JP5570268B2 - Method for manufacturing rolling bearing device - Google Patents

Method for manufacturing rolling bearing device Download PDF

Info

Publication number
JP5570268B2
JP5570268B2 JP2010073329A JP2010073329A JP5570268B2 JP 5570268 B2 JP5570268 B2 JP 5570268B2 JP 2010073329 A JP2010073329 A JP 2010073329A JP 2010073329 A JP2010073329 A JP 2010073329A JP 5570268 B2 JP5570268 B2 JP 5570268B2
Authority
JP
Japan
Prior art keywords
welding
rolling bearing
laser
bearing device
laser welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010073329A
Other languages
Japanese (ja)
Other versions
JP2011089634A (en
Inventor
貴之 小坂
住夫 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2010073329A priority Critical patent/JP5570268B2/en
Publication of JP2011089634A publication Critical patent/JP2011089634A/en
Application granted granted Critical
Publication of JP5570268B2 publication Critical patent/JP5570268B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/063Fixing them on the shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2370/00Apparatus relating to physics, e.g. instruments
    • F16C2370/12Hard disk drives or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Laser Beam Processing (AREA)

Description

本発明は、転がり軸受装置の製造方法に関するものである。   The present invention relates to a method for manufacturing a rolling bearing device.

一般に、転がり軸受装置は、同軸に配置された内輪および外輪を備える転がり軸受と、転がり軸受の内輪に嵌合される内筒と、転がり軸受の外輪を嵌合させる外筒とにより構成され、内筒および外筒が転がり軸受により相対回転自在に支持されている(例えば、特許文献1および特許文献2参照。)。特許文献1に記載の転がり軸受装置は、シャフト(内筒)と内輪およびハウジング(外筒)と外輪がそれぞれ接着剤により接合され、特許文献2に記載の転がり軸受装置では、シャフトと内輪が嫌気性の接着剤により接合されている。   Generally, a rolling bearing device is composed of a rolling bearing having an inner ring and an outer ring arranged coaxially, an inner cylinder fitted to the inner ring of the rolling bearing, and an outer cylinder fitting the outer ring of the rolling bearing. The cylinder and the outer cylinder are supported by a rolling bearing so as to be relatively rotatable (see, for example, Patent Document 1 and Patent Document 2). In the rolling bearing device described in Patent Document 1, a shaft (inner cylinder), an inner ring, a housing (outer cylinder), and an outer ring are joined by an adhesive, respectively. In the rolling bearing device described in Patent Document 2, the shaft and the inner ring are anaerobic. It is joined by a sex adhesive.

特開平11−182543号公報Japanese Patent Laid-Open No. 11-182543 特開2000−346085号公報JP 2000-346085 A

しかしながら、嫌気性接着剤にはアウトガス成分が多く、転がり軸受装置が使用されるハードディスクドライブ(HDD)の磁気ディスクにアウトガスが付着すると、記録や再生に影響を与えることがある。また、嫌気性接着剤は硬化時間が長いため、生産性が低いという不都合がある。さらに、従来の転がり軸受装置のようにシャフトと内輪およびハウジングと外輪をそれぞれ接着剤により接合した場合、温度変化によって接着剤の剛性が変動し、これにより予圧が変化して共振周波数やトルクが変動する不都合がある。   However, anaerobic adhesives have many outgas components, and if outgas adheres to a magnetic disk of a hard disk drive (HDD) in which a rolling bearing device is used, it may affect recording and reproduction. In addition, anaerobic adhesives have a disadvantage of low productivity because of a long curing time. In addition, when the shaft and inner ring and the housing and outer ring are joined with an adhesive as in the conventional rolling bearing device, the rigidity of the adhesive fluctuates due to temperature changes, which changes the preload and fluctuates the resonance frequency and torque. There is an inconvenience.

本発明は上述した事情に鑑みてなされたものであって、十分な接合強度を有し、アウトガスの発生を低減し、共振周波数変動やトルク変動の発生を防止した転がり軸受装置の製造方法を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and provides a method of manufacturing a rolling bearing device that has sufficient bonding strength, reduces outgas generation, and prevents occurrence of resonance frequency fluctuation and torque fluctuation. The purpose is to do.

上記目的を達成するために、本発明は以下の手段を提供する。
本発明は、軸方向に間隔をあけて同軸に配列される2つの転がり軸受の各内輪とこれらの内輪に嵌合される第1の部材との各嵌合部分の少なくとも1箇所を、前記内輪に熱変形を生じさせないレーザパワーによりレーザ溶接する第1の溶接工程と、該第1の溶接工程により接合された状態の前記嵌合部分を前記第1の溶接工程より高いレーザパワーによりレーザ溶接する第2の溶接工程とを含む転がり軸受装置の製造方法であって、前記第2の溶接工程が、同一の前記嵌合部分における前記第1の溶接工程時の溶接箇所とは周方向に異なる位置をレーザ溶接することを特徴とする転がり軸受装置の製造方法を提供する。
In order to achieve the above object, the present invention provides the following means.
According to the present invention, at least one of the fitting portions between the inner rings of the two rolling bearings arranged coaxially with an interval in the axial direction and the first member fitted to the inner rings is provided on the inner ring. A first welding process in which laser welding is performed with a laser power that does not cause thermal deformation of the metal, and the fitting portion joined in the first welding process is laser-welded with a laser power higher than that in the first welding process. A rolling bearing device manufacturing method including a second welding step , wherein the second welding step is a position that is different in the circumferential direction from a welding location at the first welding step in the same fitting portion. A method for manufacturing a rolling bearing device is provided.

本発明によれば、磁気記録装置(HDD)等に用いるスイングアームを外輪に直接取り付けることにより、第1の部材とスイングアームとを相対的に回転自在に支持可能な転がり軸受装置を製造される。   According to the present invention, a rolling bearing device capable of relatively rotatably supporting the first member and the swing arm is manufactured by directly attaching a swing arm used for a magnetic recording device (HDD) or the like to the outer ring. .

この場合において、第1の溶接工程により、内輪の形状をほぼ維持したまま第1の部材と内輪を固定することができる。したがって、第2の溶接工程において、溶融した溶接箇所が硬化して収縮する際に被溶接材を相対的に変化させる力が作用する場合であっても、第1の溶接工程による溶接箇所の固定力によって被溶接材の位置ずれを抑制しつつ高い接合強度で嵌合部分を接合することができる。   In this case, the first member and the inner ring can be fixed by the first welding process while maintaining the shape of the inner ring substantially. Therefore, in the second welding process, even when a force that relatively changes the material to be welded acts when the melted welded part is cured and contracted, the welding part is fixed by the first welding process. The fitting portion can be joined with high joining strength while suppressing displacement of the welded material by force.

