1.0μm未満の範囲に最大値を有するものが好ましい。このような顔料として、クレーであれば例えばKAOFINE(白石カルシウム社製)、HYDRAGLOSS(Huber社製)、AMAZON SB(カダム社製)などが挙げられる。   As the pigment having a small particle diameter, a pigment having a maximum value in a range of particle diameter distribution of 0.1 μm or more and less than 1.0 μm is preferable. Examples of such pigments include KAOFINE (manufactured by Shiraishi Calcium Co., Ltd.), HYDRAGLOSS (manufactured by Huber), and AMAZON SB (manufactured by Kadam).

大粒子径の顔料としては、粒子径分布で粒子径が1.0μm以上10.0μm未満の範囲に最大値を有するものが好ましい。クレーであれば、特にアスペクト比(板状粒子の直径に対する粒子の厚みの割合)が5以上のものが、より高い白紙光沢度が得られるため好ましい。このようなクレーとしては、例えばHYDRASPERSE(HUBER社製、平均粒子径1.8μm、アスペクト比6)、UW−90(エンゲルハート社製、平均粒子径1.6μm、アスペクト比5)、KAPIM NP(リオカピム社製、平均粒子径2.2μm、アスペクト比20)、KCS(イメリス社製、平均粒子径2.7μm、アスペクト比14)などが挙げられる。炭酸カルシウムであれば例えばタマパールTP121−6S(奥多摩工業社製、平均粒子径1.8μm)、ハイドロカーブ90(備北紛化工業社製、平均粒子径1.3μm)、FMT−90(ファイマテック社製、平均粒子径1.2μm)などが挙げられる。   As the pigment having a large particle diameter, a pigment having a maximum value in the range of 1.0 μm or more and less than 10.0 μm in the particle diameter distribution is preferable. A clay having an aspect ratio (ratio of the particle thickness to the diameter of the plate-like particle) of 5 or more is particularly preferable because higher white paper glossiness can be obtained. Examples of such clays include HYDRASPERS (manufactured by HUBBER, average particle diameter 1.8 μm, aspect ratio 6), UW-90 (manufactured by Engelhart, average particle diameter 1.6 μm, aspect ratio 5), KAPIM NP ( Examples include Rio Capim, average particle size 2.2 μm, aspect ratio 20), KCS (Imeris, average particle size 2.7 μm, aspect ratio 14), and the like. In the case of calcium carbonate, for example, Tama Pearl TP121-6S (Okutama Kogyo Co., Ltd., average particle size 1.8 μm), Hydrocurve 90 (Bihoku Fuka Kogyo Co., Ltd., average particle size 1.3 μm), FMT-90 (Phimatec Corporation) Manufactured, average particle diameter of 1.2 μm).

なお、塗工顔料の粒子径は、塗工層表面の顔料粒子を電子顕微鏡で撮影し、撮影した粒子の直径を測定して得られた粒子径を指す。   The particle diameter of the coating pigment refers to the particle diameter obtained by photographing the pigment particles on the surface of the coating layer with an electron microscope and measuring the diameter of the photographed particles.

これらの範囲に最大値を有する小粒子径顔料および大粒子径顔料は、質量割合で4:6〜2:8の割合で使用することが好ましい。小粒子径顔料が上記範囲より多いか大粒子径顔料が上記範囲より少ない、特に大粒子径顔料を含有しないと、塗工紙の被覆性が低下して印刷適性が低下しやすいだけでなく、塗工層密度が高くなり不透明度が低下しやすくなることに加え、毛羽立ちやラフニングを充分に防止しにくいため好ましくない。小粒子径顔料が上記範囲より少ない、特に小粒子クレーを含有しないか、大粒子径顔料が上記範囲より多いと、塗工紙の表面粗さが低下して白紙光沢度が低下しやすいだけでなく、毛羽立ちやラフニングを充分に防止しにくいため好ましくない。
また、これらの範囲に最大値を有する小粒子径顔料および大粒子径顔料を質量割合で4:6〜2:8の割合で併用することで、本発明の課題を解決できる塗工紙を好適に得ることができる。質量割合で4:6〜2:8を外れると、本発明の効果、すなわち充分な紙厚や白紙光沢度、印刷適性が得られにくい可能性があるため好ましくない。
加えて、上述の範囲とすることで、塗工層表面を電子顕微鏡で撮影した際に、粒子径0.1μm以上1.0μm未満の範囲に全顔料の85%以上、好ましくは90%以上、1.0μm以上10.0μm未満の範囲に全顔料の15%以下、好ましくは10%以下含有する塗工紙が得られ易いため好ましい。
The small particle size pigment and the large particle size pigment having the maximum values in these ranges are preferably used in a mass ratio of 4: 6 to 2: 8. If the small particle size pigment is larger than the above range or the large particle size pigment is less than the above range, and particularly not containing the large particle size pigment, not only the coating property of the coated paper is lowered and the printability tends to be lowered, This is not preferable because the density of the coating layer increases and the opacity tends to decrease, and it is difficult to prevent fuzzing and roughening sufficiently. If the small particle size pigment is less than the above range, especially if it does not contain small particle clay, or if the large particle size pigment is more than the above range, the surface roughness of the coated paper will decrease and the white paper gloss will tend to decrease. In addition, it is not preferable because it is difficult to prevent fuzzing and roughening sufficiently.
Moreover, the coated paper which can solve the subject of this invention by using together the small particle diameter pigment and the large particle diameter pigment which have the maximum value in these ranges in the ratio of 4: 6 to 2: 8 is suitable. Can get to. If the mass ratio is outside of 4: 6 to 2: 8, the effects of the present invention, that is, sufficient paper thickness, white paper glossiness, and printability may be difficult to obtain.
In addition, when the surface of the coating layer is photographed with an electron microscope by setting the above range, 85% or more of all pigments, preferably 90% or more, in a range of particle diameter of 0.1 μm or more and less than 1.0 μm, A coated paper containing 15% or less, preferably 10% or less of the total pigment in a range of 1.0 μm or more and less than 10.0 μm is preferable because it is easy to obtain a coated paper.

上記以外にも、顔料としては上述したものを、本発明の作用を阻害しない範囲で添加することができる。   In addition to the above, the above-mentioned pigments can be added as long as the effects of the present invention are not impaired.

上塗り塗工層の塗工量(固形分量)は、両面合計で、好ましくは13.2〜19.5g/m、より好ましくは14.5〜18.9g/m、特に好ましくは15.7〜18.3g/mである。上塗り塗工層の塗工量が13.2g/m未満では、塗工層表面を充分に被覆できず、毛羽立ちやラフニングが発生して印刷適性に劣るだけでなく、白紙光沢度も低下しやすいため好ましくない。19.5g/mを超えると、塗工紙に占める塗工層の割合が多くなり剛度が低下しやすいだけでなく、密度および坪量が増大しやすくなるため好ましくない。 The coating amount (solid content) of the topcoat coating layer is the sum of both surfaces, preferably 13.2 to 19.5 g / m 2 , more preferably 14.5 to 18.9 g / m 2 , and particularly preferably 15. 7 to 18.3 g / m 2 . If the coating amount of the top coating layer is less than 13.2 g / m 2 , the coating layer surface cannot be sufficiently covered, and not only fuzzing or roughening occurs but printability is deteriorated, and the glossiness of blank paper also decreases. It is not preferable because it is easy. If it exceeds 19.5 g / m 2 , the ratio of the coating layer in the coated paper increases and the stiffness tends to decrease, and the density and basis weight tend to increase, such being undesirable.

本発明の塗工紙における上塗り塗工層および下塗り塗工層の合計塗工量(固形分量)は、両面で21〜31g/mが好ましく、23〜30g/mがより好ましく、25〜29g/mがさらに好ましい。合計塗工量が21g/m未満では、塗工層表面を充分に被覆できず、毛羽立ちやラフニングが発生して印刷適性に劣りやすいだけでなく、白紙光沢度も低下しやすいため好ましくない。31g/mを超えると、塗工紙に占める塗工層の割合が多くなり剛度が低下しやすいだけでなく、密度および坪量が増大しやすくなるため好ましくない。 The total coating amount (solid content) of the top coating layer and the undercoat coating layer in the coated paper of the present invention is preferably 21 to 31 g / m 2 on both sides, more preferably 23 to 30 g / m 2 , and 25 to 25. 29 g / m 2 is more preferable. If the total coating amount is less than 21 g / m 2, it is not preferable because the coating layer surface cannot be sufficiently covered, and not only fuzzing or roughening occurs and printability tends to be inferior, but also the glossiness of blank paper tends to be lowered. If it exceeds 31 g / m 2 , the ratio of the coating layer in the coated paper increases and the stiffness tends to decrease, and the density and basis weight tend to increase.

