JP5570937B2 - Heat treatment equipment - Google Patents

Heat treatment equipment Download PDF

Info

Publication number
JP5570937B2
JP5570937B2 JP2010232169A JP2010232169A JP5570937B2 JP 5570937 B2 JP5570937 B2 JP 5570937B2 JP 2010232169 A JP2010232169 A JP 2010232169A JP 2010232169 A JP2010232169 A JP 2010232169A JP 5570937 B2 JP5570937 B2 JP 5570937B2
Authority
JP
Japan
Prior art keywords
heat medium
inlet
pressure
heating chamber
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010232169A
Other languages
Japanese (ja)
Other versions
JP2012087943A (en
Inventor
正憲 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP2010232169A priority Critical patent/JP5570937B2/en
Publication of JP2012087943A publication Critical patent/JP2012087943A/en
Application granted granted Critical
Publication of JP5570937B2 publication Critical patent/JP5570937B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Muffle Furnaces And Rotary Kilns (AREA)

Description

本発明は、熱処理設備に関するものである。より詳しくは、内筒及び外筒間の加熱室に流通される熱媒体によって内筒内の被処理物が熱処理される外熱式の横型回転式熱処理炉が備わる熱処理設備に関するものである。   The present invention relates to a heat treatment facility. More specifically, the present invention relates to a heat treatment facility provided with an externally heated horizontal rotary heat treatment furnace in which an object to be treated in the inner cylinder is heat-treated by a heat medium flowing in a heating chamber between the inner cylinder and the outer cylinder.

この種の熱処理設備に備わる熱処理炉においては、内筒及び外筒間の加熱室が一対の側壁によって閉じられており、加熱室内を熱媒体が流通する構成とされている。もっとも、加熱室を形成する内筒は回転するものの外筒は回転しないため、通常、一対の側壁は、外筒から延出し、かつ内筒の外周面に及ぶものの、当該内筒とは連結されない状態とされる。したがって、側壁と内筒外周面との間の隙間を通して、加熱室内の熱媒体が流出し、又は加熱室内に外気が流入するおそれがある。熱媒体の流出はエネルギー効率が低下するとの問題を惹き起こし、外気の流入は加熱室から流出する熱媒体の再利用が困難になるとの問題を惹き起こす。外気が流入すると加熱室から流出する熱媒体の酸素濃度や温度等が変動し、当該熱媒体を燃焼用空気と伴に燃焼して熱媒体を得る際、燃焼が不安定になるためである。   In a heat treatment furnace provided in this type of heat treatment equipment, a heating chamber between an inner cylinder and an outer cylinder is closed by a pair of side walls, and a heat medium is circulated in the heating chamber. However, since the inner cylinder forming the heating chamber rotates but the outer cylinder does not rotate, the pair of side walls usually extends from the outer cylinder and extends to the outer peripheral surface of the inner cylinder, but is not connected to the inner cylinder. State. Therefore, the heat medium in the heating chamber may flow out or the outside air may flow into the heating chamber through the gap between the side wall and the outer peripheral surface of the inner cylinder. The outflow of the heat medium causes a problem that the energy efficiency is lowered, and the inflow of outside air causes a problem that it is difficult to reuse the heat medium flowing out from the heating chamber. This is because when the outside air flows in, the oxygen concentration, temperature, and the like of the heat medium flowing out of the heating chamber fluctuate, and the combustion becomes unstable when the heat medium is burned with the combustion air to obtain the heat medium.

そこで、現在では、熱媒体の流出・外気の流入を防止するために、さまざまなシール構造が提案されている(例えば、特許文献1,2参照。)。しかしながら、シール構造の付加は設備コストの増加に繋がる。また、回転する内筒と接するシール構造を構成する部材が摩耗するため、当該部材を交換する必要が生じ、ランニングコストの増加に繋がる。   Therefore, various seal structures have been proposed at present in order to prevent the heat medium from flowing out and the outside air from flowing in (see, for example, Patent Documents 1 and 2). However, the addition of a seal structure leads to an increase in equipment cost. Moreover, since the member which comprises the seal structure which contact | connects the rotating inner cylinder wears out, it will be necessary to replace | exchange the said member and it leads to the increase in running cost.

特開平10−141624号公報Japanese Patent Laid-Open No. 10-141624 特開2008−256288号公報JP 2008-256288 A

本発明が解決しようとする主たる課題は、加熱室から熱媒体が流出するおそれや、加熱室内に外気が流入するおそれがなく、しかも設備コスト・ランニングコストの増加を抑えることができる横型回転式熱処理炉が備わる熱処理設備を提供することにある。   The main problem to be solved by the present invention is a horizontal rotary heat treatment that can prevent the heat medium from flowing out of the heating chamber and the outside air from flowing into the heating chamber, and can suppress an increase in equipment cost and running cost. It is to provide a heat treatment facility equipped with a furnace.

この課題を解決した本発明は、次のとおりである。
〔請求項1記載の発明〕
軸回りに回転する内筒及びこの内筒から所定間隔を隔てて同心状に設置された外筒を有し、前記内筒及び外筒間が加熱室とされ、この加熱室の両端部が前記外筒から延出し、かつ前記内筒の外周面に及ぶ一対の側壁によって閉じられ、前記加熱室に流通される熱媒体により前記内筒内に供給された被処理物が熱処理される構成とされた横型回転式熱処理炉が備わる熱処理設備であって、
前記加熱室両端部の内圧が、前記加熱室外の外圧と同一とされている、
ことを特徴とする熱処理設備。
The present invention that has solved this problem is as follows.
[Invention of Claim 1]
An inner cylinder that rotates around an axis, and an outer cylinder that is concentrically arranged at a predetermined interval from the inner cylinder, and a space between the inner cylinder and the outer cylinder is a heating chamber, and both ends of the heating chamber are The workpiece to be processed is supplied to the inner cylinder by a heat medium that extends from the outer cylinder and is closed by a pair of side walls extending to the outer peripheral surface of the inner cylinder and is supplied to the inner cylinder. Heat treatment equipment equipped with a horizontal rotary heat treatment furnace,
The internal pressure at both ends of the heating chamber is the same as the external pressure outside the heating chamber,
Heat treatment equipment characterized by that.

(主な作用効果)
加熱室両端部の内圧が加熱室外の外圧と同一とされていると、加熱室から熱媒体が流出する力(圧力)と加熱室内に外気が流入する力(圧力)とが均衡する。したがって、側壁と内筒外周面との間の間隙を通して加熱室内から熱媒体が流出する問題や、加熱室内に外気が流入する問題が解決される。しかも、複雑なシール構造を付加するものではないため、設備コスト・ランニングコストの増加を抑えることができる。
(Main effects)
If the internal pressure at both ends of the heating chamber is the same as the external pressure outside the heating chamber, the force (pressure) at which the heat medium flows out from the heating chamber and the force (pressure) at which the outside air flows into the heating chamber are balanced. Therefore, the problem that the heat medium flows out from the heating chamber through the gap between the side wall and the outer peripheral surface of the inner cylinder and the problem that the outside air flows into the heating chamber are solved. In addition, since a complicated seal structure is not added, an increase in equipment cost and running cost can be suppressed.

(削除)(Delete)

(削除)(Delete)

〔請求項2記載の発明〕
前記外筒に熱媒体の流入口が2箇所、熱媒体の流出口が1箇所形成され、
下記(A)〜(C)の少なくとも1つの構成によって前記流入口から前記流出口に至る熱媒体の圧力損失が調節されて、一方の前記流入口から流入され前記流出口に到達した熱媒体の圧力と、他方の前記流入口から流入され前記流出口に到達した熱媒体の圧力と、が同一とされている、
請求項1記載の熱処理設備。
(A)前記一方の流入口から前記流出口までの流路、及び、前記他方の流入口から前記流出口までの流路のうち、相対的に熱媒体流量が多い方の流路長さを長くして熱媒体の圧力損失を調節する構成。
(B)前記一方の流入口と前記流出口との間の加熱室内、及び、前記他方の流入口と前記流出口との間の加熱室内、それぞれに熱媒体を螺旋状に流通させる整流板を設け、前記流入口から熱媒体が相対的に多く流入される整流板のピッチを短くして熱媒体の圧力損失を調節する構成。
(C)前記一方の流入口と前記流出口との間、及び、前記他方の流入口と前記流出口との間、のいずれかの前記所定間隔を狭くして熱媒体の圧力損失を調節する構成。
[Invention of Claim 2]
Two inlets for the heat medium and one outlet for the heat medium are formed in the outer cylinder,
The pressure loss of the heat medium from the inflow port to the outflow port is adjusted by at least one of the following configurations (A) to (C), and the heat medium that has flowed in from one of the inflow ports and reached the outflow port The pressure and the pressure of the heat medium flowing in from the other inlet and reaching the outlet are the same,
The heat treatment facility according to claim 1.
(A) Of the flow path from the one inflow port to the outflow port and the flow path from the other inflow port to the outflow port, the length of the flow path having a relatively larger heat medium flow rate A configuration that adjusts the pressure loss of the heat medium by increasing the length.
(B) A rectifying plate that spirally circulates the heat medium in the heating chamber between the one inlet and the outlet and the heating chamber between the other inlet and the outlet. And a configuration in which the pressure loss of the heat medium is adjusted by shortening the pitch of the rectifying plates into which a relatively large amount of the heat medium flows from the inlet.
(C) The pressure loss of the heat medium is adjusted by narrowing the predetermined interval between the one inlet and the outlet and between the other inlet and the outlet. Constitution.