また、嵌合部分をレーザ溶接により接合すると、嫌気性接着剤により接合した場合のようなアウトガスの発生を防止できるとともに、接合時間の短縮による生産性の向上を図ることができる。また、レーザ溶接によれば、接着剤により接合した場合のような温度変化による接着剤の剛性変動に起因する予圧変化を回避し、共振周波数およびトルクの安定化を図ることができる。したがって、十分な接合強度を確保しつつ、アウトガスの発生を低減し、共振周波数変動やトルク変動の発生を防止した転がり軸受装置を製造することができる。   Further, when the fitting portions are joined by laser welding, generation of outgas as in the case of joining with an anaerobic adhesive can be prevented, and productivity can be improved by shortening the joining time. Further, according to laser welding, it is possible to avoid a change in preload due to a change in the rigidity of the adhesive due to a temperature change as in the case of joining with an adhesive, and to stabilize the resonance frequency and torque. Therefore, it is possible to manufacture a rolling bearing device that reduces the occurrence of outgas and prevents the occurrence of resonance frequency fluctuations and torque fluctuations while ensuring sufficient bonding strength.

上記発明においては、前記2つの転がり軸受の外輪間の軸方向にスペーサ部を挟み、前記内輪どうしを前記軸方向に相対的に近接させる方向に押圧した状態で、押圧した前記内輪と前記第1の部材との嵌合部分に前記第1の溶接工程によるレーザ溶接および前記第2の溶接工程によるレーザ溶接を施すこととしてもよい。   In the above invention, the inner ring and the first that are pressed in a state where the spacer portion is sandwiched in the axial direction between the outer rings of the two rolling bearings and the inner rings are pressed in a direction relatively close to the axial direction. Laser welding by the first welding process and laser welding by the second welding process may be performed on the fitting portion with the member.

このように構成することで、2つの転がり軸受の外輪間にスペーサ部が挟まれることにより、内輪間にスペーサ部の長さに応じた隙間が形成される。したがって、内輪どうしを相対的に近接させる方向に押圧することにより2つの転がり軸受に予圧をかけることができる。そして、押圧した内輪の嵌合部分に第1の溶接工程および第2の接合工程を施すことにより、予圧をかけた状態が維持された転がり軸受装置を短時間で容易に製造することができる。   By comprising in this way, the spacer part is pinched | interposed between the outer rings of two rolling bearings, and the clearance gap according to the length of the spacer part is formed between inner rings. Therefore, it is possible to apply preload to the two rolling bearings by pressing the inner rings in a direction in which the inner rings are relatively close to each other. Then, by applying the first welding process and the second joining process to the fitted portion of the inner ring that has been pressed, the rolling bearing device in which the preloaded state is maintained can be easily manufactured in a short time.

また、上記発明においては、前記第1のレーザ溶接工程が、各前記内輪と前記第1の部材を相対的に半径方向の一方向に寄せて相互に近接させた近接箇所をレーザ溶接することとしてもよい。   Moreover, in the said invention, said 1st laser welding process is carrying out laser welding of the proximity | contact place which brought each said inner ring | wheel and said 1st member close to each other in one radial direction relatively. Also good.

このように構成することで、各内輪と第1の部材との嵌合部分に隙間がある場合であっても、レーザ溶接により嵌合部分における周方向のうち相互に近接させた近接箇所を確実に固定することができる。また、嵌合部分の一部を積極的に近接させることで、嵌合部分における隙間が小さい近接箇所を容易に特定することができる。   By configuring in this way, even when there is a gap in the fitting portion between each inner ring and the first member, it is possible to reliably close the adjacent portions in the circumferential direction in the fitting portion by laser welding. Can be fixed to. Moreover, the proximity | contact location with a small clearance gap in a fitting part can be easily specified by making a part of fitting part approach closely.

また、各内輪と第1の部材を相対的に半径方向の一方向に寄せることで、2つの転がり軸受の軸心を一致させることができる。これにより、例えば、これら2つの転がり軸受の軸まわりに第1の部材とスイングアームが精度よく相対回転可能な転がり軸受装置を製造することができる。   Further, the axial centers of the two rolling bearings can be made to coincide with each other by bringing each inner ring and the first member relatively in one radial direction. Thereby, for example, it is possible to manufacture a rolling bearing device in which the first member and the swing arm can relatively rotate with high accuracy around the axes of these two rolling bearings.

本発明は、軸方向に間隔をあけて同軸に配列される2つの転がり軸受の各外輪とこれらの外輪を嵌合させる第2の部材との各嵌合部分の少なくとも1箇所を、前記外輪に熱変形を生じさせないレーザパワーによりレーザ溶接する第1の溶接工程と、該第1の溶接工程により接合された状態の前記嵌合部分を前記第1の溶接工程より高いレーザパワーによりレーザ溶接する第2の溶接工程とを含む転がり軸受装置の製造方法であって、前記第2の溶接工程が、同一の前記嵌合部分における前記第1の溶接工程時の溶接箇所とは周方向に異なる位置をレーザ溶接することを特徴とする転がり軸受装置の製造方法を提供する。 According to the present invention, at least one of the fitting portions of the outer rings of the two rolling bearings arranged coaxially with an interval in the axial direction and the second member for fitting the outer rings to the outer ring. A first welding step in which laser welding is performed with a laser power that does not cause thermal deformation, and a laser welding is performed on the fitting portion in a state joined by the first welding step with a laser power higher than that in the first welding step. A rolling bearing device manufacturing method including two welding steps , wherein the second welding step is located at a position that is different in the circumferential direction from the welding portion in the first welding step in the same fitting portion. Provided is a method of manufacturing a rolling bearing device characterized by laser welding .

本発明によれば、HDD等に用いるスイングアームを内輪に直接取り付けることにより、スイングアームと第2の部材とを相対的に回転自在に支持可能な転がり軸受装置を製造される。   According to the present invention, a rolling bearing device capable of relatively rotatably supporting the swing arm and the second member is manufactured by directly attaching the swing arm used for the HDD or the like to the inner ring.

この場合において、第1の溶接工程により、外輪の形状をほぼ維持したまま第2の部材と外輪を固定することができる。したがって、第2の溶接工程において、第1の溶接工程による溶接箇所の固定力によって被溶接材の位置ずれを抑制しつつ高い接合強度で嵌合部分を接合することができる。これにより、十分な接合強度を確保しつつ、アウトガスの発生を低減し、共振周波数変動やトルク変動の発生を防止した転がり軸受装置を製造することができる。   In this case, the second member and the outer ring can be fixed by the first welding process while substantially maintaining the shape of the outer ring. Therefore, in the second welding step, the fitting portion can be joined with high joining strength while suppressing the displacement of the welded material by the fixing force of the welded portion in the first welding step. As a result, it is possible to manufacture a rolling bearing device in which generation of outgas is reduced and generation of resonance frequency fluctuation and torque fluctuation is prevented while ensuring sufficient bonding strength.