また、下塗り塗工層および上塗り塗工層を合計した塗工量(固形分量)、または塗工層が1層の場合はその1層の塗工量(固形分量)は、基紙に対して質量割合で0.23〜0.34が好ましく、0.26〜0.33がより好ましく、0.28〜0.32が特に好ましい。割合が0.23を下回ると、塗工層の割合が少なくなるため、毛羽立ちやラフニングを充分に防止しにくいだけでなく白紙光沢度も低下しやすく、0.34を超過すると、塗工紙に占める塗工層の割合が多く剛度が低下しやすいため好ましくない。   In addition, the total coating amount (solid content) of the undercoat coating layer and the top coating layer, or when the coating layer is one layer, the coating amount (solid content) of that one layer is based on the base paper. The mass ratio is preferably 0.23 to 0.34, more preferably 0.26 to 0.33, and particularly preferably 0.28 to 0.32. When the ratio is less than 0.23, the ratio of the coating layer is decreased, so that not only fuzzing and roughening are not sufficiently prevented, but also the glossiness of the white paper is easily lowered. Since the ratio of the coating layer to occupy is large and the rigidity tends to decrease, it is not preferable.

加えて、下塗り塗工層の塗工量に対する上塗り塗工層の塗工量の割合は、質量換算で1.5〜1.9とすることが好ましく、1.6〜1.8とすることがより好ましい。下塗り塗工量が多いか、上塗り塗工量が少なく、割合が1.5未満になると、白紙光沢度が得られにくいだけでなく、より光沢性を出すためにカレンダー等の線圧を増加させる必要があり、紙厚および剛度が低下しやすいため好ましくない。割合が1.9を超過すると、下塗り塗工層およびプレカレンダー処理による平坦化効果が得られにくく、毛羽立ちやラフニングを充分に防止しにくくなり、印刷適性に劣りやすいだけでなく、クレーを多く含む上塗り塗工層が多いため白色度が低下しやすくなるため好ましくない。   In addition, the ratio of the coating amount of the top coating layer to the coating amount of the undercoat coating layer is preferably 1.5 to 1.9 in terms of mass, and preferably 1.6 to 1.8. Is more preferable. If the amount of undercoating is large, or the amount of overcoating is small and the ratio is less than 1.5, not only is it difficult to obtain the glossiness of the blank paper, but also the linear pressure of the calendar etc. is increased to give more gloss. This is not preferable because the paper thickness and stiffness are likely to decrease. When the ratio exceeds 1.9, it is difficult to obtain a flattening effect by the undercoat coating layer and the pre-calendering process, and it becomes difficult to prevent fuzz and roughening sufficiently. Since there are many topcoat coating layers, since whiteness falls easily, it is not preferable.

特に本発明のごとく、離解パルプの繊維長が0.10mm以上0.65mm未満のパルプ繊維を多く含む場合、塗工量は、基紙に対して質量割合で0.23〜0.34(より好ましくは0.26〜0.33、特に好ましくは0.28〜0.32)とすることで、毛羽立ちやラフニングを防止でき、印刷適性を向上できるため好ましい。さらに、塗工層表面に顔料として、0.1μm以上1.0μm未満の範囲に平均粒子径を有する小粒子径顔料、および、1.0μm以上10.0μm未満の範囲に平均粒子径を有する大粒子径顔料を、重量比4:6〜2:8の割合で併用することにより、塗工層表面の粒子径分布において、粒子径0.1μm以上1.0μm未満が85%以上、好ましくは90%以上であり、粒子径1.0μm以上10.0μm未満が15%以下、好ましくは10%以下である塗工紙を得ることができるため、紙厚および白紙光沢度を向上しやすく、さらには、剛度、不透明度、印刷適性をも向上しやすいため好ましい。さらには、下塗り塗工層の塗工量に対する上塗り塗工層の塗工量の割合を、質量換算で1.5〜1.9とすることで、特に紙厚、白紙光沢度、白色度、不透明度、剛度、印刷適性に優れた塗工紙が得やすいため好ましい。
このような効果は、填料としてシリカとシリカ以外の無機粒子とからなる複合粒子を、基紙100質量%に対して2〜10質量%含ませることで、さらに紙厚、不透明度および剛度を向上させやすいため好ましい。
In particular, as in the present invention, when the fiber length of the disaggregated pulp contains many pulp fibers of 0.10 mm or more and less than 0.65 mm, the coating amount is 0.23 to 0.34 (more It is preferably 0.26 to 0.33, particularly preferably 0.28 to 0.32) because fuzzing and roughening can be prevented and printability can be improved. Furthermore, as a pigment on the surface of the coating layer, a small particle diameter pigment having an average particle diameter in a range of 0.1 μm or more and less than 1.0 μm, and a large particle having an average particle diameter in a range of 1.0 μm or more and less than 10.0 μm. By using the particle size pigment in a weight ratio of 4: 6 to 2: 8, the particle size distribution on the surface of the coating layer is 85% or more, preferably 90% in the particle size distribution of 0.1 μm or more and less than 1.0 μm. %, And a coated paper having a particle diameter of 1.0 μm or more and less than 10.0 μm of 15% or less, preferably 10% or less can be obtained. Further, it is preferable because rigidity, opacity, and printability are easily improved. Furthermore, by making the ratio of the coating amount of the topcoat coating layer to the coating amount of the undercoat coating layer 1.5 to 1.9 in terms of mass, especially the paper thickness, white paper glossiness, whiteness, This is preferable because a coated paper excellent in opacity, rigidity and printability can be easily obtained.
Such an effect is achieved by adding 2 to 10% by mass of composite particles composed of silica and inorganic particles other than silica as a filler to 100% by mass of the base paper, thereby further improving the paper thickness, opacity and stiffness. It is preferable because it is easy to make.

上述のごとく、離解パルプの繊維長が0.10mm以上0.65mm未満のパルプ繊維を多く含む場合は、填料としてシリカとシリカ以外の無機粒子とからなる複合粒子を、基紙100質量%に対して2〜10質量%(好ましくは3〜8質量%)含むことが好ましく、さらに離解パルプのルンケル比が0.4〜2.0(更には0.6〜1.0)であることが好ましい。基紙上の塗工層には、平均粒子径が0.1μm〜1.0μmの小粒子径顔料および平均粒子径が1.0μm〜10.0μmの大粒子径顔料を、重量比で4:6〜2:8の割合で併用することで、塗工層の表面においては粒子径0.1μm以上1.0μm未満の範囲に顔料粒子の85%以上、好ましくは90%以上、かつ、粒子径1.0μm以上10.0μm未満の範囲に顔料粒子の15%以下、好ましくは10%以下含有することができ、特に顔料としてクレーを粒子全体の40〜90質量部(好ましくは50〜80質量部)含み、更に、塗工量は、基紙に対して質量割合で0.23〜0.34、好ましくは0.26〜0.33、特に好ましくは0.28〜0.32とし、更に、下塗り塗工層および上塗り塗工層を有する少なくとも2層の塗工層を有する塗工紙においては、下塗り塗工層の塗工量に対する上塗り塗工層の塗工量の割合は、質量換算で1.5〜1.9とすることで、坪量が111〜121g/mの塗工紙でありながら、紙厚が高く、白紙光沢度が良好で、不透明度、白色度、剛度及び印刷適性に優れた塗工紙が得られやすいため好ましい。 As described above, when the fiber length of the disaggregated pulp contains a large amount of pulp fibers having a length of 0.10 mm or more and less than 0.65 mm, composite particles composed of silica and inorganic particles other than silica are used as a filler, based on 100% by mass of the base paper. 2 to 10% by mass (preferably 3 to 8% by mass), and the Runker ratio of the disaggregated pulp is preferably 0.4 to 2.0 (more preferably 0.6 to 1.0). . In the coating layer on the base paper, a small particle size pigment having an average particle size of 0.1 μm to 1.0 μm and a large particle size pigment having an average particle size of 1.0 μm to 10.0 μm are used in a weight ratio of 4: 6. By using together at a ratio of ˜2: 8, the surface of the coating layer has a particle diameter in the range of 0.1 μm or more and less than 1.0 μm, 85% or more, preferably 90% or more of the pigment particles, and a particle diameter of 1 In the range of 0.0 μm or more and less than 10.0 μm, the pigment particles can be contained in an amount of 15% or less, preferably 10% or less. In particular, clay is used as a pigment in an amount of 40 to 90 parts by mass (preferably 50 to 80 parts by mass). In addition, the coating amount is 0.23 to 0.34, preferably 0.26 to 0.33, particularly preferably 0.28 to 0.32, in terms of mass ratio with respect to the base paper. At least two coating layers having a coating layer and a top coating layer In the coated paper having, the ratio of the coating amount of the top coating layer to the coating amount of the undercoat coating layer is 1.5 to 1.9 in terms of mass, and the basis weight is 111 to 121 g / Although it is m 2 coated paper, it is preferable because it is easy to obtain coated paper having high paper thickness, good white paper glossiness, and excellent opacity, whiteness, rigidity and printability.