(主な作用効果)
上記(A)〜(C)の構成によって流入口から流出口に至る熱媒体の圧力損失を調節することで、一方の流入口から流入され流出口に到達した熱媒体の圧力と、他方の流入口から流入され流出口に到達した熱媒体の圧力とを同一にすることができる。なお、この圧力が同一でない場合は、軸方向一方側又は他方側への熱媒体の流れが生じてしまうため、熱媒体の流れが乱れ、加熱室端部における内圧に影響が生じる可能性がある。
(Main effects)
By adjusting the pressure loss of the heat medium from the inflow port to the outflow port according to the configuration of (A) to (C) above, the pressure of the heat medium that has flowed in from one inflow port and reached the outflow port, and the other flow The pressure of the heat medium that flows in from the inlet and reaches the outlet can be made the same. If this pressure is not the same, the flow of the heat medium toward the one side or the other side in the axial direction will occur, so the flow of the heat medium may be disturbed and the internal pressure at the end of the heating chamber may be affected. .

〔請求項3記載の発明〕
前記加熱室が前記内筒及び外筒の一方から延出し、かつ他方に及ぶ仕切り壁によって複数に分割され、少なくとも両端部の加熱室においては前記外筒に熱媒体の流入口及び流出口が形成されており、
当該流出口にそれぞれ繋がる流出路と、この流出路が合流してなる合流路と、この合流路が分岐してなり前記流入口にそれぞれ繋がる流入路と、で熱媒体の循環路が構成され、
下記(A)〜(D)の少なくとも1つの構成によって前記流入口から流入した熱媒体の圧力損失が調節されて、一方の前記流入口から流入され前記合流路に到達した熱媒体の圧力と、他方の前記流入口から流入され前記合流路に到達した熱媒体の圧力と、が同一とされている、
請求項1記載の熱処理設備。
(A)前記一方の流入口から一方の前記流出口までの距離、及び、前記他方の流入口から他方の前記流出口までの距離のうち熱媒体流量が多い方の距離を長くして熱媒体の圧力損失を調節する構成。
(B)前記一方の流入口と前記一方の流出口との間の加熱室内、及び、前記他方の流入口と前記他方の流出口との間の加熱室内、それぞれに熱媒体を螺旋状に流通させる整流板を設け、前記流入口から熱媒体が相対的に多く流通される整流板のピッチを短くして熱媒体の圧力損失を調節する構成。
(C)前記一方の流入口と前記一方の流出口との間、及び、前記他方の流入口と前記他方の流出口との間のうち、熱媒体の流量が相対的に少ない方の前記所定間隔を狭くして熱媒体の圧力損失を調節する構成。
(D)前記流出路の一方に抵抗調節手段を設け、この抵抗調節手段によって一方の熱媒体の圧力損失を大きして熱媒体の圧力損失を調節する構成。
[Invention of Claim 3]
The heating chamber extends from one of the inner cylinder and the outer cylinder and is divided into a plurality by partition walls extending to the other, and at least the heating chambers at both ends form an inlet and an outlet for the heat medium in the outer cylinder. Has been
A heat medium circulation path is constituted by an outflow path connected to each of the outflow ports, a combined flow path formed by joining the outflow paths, and an inflow path branched from the combined flow path and connected to the inflow ports.
The pressure loss of the heat medium flowing in from the inlet is adjusted by at least one of the following configurations (A) to (D), and the pressure of the heat medium flowing in from the one inlet and reaching the combined flow path; The pressure of the heat medium flowing in from the other inlet and reaching the combined flow path is the same,
The heat treatment facility according to claim 1.
(A) Heating medium by increasing the distance from the one inlet to one outlet and the distance from the other inlet to the other outlet that has a larger heat medium flow rate Configuration to adjust the pressure loss of the.
(B) A heating medium is spirally circulated in the heating chamber between the one inlet and the one outlet and the heating chamber between the other inlet and the other outlet. A configuration in which a current plate is provided, and a pressure loss of the heat medium is adjusted by shortening a pitch of the current plate through which a relatively large amount of the heat medium flows from the inlet.
(C) The predetermined one having a relatively small flow rate of the heat medium between the one inlet and the one outlet and between the other inlet and the other outlet. A configuration that adjusts the pressure loss of the heat medium by narrowing the interval.
(D) A configuration in which resistance adjusting means is provided in one of the outflow paths, and the pressure loss of one heat medium is increased by the resistance adjusting means to adjust the pressure loss of the heat medium.

(主な作用効果)
上記(A)〜(D)の構成によって流入口から流入した熱媒体の圧力損失を調節することで、一方の流入口から流入され合流路に到達した熱媒体の圧力と、他方の流入口から流入され合流路に到達した熱媒体の圧力とを同一にすることができる。なお、この圧力が同一でない場合は、圧力の高い流出路から圧力の低い流出路への熱媒体の流れが生じてしまうため、熱媒体の流れが乱れ、加熱室両端部における内圧に影響が生じる可能性がある。
(Main effects)
By adjusting the pressure loss of the heat medium flowing in from the inflow port according to the configuration of (A) to (D) above, the pressure of the heat medium flowing in from one inflow port and reaching the combined flow path, and from the other inflow port The pressure of the heat medium that has flowed in and reaches the combined flow path can be made the same. If this pressure is not the same, the flow of the heat medium from the high pressure outflow path to the low pressure outflow path will occur, so the flow of the heat medium will be disturbed and the internal pressure at both ends of the heating chamber will be affected. there is a possibility.

〔参考となる発明〕
前記外筒に熱媒体の流入口及び流出口が形成され、
下記(A)〜(C)の少なくとも1つの構成によって前記流入口から前記加熱室端部に至る熱媒体に圧力損失が加えられて、当該加熱室端部における内圧が加熱室外の外圧と同一とされている、
請求項1記載の熱処理設備。
(A)前記流入口から前記加熱室端部までの距離を長くして熱媒体の圧力損失を大きくする構成。
(B)前記流入口及び前記加熱室端部間の加熱室内に熱媒体を螺旋状に流通させる整流板を設け、この整流板のピッチを短くして熱媒体の圧力損失を大きくする構成。
(C)前記流入口及び前記加熱室端部間の前記所定間隔を狭くして熱媒体の圧力損失を大きくする構成。
[Reference invention]
An inlet and an outlet for the heat medium are formed in the outer cylinder,
Pressure loss is applied to the heat medium from the inlet to the end of the heating chamber by at least one of the following configurations (A) to (C), and the internal pressure at the end of the heating chamber is the same as the external pressure outside the heating chamber. Being
The heat treatment facility according to claim 1.
(A) A configuration in which the distance from the inlet to the end of the heating chamber is increased to increase the pressure loss of the heat medium.
(B) A configuration in which a current plate that circulates the heat medium in a spiral shape is provided in the heating chamber between the inlet and the end of the heating chamber, and the pressure loss of the heat medium is increased by shortening the pitch of the current plate.
(C) A configuration in which the predetermined gap between the inlet and the heating chamber end is narrowed to increase the pressure loss of the heat medium.

(主な作用効果)
上記(A)〜(C)の構成によって流入口から加熱室端部に至る熱媒体に圧力損失を加えることで、両方の加熱室端部における内圧をともに加熱室外の外圧と同一にすることができる。
(Main effects)
By applying pressure loss to the heat medium from the inlet to the end of the heating chamber with the above-described configurations (A) to (C), the internal pressure at both ends of the heating chamber can be made the same as the external pressure outside the heating chamber. it can.

本発明によると、加熱室から熱媒体が流出するおそれや、加熱室内に外気が流入するおそれがなく、しかも設備コスト・ランニングコストの増加を抑えることができる横型回転式熱処理炉が備わる熱処理設備となる。   According to the present invention, there is no fear that the heat medium flows out of the heating chamber or the outside air flows into the heating chamber, and the heat treatment equipment includes a horizontal rotary heat treatment furnace that can suppress an increase in equipment cost and running cost. Become.

横型回転式熱処理炉が備わる熱処理設備の設備フロー図である。It is an equipment flow diagram of heat treatment equipment provided with a horizontal rotary heat treatment furnace. 流入口から加熱室端部までの距離を長くした形態の加熱室端部の模式断面図である。It is a schematic cross section of the heating chamber edge part of the form which lengthened the distance from an inflow port to a heating chamber edge part. 加熱室内に整流板を備えた形態の加熱室端部の模式断面図である。It is a schematic cross section of the end part of the heating chamber of the form provided with the baffle plate in the heating chamber. 外筒の内筒からの所定間隔を狭くした形態の加熱室端部の模式断面図である。It is a schematic cross section of the heating chamber end in a form in which a predetermined interval from the inner cylinder of the outer cylinder is narrowed. 横型回転式熱処理炉の変形例である。It is a modification of a horizontal rotary heat treatment furnace.

次に、本発明の実施の形態を説明する。
図1に、石油化学製品、汚泥、産業廃棄物等の被処理物C1を熱処理する横型回転式熱処理炉1や熱媒体の循環機構が備わる熱処理設備を示した。横型回転式熱処理炉1は、軸心回りに回転する円筒状の内筒10と、この内筒10から所定間隔を隔てて同心状に設置された、内筒10の回転に伴う回転をしない円筒状の外筒20と、から主になる。
Next, an embodiment of the present invention will be described.
FIG. 1 shows a heat treatment facility equipped with a horizontal rotary heat treatment furnace 1 for heat treatment of an object C1 such as petrochemical products, sludge, and industrial waste, and a heat medium circulation mechanism. The horizontal rotary heat treatment furnace 1 includes a cylindrical inner cylinder 10 that rotates around an axis, and a cylinder that is installed concentrically at a predetermined interval from the inner cylinder 10 and that does not rotate as the inner cylinder 10 rotates. The outer cylinder 20 is mainly formed.