上記発明においては、前記2つの転がり軸受の内輪間の軸方向にスペーサ部を挟み、前記外輪どうしを前記軸方向に相対的に近接させる方向に押圧した状態で、押圧した前記外輪と前記第2の部材との嵌合部分に前記第1の溶接工程によるレーザ溶接および前記第2の溶接工程によるレーザ溶接を施すこととしてもよい。   In the above invention, the outer ring and the second that are pressed in a state where the spacer portion is sandwiched in the axial direction between the inner rings of the two rolling bearings and the outer rings are pressed in a direction relatively close to the axial direction. Laser welding by the first welding process and laser welding by the second welding process may be performed on the fitting portion with the member.

このように構成することで、外輪間にスペーサ部の長さに応じた隙間が形成されるので、押圧した外輪の嵌合部分に第1の溶接工程および第2の接合工程を施すことにより、予圧をかけた状態が維持された転がり軸受装置を短時間で容易に製造することができる。   By configuring in this way, a gap according to the length of the spacer portion is formed between the outer rings, so by applying the first welding step and the second joining step to the fitted portion of the pressed outer ring, A rolling bearing device in which the preloaded state is maintained can be easily manufactured in a short time.

上記発明においては、前記第1のレーザ溶接工程が、各前記外輪と前記第2の部材を相対的に半径方向の一方向に寄せて相互に近接させた近接箇所をレーザ溶接することとしてもよい。   In the above invention, the first laser welding step may perform laser welding at adjacent locations where the outer rings and the second member are moved closer to each other in the radial direction to be close to each other. .

このように構成することで、各外輪と第2の部材との嵌合部分に隙間がある場合であっても、レーザ溶接により近接箇所を確実に固定することができる。また、近接箇所を容易に特定することができる。   By comprising in this way, even if it is a case where a clearance gap exists in the fitting part of each outer ring | wheel and the 2nd member, a proximity | contact part can be reliably fixed by laser welding. Further, it is possible to easily identify the proximity location.

また、各外輪と第2の部材を相対的に半径方向の一方向に寄せることで、2つの転がり軸受の軸心を一致させることができ、例えば、これら2つの転がり軸受の軸まわりにスイングアームと第2の部材が精度よく相対回転可能な転がり軸受装置を製造することができる。   Further, by bringing each outer ring and the second member relatively in one radial direction, the axial centers of the two rolling bearings can be made to coincide, for example, a swing arm around the axis of the two rolling bearings. A rolling bearing device in which the second member can be relatively rotated with high accuracy can be manufactured.

上記発明においては、前記第1の溶接工程が、前記近接箇所に対して周方向に異なる位置を前記近接箇所より溶接範囲の径寸法を大きくしてさらにレーザ溶接することとしてもよい。   In the above invention, the first welding step may further perform laser welding at a position that is different in the circumferential direction with respect to the adjacent location by increasing the diameter of the welding range from the adjacent location.

このように構成することで、嵌合部分の隙間の大きさに応じてレーザ溶接する溶接範囲の径寸法(スポット径)を個別に設定し、嵌合部分における周方向の複数箇所に安定した溶接を施すことができる。したがって、第2の溶接工程のレーザ溶接による被溶接材の位置ずれをより確実に抑制することができる。   By configuring in this way, the diameter dimension (spot diameter) of the welding range for laser welding is individually set according to the size of the gap of the fitting portion, and stable welding is performed at a plurality of circumferential positions in the fitting portion. Can be applied. Therefore, it is possible to more reliably suppress the displacement of the material to be welded due to the laser welding in the second welding process.

本発明は、軸方向に間隔をあけて同軸に配列される2つの転がり軸受の各内輪とこれらの内輪に嵌合される第1の部材との各嵌合部分、および、前記2つの転がり軸受の各外輪とこれらの外輪を嵌合させる第2の部材との各嵌合部分の少なくとも1箇所を、前記内輪または前記外輪に熱変形を生じさせないレーザパワーによりレーザ溶接する第1の溶接工程と、該第1の溶接工程により接合された状態の前記嵌合部分を前記第1の溶接工程より高いレーザパワーによりレーザ溶接する第2の溶接工程とを含む転がり軸受装置の製造方法であって、前記第2の溶接工程が、同一の前記嵌合部分における前記第1の溶接工程時の溶接箇所とは周方向に異なる位置をレーザ溶接することを特徴とする転がり軸受装置の製造方法を提供する。 The present invention relates to each fitting portion between each inner ring of two rolling bearings arranged coaxially with an interval in the axial direction and a first member fitted to these inner rings, and the two rolling bearings. A first welding step in which at least one of the fitting portions of the outer rings and the second member for fitting the outer rings is laser-welded with laser power that does not cause thermal deformation of the inner ring or the outer ring; A method of manufacturing a rolling bearing device including a second welding step of laser welding the fitting portions joined in the first welding step with a laser power higher than that of the first welding step , Provided is a method of manufacturing a rolling bearing device, wherein the second welding step performs laser welding at a position that is different in the circumferential direction from a welding spot in the first fitting step in the same fitting portion. .

本発明によれば、第1の部材を各内輪に嵌合させた2つの転がり軸受の各外輪がそれぞれ第2の部材に嵌合され、各嵌合部分の少なくとも1箇所に第1の溶接工程によるレーザ溶接および第2の溶接工程によるレーザ溶接が施され、第1の部材および第2の部材と2つの転がり軸受が相互に接合されることで、第1の部材と第2の部材とが相対的に回転自在に支持された転がり軸受装置が製造される。   According to the present invention, the outer rings of the two rolling bearings each having the first member fitted to each inner ring are fitted to the second member, respectively, and the first welding process is performed at least at one place of each fitting portion. The first member and the second member are joined by the laser welding by the laser welding and the laser welding by the second welding process, and the first and second members and the two rolling bearings are joined to each other. A rolling bearing device that is relatively rotatably supported is manufactured.

この場合において、第1の溶接工程により、内輪または外輪に熱変形を生じさせないレーザパワーで嵌合部分をレーザ溶接することで、内輪または外輪の形状を維持したまま第1の部材と内輪または第2の部材と外輪を固定することができる。この状態で、第2の溶接工程により第1の溶接工程時より高いレーザパワーでレーザ溶接することで、溶融した溶接箇所が硬化して収縮する際に被溶接材を相対的に変化させる力が作用する場合であっても、第1の溶接工程による溶接箇所の固定力によって被溶接材の位置ずれを抑制しつつ高い接合強度で嵌合部分を接合することができる。   In this case, the first member and the inner ring or the first ring are maintained while maintaining the shape of the inner ring or the outer ring by laser welding the fitting portion with laser power that does not cause thermal deformation of the inner ring or the outer ring in the first welding step. The two members and the outer ring can be fixed. In this state, by performing laser welding with a higher laser power than in the first welding process in the second welding process, the force to relatively change the material to be welded when the melted welded part is cured and contracted. Even in the case of acting, the fitting portion can be joined with high joining strength while suppressing the displacement of the welded material by the fixing force of the welded part in the first welding process.