上塗り塗工層に用いる接着剤としては、モノマー成分としてブタジエン成分を40〜65質量%含む重合体ラテックスを使用することが好ましく、より好ましくは43〜63質量%、さらに好ましくは45〜60質量%である。ブタジエン成分が40質量%を下回ると、顔料への接着性が劣り、上述した粒子径0.1〜1.0μmの小粒子径顔料を充分に接着しにくいため好ましくない。65質量%を超過すると、塗工層表面のラテックス量が多くなり、塗工紙製造工程において各種ロールに汚れが付着し操業性が低下しやすくなる。ブタジエン成分を上記範囲に納めることで、接着性と操業性の双方を満足することができる。また、上記ブタジエン成分を40〜65質量%含むラテックスと、上記平均粒子径0.1〜1.0μmのクレーとを塗工層に含有させることで、白紙光沢度および印刷光沢度に優れた塗工層を得ることができる。   As an adhesive used for the top coat layer, it is preferable to use a polymer latex containing 40 to 65% by mass of a butadiene component as a monomer component, more preferably 43 to 63% by mass, and still more preferably 45 to 60% by mass. It is. When the butadiene component is less than 40% by mass, the adhesion to the pigment is inferior, and the above-mentioned small particle size pigment having a particle size of 0.1 to 1.0 μm is difficult to adhere sufficiently. If it exceeds 65% by mass, the amount of latex on the surface of the coating layer increases, and dirt is attached to various rolls in the coated paper manufacturing process, so that the operability tends to decrease. By keeping the butadiene component in the above range, both adhesiveness and operability can be satisfied. In addition, by adding a latex containing 40 to 65% by mass of the butadiene component and clay having an average particle size of 0.1 to 1.0 μm to the coating layer, the coating layer has excellent white paper gloss and printing gloss. A construction layer can be obtained.

ブタジエン以外のモノマー成分としては、スチレン成分を20〜35質量%含むことが好ましく、より好ましくは23〜30質量%である。スチレン成分は塗工層に耐水性を付与する効果があるため、スチレン成分が20質量%を下回ると、オフセット印刷時に湿し水を吸って塗工層強度が低下し、印刷抜け(ピッキング)トラブルが発生しやすい傾向がある。35質量%を超過すると、塗工層が硬くなり、印刷適性が悪化する傾向がある。上記のごとく、白色度、白紙光沢度、印刷光沢度、印刷適性を効果的に向上させるには、ラテックス中のブタジエン成分及びスチレン成分を所定の範囲内に納めることが好ましい。   As monomer components other than butadiene, it is preferable to contain 20-35 mass% of styrene components, More preferably, it is 23-30 mass%. Since the styrene component has the effect of imparting water resistance to the coating layer, if the styrene component is less than 20% by mass, the dampening water is absorbed during offset printing and the coating layer strength decreases, and printing omission (picking) troubles occur. Tend to occur. When it exceeds 35% by mass, the coating layer becomes hard and printability tends to deteriorate. As described above, in order to effectively improve the whiteness, white paper glossiness, print glossiness, and printability, it is preferable to keep the butadiene component and styrene component in the latex within a predetermined range.

上塗り塗工層中の顔料と接着剤との割合は、顔料100質量部に対して、接着剤5〜15質量部であることが好ましく、7質量部〜13質量部であることが更に好ましい。含有量が5部を下回ると、塗工層強度が低下し、印刷時の白抜けが発生するだけでなく、製造工程においても顔料が塗工紙から脱落しやすくなって系内を汚すなど、紙品質および操業性の双方が悪化しやすいため好ましくない。含有量が15質量部を超えると、ロール汚れが発生するだけでなく、ブリスター等のトラブルも発生しやすくなるため好ましくない。   The ratio of the pigment and the adhesive in the top coat layer is preferably 5 to 15 parts by mass, more preferably 7 to 13 parts by mass with respect to 100 parts by mass of the pigment. When the content is less than 5 parts, the coating layer strength is reduced, not only white spots are generated during printing, but the pigment is easily removed from the coated paper in the manufacturing process, and the system is soiled. This is not preferable because both the paper quality and the operability are likely to deteriorate. When the content exceeds 15 parts by mass, not only roll contamination occurs but also troubles such as blisters are likely to occur, which is not preferable.

ブタジエン成分を含有する共重合体ラテックス以外にも、通常塗工用途に用いることができる接着剤を併用することができる。例えば、カゼイン、大豆蛋白等の蛋白質類;スチレン−ブタジエン共重合体ラテックス、メチルメタクリレート−ブタジエン共重合体ラテックス、スチレン−メチルメタクリレート−ブタジエン共重合体ラテックス等の共役ジエン系ラテックス、アクリル酸エステル及び/又はメタクリル酸エステルの重合体ラテックス若しくは共重合体ラテックス等のアクリル系ラテックス、エチレン−酢酸ビニル重合体ラテックス等のビニル系ラテックス、あるいはこれらの各種共重合体ラテックスをカルボキシル基等の官能基含有単量体で変性したアルカリ部分溶解性又は非溶解性のラテックス等のラテックス類;ポリビニルアルコール、オレフィン−無水マレイン酸樹脂、メラミン樹脂、尿素樹脂、ウレタン樹脂等の合成樹脂系接着剤;酸化澱粉、陽性化澱粉、エステル化澱粉、デキストリン等の澱粉類;カルボキシメチルセルロース、ヒドロキシエチルセルロース等のセルロース誘導体等の、通常製紙用途に用いられる接着剤が挙げられ、これらの中から一種又は二種以上を適宜選択して併用することができる。   In addition to the copolymer latex containing a butadiene component, an adhesive that can be usually used for coating can be used in combination. For example, proteins such as casein and soybean protein; conjugated diene latexes such as styrene-butadiene copolymer latex, methyl methacrylate-butadiene copolymer latex, styrene-methyl methacrylate-butadiene copolymer latex, acrylic acid esters, and / or Or acrylic latex such as polymer latex or copolymer latex of methacrylic acid ester, vinyl latex such as ethylene-vinyl acetate polymer latex, or these various copolymer latexes containing functional groups such as carboxyl groups Latexes such as alkali partially soluble or insoluble latex modified by the body; synthetic resin adhesives such as polyvinyl alcohol, olefin-maleic anhydride resin, melamine resin, urea resin, urethane resin; oxidized starch, positive Starches such as modified starches, esterified starches, dextrins; and adhesives commonly used in papermaking applications such as cellulose derivatives such as carboxymethylcellulose and hydroxyethylcellulose. One or more of these may be selected as appropriate. Can be used together.

さらに本塗工液には、例えば、蛍光増白剤や、蛍光増白剤の定着剤、消泡剤、離型剤、着色剤、保水剤等の、通常使用される各種助剤を適宜配合することもできる。   In addition, the coating liquid is appropriately blended with various commonly used auxiliaries such as fluorescent brighteners, fluorescent brightener fixing agents, antifoaming agents, mold release agents, colorants, and water retention agents. You can also

上塗り塗工は、例えば、抄紙機内の複数段階、通常はプレドライヤーパートとアフタードライヤーパートとの2段階で行われるドライヤーパートの間のコーターパートにおいて行われることが好ましい。このコーターパートにおいては、例えば、ブレードコーター、エアーナイフコーター、トランスファーロールコーター、ロッドメタリングサイズプレスコーター、カーテンコーター等の塗工装置を設けたオンマシンコーター又はオフマシンコーターによって、基紙上に一層又は多層に分けて塗工液が塗工される。中でも、塗工直後であっても、塗工層表面に高い平坦性があり、後の平坦化工程において、緩やかなカレンダー条件で表面の平滑性を向上でき、紙厚を低減させずに白紙光沢度および印刷適性を向上できるという点から、ブレードコーターを用いることが好ましい。なお、ドライヤーパートでの乾燥方法としては、例えば、熱風加熱、ガスヒーター加熱、赤外線ヒーター加熱等の各種加熱乾燥方式を適宜採用することができる。   The top coating is preferably performed, for example, in a coater part between dryer parts which is performed in a plurality of stages in a paper machine, usually in two stages of a pre-dryer part and an after-dryer part. In this coater part, for example, a single layer or an off-machine coater provided with a coating device such as a blade coater, an air knife coater, a transfer roll coater, a rod metering size press coater, a curtain coater, etc. The coating solution is applied in multiple layers. Above all, even immediately after coating, the coating layer surface has high flatness, and in the subsequent flattening process, the surface smoothness can be improved under mild calendering conditions, and the white paper gloss without reducing the paper thickness It is preferable to use a blade coater from the viewpoint that the degree and the printability can be improved. In addition, as a drying method in the dryer part, for example, various heating drying methods such as hot air heating, gas heater heating, and infrared heater heating can be appropriately employed.