内筒10の両端面には開口が形成されており、例えば、一方の開口には被処理物C1の供給機構が、他方の開口には被処理物C1を熱処理して得た製品C2の排出機構が、それぞれ挿入される。内筒10の軸心は水平面に対して排出機構側が低くなるように若干傾いており、当該内筒10の回転に伴って内筒10内に供給された被処理物C1は、供給側(一端側)から排出側(他端側)へ移送される。この移送の過程において、被処理物C1は、内筒10の内周面によって攪拌されつつ、例えば、乾燥、炭化、熱分解、燃焼等の熱処理をされる。被処理物C1の攪拌効率は、内筒10の内周面に図示しない攪拌羽根を取り付けることによって向上させることができる。攪拌羽根によって内筒10の底部に滞留する被処理物C1が掻き上げられ、被処理物C1と伝熱面である内筒10の内周面との接触効率が向上する。この攪拌羽根としては、内筒10の軸方向に延在するもの、斜め方向に延在するもの等を使用することができる。   Openings are formed in both end faces of the inner cylinder 10. For example, a supply mechanism for the workpiece C1 is provided in one opening, and a product C2 obtained by heat-treating the workpiece C1 is provided in the other opening. Each mechanism is inserted. The axial center of the inner cylinder 10 is slightly inclined with respect to the horizontal plane so that the discharge mechanism side becomes lower, and the workpiece C1 supplied into the inner cylinder 10 as the inner cylinder 10 rotates is supplied to the supply side (one end). Side) to the discharge side (the other end side). In the course of this transfer, the workpiece C1 is subjected to heat treatment such as drying, carbonization, thermal decomposition, and combustion while being stirred by the inner peripheral surface of the inner cylinder 10. The stirring efficiency of the workpiece C1 can be improved by attaching a stirring blade (not shown) to the inner peripheral surface of the inner cylinder 10. The workpiece C1 staying at the bottom of the inner cylinder 10 is scraped up by the stirring blade, and the contact efficiency between the workpiece C1 and the inner peripheral surface of the inner cylinder 10 which is the heat transfer surface is improved. As this stirring blade, the thing extended in the axial direction of the inner cylinder 10, the thing extended in the diagonal direction, etc. can be used.

内筒10内を排出側へ移送された被処理物C1は、熱処理後の被処理物C1である製品C2として、装置外に排出される。特に図示はしないが、この排出側からは、内筒10内に不活性ガスを供給することができる。内筒10内に供給された不活性ガスは、被処理物C1の熱処理に伴って発生した乾留ガスなどと伴に、内部ガスとして供給側から排出される。この不活性ガスの流通方向は、被処理物C1の移送方向と逆方向の向流式とすることのほか、被処理物C1の移送方向と同方向の並流式とすることもできる。不活性ガスは、被処理物C1の発火を防止し、あるいは乾留ガス等の排出を促進するためのものであり、例えば、窒素、二酸化炭素、水蒸気等を使用することができる。もちろん、熱処理の内容として燃焼等が含まれる場合においては、不活性ガスの供給を省略し、又は酸素含有ガス等の供給に変えることができる。   The workpiece C1 transferred to the discharge side in the inner cylinder 10 is discharged out of the apparatus as a product C2 which is the workpiece C1 after the heat treatment. Although not shown in particular, an inert gas can be supplied into the inner cylinder 10 from the discharge side. The inert gas supplied into the inner cylinder 10 is discharged from the supply side as an internal gas together with the dry distillation gas generated in association with the heat treatment of the workpiece C1. The flow direction of the inert gas may be a countercurrent type opposite to the transfer direction of the workpiece C1, or a parallel flow type in the same direction as the transfer direction of the workpiece C1. The inert gas is for preventing ignition of the object to be processed C1 or promoting discharge of dry distillation gas or the like, and for example, nitrogen, carbon dioxide, water vapor or the like can be used. Of course, when the contents of the heat treatment include combustion or the like, the supply of the inert gas can be omitted, or the supply can be changed to the supply of an oxygen-containing gas or the like.

外筒20は、内筒10から所定間隔を隔てて同心状に設置されており、当該外筒20の内周面と内筒10の外表面との間に形成される加熱室R1,R2に熱媒体H1,H2が流通される。この熱媒体H1,H2は、例えば、熱風等の熱気体、熱湯等の熱液体、これらの混合物等からなり、この熱媒体H1,H2の熱が内筒10を介して間接的に被処理物C1に伝達され、被処理物C1が熱処理される。加熱室R1,R2の両端部は、外筒20から延出し、かつ内筒10の外周面に及ぶ一対の側壁21,22によって閉じられている。もっとも、内筒10は回転するものの外筒20は回転しないため、一対の側壁21,22は内筒20と連結されない状態とされている。したがって、側壁21,22と内筒10外周面との間の隙間を通して、加熱室R1,R2内の熱媒体H1,H2が流出し、又は加熱室R1,R2内に外気が流入するおそれがある。しかしながら、本形態においては、加熱室R1,R2両端部(両側壁側端部)の内圧が、加熱室R1,R2外の外圧と同一とされている。したがって、加熱室R1,R2内から熱媒体が流出する力(圧力)と加熱室R1,R2内に外気が流入する力(圧力)が均衡し、熱媒体の流出や、外気の流入が防止される。なお、従来の形態においては、熱媒体の流出・外気の流入を防止するために、シール機構を設けていたが、本形態は、このシール機構に変えて、又はこのシール機構と伴に採用することができる。   The outer cylinder 20 is disposed concentrically at a predetermined interval from the inner cylinder 10, and is provided in heating chambers R <b> 1 and R <b> 2 formed between the inner peripheral surface of the outer cylinder 20 and the outer surface of the inner cylinder 10. Heat media H1 and H2 are circulated. The heat mediums H1 and H2 include, for example, a hot gas such as hot air, a hot liquid such as hot water, a mixture thereof, and the like, and the heat of the heat mediums H1 and H2 is indirectly processed through the inner cylinder 10. C1 is transmitted, and the workpiece C1 is heat-treated. Both end portions of the heating chambers R1 and R2 are closed by a pair of side walls 21 and 22 extending from the outer cylinder 20 and extending to the outer peripheral surface of the inner cylinder 10. However, since the inner cylinder 10 rotates but the outer cylinder 20 does not rotate, the pair of side walls 21 and 22 are not connected to the inner cylinder 20. Therefore, the heat medium H1 and H2 in the heating chambers R1 and R2 may flow out through the gap between the side walls 21 and 22 and the outer peripheral surface of the inner cylinder 10, or the outside air may flow into the heating chambers R1 and R2. . However, in this embodiment, the internal pressures at both end portions (both side wall side end portions) of the heating chambers R1 and R2 are the same as the external pressure outside the heating chambers R1 and R2. Therefore, the force (pressure) at which the heat medium flows out of the heating chambers R1 and R2 and the force (pressure) at which the outside air flows into the heating chambers R1 and R2 are balanced, and the outflow of the heat medium and the inflow of outside air are prevented. The In addition, in the conventional form, in order to prevent the outflow of the heat medium and the outside air, a seal mechanism is provided. However, this form is adopted instead of or together with this seal mechanism. be able to.

加熱室R1,R2は、外筒20から延出し、かつ内筒10に及ぶ仕切り壁10Xによって、加熱室R1と加熱室R2とに分割されている。各加熱室R1,R2には、各別に熱媒体H1,H2が流通され、この熱媒体H1,H2の熱量は、加熱室ごとに異なるものとすることができる。熱媒体H1,H2の熱量を異なるものとすることによって、加熱室R1内を流通する熱媒体H1によって熱処理が行われる加熱ゾーンと、加熱室R2内を流通する熱媒体H2によって熱処理が行われる加熱ゾーンとに区画することができる。この場合、各加熱ゾーンにおいて行われる熱処理の内容は特に限定されるものではないが、本形態の熱処理炉1は、供給側(紙面左側)の加熱ゾーンにおいて被処理物C1の乾燥処理を、排出側(紙面右側)の加熱ゾーンにおいて被処理物C2の炭化処理を行う場合に好適である。これらの熱処理によって、被処理物C1を燃料化することができる。また、特に図示はしないが、加熱ゾーン(加熱室)を3つ以上の複数とすることもできる。さらに、内筒10は回転するものの外筒20は回転しないため、外筒20から延出する仕切り壁10Xは、内筒10に連結されない状態とされている。ただし、当該仕切り壁10Xの先端部と内筒10外周面とが離間している必要はなく、部材摩耗の観点等から許容されるのであれば、当接していてもよい。また、仕切り壁10Xは、内筒10から延出し、かつ外筒20に及ぶ形態とすることもできる。   The heating chambers R1 and R2 are divided into a heating chamber R1 and a heating chamber R2 by a partition wall 10X extending from the outer cylinder 20 and extending to the inner cylinder 10. In each heating chamber R1, R2, heat medium H1, H2 is circulated separately, and the amount of heat of the heat medium H1, H2 can be different for each heating chamber. By making the heat amounts of the heat media H1 and H2 different, a heating zone in which heat treatment is performed by the heat medium H1 flowing in the heating chamber R1, and heating in which heat treatment is performed by the heat medium H2 flowing in the heating chamber R2 It can be divided into zones. In this case, the content of the heat treatment performed in each heating zone is not particularly limited, but the heat treatment furnace 1 of the present embodiment discharges the drying treatment of the workpiece C1 in the heating zone on the supply side (left side of the paper). This is suitable when carbonizing the workpiece C2 in the heating zone on the side (right side of the drawing). By these heat treatments, the workpiece C1 can be converted into fuel. In addition, although not particularly illustrated, the heating zone (heating chamber) may be a plurality of three or more. Furthermore, since the inner cylinder 10 rotates but the outer cylinder 20 does not rotate, the partition wall 10 </ b> X extending from the outer cylinder 20 is not connected to the inner cylinder 10. However, the distal end portion of the partition wall 10X and the outer peripheral surface of the inner cylinder 10 do not need to be separated from each other, and may contact each other if allowed from the viewpoint of member wear. Further, the partition wall 10 </ b> X may extend from the inner cylinder 10 and extend to the outer cylinder 20.