また、嵌合部分をレーザ溶接により接合すると、嫌気性接着剤により接合した場合のようなアウトガスの発生を防止できるとともに、接合時間の短縮による生産性の向上を図ることができる。また、レーザ溶接によれば、接着剤により接合した場合のような温度変化による接着剤の剛性変動に起因する予圧変化を回避し、共振周波数およびトルクの安定化を図ることができる。したがって、嵌合部分の少なくとも一箇所を第1の溶接工程とその後の第2の溶接工程により接合することにより、十分な接合強度を確保しつつ、アウトガスの発生を低減し、共振周波数変動やトルク変動の発生を防止した転がり軸受装置を製造することができる。   Further, when the fitting portions are joined by laser welding, generation of outgas as in the case of joining with an anaerobic adhesive can be prevented, and productivity can be improved by shortening the joining time. Further, according to laser welding, it is possible to avoid a change in preload due to a change in the rigidity of the adhesive due to a temperature change as in the case of joining with an adhesive, and to stabilize the resonance frequency and torque. Therefore, by joining at least one part of the fitting portion by the first welding process and the subsequent second welding process, generation of outgas is reduced while ensuring sufficient joining strength, and resonance frequency fluctuations and torque are reduced. It is possible to manufacture a rolling bearing device that prevents occurrence of fluctuations.

上記発明においては、一方の前記転がり軸受の内輪を前記第1の部材の半径方向外方に突出する鍔部に突き当てるとともに、前記2つの転がり軸受を各外輪間の軸方向にスペーサ部を挟んだ状態で配置し、他方の前記転がり軸受の内輪を前記一方の転がり軸受の内輪に近接させる方向に押圧した状態で、前記第1の部材と前記他方の転がり軸受の内輪との嵌合部分に前記第1の溶接工程によるレーザ溶接および前記第2の溶接工程によるレーザ溶接を施すこととしてもよい。   In the above invention, the inner ring of one of the rolling bearings is abutted against the flange portion protruding radially outward of the first member, and the two rolling bearings are sandwiched with the spacer portion in the axial direction between the outer rings. In the state where the inner ring of the other rolling bearing is pressed in a direction to bring it closer to the inner ring of the one rolling bearing, the fitting portion between the first member and the inner ring of the other rolling bearing is Laser welding by the first welding process and laser welding by the second welding process may be performed.

このように構成することで、2つの転がり軸受の外輪間にスペーサ部が挟まれることにより、2つの転がり軸受の内輪間にスペーサ部の長さに応じた隙間が形成される。したがって、第1の部材の鍔部に突き当てられた一方の転がり軸受の内輪に対して他方の転がり軸受の内輪を近接させる方向に押圧するだけで2つの転がり軸受に予圧をかけることができる。そして、このように押圧した状態で第1の部材と他方の転がり軸受の内輪との嵌合部分に第1の溶接工程および第2の接合工程を施すことにより、予圧をかけた状態が維持された転がり軸受装置を短時間で容易に製造することができる。   With this configuration, the spacer portion is sandwiched between the outer rings of the two rolling bearings, whereby a gap corresponding to the length of the spacer portion is formed between the inner rings of the two rolling bearings. Accordingly, it is possible to apply preload to the two rolling bearings simply by pressing the inner ring of the other rolling bearing toward the inner ring of one rolling bearing that is abutted against the flange of the first member. And the state which applied the pre-load is maintained by giving a 1st welding process and a 2nd joining process to the fitting part with the inner ring of the 1st member and the other rolling bearing in the state pressed in this way. The rolling bearing device can be easily manufactured in a short time.

また、上記発明においては、前記第1のレーザ溶接工程が、各前記内輪と前記第1の部材および/または各前記外輪と前記第2の部材を相対的に半径方向の一方向に寄せて相互に近接させた近接箇所をレーザ溶接することとしてもよい。   In the first aspect of the invention, the first laser welding step may move the inner ring and the first member and / or the outer ring and the second member toward each other in a relatively radial direction. It is good also as carrying out laser welding of the proximity | contact place made close to.

このように構成することで、各内輪と第1の部材との嵌合部分や各外輪と第2の部材との嵌合部分に隙間がある場合であっても、レーザ溶接により嵌合部分における周方向のうち相互に近接させた近接箇所を確実に固定することができる。また、嵌合部分の一部を積極的に近接させることで、嵌合部分における隙間が小さい近接箇所を容易に特定することができる。   By comprising in this way, even if there is a gap in the fitting part between each inner ring and the first member and the fitting part between each outer ring and the second member, the fitting part is formed by laser welding. It is possible to reliably fix the adjacent portions that are close to each other in the circumferential direction. Moreover, the proximity | contact location with a small clearance gap in a fitting part can be easily specified by making a part of fitting part approach closely.

また、各内輪と第1の部材および/または各外輪と第2の部材の少なくとも一方を相対的に半径方向の一方向に寄せることで、2つの転がり軸受の軸心を一致させることができる。これにより、これら2つの転がり軸受の軸まわりに第1の部材と第2の部材が精度よく相対回転可能な転がり軸受装置を製造することができる。   Further, by bringing at least one of each inner ring and the first member and / or each outer ring and the second member relatively in one radial direction, the axes of the two rolling bearings can be made to coincide. Thereby, it is possible to manufacture a rolling bearing device in which the first member and the second member can relatively rotate with high accuracy around the axes of these two rolling bearings.

また、上記発明においては、前記第1の溶接工程が、前記近接箇所に対して周方向に異なる位置を前記近接箇所より溶接範囲の径寸法を大きくしてさらにレーザ溶接することとしてもよい。   Further, in the above invention, the first welding step may further perform laser welding at a position different in the circumferential direction with respect to the adjacent portion by increasing the diameter dimension of the welding range from the adjacent portion.

このように構成することで、嵌合部分の隙間の大きさに応じてレーザ溶接する溶接範囲の径寸法(スポット径)を個別に設定し、嵌合部分における周方向の複数箇所に安定した溶接を施すことができる。したがって、第2の溶接工程のレーザ溶接による被溶接材の位置ずれをより確実に抑制することができる。   By configuring in this way, the diameter dimension (spot diameter) of the welding range for laser welding is individually set according to the size of the gap of the fitting portion, and stable welding is performed at a plurality of circumferential positions in the fitting portion. Can be applied. Therefore, it is possible to more reliably suppress the displacement of the material to be welded due to the laser welding in the second welding process.