本発明の塗工紙を得るための塗工方法としては、フィルム転写型ロールコーターにより下塗り塗工を行い、プレカレンダー処理した後に、ブレードコーターを用いて上塗り塗工することが好ましい。上記塗工方法を用いることにより、塗工層表面に高い平滑性を付与しやすいため、後述するカレンダー処理を緩やかな条件で実施でき、より紙厚の大きい光沢調塗工紙が得られやすい。   As a coating method for obtaining the coated paper of the present invention, it is preferable to perform undercoating with a film transfer type roll coater, pre-calendering, and then overcoating with a blade coater. By using the above coating method, it is easy to impart high smoothness to the surface of the coating layer, so that a calendering process described later can be performed under moderate conditions, and glossy coated paper having a larger paper thickness is easily obtained.

(カレンダーパート(平坦化処理))
本形態では、塗工層に光沢性や平坦性、印刷適性を付与する目的で、熱ロールを用いて平坦化処理を施すことが好ましい。一般に平坦化処理は、弾性ロールと金属ロールとの間に塗工紙を通し、塗工紙にニップ圧をかけて摩擦力により塗工紙表面を磨き、光沢性を付与するものである。紙厚に優れた塗工紙においては、光沢度を向上するためにニップ圧を高くすると、紙厚が低下しやすくなる可能性があるが、本発明においては、繊維長0.10mm以上0.65mm未満の範囲に、最大値を有する繊維長分布を有することに加え、好ましくは離解パルプのルンケル比が0.4〜2.0、更には0.6〜1.0であると、高ニップ圧(200〜500kN/m)で平坦化処理を行っても、紙厚が90〜110μmと高く、かつ白紙光沢度、印刷光沢度、印刷適性、剛度に優れた塗工紙が得られやすい。
(Calendar part (flattening process))
In this embodiment, for the purpose of imparting glossiness, flatness, and printability to the coating layer, it is preferable to perform a flattening treatment using a hot roll. In general, in the flattening treatment, a coated paper is passed between an elastic roll and a metal roll, a nip pressure is applied to the coated paper, the surface of the coated paper is polished by frictional force, and gloss is imparted. In a coated paper excellent in paper thickness, if the nip pressure is increased in order to improve the glossiness, the paper thickness may be easily lowered. However, in the present invention, the fiber length is 0.10 mm or more and 0.0. In addition to having a fiber length distribution having a maximum value in a range of less than 65 mm, it is preferable that the Runkel ratio of the disaggregated pulp is 0.4 to 2.0, more preferably 0.6 to 1.0. Even if the flattening treatment is performed at a pressure (200 to 500 kN / m), it is easy to obtain coated paper having a high paper thickness of 90 to 110 μm and excellent blank paper gloss, print gloss, printability, and rigidity.

熱ロール(金属ロール)の表面温度は、100〜160℃が好ましい。熱ロールの温度が100℃未満では平坦化が進まず白紙光沢度に劣る可能性があり、160℃を超えると、熱と圧力により繊維焼けや黄変化(退色)が発生しやすく、高い白色度が得られない可能性がある。   The surface temperature of the heat roll (metal roll) is preferably 100 to 160 ° C. If the temperature of the heat roll is less than 100 ° C, flattening may not proceed and the glossiness of the white paper may be inferior. If the temperature exceeds 160 ° C, fiber burn and yellowing (fading) are likely to occur due to heat and pressure, and high whiteness May not be obtained.

平坦化工程を行う熱ロールを含むニップ段数について制限はないが、好ましくは2〜10段、より好ましくは2〜8段である。10段を超過すると、大掛かりな設備が必要となるため好ましくなく、1段では表裏両面の平滑性を充分に向上できない可能性がある。   Although there is no restriction | limiting about the number of nip steps including the heat roll which performs a planarization process, Preferably it is 2-10 steps, More preferably, it is 2-8 steps. Exceeding 10 steps is not preferable because a large facility is required, and it is not preferable that the smoothness of both the front and back surfaces cannot be sufficiently improved with one step.

平滑化処理を行う設備としては、従来のマシンカレンダーや、ソフトカレンダーを使用しても良いが、好ましくは、ニップごとに線圧を調整できるマルチニップカレンダーを用いることが好ましい。   As the equipment for performing the smoothing treatment, a conventional machine calendar or a soft calendar may be used, but it is preferable to use a multi-nip calendar capable of adjusting the linear pressure for each nip.

また、カレンダーの設置場所としては、抄紙機及び塗工機と一体になったオンマシンタイプが好ましい。オンマシンタイプでは、塗工後すぐ、紙面温度が高い状態で平坦化処理できるため、平滑性が向上しやすく、紙厚の低下を最小限に抑えつつ、白紙光沢度および印刷光沢度を向上させやすいため好ましい。   Moreover, as an installation place of a calendar, an on-machine type integrated with a paper machine and a coating machine is preferable. In the on-machine type, flattening can be performed immediately after coating at a high paper surface temperature, so it is easy to improve smoothness and improve blank glossiness and printing glossiness while minimizing the decrease in paper thickness. It is preferable because it is easy.

上記条件で平坦化処理された、坪量が111〜121g/mの塗工紙は、紙厚が90〜110μmと高く嵩に優れた塗工紙でありながら、白紙光沢度が70%以上と高く、かつ毛羽立ちやラフニングが発生しにくい、見栄えの良い塗工紙となりやすいため好ましい。 The coated paper having a basis weight of 111 to 121 g / m 2 , which has been flattened under the above conditions, is a coated paper having a high paper thickness of 90 to 110 μm and an excellent bulk, and a blank paper glossiness of 70% or more. It is preferable because it is easy to obtain a coated paper that is high in appearance and does not easily generate fuzz or roughening.

次に、本発明の塗工紙を実施例に基づいてさらに詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。   Next, although the coated paper of this invention is demonstrated still in detail based on an Example, this invention is not limited only to these Examples.

まず、原料パルプとして、表4に記載の樹種から製造したNBKP、LBKP、BTMPを表4に記載の割合(質量比)で混合し、表4に記載の填料、および、このパルプ100質量部(絶乾量)に対して、各々固形分で、内添サイズ剤(品番:AK−720H、ハリマ化成(株)製)0.02質量部、カチオン化澱粉(品番:アミロファックスT−2600、アベベジャパン(株)製)1.0質量部、及び歩留向上剤(品番:NP442、日産エカケミカルス(株)製)0.02質量部を添加してパルプスラリーを得た。尚、NBKPのフリーネスは500ml、LBKPのフリーネスは400ml、BTMPのフリーネスは表4に記載の値に調整した。   First, as raw material pulp, NBKP, LBKP, and BTMP produced from the tree species shown in Table 4 were mixed at a ratio (mass ratio) shown in Table 4, and the filler shown in Table 4 and 100 parts by mass of this pulp ( In each case, the amount of the internal sizing agent (product number: AK-720H, manufactured by Harima Chemical Co., Ltd.) 0.02 parts by mass, cationized starch (product number: amylofax T-2600, Abebe) A pulp slurry was obtained by adding 1.0 part by mass of Japan Co., Ltd. and 0.02 part by mass of a yield improver (product number: NP442, manufactured by Nissan Eka Chemicals Co., Ltd.). The NBKP freeness was adjusted to 500 ml, the LBKP freeness was 400 ml, and the BTMP freeness was adjusted to the values shown in Table 4.

次に、ギャップフォーマからなるワイヤーパート、オープンドローのないストレートスルー型のプレスパート、シングルデッキドライヤーからなるプレドライヤーパートを経て基紙を製造した。基紙の坪量は表4に記載のとおり。   Next, a base paper was manufactured through a wire part made of a gap former, a straight-through press part without an open draw, and a pre-dryer part made of a single deck dryer. Table 4 shows the basis weight of the base paper.