ここで、本明細書において加熱室の両端部とは、加熱室全体の両端部を意味し、各加熱室の両端部を意味するものではない。したがって、図示例では、各加熱室R1,R2の側壁21,22側端部のみを意味し、仕切り壁10X側の端部は意味しない。   Here, in this specification, the both ends of a heating chamber mean the both ends of the whole heating chamber, and do not mean the both ends of each heating chamber. Therefore, in the example of illustration, only the side wall 21 and 22 side edge part of each heating chamber R1 and R2 is meant, and the edge part by the side of the partition wall 10X is not meant.

次に、各加熱室R1,R2に熱媒体H1,H2を流通させるための機構を説明する。
本形態の熱処理炉1においては、外筒10の供給側端部に形成された流入口11から加熱室R1内に熱媒体H1が、外筒10の排出側端部に形成された流入口12から加熱室R2内に熱媒体H2が、各別に流入される。各流入口11,12は、熱媒体H1,H2の流入方向が加熱室R1,R2に対して接線方向となるように形成されていると好適である。また、各流入口11,12の軸方向や周方向に関する形成位置、形成する数などは特に限定されるものではないが、加熱室R1の流入口11は、供給側端部に、かつ加熱室R1内に流入された熱媒体H1がまず内筒10の底面を加熱するように形成されていると好適である。この形態によると、内筒10内において、まず、供給側底部に堆積する被処理物C1が効果的に加熱される。なお、図示例において、流入口11,12は、各加熱室R1,R2にそれぞれ1つとされているが、それぞれ2つ以上の複数とすることもできる。
Next, a mechanism for circulating the heat mediums H1 and H2 through the heating chambers R1 and R2 will be described.
In the heat treatment furnace 1 of the present embodiment, the heat medium H1 enters the heating chamber R1 from the inlet 11 formed at the supply-side end of the outer cylinder 10, and the inlet 12 formed at the discharge-side end of the outer cylinder 10. The heating medium H2 flows into the heating chamber R2 individually. The inflow ports 11 and 12 are preferably formed so that the inflow directions of the heat mediums H1 and H2 are tangential to the heating chambers R1 and R2. Moreover, although the formation position regarding the axial direction and circumferential direction of each inflow port 11 and 12 and the number to form are not specifically limited, the inflow port 11 of heating chamber R1 is a supply side edge part, and a heating chamber. It is preferable that the heat medium H1 flowing into R1 is formed so as to heat the bottom surface of the inner cylinder 10 first. According to this embodiment, first, the object to be processed C1 deposited on the supply side bottom is effectively heated in the inner cylinder 10. In the illustrated example, the number of the inlets 11 and 12 is one for each of the heating chambers R1 and R2. However, the number of the inlets 11 and 12 may be two or more.

加熱室R1内に流入された熱媒体H1は、仕切り壁10X側(排出側)へ流通され、外筒20の仕切り壁10X近傍に形成された流出口13から加熱室R1外に流出される。また、加熱室R2内に流入された熱媒体H2は、仕切り壁10X側(供給側)へ流通され、外筒20の仕切り壁10X近傍に形成された流出口14から加熱室R2外に流出される。各流出口13,14は、熱媒体H1,H2の流出方向が加熱室R1,R2に対して接線方向となるように形成されていると好適である。また、各流出口13,14の軸方向や周方向に関する形成位置、形成する数などは特に限定されるものではないが、図示例ように、各加熱室R1,R2において対応する流入口11,12とは軸方向に関して反対側の端部に形成されていると好適である。各加熱室R1,R2において流入口11,12及び流出口13,14が相互に軸方向に関して反対側の端部に形成されていると、各加熱ゾーンにおいて全長にわって均一な熱処理が行われるようになる。なお、図示例において、流出口13,14は、各加熱室R1,R2にそれぞれ1つとされているが、それぞれ2つ以上の複数とすることもできる。 The heat medium H1 that has flowed into the heating chamber R1 flows to the partition wall 10X side (discharge side) and flows out of the heating chamber R1 from the outlet 13 formed in the vicinity of the partition wall 10X of the outer cylinder 20. The heat medium H2 that has flowed into the heating chamber R2 flows to the partition wall 10X side (supply side), and flows out of the heating chamber R2 from the outlet 14 formed in the vicinity of the partition wall 10X of the outer cylinder 20. The The outlets 13 and 14 are preferably formed so that the outflow direction of the heat mediums H1 and H2 is tangential to the heating chambers R1 and R2. Moreover, although the formation position regarding the axial direction and circumferential direction of each outflow port 13 and 14 and the number to form are not specifically limited , like the example of illustration, the corresponding inflow port 11 in each heating chamber R1 and R2. , 12 is preferably formed at the end opposite to the axial direction. When the inlets 11 and 12 and the outlets 13 and 14 are formed at opposite ends in the axial direction in each of the heating chambers R1 and R2, uniform heat treatment is performed over the entire length in each heating zone. I Ru Unina. In the illustrated example, the number of outlets 13 and 14 is one for each of the heating chambers R1 and R2. However, the number of outlets 13 and 14 may be two or more.

流出口13,14から流出された温度が低下した熱媒体H1,H2は、流出口13,14にそれぞれ繋がる流出路81,82内を流通される。この流出路81,82は、合流点M1において合流しており、この合流点M1において熱媒体H1,H2は混合され、温度が低下した熱媒体H3として合流路83内を流通される。この合流路83には、燃焼炉、電気ヒーター、熱交換器等の加熱手段90が備えられている。この加熱手段90において、熱媒体H3は、別途空気等の酸素含有ガスAが供給される等しながら加熱される。加熱後の温度が上昇した熱媒体Hは、引き続き合流路83内を流通される。この合流路83は、分岐点M2において流入口11に繋がる流入路84と、流入口12に繋がる流入路85とに分岐しており、加熱後の熱媒体Hが流入路84内を流通される熱媒体H1と、流入路85内を流通される熱媒体H2とに分流される。これらの熱媒体H1,H2は、それぞれ流入口11,12から加熱室R1,R2内に流入され、熱媒体の循環が実現される。なお、合流路83には、ブロワ等の熱媒体の循環手段Pが備えられている。   The heat mediums H1 and H2 whose temperature has flowed out from the outlets 13 and 14 are circulated through the outlets 81 and 82 connected to the outlets 13 and 14, respectively. The outflow channels 81 and 82 merge at the junction M1, and the heat mediums H1 and H2 are mixed at the junction M1 and are circulated in the junction 83 as the heat medium H3 having a lowered temperature. The joint channel 83 is provided with heating means 90 such as a combustion furnace, an electric heater, a heat exchanger or the like. In the heating means 90, the heat medium H3 is heated while an oxygen-containing gas A such as air is separately supplied. The heat medium H whose temperature after heating has risen continues to flow through the combined flow path 83. This joint channel 83 branches into an inflow channel 84 connected to the inflow port 11 and an inflow channel 85 connected to the inflow port 12 at the branch point M2, and the heated heat medium H is circulated in the inflow channel 84. The heat medium H1 and the heat medium H2 flowing through the inflow path 85 are divided. These heat media H1 and H2 flow into the heating chambers R1 and R2 from the inlets 11 and 12, respectively, thereby realizing the circulation of the heat medium. The combined flow path 83 is provided with a heat medium circulating means P such as a blower.

この熱媒体の循環機構においては、流出口13,14から流出された熱媒体H1,H2の温度等が変動する可能性があるため、加熱手段90を経た熱媒体Hの温度も変動する可能性がある。そこで、本形態においては、流入路84,85にそれぞれバルブ、ダンパ等からなる熱媒体H1,H2の流量調節手段17,18が備えられている。この流量調節手段17、18は、熱処理炉1への供給熱量をコントロールするものであり、たとえば熱処理炉1(内筒10)の出口排ガス温度、熱処理炉1(内筒10)内部のガス温度、熱処理物の品物温度、内筒10の表面温度の検出結果などに基づいて供給量をコントロールすることができる。なお、各温度の測定には、熱伝対などの公知の温度測定手段を用いることができる。流量調節手段17,18によって加熱室R1,R2内に流入される熱媒体H1,H2の流量を調節することで、各加熱室R1,R2に必要熱量を安定供給することができる。   In this heat medium circulation mechanism, the temperature of the heat medium H1 and H2 flowing out from the outlets 13 and 14 may fluctuate, so the temperature of the heat medium H that has passed through the heating means 90 may also fluctuate. There is. Therefore, in the present embodiment, flow rate adjusting means 17 and 18 for the heat mediums H1 and H2 including valves and dampers are provided in the inflow paths 84 and 85, respectively. The flow rate adjusting means 17 and 18 are for controlling the amount of heat supplied to the heat treatment furnace 1. For example, the outlet exhaust gas temperature of the heat treatment furnace 1 (inner cylinder 10), the gas temperature inside the heat treatment furnace 1 (inner cylinder 10), The supply amount can be controlled based on the detection result of the product temperature of the heat-treated product, the surface temperature of the inner cylinder 10, and the like. For measuring each temperature, a known temperature measuring means such as a thermocouple can be used. By adjusting the flow rate of the heat mediums H1 and H2 flowing into the heating chambers R1 and R2 by the flow rate adjusting means 17 and 18, the necessary heat quantity can be stably supplied to the heating chambers R1 and R2.