また、上記発明においては、前記第1の溶接工程が、5msec以下の溶接時間で100μm以下の径寸法の第1の溶接跡が形成されるレーザ溶接を施し、前記第2の溶接工程が、前記第1の溶接跡より大きい径寸法の第2の溶接跡が形成されるレーザ溶接を施すこととしてもよい。   Moreover, in the said invention, the said 1st welding process performs the laser welding in which the 1st welding trace of a diameter dimension of 100 micrometers or less is formed in the welding time of 5 msec or less, and the said 2nd welding process is the said Laser welding may be performed in which a second weld trace having a larger diameter than the first weld trace is formed.

また、上記発明においては、前記第1の溶接工程が、同一の前記嵌合部分における前記レーザ溶接を周方向に間隔をあけて少なくとも3箇所以上に施すこととしてもよい。
このように構成することで、第1の溶接工程により嵌合部分を周方向にバランスして固定し、第2の溶接工程による接合を周方向全体に精度よく行うことができる。なお、嵌合部分の周方向に等間隔にレーザ溶接を施すことが好ましい。
Moreover, in the said invention, the said 1st welding process is good also as performing the said laser welding in the same said fitting part to at least 3 or more places at intervals in the circumferential direction.
By comprising in this way, a fitting part can be balanced and fixed to the circumferential direction by a 1st welding process, and joining by a 2nd welding process can be performed with sufficient precision in the whole circumferential direction. In addition, it is preferable to perform laser welding at equal intervals in the circumferential direction of the fitting portion.

また、上記発明においては、前記第2の溶接工程が、同一の前記嵌合部分における前記レーザ溶接を溶接箇所の一部を重ね合わせて複数回行うこととしてもよい。
このように構成することで、1度のレーザ溶接により接合する場合と比較して溶接箇所の固定力が向上し、嵌合部分をより高い接合強度で接合することができる。
Moreover, in the said invention, the said 2nd welding process is good also as performing the said laser welding in the said same fitting part in multiple times, overlapping a part of welding location.
By comprising in this way, the fixing force of a welding location improves compared with the case where it joins by one laser welding, and a fitting part can be joined by higher joining strength.

また、上記発明においては、前記第2の溶接工程が、同一の前記嵌合部分における前記レーザ溶接を周方向に等間隔で複数箇所に施すこととしてもよい。
このように構成することで、第2の溶接工程により嵌合部分を周方向にバランスして接合することができる。
Moreover, in the said invention, the said 2nd welding process is good also as performing the said laser welding in the same said fitting part in multiple places at equal intervals in the circumferential direction.
By comprising in this way, a fitting part can be balanced and joined to the circumferential direction by a 2nd welding process.

また、上記発明においては、前記第2の溶接工程が、所定のレーザパワーにより5msec以下の溶融時間で溶融する溶融工程と、該溶融工程により溶融された前記溶接箇所に前記溶融工程時より低いレーザパワーを照射しながら冷却する冷却工程とを含むこととしてもよい。
このように構成することで、溶融工程により溶融された溶接箇所が冷却工程により徐々に冷却されて凝固されるので、急激な冷却によるクラックの発生を防ぎ、より接合強度が高い転がり軸受装置を製造することができる。
In the above invention, the second welding process includes a melting process in which a predetermined laser power is melted in a melting time of 5 msec or less, and a laser that is lower than that in the melting process at the welding spot melted by the melting process. It is good also as including the cooling process cooled while irradiating power.
By configuring in this way, the welded part melted by the melting process is gradually cooled and solidified by the cooling process, thereby preventing the occurrence of cracks due to rapid cooling and manufacturing a rolling bearing device with higher joint strength. can do.

本発明によれば、十分な接合強度を有し、アウトガスの発生を低減し、共振周波数変動やトルク変動の発生を防止した転がり軸受装置を製造することができるという効果を奏する。   According to the present invention, there is an effect that it is possible to manufacture a rolling bearing device that has sufficient joint strength, reduces outgas generation, and prevents occurrence of resonance frequency fluctuation and torque fluctuation.

本発明の一実施形態に係る転がり軸受装置の縦断面図である。It is a longitudinal cross-sectional view of the rolling bearing apparatus which concerns on one Embodiment of this invention. 図1の転がり軸受の内輪とシャフトとの嵌合箇所を拡大して示す縦断面図である。It is a longitudinal cross-sectional view which expands and shows the fitting location of the inner ring | wheel and shaft of the rolling bearing of FIG. 第1の溶接工程における第1レーザパワーの強度と照射時間との関係を示す図である。It is a figure which shows the relationship between the intensity | strength of the 1st laser power and irradiation time in a 1st welding process. 図1の内輪とシャフトとの第1の溶接工程による溶接箇所を示す横断面図である。It is a cross-sectional view which shows the welding location by the 1st welding process of the inner ring | wheel and shaft of FIG. 図1の内輪とシャフトとの第2の溶接工程による溶接箇所を示す横断面図である。It is a cross-sectional view which shows the welding location by the 2nd welding process of the inner ring | wheel and shaft of FIG. 本発明の一実施形態に係る転がり軸受装置の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the rolling bearing apparatus which concerns on one Embodiment of this invention. 図1の外輪とスリーブとの第1の溶接工程による溶接箇所を示す横断面図である。It is a cross-sectional view which shows the welding location by the 1st welding process of the outer ring | wheel and sleeve of FIG. 図1の外輪とスリーブとの第2の溶接工程による溶接箇所を示す横断面図である。It is a cross-sectional view which shows the welding location by the 2nd welding process of the outer ring | wheel and sleeve of FIG. 本発明の一実施形態の変形例に係る内輪とシャフトとの第1の溶接工程および第2の溶接工程による溶接箇所を示す横断面図である。It is a cross-sectional view which shows the welding location by the 1st welding process of the inner ring | wheel and shaft which concern on the modification of one Embodiment of this invention, and a 2nd welding process. 本発明の一実施形態の変形例に係る外輪とスリーブとの第1の溶接工程および第2の溶接工程による溶接箇所を示す横断面図である。It is a cross-sectional view which shows the welding location by the 1st welding process of the outer ring | wheel and sleeve which concerns on the modification of one Embodiment of this invention, and a 2nd welding process. 本発明の一実施形態の別の変形例に係る内輪とシャフトとの第1の溶接工程および第2の溶接工程による溶接箇所を示す横断面図である。It is a cross-sectional view which shows the welding location by the 1st welding process of the inner ring | wheel and shaft which concerns on another modification of one Embodiment of this invention, and a 2nd welding process. 本発明の一実施形態の別の変形例に係る内輪とシャフトとの第1の溶接工程および第2の溶接工程による溶接箇所を示す横断面図である。It is a cross-sectional view which shows the welding location by the 1st welding process of the inner ring | wheel and shaft which concerns on another modification of one Embodiment of this invention, and a 2nd welding process. 本発明の一実施形態の変形例に係る第2の溶接工程における第2レーザパワーの強度と照射時間との関係を示す図である。It is a figure which shows the relationship between the intensity | strength of 2nd laser power and irradiation time in the 2nd welding process which concerns on the modification of one Embodiment of this invention. 本発明の一実施形態の別の変形例に係る第2の溶接工程における第2レーザパワーの強度と照射時間との関係を示す図である。It is a figure which shows the relationship between the intensity | strength of 2nd laser power and irradiation time in the 2nd welding process which concerns on another modification of one Embodiment of this invention. 本発明の一実施形態の別の変形例に係るスリーブを備えない構成の転がり軸受装置の縦断面図である。It is a longitudinal cross-sectional view of the rolling bearing apparatus of the structure which is not provided with the sleeve which concerns on another modification of one Embodiment of this invention. 本発明の一実施形態の別の一変形例に係る転がり軸受装置を軸方向に見た図である。It is the figure which looked at the rolling bearing apparatus which concerns on another modification of one Embodiment of this invention to the axial direction. 本発明の一実施形態の別の一変形例に係る転がり軸受装置の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the rolling bearing apparatus which concerns on another modification of one Embodiment of this invention.