基紙の両面に、重質炭酸カルシウム(品番:ハイドロカーブ90、備北粉化工業(株)製、平均粒子径1.3μm)100質量部に対して接着剤(スチレン−ブタジエンラテックス、品番:PA−6082、日本A&L社製、Tg:−6℃、ブタジエン:46質量%、スチレン:25質量%)8質量部を混合した下塗り塗工液を、両面合計で、表4に記載の塗工量(固形分量)となるようフィルム転写型ロールコーターで塗工した。その後、シングルデッキドライヤーからなるアフタードライヤーパートで乾燥し、プレカレンダーパートで、ニップ圧100kN/mで平坦化処理を行った。   On both sides of the base paper, an adhesive (styrene-butadiene latex, product number: PA) with respect to 100 parts by weight of heavy calcium carbonate (product number: Hydrocurve 90, manufactured by Bihoku Flour Industry Co., Ltd., average particle size 1.3 μm). -6082, manufactured by Japan A & L, Tg: −6 ° C., butadiene: 46% by mass, styrene: 25% by mass) Undercoat coating liquid mixed with 8 parts by mass, the coating amount shown in Table 4 in total on both sides It was coated with a film transfer type roll coater so as to be (solid content). Then, it dried with the after-dryer part which consists of a single deck dryer, and planarized by the nip pressure of 100 kN / m by the pre-calender part.

引き続き、表4に記載の顔料合計で100質量部に対して接着剤(スチレン−ブタジエンラテックス、品番:PA−6082、日本A&L社製、Tg:−6℃、ブタジエン:46質量%、スチレン:25質量%)8質量部を混合した上塗り塗工液を、両面合計で、表4に記載の塗工量(固形分量)となるようブレードコーターを用いて塗工した。乾燥後にマルチニップカレンダーを用い、ニップ圧250kN/m、ロール温度80℃で平坦化処理を行い、塗工紙を得た。なお、填料および顔料の詳細は、次の通りである。   Subsequently, the adhesive (styrene-butadiene latex, product number: PA-6082, manufactured by Japan A & L Co., Tg: -6 ° C., butadiene: 46% by mass, styrene: 25 with respect to 100 parts by mass of the total pigment described in Table 4. (Mass%) The top coating solution mixed with 8 parts by mass was coated using a blade coater so that the coating amount (solid content) shown in Table 4 would be the total of both surfaces. After drying, a multi-nip calender was used to perform a flattening treatment at a nip pressure of 250 kN / m and a roll temperature of 80 ° C. to obtain a coated paper. Details of the filler and the pigment are as follows.

(填料)
[再生粒子の製造]
被処理物(原料)として、製紙スラッジまたは脱墨フロスを予め分別して用い、脱水工程を経て、図1および図2の製造設備により、表1に示す条件にて、有機成分の熱処理工程、第1燃焼工程および第2燃焼工程を適宜用い順次経て、湿式粉砕処理を施し、再生粒子をえた。製造例2、3および製造例6、7の有機成分の熱処理工程において用いた内熱キルンは、本体が横置きで中心軸周りに回転する内熱キルン炉であり、この内熱キルン炉一端の原料供給口から、製紙スラッジを供給するとともに熱風を吹き込む並流方式を採用した。
(Filler)
[Production of regenerated particles]
As the material to be processed (raw material), papermaking sludge or deinking floss is used in advance, and after the dehydration process, the manufacturing equipment shown in FIGS. 1 and 2 performs the organic component heat treatment process under the conditions shown in Table 1. A wet pulverization process was performed sequentially using the 1st combustion process and the 2nd combustion process as appropriate to obtain regenerated particles. The internal heat kiln used in the heat treatment process of the organic components in Production Examples 2 and 3 and Production Examples 6 and 7 is an internal heat kiln furnace in which the main body is placed horizontally and rotates around the central axis. The paper flow sludge was supplied from the raw material supply port and hot air was blown into it.

また、第1燃焼工程において用いた内熱キルンは、本体が横置きで中心軸周りに回転する内熱キルン炉である。さらに、第2燃焼工程において用いた外熱キルン炉は、本体が横置きで中心軸周りに回転する外熱キルン炉であり、この外熱キルン炉としては、特に内部に平行リフターを有する外熱電気方式のキルン炉を採用した。湿式粉砕処理は、セラミックボールミルを用いて行った。製造例4における脱墨フロスは、上級古紙脱墨フロスを製紙スラッジに混在する前に予め分別して用いた。   The internal heat kiln used in the first combustion process is an internal heat kiln furnace in which the main body is placed horizontally and rotates around the central axis. Furthermore, the external heat kiln furnace used in the second combustion process is an external heat kiln furnace in which the main body is placed horizontally and rotates around the central axis. An electric kiln furnace was adopted. The wet pulverization process was performed using a ceramic ball mill. The deinking floss in Production Example 4 was used by separating it before the high-grade used paper deinking floss was mixed in the papermaking sludge.

1次燃焼温度は、1次燃焼炉出口温度を測定した。2次燃焼温度は、2次燃焼炉出口温度を測定した。酸素濃度は、1次燃焼炉出口酸素濃度、2次燃焼炉出口酸素濃度を測定した。   As the primary combustion temperature, the primary combustion furnace outlet temperature was measured. The secondary combustion temperature was measured at the secondary combustion furnace outlet temperature. As for the oxygen concentration, the primary combustion furnace outlet oxygen concentration and the secondary combustion furnace outlet oxygen concentration were measured.

[シリカ複合再生粒子の製造]
表2に示す条件で、珪酸アルカリ水溶液として珪酸ナトリウム溶液(3号水ガラス)38%濃度、再生粒子スラリー20%濃度を混合し、希釈水を加え表2に示すとおり珪酸アルカリと再生粒子からなるスラリーを所定の反応開始濃度、反応開始pHに調整したのち、鉱酸として所定規定度の硫酸を添加、撹拌しシリカ複合再生粒子を製造した。スラリーの撹拌は公知のミキサーを使用し。スラリーのpHは、堀場製作所製のpH計にて、反応温度は公知の温度計にて測定した。1次反応工程では、珪酸アルカリ水溶液と鉱酸の中和率が表2に示す割合になるように鉱酸を添加した。
[Production of silica composite regenerated particles]
Under the conditions shown in Table 2, 38% concentration of sodium silicate solution (No. 3 water glass) and 20% concentration of regenerated particle slurry were mixed as an aqueous solution of alkali silicate, diluted water was added, and it was composed of alkali silicate and regenerated particles as shown in Table 2. After adjusting the slurry to a predetermined reaction initiation concentration and reaction initiation pH, sulfuric acid having a prescribed degree was added as a mineral acid and stirred to produce silica composite regenerated particles. A known mixer is used for stirring the slurry. The pH of the slurry was measured with a pH meter manufactured by Horiba, and the reaction temperature was measured with a known thermometer. In the primary reaction step, the mineral acid was added so that the neutralization rate between the alkali silicate aqueous solution and the mineral acid was as shown in Table 2.

保留時間は、1次反応工程で行なう鉱酸の添加を終え、2次反応工程で鉱酸を再び添加するまでの時間をいう。   The holding time refers to the time from the completion of the addition of the mineral acid performed in the primary reaction step to the re-addition of the mineral acid in the secondary reaction step.

2次反応工程においては、反応終了pHになるように、所定の時間をかけて1次反応工程と同じ鉱酸を添加した。表2に示す、完成原料の10%濃度スラリー粘度は、2次反応工程を経て反応を終えたシリカ複合再生粒子スラリーを脱水濾過し、固形分濃度を10%に調整したスラリーをB型粘度計により測定した値(測定温度25℃)である。   In the secondary reaction step, the same mineral acid as in the primary reaction step was added over a predetermined time so that the reaction completion pH was reached. As shown in Table 2, the 10% concentration slurry viscosity of the finished raw material is a B-type viscometer obtained by subjecting the silica composite regenerated particle slurry that has undergone the reaction through the secondary reaction step to dehydration filtration and adjusting the solid content concentration to 10%. (Measurement temperature 25 ° C.).

[再生粒子およびシリカ複合再生粒子の測定]
再生粒子およびシリカ複合再生粒子の成分分析結果を表1および表3に示す。各工程の無機構成成分は堀場製作所製のX線マイクロアナライザーを用い、加速電圧(15KV)にて元素分析を行い、構成成分より酸化物換算した。
[Measurement of regenerated particles and silica composite regenerated particles]
Tables 1 and 3 show the component analysis results of the regenerated particles and the silica composite regenerated particles. The inorganic constituents in each step were subjected to elemental analysis at an acceleration voltage (15 KV) using an X-ray microanalyzer manufactured by Horiba, Ltd., and converted into oxides from the constituents.

比表面積および細孔容積は、水銀圧入式ポロシメーター(テルモ社製「PASCAL 140/240」)を用い、試料を濾過した後、真空乾燥して測定した。   The specific surface area and pore volume were measured using a mercury intrusion porosimeter (“PASCAL 140/240” manufactured by Terumo Corporation) after filtration of the sample and vacuum drying.