もっとも、この熱媒体H1,H2の流量調節に伴って、加熱室両端部における内圧も変動してしまう可能性がある。そこで、本形態においては、排出側(紙面右側)の流出路82にバルブ、ダンパ等からなる抵抗調節手段15が、排出側の側壁22に加熱室端部近傍の内圧を検知する内圧検知手段15Xが、備えられている。内圧検知手段15Xによって検知した内圧(検知内圧)に基づいて、抵抗調節手段15によって流出路82内を流通する熱媒体H2の抵抗を調節することで、排出側の加熱室端部の内圧を加熱室外の外圧と同一に維持することができる。具体的には、検知内圧が外圧よりも高い場合は、バルブの開き具合、ダンパの開度等を大きくして熱媒体H2にかかる抵抗を下げる。他方、検知内圧が外圧よりも低い場合は、バルブの開き具合、ダンパの開度等を小さくして熱媒体H2にかかる抵抗を上げる。   However, the internal pressure at both ends of the heating chamber may also vary with the flow rate adjustment of the heat mediums H1 and H2. Therefore, in the present embodiment, the resistance adjusting means 15 including a valve, a damper or the like is provided in the outflow passage 82 on the discharge side (right side of the paper), and the internal pressure detection means 15X detects the internal pressure in the vicinity of the end of the heating chamber on the discharge side wall 22. Is provided. Based on the internal pressure (detected internal pressure) detected by the internal pressure detecting means 15X, the resistance adjusting means 15 adjusts the resistance of the heat medium H2 flowing through the outflow passage 82, thereby heating the internal pressure at the end of the discharge-side heating chamber. It can be kept the same as the outdoor pressure outside. Specifically, when the detected internal pressure is higher than the external pressure, the resistance applied to the heat medium H2 is decreased by increasing the degree of valve opening, the opening degree of the damper, and the like. On the other hand, when the detected internal pressure is lower than the external pressure, the opening degree of the valve, the opening degree of the damper, etc. are reduced to increase the resistance applied to the heat medium H2.

加えて、本形態においては、加熱手段90よりも上流の合流路83に循環流量制御手段16が、供給側の側壁21に加熱室端部の内圧を検知する内圧検知手段16Xが、備えられている。内圧検知手段16Xによって検知した内圧(検知内圧)に基づいて、循環流量制御手段16によって加熱手段90に至る熱媒体H3の流量を減らすことで、供給側の加熱室端部の内圧を加熱室外の外圧と同一に維持することができる。具体的には、検知内圧が外圧よりも高い場合は、熱媒体H3の減少量を多くし、検知内圧が外圧よりも低い場合は、熱媒体H3の減少量を少なくする。循環流量制御手段16は、例えば、合流路83から分岐する分岐路16Aと、この分岐路16Aに備わるバルブ、ダンパ等からなる流量調節手段16Bと、で構成することができる。流量調節手段16Bによって分岐路16A内を流通する熱媒体H3の流量を多くすることで、加熱手段90に至る熱媒体H3の減少量が大きくなる。他方、流量調節手段16Bによって分岐路16A内を流通する熱媒体H3の流量を少なくすることで、加熱手段90に至る熱媒体H3の減少量が小さくなる。本形態においては、流出路81,82の両方に抵抗調節手段を備えることができる。しかしながら、供給側の抵抗調節手段によって供給側の加熱室端部の内圧を、排出側の抵抗調節手段によって排出側の加熱室端部の内圧を、いずれも加熱室外の外圧と同一となるようにする形態は推奨しない。抵抗調節手段が備えられる両流出路81,82は下流で合流するが、抵抗調節手段において熱媒体に圧力損失が生じるため、当該形態によると、熱媒体の合流時における圧力均衡が図れなくなる。   In addition, in this embodiment, the circulation flow rate control means 16 is provided in the combined flow path 83 upstream of the heating means 90, and the internal pressure detection means 16X for detecting the internal pressure at the end of the heating chamber is provided on the supply side wall 21. Yes. On the basis of the internal pressure (detected internal pressure) detected by the internal pressure detection means 16X, the flow rate of the heat medium H3 reaching the heating means 90 is reduced by the circulation flow rate control means 16 to thereby reduce the internal pressure at the end of the heating chamber on the supply side outside the heating chamber. It can be kept the same as the external pressure. Specifically, when the detected internal pressure is higher than the external pressure, the decrease amount of the heat medium H3 is increased, and when the detected internal pressure is lower than the external pressure, the decrease amount of the heat medium H3 is decreased. The circulation flow rate control means 16 can be constituted by, for example, a branch path 16A that branches from the combined path 83 and a flow rate control means 16B that includes valves, dampers, and the like provided in the branch path 16A. By increasing the flow rate of the heat medium H3 flowing through the branch passage 16A by the flow rate adjusting means 16B, the amount of decrease of the heat medium H3 reaching the heating means 90 is increased. On the other hand, by reducing the flow rate of the heat medium H3 flowing through the branch passage 16A by the flow rate adjusting means 16B, the amount of decrease in the heat medium H3 reaching the heating means 90 is reduced. In this embodiment, both the outflow paths 81 and 82 can be provided with resistance adjusting means. However, the internal pressure at the end of the heating chamber on the supply side by the resistance adjustment means on the supply side, and the internal pressure at the end of the heating chamber on the discharge side by the resistance adjustment means on the discharge side are all made equal to the external pressure outside the heating chamber. This is not recommended. Although both the outflow paths 81 and 82 provided with the resistance adjusting means merge downstream, a pressure loss occurs in the heat medium in the resistance adjusting means. Therefore, according to this form, it is impossible to achieve pressure balance when the heat medium is merged.

なお、図1に示すように、流入口11,12が側壁21,22の近傍に設けられている場合においては、加熱室端部近傍に流入口11,12が含まれる。したがって、内圧検知手段15X,16Xを流入口11,12に設けることもできる。   As shown in FIG. 1, when the inlets 11 and 12 are provided in the vicinity of the side walls 21 and 22, the inlets 11 and 12 are included in the vicinity of the end portion of the heating chamber. Therefore, the internal pressure detecting means 15X and 16X can be provided at the inflow ports 11 and 12.

次に、加熱室両端部(側壁21,22側端部)の内圧を加熱室外の外圧と同一にする方法について説明する。
流入口11,12から流入した熱媒体H1,H2は、加熱室両端部に至る過程で圧力損失が生じるため、加熱室端部の内圧を外圧と同一にするためには、流入口11,12から流入する熱媒体H1,H2の圧力が外圧を超えている必要がある。そして、この外圧を超える圧力の熱媒体H1,H2に対して、適宜圧力損失を加えることによって、加熱室端部の内圧を外圧と同一にすることになる。この熱媒体に圧力損失を加える形態としては、以下の構成を適用するのが好適である。
Next, a method for making the internal pressure at both ends of the heating chamber (ends on the side of the side walls 21 and 22) the same as the external pressure outside the heating chamber will be described.
Since the heat medium H1 and H2 flowing in from the inlets 11 and 12 cause pressure loss in the process of reaching the both ends of the heating chamber, in order to make the internal pressure at the end of the heating chamber the same as the external pressure, the inlets 11 and 12 It is necessary that the pressure of the heat medium H1 and H2 flowing from the outside exceeds the external pressure. Then, by appropriately applying pressure loss to the heat mediums H1, H2 having a pressure exceeding the external pressure, the internal pressure at the end of the heating chamber is made the same as the external pressure. As a form of applying pressure loss to the heat medium, it is preferable to apply the following configuration.

図1に示す例では、流入口11,12が外筒20の両端部(側壁21,22近傍)に備えられていたが、供給側の場合を例に図2に示すように、流入口11から側壁21までの軸方向に関する距離L1を長くして熱媒体H1の圧力損失を大きくすることができる。この距離L1は、流入口11から流入する熱媒体H1の設計圧力を基準に、加熱室端部の内圧が外圧と同一になるように設計する。   In the example shown in FIG. 1, the inlets 11 and 12 are provided at both ends (near the side walls 21 and 22) of the outer cylinder 20. However, as shown in FIG. It is possible to increase the pressure loss of the heat medium H1 by increasing the distance L1 in the axial direction from the side wall 21 to the side wall 21. This distance L1 is designed so that the internal pressure at the end of the heating chamber is the same as the external pressure with reference to the design pressure of the heat medium H1 flowing from the inlet 11.

また、供給側の場合を例に図3に示すように、まず、流入口11及び側壁21(加熱室端部)間の加熱室R1内に熱媒体H1を螺旋状に流通させる整流板61を設ける。この整流板61は、特開2005−164094号公報等に開示された整流板と同様に、熱媒体H1のショートパスを防止する機能を有し、熱効率を向上させる効果を有する。しかしながら、本形態においては、熱媒体H1の圧力損失を大きくするという観点から、この整流板61のピッチL2を短くする。このピッチL2は、流入口11から流入する熱媒体H1の設計圧力を基準に、加熱室端部の内圧が外圧と同一になるように設計する。   Further, as shown in FIG. 3 by taking the case of the supply side as an example, first, a rectifying plate 61 that circulates the heat medium H1 spirally in the heating chamber R1 between the inlet 11 and the side wall 21 (heating chamber end) is provided. Provide. The rectifying plate 61 has a function of preventing a short path of the heat medium H1 and has an effect of improving thermal efficiency, like the rectifying plate disclosed in Japanese Patent Application Laid-Open No. 2005-164094. However, in this embodiment, the pitch L2 of the rectifying plate 61 is shortened from the viewpoint of increasing the pressure loss of the heat medium H1. The pitch L2 is designed so that the internal pressure at the end of the heating chamber is the same as the external pressure with reference to the design pressure of the heat medium H1 flowing from the inlet 11.