以下、本発明の一実施形態に係る転がり軸受装置の製造方法について、図面を参照して説明する。
本実施形態に係る転がり軸受装置の製造方法は、例えば、図1に示すように、磁気記録装置(HDD)や光記録装置等に用いられるスイングアーム等を揺動するための転がり軸受装置10を製造するものである。転がり軸受装置10としては、例えば、第1の転がり軸受1Aおよび第2の転がり軸受1B(以下「転がり軸受1A,1B」という。)によりシャフト(第1の部材)13とスリーブ(第2の部材)23とを相対回転可能に支持するものが挙げられる。なお、2つの転がり軸受1A,1Bは、同軸に配置される内輪3a,3bと外輪5a,5bとの間の円環状空間に複数の転動体7を周方向に所定の間隔をあけて転動可能に保持するものである。
Hereinafter, a manufacturing method of a rolling bearing device concerning one embodiment of the present invention is explained with reference to drawings.
A method for manufacturing a rolling bearing device according to the present embodiment includes, for example, a rolling bearing device 10 for swinging a swing arm used in a magnetic recording device (HDD), an optical recording device, or the like, as shown in FIG. To manufacture. As the rolling bearing device 10, for example, a shaft (first member) 13 and a sleeve (second member) are constituted by a first rolling bearing 1A and a second rolling bearing 1B (hereinafter referred to as “rolling bearings 1A and 1B”). ) 23 is supported so as to be relatively rotatable. The two rolling bearings 1A and 1B roll a plurality of rolling elements 7 at predetermined intervals in the circumferential direction in an annular space between the inner rings 3a and 3b and the outer rings 5a and 5b arranged coaxially. It is possible to hold.

本製造方法は、2つの転がり軸受1A,1Bを軸方向に間隔をあけて同軸に配列し、各内輪3a,3bとこれらの内輪3a,3bに嵌合されるシャフト13との各嵌合部分、および、各外輪5a,5bとこれらの外輪5a,5bを嵌合させるスリーブ23の嵌合孔25との各嵌合部分をレーザ溶接する第1の溶接工程と、各嵌合部分における第1の溶接工程時の溶接箇所33とは周方向に異なる位置をレーザ溶接する第2の溶接工程とを含んでいる。   In this manufacturing method, two rolling bearings 1A and 1B are coaxially arranged with an interval in the axial direction, and each fitting portion between each inner ring 3a and 3b and the shaft 13 fitted to these inner rings 3a and 3b. And the 1st welding process of laser-welding each fitting part of each outer ring 5a, 5b and fitting hole 25 of sleeve 23 which fits these outer rings 5a, 5b, and the 1st in each fitting part This includes a second welding process in which laser welding is performed at a position different from the welding location 33 in the circumferential direction.

第1の溶接工程および第2の溶接工程は、図2に示す内輪3a,3bの端面とシャフト13の外周面とが交差する部分、および、外輪5a,5bの端面とスリーブ23の嵌合孔25の内周面とが交差する部分にそれぞれレーザ溶接を施すようになっている。また、第1の溶接工程および第2の溶接工程は、同一の嵌合部分において、それぞれ周方向に間隔をあけて少なくとも3箇所以上にレーザ溶接を施すようになっている(図4および図5参照)。本実施形態では、それぞれ周方向に等間隔で3箇所ずつレーザ溶接を施すこととする。   The first welding step and the second welding step are performed at portions where the end surfaces of the inner rings 3a and 3b and the outer peripheral surface of the shaft 13 shown in FIG. 2 intersect, and fitting holes between the end surfaces of the outer rings 5a and 5b and the sleeve 23. Laser welding is performed on each of the portions where the inner peripheral surface of 25 intersects. Further, in the first welding step and the second welding step, laser welding is performed at least at three or more locations at intervals in the circumferential direction in the same fitting portion (FIGS. 4 and 5). reference). In the present embodiment, laser welding is performed at three locations at equal intervals in the circumferential direction.

第1の溶接工程は、内輪3a,3bおよび外輪5a,5bに熱変形を生じさせないレーザパワー、例えば、図3に示すように、5msec以下の溶接時間で、図4および図7に示すような100μm以下の径寸法の溶接跡(以下「第1の溶接跡」という。)33Fが形成されるレーザパワー(以下「第1レーザパワー」という。)によりレーザ溶接を施すようになっている。なお、図3において、縦軸はレーザパワーの強度を示し、横軸は照射時間を示している(図13および図14において同様とする。)。   The first welding process is a laser power that does not cause thermal deformation of the inner rings 3a, 3b and the outer rings 5a, 5b, for example, as shown in FIG. 3, with a welding time of 5 msec or less, as shown in FIGS. Laser welding is performed by a laser power (hereinafter referred to as “first laser power”) 33F on which a welding trace (hereinafter referred to as “first welding trace”) 33F having a diameter of 100 μm or less is formed. In FIG. 3, the vertical axis indicates the intensity of the laser power, and the horizontal axis indicates the irradiation time (the same applies to FIGS. 13 and 14).

第2の溶接工程は、第1の溶接工程時の第1レーザパワーより高いレーザパワー、例えば、シャフト13とスリーブ23とが相対回転する際に位置ずれが生じない接合強度が得られるレーザパワー(以下「第2レーザパワー」という。)によりレーザ溶接を施すようになっている。また、第2の溶接工程は、第1の溶接工程時の溶接箇所33に重ならないように周方向にずらした位置をレーザ溶接するようになっている。この第2レーザパワーによれば、図5に示すように、第1の溶接跡33Fより大きい径寸法の溶接跡(以下「第2の溶接跡」という。)33Sが形成されるようになっている。   In the second welding process, a laser power higher than the first laser power in the first welding process, for example, a laser power that provides a bonding strength that does not cause displacement when the shaft 13 and the sleeve 23 rotate relative to each other ( Hereinafter, laser welding is performed according to “second laser power”. Further, in the second welding process, laser welding is performed at a position shifted in the circumferential direction so as not to overlap the welding location 33 in the first welding process. According to the second laser power, as shown in FIG. 5, a welding mark (hereinafter referred to as “second welding mark”) 33S having a diameter larger than that of the first welding mark 33F is formed. Yes.