吸油量はJIS K 5101−13−2記載の練り合わせ法によるものである。すなわち105℃〜110℃で2時間乾燥した試料2g〜5gをガラス板に取り、精製アマニ油(酸化4以下のもの)をビュレットから少量ずつ試料の中央に滴下しその都度ヘラで練り合わせる。滴下練り合わせの操作を繰り返し、全体が初めて1本の棒状にまとまったときを終点として、精製アマニ油の滴下量を求め、次の式によって吸油量を算出する。
吸油量=[アマニ油量(ml)×100]/試料(g)
The amount of oil absorption is based on the kneading method described in JIS K 5101-13-2. That is, 2 g to 5 g of a sample dried at 105 ° C. to 110 ° C. for 2 hours is taken on a glass plate, and refined linseed oil (oxidized 4 or less) is dropped from the buret little by little to the center of the sample and kneaded with a spatula each time. The dripping and kneading operations are repeated, and the amount of refined linseed oil dripped is determined with the end point when the whole is first assembled into a single rod shape, and the oil absorption is calculated by the following equation.
Oil absorption amount = [linseed oil amount (ml) × 100] / sample (g)

粒子径は、レーザー粒度分布測定装置(レーザー解析式粒度分布測定装置「SALD−2200型」島津製作所社製)にて粒度分布を測定し、全粒子の体積に対する累積体積が50%になるときの粒子径(d50)として求められる。測定試料の調製は、0.1%ヘキサメタ燐酸ソーダ水溶液に、シリカ複合再生粒子を添加し、超音波で1分間分散した。   The particle size is measured when the particle size distribution is measured with a laser particle size distribution measuring device (laser analysis type particle size distribution measuring device “SALD-2200 type” manufactured by Shimadzu Corporation), and the cumulative volume with respect to the volume of all particles is 50%. It is determined as the particle diameter (d50). For the preparation of the measurement sample, silica composite regenerated particles were added to a 0.1% sodium hexametaphosphate aqueous solution and dispersed with an ultrasonic wave for 1 minute.

硬質物質の測定には、X線回析装置(理学電気製、RAD2X)を用いた。測定条件:Cu−Kα−湾曲モノクロメーター 40KV−40mA、発散スリット・1mm SS・1mm RS・0.3mm、走査速度・0.8度/分、走査範囲・2シータ=7〜85度、サンプリング・0.02度である。   An X-ray diffraction apparatus (Rigaku Denki, RAD2X) was used for the measurement of the hard substance. Measurement conditions: Cu-Kα-curved monochromator 40 KV-40 mA, diverging slit 1 mm SS 1 mm RS 0.3 mm, scanning speed 0.8 ° / min, scanning range 2 theta = 7 to 85 degrees, sampling 0.02 degrees.

表3に示す生産性は、えられたシリカ複合再生粒子の濾液中に含まれる未反応薬品量から換算したシリカ複合反応の歩留りから、歩留り95%以上を◎、80%以上95%未満を○、70%以上80%未満を△、70%未満を×とした。   The productivity shown in Table 3 indicates that the yield of the silica composite reaction converted from the amount of unreacted chemical contained in the filtrate of the obtained silica composite regenerated particles is ◎ at a yield of 95% or more, and from 80% to less than 95%. 70% or more and less than 80% was evaluated as Δ, and less than 70% as ×.

なお、表4において内添填料として用いた再生粒子は表1記載の製造例1−1、シリカ複合再生粒子(表4ではシリカ複合と記載した)は表3記載の製造例1−1である。   In Table 4, the regenerated particles used as the internal filler are Production Example 1-1 described in Table 1, and the silica composite regenerated particles (referred to as silica composite in Table 4) are Production Example 1-1 described in Table 3. .

Figure 0005571927
Figure 0005571927

Figure 0005571927
Figure 0005571927

Figure 0005571927
Figure 0005571927

表4に填料として記載した炭酸カルシウムおよびホワイトカーボンは次を用いた。
・炭酸カルシウム(軽質炭酸カルシウム、品番:TP121―6S)、奥多摩工業社製。
・ホワイトカーボン(2次粒子径:15.5μm、吸油量:203ml/100g)、エリエールペーパーケミカル社製。
The following were used for the calcium carbonate and white carbon described as fillers in Table 4.
・ Calcium carbonate (light calcium carbonate, product number: TP121-6S), manufactured by Okutama Kogyo Co., Ltd.
White carbon (secondary particle size: 15.5 μm, oil absorption: 203 ml / 100 g), manufactured by Eliere Paper Chemical Co., Ltd.

(顔料)
・炭カル
重質炭酸カルシウム、品番:ハイドロカーブ90、備北粉化工業(株)製、平均粒子径1.3μm
・微粒クレー
品番:アマゾンプラス、CADAM社製、平均粒子径0.3μm
・大粒子径顔料
品番:センチュリーHC、パラピグメントス社製、平均粒子径2.8μm
(Pigment)
-Charcoal Cal Heavy calcium carbonate, product number: Hydrocurve 90, manufactured by Bihoku Powder Chemical Co., Ltd., average particle size 1.3 μm
-Fine clay product number: Amazon Plus, manufactured by CADAM, average particle size 0.3 μm
・ Large particle size pigment Product No .: Century HC, manufactured by Para-Pigments, average particle size 2.8 μm

表5に記載した、塗工紙表面の粒子径分布の極大値は、次のとおり測定した。塗工紙をA4サイズに切り出し、用紙短辺を上辺として、上辺から下にAcm、左辺からAcmの地点で、縦横5mm角のサンプルを切り出した。ここでAは1〜20の整数であり、合計20サンプルを採取した。切り出したサンプルの表面を、走査電子顕微鏡(型番:S−2150、(株)日立製作所製)を用いて倍率12000倍で写真撮影した。写真の上辺から下にBcm、左辺からBcmの地点に最も近く、かつ粒子全体が判る程度に撮影されている顔料について、粒子径を測定した。ここでBは1〜5の整数であり、1サンプルから5個の顔料粒子の粒子径を求め、合計100点の顔料粒子について粒子径を求めた。また、極大値は、粒子径1.0μmまでは顔料粒子の数を面積粒子径0.1μmごとに、1.0μmを超過するものは1.0μmごとに集計して粒子径分布を求め、極大値の有無を判断した。なお、表5に記載の「0.1〜1.0」とは、0.1μm以上1.0μm未満の範囲の粒子を指し、「1.0〜10.0」とは、1.0μm以上10.0μm未満の範囲の粒子を指す。
再生粒子、炭酸カルシウム、カオリンクレー等、複数種類の顔料を併用した場合には、どの粒子がいずれの顔料であるかを、粒子形状で判断することができる。再生粒子は脱墨フロス由来のカルシウム、ケイ素及びアルミニウムからなる、凝集塊状の粒子であり、重質炭酸カルシウムは不定形の球状粒子、軽質炭酸カルシウムは紡錘状粒子であり、カオリンクレーは板状の粒子である。上記形状は、倍率12000倍程度で充分判別可能である。
The maximum value of the particle size distribution on the coated paper surface described in Table 5 was measured as follows. The coated paper was cut out to A4 size, and a sample of 5 mm square was cut out at a point of Acm from the upper side to the lower side and Acm from the left side, with the short side of the paper as the upper side. Here, A is an integer of 1 to 20, and a total of 20 samples were collected. The surface of the cut out sample was photographed at a magnification of 12000 using a scanning electron microscope (model number: S-2150, manufactured by Hitachi, Ltd.). The particle diameter was measured for a pigment which was closest to the point Bcm from the upper side of the photograph and Bcm from the left side and was photographed to such an extent that the entire particle was understood. Here, B is an integer of 1 to 5, and the particle diameter of five pigment particles was determined from one sample, and the particle diameter was determined for a total of 100 pigment particles. In addition, the maximum value is obtained by calculating the particle size distribution by counting the number of pigment particles up to an area particle size of 0.1 μm up to a particle size of 1.0 μm, and counting the particles exceeding 1.0 μm every 1.0 μm. The presence or absence of a value was judged. In addition, “0.1 to 1.0” described in Table 5 refers to particles in the range of 0.1 μm or more and less than 1.0 μm, and “1.0 to 10.0” means 1.0 μm or more. Refers to particles in the range of less than 10.0 μm.
When a plurality of types of pigments such as regenerated particles, calcium carbonate, kaolin clay, and the like are used in combination, it is possible to determine which particle is which pigment. Regenerated particles are aggregated particles composed of calcium, silicon and aluminum derived from deinked floss, heavy calcium carbonate is amorphous spherical particles, light calcium carbonate is spindle-shaped particles, and kaolin clay is plate-shaped. Particles. The shape can be sufficiently discriminated at a magnification of about 12,000.