さらに、供給側の場合を例に図4に示すように、流入口11及び側壁21(加熱室端部)間の所定間隔L3を狭くして熱媒体H1の圧力損失を大きくする。この所定間隔L3も、流入口11から流入する熱媒体H1の設計圧力を基準に、加熱室端部の内圧が外圧と同一になるように設計する。   Further, as shown in FIG. 4 taking the supply side as an example, the predetermined distance L3 between the inlet 11 and the side wall 21 (heating chamber end) is narrowed to increase the pressure loss of the heat medium H1. The predetermined interval L3 is also designed so that the internal pressure at the end of the heating chamber is the same as the external pressure with reference to the design pressure of the heat medium H1 flowing from the inlet 11.

ところで、以上では、仕切り壁10Xによって加熱室が2つ(又は3つ以上の複数)に分割される例を示した。これは、加熱室両端部の内圧を、いずれも加熱室外の外圧と同一とするには、各別に熱媒体H1,H2を制御するのが好適なためである。しかしながら、加熱室両端部の内圧を外圧と同一とすることができるのであれば、加熱室が分割されていなくてもよい。そして、加熱室が分割されていない場合においては、例えば、図5の(a)〜(c)に示すように、流入口(11,12)は2箇所(又は3箇所以上の複数)としつつも、流出口(71)は1箇所とすることができる。もっとも、この形態においては、供給側(紙面左側)の流入口11から流入され流出口71に到達した熱媒体H1の圧力(以下「供給側圧力」ともいう。)と、排出側(紙面右側)の流入口12から流入され流出口71に到達した熱媒体H2の圧力(以下「排出側圧力」ともいう。)と、が同一でないと、供給側(軸方向一方側)又は排出側(軸方向他方側)への熱媒体の流れが生じてしまう。この結果、加熱室R内における熱媒体の流れが乱れ、加熱室両端部における内圧に影響が生じる可能性がある。そこで、流入口11,12から流出口71に至る熱媒体H1,H2の圧力損失を調節して、供給側圧力と排出側圧力とを同一にする。この熱媒体の圧力損失を調節する形態としては、以下の構成を適用するのが好適である。   By the way, the example in which the heating chamber is divided into two (or a plurality of three or more) by the partition wall 10X has been described above. This is because it is preferable to control the heat mediums H1 and H2 separately so that the internal pressure at both ends of the heating chamber is the same as the external pressure outside the heating chamber. However, the heating chamber may not be divided as long as the internal pressure at both ends of the heating chamber can be made equal to the external pressure. And when a heating chamber is not divided | segmented, as shown to (a)-(c) of FIG. 5, for example, the inflow ports (11, 12) are 2 places (or more than 3 places). In addition, the outlet (71) can be provided at one location. However, in this embodiment, the pressure of the heat medium H1 that has flowed in from the inlet 11 on the supply side (left side of the paper) and reaches the outlet 71 (hereinafter also referred to as “supply side pressure”), and the discharge side (right side of the paper). If the pressure of the heat medium H2 flowing in from the inlet 12 and reaching the outlet 71 (hereinafter also referred to as “discharge side pressure”) is not the same, the supply side (one axial direction) or the discharge side (axial direction) The heat medium flows to the other side. As a result, the flow of the heat medium in the heating chamber R is disturbed, and the internal pressure at both ends of the heating chamber may be affected. Therefore, the pressure loss of the heat mediums H1 and H2 from the inlets 11 and 12 to the outlet 71 is adjusted to make the supply side pressure and the discharge side pressure the same. As a mode of adjusting the pressure loss of the heat medium, it is preferable to apply the following configuration.

図5の(a)に示す例では、流入口11から流出口71までの距離L4と流入口12から流出口71までの距離L5とが同一とされているが、供給側圧力が排出側圧力よりも高くなる場合は、流入口11から流出口71までの距離L4を長くして、熱媒体H1の圧力損失を大きくする。なお、本形態は流出口が1箇所であるため、この場合、流入口12から流出口71までの距離L5が短くなり、熱媒体H2の圧力損失が小さくなる。他方、排出側圧力が供給側圧力よりも高くなる場合は、流入口12から流出口71までの距離L5を長くして、熱媒体H2の圧力損失を大きくする。なお、この場合、流入口11から流出口71までの距離L4が短くなり、熱媒体H1の圧力損失が小さくなる。このようにして、熱媒体H1,H2の圧力損失が調節される。距離L4,L5は、流入口11,12から流入する熱媒体H1,H2の設計圧力を基準に、供給側圧力と排出側圧力とが同一になるように設計する。   In the example shown in FIG. 5A, the distance L4 from the inlet 11 to the outlet 71 is the same as the distance L5 from the inlet 12 to the outlet 71, but the supply side pressure is the discharge side pressure. If it is higher than this, the distance L4 from the inlet 11 to the outlet 71 is lengthened to increase the pressure loss of the heat medium H1. In this embodiment, since there is only one outlet, in this case, the distance L5 from the inlet 12 to the outlet 71 is reduced, and the pressure loss of the heat medium H2 is reduced. On the other hand, when the discharge side pressure becomes higher than the supply side pressure, the distance L5 from the inlet 12 to the outlet 71 is increased to increase the pressure loss of the heat medium H2. In this case, the distance L4 from the inlet 11 to the outlet 71 is reduced, and the pressure loss of the heat medium H1 is reduced. In this way, the pressure loss of the heat mediums H1 and H2 is adjusted. The distances L4 and L5 are designed so that the supply-side pressure and the discharge-side pressure are the same based on the design pressure of the heat mediums H1 and H2 flowing from the inlets 11 and 12.

また、図5の(b)に示すように、流入口11と流出口71との間の加熱室R内、及び、流入口12と流出口71との間の加熱室R内、それぞれに熱媒体H1,H2を螺旋状に流通させる整流板63,64を設ける構成も好適である。この整流板63,64は、前述した流入口11と加熱室端部との間に設ける整流板61(図3参照)と同様のものを使用することができる。この整流板63,64も、熱媒体H1,H2のショートパスを防止する機能を有し、熱効率を向上させる効果を有する。しかしながら、本形態においては、この機能・効果に加えて、整流板63,64を利用して、供給側圧力と排出側圧力とを同一にする。具体的には、供給側圧力が排出側圧力よりも高くなる場合は、供給側の整流板63のピッチL6を排出側の整流板64のピッチL7よりも短くして、熱媒体H1の圧力損失を大きくする。他方、排出側圧力が供給側圧力よりも高くなる場合は、排出側の整流板64のピッチL7を供給側の整流板63のピッチL6よりも短くして、熱媒体H2の圧力損失を大きくする。このようにして、熱媒体H1,H2の圧力損失が調節される。整流板63,64のピッチL6,L7は、流入口11,12から流入する熱媒体H1,H2の設計圧力を基準に、供給側圧力と排出側圧力とが同一になるように設計する。   Further, as shown in FIG. 5B, heat is generated in the heating chamber R between the inlet 11 and the outlet 71 and in the heating chamber R between the inlet 12 and the outlet 71, respectively. A configuration in which rectifying plates 63 and 64 for circulating the media H1 and H2 in a spiral shape are also suitable. The rectifying plates 63 and 64 may be the same as the rectifying plate 61 (see FIG. 3) provided between the inlet 11 and the end of the heating chamber. The rectifying plates 63 and 64 also have a function of preventing a short path of the heat mediums H1 and H2 and have an effect of improving thermal efficiency. However, in this embodiment, in addition to this function and effect, the supply side pressure and the discharge side pressure are made the same by using the rectifying plates 63 and 64. Specifically, when the supply-side pressure is higher than the discharge-side pressure, the pitch L6 of the supply-side rectifying plate 63 is made shorter than the pitch L7 of the discharge-side rectifying plate 64 to reduce the pressure loss of the heat medium H1. Increase On the other hand, when the discharge-side pressure is higher than the supply-side pressure, the pitch L7 of the discharge-side rectifying plate 64 is made shorter than the pitch L6 of the supply-side rectifying plate 63 to increase the pressure loss of the heat medium H2. . In this way, the pressure loss of the heat mediums H1 and H2 is adjusted. The pitches L6 and L7 of the rectifying plates 63 and 64 are designed such that the supply side pressure and the discharge side pressure are the same based on the design pressure of the heat mediums H1 and H2 flowing from the inlets 11 and 12.

さらに、図5の(c)に示すように、流入口11と流出口71との間、及び、流入口12と流出口71との間、のいずれかの所定間隔L8,L9を狭くして熱媒体H1,H2の圧力損失を調節する構成も好適である。具体的には、供給側圧力が排出側圧力よりも高くなる場合は、図示はしないが、供給側の所定間隔L8を排出側の所定間隔L9よりも狭くして、熱媒体H1の圧力損失を大きくする。他方、排出側圧力が供給側圧力よりも高くなる場合は、図示するように、排出側の所定間隔L9を供給側の所定間隔L8よりも狭くして、熱媒体H2の圧力損失を大きくする。このようにして、熱媒体H1,H2の圧力損失が調節される。所定間隔L8,L9は、流入口11,12から流入する熱媒体H1,H2の設計圧力を基準に、供給側圧力と排出側圧力とが同一になるように設計する。   Further, as shown in FIG. 5C, the predetermined intervals L8 and L9 between the inlet 11 and the outlet 71 and between the inlet 12 and the outlet 71 are narrowed. A configuration for adjusting the pressure loss of the heat mediums H1 and H2 is also suitable. Specifically, when the supply side pressure is higher than the discharge side pressure, although not shown, the supply side predetermined interval L8 is made narrower than the discharge side predetermined interval L9 to reduce the pressure loss of the heat medium H1. Enlarge. On the other hand, when the discharge-side pressure is higher than the supply-side pressure, as shown in the figure, the discharge-side predetermined interval L9 is made narrower than the supply-side predetermined interval L8 to increase the pressure loss of the heat medium H2. In this way, the pressure loss of the heat mediums H1 and H2 is adjusted. The predetermined intervals L8 and L9 are designed such that the supply side pressure and the discharge side pressure are the same based on the design pressure of the heat mediums H1 and H2 flowing in from the inlets 11 and 12.