以下、転がり軸受装置10の製造方法を図6のフローチャートを用いて説明する。
まず、第1の転がり軸受1Aの内輪3aにシャフト13を嵌合させ(以下、この嵌合部分を「嵌合部分29A」とする。)、シャフト13の軸方向の一端に設けられた全周にわたって半径方向外方に突出する鍔状のフランジ部15に内輪3aの端面を突き当てる。
Hereinafter, a method for manufacturing the rolling bearing device 10 will be described with reference to the flowchart of FIG.
First, the shaft 13 is fitted to the inner ring 3a of the first rolling bearing 1A (hereinafter, this fitting portion is referred to as “fitting portion 29A”), and the entire circumference provided at one end of the shaft 13 in the axial direction. The end face of the inner ring 3a is abutted against the flange 15 that protrudes radially outward.

そして、図3に示すように、嵌合部分29Aのうち内輪3aのフランジ部15に突き当てられた端面とは反対側の端面とシャフト13の外周面とが交差する部分の3箇所を第1レーザパワーによりレーザ溶接し、内輪3aとシャフト13とを固定する(内輪3aの第1の溶接工程S1)。この場合に、内輪3aに熱変形を生じさせない第1レーザパワーでレーザ溶接することで、内輪3aの形状を維持して被溶接材(ここでは、内輪3aとシャフト13)に位置ずれを発生させることなく嵌合部分29Aを固定することができる。   Then, as shown in FIG. 3, three portions of the fitting portion 29 </ b> A where the end surface opposite to the end surface abutted against the flange portion 15 of the inner ring 3 a and the outer peripheral surface of the shaft 13 intersect are first. Laser welding is performed with laser power to fix the inner ring 3a and the shaft 13 (first welding step S1 of the inner ring 3a). In this case, laser welding is performed with a first laser power that does not cause thermal deformation of the inner ring 3a, thereby maintaining the shape of the inner ring 3a and causing a displacement in the material to be welded (here, the inner ring 3a and the shaft 13). The fitting portion 29A can be fixed without any problems.

続いて、図5に示すように、嵌合部分29Aにおける3箇所の第1の溶接跡33Fに対して周方向にずらした位置をそれぞれ第2レーザパワーによりレーザ溶接し、内輪3aとシャフト13とを接合する(内輪3aの第2の溶接工程S2)。この場合に、第1レーザパワーより強度が高い第2レーザパワーでレーザ溶接することで、溶融した溶接箇所33が硬化して収縮する際に被溶接材を相対的に変化させる力が作用する場合であっても、第1の溶接工程S1による溶接箇所33の固定力によって被溶接材の位置ずれを抑制しつつ高い接合強度で接合することができる。   Subsequently, as shown in FIG. 5, the positions shifted in the circumferential direction with respect to the three first welding traces 33 </ b> F in the fitting portion 29 </ b> A are respectively laser-welded by the second laser power, and the inner ring 3 a and the shaft 13. Are joined (second welding step S2 of the inner ring 3a). In this case, when laser welding is performed with a second laser power that is higher in intensity than the first laser power, a force that relatively changes the material to be welded acts when the molten welded portion 33 is cured and contracted. Even so, it is possible to join with a high joining strength while suppressing the displacement of the material to be welded by the fixing force of the welding location 33 in the first welding step S1.

次に、嵌合孔25の軸方向のほぼ中央に半径方向内方に突出する凸部(以下、「スペーサ部」という。)27を有するスリーブ23に第2の転がり軸受1Bの外輪5bを嵌合させ(以下、この嵌合部分を「嵌合部分29D」という。)、外輪5bの端面をスペーサ部27に突き当てる。そして、図7に示すように、外輪5bのスペーサ部27に突き当てられた端面とは反対側の端面と嵌合孔25の内周面とが交差する部分の3箇所を第1レーザパワーによりレーザ溶接し、外輪5bとスリーブ23の嵌合孔25とを固定する(外輪5bの第1の溶接工程S3)。   Next, the outer ring 5b of the second rolling bearing 1B is fitted into a sleeve 23 having a convex portion (hereinafter referred to as a “spacer portion”) 27 protruding inward in the radial direction substantially at the center of the fitting hole 25 in the axial direction. (The fitting portion is hereinafter referred to as “fitting portion 29D”), and the end surface of the outer ring 5b is abutted against the spacer portion 27. Then, as shown in FIG. 7, the first laser power is applied to three portions where the end surface opposite to the end surface abutted against the spacer portion 27 of the outer ring 5 b and the inner peripheral surface of the fitting hole 25 intersect. Laser welding is performed to fix the outer ring 5b and the fitting hole 25 of the sleeve 23 (first welding step S3 of the outer ring 5b).

続いて、図8に示すように、嵌合部分29Dにおける3箇所の第1の溶接跡33Fに対してそれぞれ周方向にずらした位置を第2レーザパワーによりレーザ溶接し、外輪5bとスリーブ23とを接合する(外輪5bの第2の溶接工程S4)。この場合も嵌合部分29Aと同様に、第1の溶接工程S3および第2の溶接工程S4により、外輪5bとスリーブ23との位置ずれを抑制しつつ高い接合強度で接合することができる。   Subsequently, as shown in FIG. 8, the positions shifted in the circumferential direction with respect to the three first welding traces 33 </ b> F in the fitting portion 29 </ b> D are laser-welded by the second laser power, and the outer ring 5 b, the sleeve 23, and the like. Are joined (second welding step S4 of the outer ring 5b). Also in this case, similarly to the fitting portion 29A, the first welding step S3 and the second welding step S4 can be joined with high joining strength while suppressing the positional deviation between the outer ring 5b and the sleeve 23.

次に、シャフト13のフランジ部15を鉛直下向きにして固定した状態で、スリーブ23を嵌合部分29Dとは軸方向の反対側からシャフト13に組み付ける。シャフト13に接合されている第1の転がり軸受1Aの外輪5aをスリーブ23の嵌合孔25に嵌合させ(以下、この嵌合部分を「嵌合部分29C」という。)、外輪5aの端面をスペーサ部27に突き当てるとともに、スリーブ23に接合されている第2の転がり軸受1Bの内輪3bにシャフト13を嵌合させ(以下、この嵌合部分を「嵌合部分29B」という。)、転がり軸受装置10の組立体を形成する。   Next, in a state where the flange portion 15 of the shaft 13 is fixed vertically downward, the sleeve 23 is assembled to the shaft 13 from the opposite side of the fitting portion 29D in the axial direction. The outer ring 5a of the first rolling bearing 1A joined to the shaft 13 is fitted into the fitting hole 25 of the sleeve 23 (hereinafter, this fitting part is referred to as “fitting part 29C”), and the end surface of the outer ring 5a is engaged. And the shaft 13 is fitted to the inner ring 3b of the second rolling bearing 1B joined to the sleeve 23 (hereinafter, this fitting portion is referred to as “fitting portion 29B”). An assembly of the rolling bearing device 10 is formed.