離解パルプの繊維長分布の最大値は、次のとおり測定した。塗工紙をJIS P 8220:1998「パルプ−離解方法」で離解して得られたパルプ繊維について、FiberLab.(Kajaani社)を用いて中心線繊維長を測定し、繊維長とした。重さ加重の繊維長分布を求め、繊維長0.05mmごとに集計し、最大値がどの領域に含まれるかを判断した。なお、表5に記載の最大値「0.50〜0.55」とは、0.50mm以上0.55mm未満の範囲に最大値を有することを指す。他の数値範囲も同様である。   The maximum value of the fiber length distribution of the disaggregated pulp was measured as follows. The pulp fibers obtained by disaggregating the coated paper according to JIS P 8220: 1998 “pulp-disaggregation method” are described in FiberLab. The centerline fiber length was measured using (Kajaani Co., Ltd.) and defined as the fiber length. A weight-weighted fiber length distribution was obtained and tabulated for each fiber length of 0.05 mm to determine in which region the maximum value was included. In addition, the maximum value “0.50 to 0.55” described in Table 5 indicates that the maximum value is in a range of 0.50 mm or more and less than 0.55 mm. The same applies to the other numerical ranges.

離解パルプのルンケル比は、上述の繊維長分布の測定により得られた数平均繊維幅および数平均繊維壁厚から、次の式に従って算出した。
(ルンケル比)=(繊維壁厚の2倍)/(繊維内腔径)
(繊維内腔径)= 繊維幅−(繊維壁厚の2倍)
The Runkel ratio of the disaggregated pulp was calculated according to the following formula from the number average fiber width and the number average fiber wall thickness obtained by measuring the fiber length distribution described above.
(Runkel ratio) = (twice the fiber wall thickness) / (fiber lumen diameter)
(Fiber lumen diameter) = fiber width-(twice the fiber wall thickness)

得られた塗工紙について、各物性を以下の方法にて調べた。結果は、表5に示す。   About the obtained coated paper, each physical property was investigated with the following method. The results are shown in Table 5.

(a)坪量
JISP8124:1998「紙及び板紙−坪量測定方法」に記載の方法に準拠して測定した。
(A) Basis weight It measured based on the method of JISP8124: 1998 "Paper and paperboard-Basis weight measuring method".

(b)紙厚および密度
JISP8118:1998「紙及び板紙−厚さ及び密度の試験方法」に記載の方法に準拠して測定した。
(B) Paper thickness and density It measured based on the method as described in JISP8118: 1998 "Paper and paperboard-Test method of thickness and density".

(c)白色度
JIS P 8148:2001「紙、板紙及びパルプ‐ISO白色度(拡散青色光反射率)の測定方法」に記載の方法に準拠して測定した。なお、本発明においては、白色度が88%以上であれば見栄えに優れ、85%以上であれば見栄えが良好であり、85%未満であれば見栄えに劣る塗工紙となる。
(C) Whiteness Measured according to the method described in JIS P 8148: 2001 “Paper, paperboard and pulp—Method of measuring ISO whiteness (diffuse blue light reflectance)”. In the present invention, if the whiteness is 88% or more, the appearance is excellent, if it is 85% or more, the appearance is good, and if it is less than 85%, the coated paper is inferior in appearance.

(d)白紙光沢度
JIS P 8142:2005「紙及び板紙‐75度鏡面光沢度の測定方法」に記載の方法に準拠して測定した。なお、本発明においては、白紙光沢度が75%以上であれば見栄えに優れ、73%以上であれば見栄えが良く、70%以上であれば僅かに見栄えが良く実使用可能であり、70%未満であれば見栄えに劣る塗工紙となる。白紙光沢度が70%以上であれば、坪量111〜121g/mの塗工紙としては実用に耐える。
(D) White paper glossiness Measured according to the method described in JIS P 8142: 2005 “Paper and paperboard—Measurement method of 75 ° specular gloss”. In the present invention, if the glossiness of white paper is 75% or more, the appearance is excellent, if it is 73% or more, the appearance is good, and if it is 70% or more, the appearance is slightly good and can be used practically. If it is less than this, the coated paper is inferior in appearance. If the white paper glossiness is 70% or more, it is practically used as a coated paper having a basis weight of 111 to 121 g / m 2 .

(e)剛度(縦)
JIS P 8143:1996「紙−こわさ試験方法−クラークこわさ試験機法」に記載の方法に準拠して、縦方向について測定した。なお、本発明においては、剛度が95以上であれば剛度に優れ、93以上であれば剛度が良好であり、90以上であれば剛度が僅かに良く、90未満であれば剛度に劣る。
(E) Stiffness (vertical)
Measured in the longitudinal direction according to the method described in JIS P 8143: 1996 “Paper-stiffness test method—Clark stiffness tester method”. In the present invention, if the stiffness is 95 or more, the stiffness is excellent, if it is 93 or more, the stiffness is good, if it is 90 or more, the stiffness is slightly good, and if it is less than 90, the stiffness is inferior.

(f)不透明度
JIS P 8149:2000「紙及び板紙−不透明度試験方法(紙の裏当て)−拡散照明法」に記載の方法に準拠して測定した。なお、本発明においては、不透明度が96%以上であれば不透明度に優れ、95%以上であれば不透明度が良好であり、93%以上であれば不透明度が僅かに良く、93%未満であれば不透明度に劣る。
(F) Opacity Measured according to the method described in JIS P 8149: 2000 “Paper and paperboard—Opacity test method (backing of paper) —diffuse illumination method”. In the present invention, if the opacity is 96% or more, the opacity is excellent, if it is 95% or more, the opacity is good, and if it is 93% or more, the opacity is slightly better, less than 93%. If so, the opacity is inferior.

(g)印刷適性
オフセット印刷機(型番:リソピアL‐BT3‐1100、三菱重工業(株)製)を使用し、カラーインク(品番:ADVAN、大日本インキ化学工業(株)製)にてカラー4色オフセット印刷を5000部行った。この印刷面について、目視及びルーペ(10倍)にて毛羽立ち、ラフニングおよびピッキングの程度を観察し、以下の評価基準に基づいて評価した。
(評価基準)
◎:毛羽立ち、ラフニングおよびピッキングが確認できず、印刷適性に優れる。
○:毛羽立ち、ラフニングおよびピッキングが若干確認でき、印刷適性が若干劣る。
△:毛羽立ち、ラフニングおよびピッキングが多少確認でき、印刷適性が多少劣る。
×:毛羽立ち、ラフニングおよびピッキングがはっきり確認でき、印刷適性に劣る。
なお、前記評価基準のうち、◎、○、△を実使用可能と判断する。
(G) Printability Using an offset printing machine (model number: Lysopia L-BT3-1100, manufactured by Mitsubishi Heavy Industries, Ltd.), color 4 (color: product number: ADVAN, manufactured by Dainippon Ink & Chemicals, Inc.) 5000 copies of color offset printing were performed. About this printing surface, the degree of fluffing, roughening, and picking was observed visually and with a magnifying glass (10 times), and evaluated based on the following evaluation criteria.
(Evaluation criteria)
A: No fluffing, roughening or picking can be confirmed, and the printability is excellent.
○: Slight fluffing, roughening and picking can be confirmed, and printability is slightly inferior.
(Triangle | delta): Fluffing, roughening, and picking can be confirmed a little, and printability is somewhat inferior.
X: Fluffing, roughening and picking can be clearly confirmed, and the printability is poor.
Of the evaluation criteria, ◎, ○, and Δ are judged to be actually usable.

Figure 0005571927
Figure 0005571927

Figure 0005571927
Figure 0005571927

なお、市販品のA2塗工紙(Sユトリロコート127.9g/m、大王製紙社製)を参考例1として表4および表5に記載した。 Commercially available A2 coated paper (S Utrilo Coat 127.9 g / m 2 , manufactured by Daio Paper Co., Ltd.) is shown in Table 4 and Table 5 as Reference Example 1.

実施例の塗工紙はいずれも、白色度、白紙光沢度、剛度、不透明度、印刷適性に優れた塗工紙である。これに対して、比較例の塗工紙は、白色度、白紙光沢度、剛度、不透明度、印刷適性のいずれかまたは複数の項目に劣り、本発明の目的を満足しない塗工紙である。   All of the coated papers of the examples are coated papers having excellent whiteness, white paper gloss, stiffness, opacity, and printability. On the other hand, the coated paper of the comparative example is a coated paper that is inferior to any one or a plurality of items of whiteness, white paper glossiness, stiffness, opacity, and printability and does not satisfy the object of the present invention.

本発明によれば、坪量が111〜121g/mの塗工紙でありながら、127.9g/mと同程度の紙厚を有し、白紙光沢度が良好であり、白色度、不透明度、印刷適性及び剛度が127.9g/mと同程度の塗工紙を提供することができる。 According to the present invention, while a basis weight of coated paper 111~121g / m 2, has a sheet thickness substantially equal to that of 127.9 g / m 2, a white paper glossiness is excellent, whiteness, A coated paper having an opacity, printability, and rigidity equivalent to 127.9 g / m 2 can be provided.