以上では、供給側圧力と排出側圧力とを同一とするための構成を示した。しかしながら、これに類似する問題は、先に図1を参照しながら説明した流入口(11,12)及び流出口(13,14)がそれぞれ2箇所とされる形態においても存在する。
すなわち、流出口13,14から流出された熱媒体H1,H2が合流する形態においては、一方の流入口11から流入され合流路83(合流点M1)に到達した熱媒体H1の圧力(以下「供給側合流圧力」ともいう。)と、他方の流入口12から流入され合流路83(合流点M1)に到達した熱媒体H2の圧力(以下「排出側合流圧力」ともいう。)と、が同一である必要がある。この圧力が同一でない場合は、圧力の高い流出路(81,82)から圧力の低い流出路(81,82)への熱媒体(H1,H2)の流れが生じてしまうため、熱媒体の流れが乱れ、加熱室両端部における内圧に影響が生じる可能性がある。そこで、流入口11,12から合流点M1に至る過程において、熱媒体H1,H2の圧力損失を調節して、供給側合流圧力と排出側合流圧力とを同一にする。この熱媒体の圧力損失を調節する形態としては、前述した図5の(a)〜(c)に基づいて説明した構成を適用するのが好適である。なお、この形態においては、「流出口71」が「流出口13」又は「流出口14」となる。
The configuration for making the supply side pressure and the discharge side pressure the same has been described above. However, a problem similar to this also exists in the configuration in which the inlets (11, 12) and the outlets (13, 14) described above with reference to FIG.
That is, in the form in which the heat mediums H1 and H2 that have flowed out from the outlets 13 and 14 merge, the pressure (hereinafter “ ) And the pressure of the heat medium H2 that has flowed in from the other inlet 12 and reached the merging channel 83 (merging point M1) (hereinafter also referred to as “discharge-side merging pressure”). Must be identical. If the pressures are not the same, the flow of the heat medium (H1, H2) from the high pressure outflow passages (81, 82) to the low pressure outflow passages (81, 82) occurs. May disturb the internal pressure at both ends of the heating chamber. Therefore, in the process from the inlets 11 and 12 to the junction M1, the pressure loss of the heat mediums H1 and H2 is adjusted so that the supply side junction pressure and the discharge side junction pressure are the same. As a mode of adjusting the pressure loss of the heat medium, it is preferable to apply the configuration described based on the above-described FIG. 5 (a) to (c). In this embodiment, the “outlet 71” is the “outlet 13” or the “outlet 14”.

さらに、圧力を同一とする地点が合流点M1となる本形態においては、排出側の流出路82に抵抗調節手段15を設け、この抵抗調節手段15によって熱媒体H2の圧力損失を大きくし、供給側合流圧力と排出側合流圧力とを同一とするのも好適である。具体的には、供給側合流圧力が排出側合流圧力よりも高くなる場合は、図示はしないが、供給側の流出路81に抵抗調節手段を設け、この抵抗調節手段によって熱媒体H1の圧力損失を大きくする。他方、排出側合流圧力が供給側合流圧力よりも高くなる場合は、図示するように、排出側の流出路82に抵抗調節手段15を設け、この抵抗調節手段15によって熱媒体H2の圧力損失を大きくする。このようにして、熱媒体H1,H2の圧力損失が調節される。抵抗調節手段をいずれの流出路82,83に設けるか、及び抵抗(圧力損失)をどの程度とするかは、流入口11,12から流入する熱媒体H1,H2の設計圧力を基準に、供給側合流圧力と排出側合流圧力とが同一になるように設計する。また、抵抗調節手段は両方の流出路81,82に設けることができ、両方の流出路81,82に設けておけば、供給側合流圧力及び排出側合流圧力の強弱を逆転させる必要が生じた場合等においても、装置構成を変えることなく対応することができる。なお、本形態の抵抗調節手段15は、前述したように、熱処理炉1の運転時において、排出側の加熱室端部の内圧を外圧と同一に維持するためにも使用される。   Further, in this embodiment in which the point where the pressure is the same is the confluence point M1, the resistance adjusting means 15 is provided in the discharge side outflow passage 82, and the pressure loss of the heat medium H2 is increased by the resistance adjusting means 15 and supplied. It is also preferable that the side merging pressure and the discharge side merging pressure are the same. Specifically, when the supply-side merging pressure is higher than the discharge-side merging pressure, although not shown, resistance adjusting means is provided in the supply-side outflow passage 81, and the pressure loss of the heat medium H1 is caused by this resistance adjusting means. Increase On the other hand, when the discharge-side merging pressure is higher than the supply-side merging pressure, resistance adjusting means 15 is provided in the discharge-side outflow passage 82 as shown in the figure, and the resistance adjusting means 15 reduces the pressure loss of the heat medium H2. Enlarge. In this way, the pressure loss of the heat mediums H1 and H2 is adjusted. Which outflow passages 82 and 83 are provided with the resistance adjusting means and how much resistance (pressure loss) is set are supplied based on the design pressure of the heat mediums H1 and H2 flowing from the inlets 11 and 12. The side merging pressure and the discharge side merging pressure are designed to be the same. Further, the resistance adjusting means can be provided in both outflow passages 81 and 82, and if provided in both outflow passages 81 and 82, it is necessary to reverse the strength of the supply side merging pressure and the discharge side merging pressure. Even in cases, it can be handled without changing the device configuration. Note that, as described above, the resistance adjusting means 15 of the present embodiment is also used to maintain the internal pressure at the end of the heating chamber on the discharge side equal to the external pressure during the operation of the heat treatment furnace 1.

以上では、加熱室両端部の内圧を外圧と同一とするための構成、供給側圧力及び排出側圧力、あるいは供給側合流圧力及び排出側合流圧力を同一とするための構成、を各別に説明した。しかしながら、これらの構成は、各別に適用しなければならないものではなく、複数の構成の組合せによって所望の効果を実現することもできる。また、熱媒体の流入口及び流出口は、図示はしないが3本以上の複数とすることもでき、この場合においても、本発明の技術的思想を利用して所望の効果を実現することができる。さらに、複数の流出口から流出された熱媒体は、合流(混合)することなく、各別の加熱手段で加熱し、再度流入口から加熱室内に流入することもできる。ただし、熱媒体の加熱手段を複数設けると、設備コストが増加する。   In the above, the configuration for making the internal pressure at both ends of the heating chamber the same as the external pressure, the configuration for making the supply side pressure and the discharge side pressure, or the supply side merging pressure and the discharge side merging pressure the same have been described separately. . However, these configurations do not have to be applied separately, and a desired effect can be realized by a combination of a plurality of configurations. Further, although not shown, the heat medium inlet and outlet may be a plurality of three or more, and even in this case, a desired effect can be realized by utilizing the technical idea of the present invention. it can. Furthermore, the heat medium that has flowed out from the plurality of outlets can be heated by different heating means without being joined (mixed), and can flow again into the heating chamber from the inlet. However, providing a plurality of heating means for the heat medium increases the equipment cost.

本発明は、内筒及び外筒間の加熱室に流通される熱媒体によって内筒内の被処理物が熱処理される外熱式の横型回転式熱処理炉が備わる熱処理設備として適用可能である。   INDUSTRIAL APPLICABILITY The present invention can be applied as a heat treatment facility provided with an externally heated horizontal rotary heat treatment furnace in which an object to be treated in an inner cylinder is heat-treated by a heat medium flowing in a heating chamber between the inner cylinder and the outer cylinder.

1…横型回転式熱処理炉、10…内筒、10X…仕切り壁、11,12…流入口、13,14,71…流出口、15…抵抗調節手段、15X,16X…内圧検知手段、16…循環流量制御手段、16A…分岐路、16B…流量調節手段、17,18…流量調節手段、19…温度検知手段、20…外筒、21,22…側壁、61,63,64…整流板、81,82…流出路、83…合流路、84,85…流入路、90…加熱手段、A…酸素含有ガス、C1…被処理物、C2…製品、H,H1,H2,H3…熱媒体、M1…合流点、M2…分岐点、P…循環ポンプ、R,R1,R2…加熱室。   DESCRIPTION OF SYMBOLS 1 ... Horizontal rotary heat treatment furnace, 10 ... Inner cylinder, 10X ... Partition wall, 11, 12 ... Inlet, 13, 14, 71 ... Outlet, 15 ... Resistance adjustment means, 15X, 16X ... Internal pressure detection means, 16 ... Circulating flow rate control means, 16A ... branch path, 16B ... flow rate adjusting means, 17, 18 ... flow rate adjusting means, 19 ... temperature detecting means, 20 ... outer cylinder, 21,22 ... side wall, 61,63,64 ... rectifying plate, 81, 82 ... Outflow channel, 83 ... Combined channel, 84, 85 ... Inflow channel, 90 ... Heating means, A ... Oxygen-containing gas, C1 ... Object to be treated, C2 ... Product, H, H1, H2, H3 ... Heat medium , M1 ... Junction point, M2 ... Branch point, P ... Circulation pump, R, R1, R2 ... Heating chamber.

Claims (3)

軸回りに回転する内筒及びこの内筒から所定間隔を隔てて同心状に設置された外筒を有し、前記内筒及び外筒間が加熱室とされ、この加熱室の両端部が前記外筒から延出し、かつ前記内筒の外周面に及ぶ一対の側壁によって閉じられ、前記加熱室に流通される熱媒体により前記内筒内に供給された被処理物が熱処理される構成とされた横型回転式熱処理炉が備わる熱処理設備であって、
前記加熱室両端部の内圧が、前記加熱室外の外圧と同一とされている、
ことを特徴とする熱処理設備。
An inner cylinder that rotates around an axis, and an outer cylinder that is concentrically arranged at a predetermined interval from the inner cylinder, and a space between the inner cylinder and the outer cylinder is a heating chamber, and both ends of the heating chamber are The workpiece to be processed is supplied to the inner cylinder by a heat medium that extends from the outer cylinder and is closed by a pair of side walls extending to the outer peripheral surface of the inner cylinder and is supplied to the inner cylinder. Heat treatment equipment equipped with a horizontal rotary heat treatment furnace,
The internal pressure at both ends of the heating chamber is the same as the external pressure outside the heating chamber,
Heat treatment equipment characterized by that.
前記外筒に熱媒体の流入口が2箇所、熱媒体の流出口が1箇所形成され、
下記(A)〜(C)の少なくとも1つの構成によって前記流入口から前記流出口に至る熱媒体の圧力損失が調節されて、一方の前記流入口から流入され前記流出口に到達した熱媒体の圧力と、他方の前記流入口から流入され前記流出口に到達した熱媒体の圧力と、が同一とされている、
請求項1記載の熱処理設備。
(A)前記一方の流入口から前記流出口までの流路、及び、前記他方の流入口から前記流出口までの流路のうち、相対的に熱媒体流量が多い方の流路長さを長くして熱媒体の圧力損失を調節する構成。
(B)前記一方の流入口と前記流出口との間の加熱室内、及び、前記他方の流入口と前記流出口との間の加熱室内、それぞれに熱媒体を螺旋状に流通させる整流板を設け、前記流入口から熱媒体が相対的に多く流通される整流板のピッチを短くして熱媒体の圧力損失を調節する構成。
(C)前記一方の流入口と前記流出口との間、及び、前記他方の流入口と前記流出口との間、のいずれかの前記所定間隔を狭くして熱媒体の圧力損失を調節する構成。
Two inlets for the heat medium and one outlet for the heat medium are formed in the outer cylinder,
The pressure loss of the heat medium from the inflow port to the outflow port is adjusted by at least one of the following configurations (A) to (C), and the heat medium that has flowed in from one of the inflow ports and reached the outflow port The pressure and the pressure of the heat medium flowing in from the other inlet and reaching the outlet are the same,
The heat treatment facility according to claim 1.
(A) Of the flow path from the one inflow port to the outflow port and the flow path from the other inflow port to the outflow port, the length of the flow path having a relatively larger heat medium flow rate A configuration that adjusts the pressure loss of the heat medium by increasing the length.
(B) A rectifying plate that spirally circulates the heat medium in the heating chamber between the one inlet and the outlet and the heating chamber between the other inlet and the outlet. And a configuration in which the pressure loss of the heat medium is adjusted by shortening the pitch of the rectifying plates through which a relatively large amount of the heat medium flows from the inlet.
(C) The pressure loss of the heat medium is adjusted by narrowing the predetermined interval between the one inlet and the outlet and between the other inlet and the outlet. Constitution.
前記加熱室が前記内筒及び外筒の一方から延出し、かつ他方に及ぶ仕切り壁によって複数に分割され、少なくとも両端部の加熱室においては前記外筒に熱媒体の流入口及び流出口が形成されており、
当該流出口にそれぞれ繋がる流出路と、この流出路が合流してなる合流路と、この合流路が分岐してなり前記流入口にそれぞれ繋がる流入路と、で熱媒体の循環路が構成され、
下記(A)〜(D)の少なくとも1つの構成によって前記流入口から流入した熱媒体の圧力損失が調節されて、一方の前記流入口から流入され前記合流路に到達した熱媒体の圧力と、他方の前記流入口から流入され前記合流路に到達した熱媒体の圧力と、が同一とされている、
請求項1記載の熱処理設備。
(A)前記一方の流入口から一方の前記流出口までの距離、及び、前記他方の流入口から他方の前記流出口までの距離のうち熱媒体流量が多い方の距離を長くして熱媒体の圧力損失を調節する構成。
(B)前記一方の流入口と前記一方の流出口との間の加熱室内、及び、前記他方の流入口と前記他方の流出口との間の加熱室内、それぞれに熱媒体を螺旋状に流通させる整流板を設け、前記流入口から熱媒体が相対的に多く流通される整流板のピッチを短くして熱媒体の圧力損失を調節する構成。
(C)前記一方の流入口と前記一方の流出口との間、及び、前記他方の流入口と前記他方の流出口との間のうち、熱媒体の流量が相対的に少ない方の前記所定間隔を狭くして熱媒体の圧力損失を調節する構成。
(D)前記流出路の一方に抵抗調節手段を設け、この抵抗調節手段によって一方の熱媒体の圧力損失を大きして熱媒体の圧力損失を調節する構成。
The heating chamber extends from one of the inner cylinder and the outer cylinder and is divided into a plurality by partition walls extending to the other, and at least the heating chambers at both ends form an inlet and an outlet for the heat medium in the outer cylinder. Has been
A heat medium circulation path is constituted by an outflow path connected to each of the outflow ports, a combined flow path formed by joining the outflow paths, and an inflow path branched from the combined flow path and connected to the inflow ports.
The pressure loss of the heat medium flowing in from the inlet is adjusted by at least one of the following configurations (A) to (D), and the pressure of the heat medium flowing in from the one inlet and reaching the combined flow path; The pressure of the heat medium flowing in from the other inlet and reaching the combined flow path is the same,
The heat treatment facility according to claim 1 .
(A) Heating medium by increasing the distance from the one inlet to one outlet and the distance from the other inlet to the other outlet that has a larger heat medium flow rate Configuration to adjust the pressure loss of the.
(B) A heating medium is spirally circulated in the heating chamber between the one inlet and the one outlet and the heating chamber between the other inlet and the other outlet. A configuration in which a current plate is provided, and a pressure loss of the heat medium is adjusted by shortening a pitch of the current plate through which a relatively large amount of the heat medium flows from the inlet.
(C) The predetermined one having a relatively small flow rate of the heat medium between the one inlet and the one outlet and between the other inlet and the other outlet. A configuration that adjusts the pressure loss of the heat medium by narrowing the interval.
(D) A configuration in which resistance adjusting means is provided in one of the outflow paths, and the pressure loss of one heat medium is increased by the resistance adjusting means to adjust the pressure loss of the heat medium.
JP2010232169A 2010-10-15 2010-10-15 Heat treatment equipment Active JP5570937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010232169A JP5570937B2 (en) 2010-10-15 2010-10-15 Heat treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010232169A JP5570937B2 (en) 2010-10-15 2010-10-15 Heat treatment equipment

Publications (2)

Publication Number Publication Date
JP2012087943A JP2012087943A (en) 2012-05-10
JP5570937B2 true JP5570937B2 (en) 2014-08-13

Family

ID=46259751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010232169A Active JP5570937B2 (en) 2010-10-15 2010-10-15 Heat treatment equipment

Country Status (1)

Country Link
JP (1) JP5570937B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6586797B2 (en) * 2015-07-04 2019-10-09 宇部興産株式会社 Indirect heating type rotary kiln and its operating method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712382A (en) * 1993-06-22 1995-01-17 Kubota Corp Heat exchanger for ventilation
JP2001133157A (en) * 1999-10-29 2001-05-18 Meidensha Corp Device for heating and processing item to be processed
JP2003327408A (en) * 2002-05-10 2003-11-19 Mitsubishi Electric Corp Fuel treatment apparatus and operation method thereof
JP2005265197A (en) * 2004-03-16 2005-09-29 Meidensha Corp Operation method for pyrolizing facility and pyrolizing facility
JP2006038307A (en) * 2004-07-26 2006-02-09 Hitachi Ltd Pyrolysis plant
JP4916916B2 (en) * 2007-02-28 2012-04-18 三菱重工環境・化学エンジニアリング株式会社 Kiln furnace, waste gasification system
JP4995669B2 (en) * 2007-08-30 2012-08-08 大日本スクリーン製造株式会社 Substrate processing apparatus and substrate processing method

Also Published As

Publication number Publication date
JP2012087943A (en) 2012-05-10

Similar Documents

Publication Publication Date Title
KR20170046090A (en) Heat exchanger
JP2008249322A (en) Fluid heating apparatus
KR100869295B1 (en) Heat exchanger of auxiliary heating device
JP5570937B2 (en) Heat treatment equipment
KR20160122738A (en) Recuperator burner with auxiliary heat exchanger
KR20190017077A (en) Cooling water heating apparatus for electric vehicle
JP4357497B2 (en) Heat transfer roller
JP2016135049A (en) Hermetically sealed rotary electric machine
JP2008185240A (en) Thick and thin fuel combustion burner and combustion device using the same
AU2013263691A1 (en) Condensing heat exchanger and boiler/water hearter including the same
US4554435A (en) Electric arc heater having outlet gas admission
KR101807077B1 (en) Indirect rotary kiln reactor
JP2008002562A (en) Heat transfer medium flowing roller
JP5491347B2 (en) Horizontal rotary heat treatment furnace
US7762808B2 (en) Regenerative thermal oxidizer
CN1526915A (en) Steam turbine and method for running steam turbine
KR20120133219A (en) Highly Effective Regenerative Thermal Oxidizer Minimizing introduction of the Air
JP2011063028A (en) Heating medium circulation roller device
JP2005164094A (en) Kiln type external heating furnace
KR101880553B1 (en) Fuel Reformer With Enhanced Partial Load Efficiency
JP5740887B2 (en) Flame resistant furnace heating medium heating system
JP4471779B2 (en) Flameproofing furnace
JP2012030280A (en) Method for controlling casting roll profile of twin-roll type continuous caster and device therefor
RU2315906C2 (en) Method of control over burning in a reactor and a reactor
RU2504664C1 (en) Turning control diaphragm of extraction steam turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140625

R150 Certificate of patent or registration of utility model

Ref document number: 5570937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350