10…原料、12…貯槽、14…第1燃焼炉(内熱キルン炉)、20…熱風発生炉、22…再燃焼室、26…熱交換器、28…誘引ファン、30…煙突、31…外熱ジャケット、32…第2燃焼炉(外熱キルン炉)、34…冷却機、36…粒径選別機、42…熱処理炉(内熱キルン炉)、43…熱風発生炉。   DESCRIPTION OF SYMBOLS 10 ... Raw material, 12 ... Storage tank, 14 ... 1st combustion furnace (internal heat kiln furnace), 20 ... Hot-air generating furnace, 22 ... Recombustion chamber, 26 ... Heat exchanger, 28 ... Induction fan, 30 ... Chimney, 31 ... External heat jacket, 32 ... second combustion furnace (external heat kiln furnace), 34 ... cooler, 36 ... particle size sorter, 42 ... heat treatment furnace (internal heat kiln furnace), 43 ... hot air generating furnace.

Claims (4)

基紙上に、顔料および接着剤を含む塗工層を設けた塗工紙であって、坪量が111〜121g/m、紙厚が90〜110μm、JIS P 8142:2005「紙及び板紙−75度鏡面光沢度の測定方法」における白紙光沢度が70%以上であり、前記塗工紙をJIS P 8220:1998「パルプ−離解方法」で離解して得られたパルプ繊維について、重さ加重の繊維長分布を求め、繊維長0.05mmごとに集計し、繊維長0.10mm以上0.65mm未満の範囲に最大値を有し、
前記基紙が填料としてシリカ複合再生粒子又はシリカ複合再生粒子凝集体を含み、
上記塗工層が上塗り塗工層および下塗り塗工層を有し、上塗り塗工層および下塗り塗工層の合計塗工量(固形分量)が21〜31g/m であることを特徴とする塗工紙。
A coated paper provided with a coating layer containing a pigment and an adhesive on a base paper, having a basis weight of 111 to 121 g / m 2 , a paper thickness of 90 to 110 μm, JIS P 8142: 2005 “paper and paperboard— The weight of the pulp fiber obtained by disaggregating the coated paper according to JIS P 8220: 1998 “pulp-disaggregation method” having a white paper glossiness of 70% or more in the “75-degree specular gloss measurement method”. The fiber length distribution is calculated and tabulated every 0.05 mm fiber length, and has a maximum value in the range of fiber lengths from 0.10 mm to less than 0.65 mm,
Look containing silica composite playback particles or silica composite reproduction agglomerate the base paper as a filler,
Said coating layer has a top coat coating and underlying coating layer, the total coating amount of the overcoat coating and underlying coating layer (solid content) is characterized in that it is a 21~31g / m 2 Coated paper.
前記顔料として、少なくともクレーおよび炭酸カルシウムを含有し、前記クレーおよび炭酸カルシウムが粒子径分布において、0.1μm以上1.0μm未満の範囲に全顔料の85%以上、1.0μm以上10.0μm未満の範囲に全顔料の15%以下含有することを特徴とする、請求項1に記載の塗工紙。 The pigment contains at least clay and calcium carbonate, and the clay and calcium carbonate have a particle size distribution in the range of 0.1 μm or more and less than 1.0 μm, 85% or more of all pigments, 1.0 μm or more and less than 10.0 μm. The coated paper according to claim 1 , which is contained in an amount of 15% or less of the total pigment. 前記填料の配合量が、前記基紙に含まれる全パルプ100質量%に対して2〜10質量%であることを特徴とする、請求項1又は請求項2に記載の塗工紙。 The coated paper according to claim 1 or 2 , wherein the blending amount of the filler is 2 to 10% by mass with respect to 100% by mass of the total pulp contained in the base paper. 前記基紙に接する下塗り塗工層の塗工量に対する、前記基紙から最も遠い最表層塗工層の質量割合が、1.5〜1.9であることを特徴とする、請求項1、請求項2又は請求項3に記載の塗工紙。 For coating amount of the undercoat coating layer in contact with the base paper, the mass ratio of the farthest outermost layer coating layer from the base paper, characterized in that it is a 1.5 to 1.9, according to claim 1, The coated paper of Claim 2 or Claim 3 .
JP2009214100A 2009-09-16 2009-09-16 Coated paper Active JP5571927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009214100A JP5571927B2 (en) 2009-09-16 2009-09-16 Coated paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009214100A JP5571927B2 (en) 2009-09-16 2009-09-16 Coated paper

Publications (2)

Publication Number Publication Date
JP2011063899A JP2011063899A (en) 2011-03-31
JP5571927B2 true JP5571927B2 (en) 2014-08-13

Family

ID=43950421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009214100A Active JP5571927B2 (en) 2009-09-16 2009-09-16 Coated paper

Country Status (1)

Country Link
JP (1) JP5571927B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5571925B2 (en) * 2009-09-04 2014-08-13 大王製紙株式会社 Coated paper
JP5309174B2 (en) 2011-03-23 2013-10-09 ジヤトコ株式会社 Control device for continuously variable transmission
JP5937866B2 (en) * 2012-03-28 2016-06-22 大王製紙株式会社 Coated paper
WO2022145233A1 (en) * 2020-12-28 2022-07-07 王子ホールディングス株式会社 Base paper for metallized paper and metallized paper
JP6958755B1 (en) * 2020-12-28 2021-11-02 王子ホールディングス株式会社 Base paper for thin-film paper and thin-film paper
JP6958756B1 (en) * 2020-12-28 2021-11-02 王子ホールディングス株式会社 Base paper for thin-film paper and thin-film paper
JP6958758B1 (en) * 2020-12-28 2021-11-02 王子ホールディングス株式会社 Base paper for thin-film paper and thin-film paper
JP6958757B1 (en) * 2020-12-28 2021-11-02 王子ホールディングス株式会社 Base paper for thin-film paper and thin-film paper
WO2023153989A1 (en) * 2022-02-10 2023-08-17 Mohammadi Mohammadhassan A method and a system for manufacturing a paperboard
SE2250129A1 (en) * 2022-02-10 2023-08-11 Ali Mohammadi A method and a system for manufacturing a paperboard
CN116445069B (en) * 2023-01-10 2024-01-12 吉安天晟新材料有限公司 Heat-insulating rock slice

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60239595A (en) * 1984-05-10 1985-11-28 三菱製紙株式会社 Coated paper
JPH04153396A (en) * 1990-10-12 1992-05-26 Oji Paper Co Ltd Mat coated paper
JP3790319B2 (en) * 1996-12-06 2006-06-28 三菱製紙株式会社 Support for imaging materials
JP2005330609A (en) * 2004-05-19 2005-12-02 Daio Paper Corp Matte coated paper
JP4802471B2 (en) * 2004-09-28 2011-10-26 日本製紙株式会社 Coated paper for printing
JPWO2006057064A1 (en) * 2004-11-29 2008-06-05 ピーティー・パブリク ケルタス チウィ キミア ティービーケー High whiteness paper
JP2008040297A (en) * 2006-08-09 2008-02-21 Nippon Paper Industries Co Ltd Electrophotographic transfer paper
JP5571925B2 (en) * 2009-09-04 2014-08-13 大王製紙株式会社 Coated paper

Also Published As

Publication number Publication date
JP2011063899A (en) 2011-03-31

Similar Documents

Publication Publication Date Title
JP5571927B2 (en) Coated paper
WO2010113805A1 (en) Coated paper
JP5571925B2 (en) Coated paper
JP2009242980A (en) Paper containing filler
JP2001288692A (en) Method for producing paper
JP5313545B2 (en) Multi-layer bulky coated paper
JP3941483B2 (en) Coated paper for printing
JP4918745B2 (en) Coated paper for offset printing and method for producing the same
JP5690479B2 (en) Coated paper
JP5571923B2 (en) Coated paper
JP5498148B2 (en) Coated paper
JP5437714B2 (en) Coated paper
JP5876328B2 (en) Multilayer paper manufacturing method
JP5047667B2 (en) Offset printing paper
JP4027953B2 (en) Coated paper
JP3969596B1 (en) Coated paper
JP4385629B2 (en) Coated paper for printing
JP4802471B2 (en) Coated paper for printing
JP5466912B2 (en) Newspaper roll
JP2009052168A (en) Coated paper
JP5433343B2 (en) Coated paper
JP5337434B2 (en) Coated paper using recycled filler
JP2009144272A (en) Paper and method for producing paper
JP2011074504A (en) Coated paper
JP4377425B2 (en) Manufacturing method of fine coated paper

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140627

R150 Certificate of patent or registration of utility model

Ref document number: 5571927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250