この状態で、図7に示すように、まず、嵌合部分29Cのうち、外輪5aのスペーサ部27に突き当てられた端面とは反対側の端面と嵌合孔25の内周面とが交差する部分の3箇所を第1レーザパワーによりレーザ溶接し、外輪5aとスリーブ23の嵌合孔25とを固定する(外輪5aの第1の溶接工程S5)。   In this state, as shown in FIG. 7, first, in the fitting portion 29 </ b> C, the end surface opposite to the end surface abutted against the spacer portion 27 of the outer ring 5 a intersects the inner peripheral surface of the fitting hole 25. The three portions of the portion to be welded are laser welded by the first laser power, and the outer ring 5a and the fitting hole 25 of the sleeve 23 are fixed (first welding step S5 of the outer ring 5a).

続いて、図8に示すように、嵌合部分29Cにおける3箇所の第1の溶接跡33Fに対してそれぞれ周方向にずらした位置を第2レーザパワーによりレーザ溶接し、外輪5aとスリーブ23とを接合する(外輪5aの第2の溶接工程S6)。この場合も嵌合部分29Aおよび嵌合部分29Dと同様に、第1の溶接工程S5および第2の溶接工程S6により、外輪5aとスリーブ23との位置ずれを抑制しつつ高い接合強度で接合することができる。   Subsequently, as shown in FIG. 8, the positions shifted in the circumferential direction with respect to the three first welding traces 33 </ b> F in the fitting portion 29 </ b> C are laser-welded by the second laser power, and the outer ring 5 a and the sleeve 23. Are joined (second welding step S6 of the outer ring 5a). Also in this case, similarly to the fitting portion 29A and the fitting portion 29D, the first welding step S5 and the second welding step S6 are joined with high joining strength while suppressing the positional deviation between the outer ring 5a and the sleeve 23. be able to.

次に、嵌合部分29Bをレーザ溶接により接合する。
ここで、転がり軸受1A,1Bの外輪5a,5b間に挟まれたスペーサ部27により、内輪3a,3b間にはスペーサ部27の長さに応じた隙間が形成されている。そこで、内輪3aと内輪3bとを相互に近接させる方向に押圧して転がり軸受1A,1Bに予圧をかける。
Next, the fitting portion 29B is joined by laser welding.
Here, a gap corresponding to the length of the spacer portion 27 is formed between the inner rings 3a and 3b by the spacer portion 27 sandwiched between the outer rings 5a and 5b of the rolling bearings 1A and 1B. Therefore, the inner ring 3a and the inner ring 3b are pressed in a direction in which they are close to each other, and a preload is applied to the rolling bearings 1A and 1B.

この場合に、第1の転がり軸受1Aの内輪3aがシャフト13のフランジ部15に突き当てられているので、内輪3aに対して軸方向の反対側に配置された第2の転がり軸受1Bの内輪3bを軸方向に押圧するだけで、転がり軸受1A,1Bの両方に予圧をかけることができる。   In this case, since the inner ring 3a of the first rolling bearing 1A is abutted against the flange portion 15 of the shaft 13, the inner ring of the second rolling bearing 1B disposed on the opposite side in the axial direction with respect to the inner ring 3a. Preload can be applied to both of the rolling bearings 1A and 1B simply by pressing 3b in the axial direction.

そこで、まず、第2の転がり軸受1Bの内輪3bを軸方向に押圧し、この状態で内輪3bの端面とシャフト13の外周面とが交差する部分の3箇所を第1レーザパワーによりレーザ溶接し、内輪3bとシャフト13とを固定する(内輪3bの第1の溶接工程S7)。続いて、嵌合部分29Bにおける3箇所の第1の溶接跡33Fに対してそれぞれ周方向にずらした位置を第2レーザパワーによりレーザ溶接し、内輪3bとシャフト13とを接合する(内輪3bの第2の溶接工程S8)。   Therefore, first, the inner ring 3b of the second rolling bearing 1B is pressed in the axial direction, and in this state, three portions where the end surface of the inner ring 3b and the outer peripheral surface of the shaft 13 intersect are laser-welded with the first laser power. The inner ring 3b and the shaft 13 are fixed (first welding step S7 of the inner ring 3b). Subsequently, the positions shifted in the circumferential direction with respect to the three first welding traces 33F in the fitting portion 29B are laser-welded by the second laser power, and the inner ring 3b and the shaft 13 are joined (the inner ring 3b). Second welding step S8).

これにより、他の嵌合部分29A,29C,29Dと同様に、内輪3bとシャフト13との位置ずれが抑制されつつ嵌合部分29Bが高い接合強度で接合されるので、転がり軸受1A,1Bに予圧がかけられた状態が維持される転がり軸受装置10が完成する。   As a result, like the other fitting portions 29A, 29C, and 29D, the fitting portion 29B is joined with high joining strength while suppressing the positional deviation between the inner ring 3b and the shaft 13, so that the rolling bearings 1A and 1B are joined. The rolling bearing device 10 in which the preloaded state is maintained is completed.

この転がり軸受装置10は、嵌合部分29A,29B,29C,29Dがレーザ溶接により接合されているので、嫌気性接着剤により接合した場合のようなアウトガスの発生を防止できるとともに、接合時間の短縮による生産性の向上を図ることができる。また、レーザ溶接によれば、接着剤により接合した場合のような温度変化による接着剤の剛性変動に起因する予圧変化を回避し、共振周波数およびトルクの安定化を図ることができる。   In this rolling bearing device 10, since the fitting portions 29A, 29B, 29C, and 29D are joined by laser welding, it is possible to prevent the occurrence of outgas as in the case of joining with an anaerobic adhesive and to shorten the joining time. This can improve productivity. Further, according to laser welding, it is possible to avoid a change in preload caused by a change in the rigidity of the adhesive due to a temperature change as in the case of joining with an adhesive, and to stabilize the resonance frequency and torque.

以上説明したように、本実施形態に係る転がり軸受装置10の製造方法によれば、第1の溶接工程および第2の溶接工程により、嵌合部分29A,29B,29C,29Dを強度が低いレーザパワーと高いレーザパワーとの2回に分けて接合することで、十分な接合強度を確保しつつ、アウトガスの発生を低減し、共振周波数変動やトルク変動の発生を防止した転がり軸受装置10を製造することができる。
なお、本実施形態では、第2の溶接工程において第1の溶接跡33Fとは周方向に異なる位置をレーザ溶接することとしたが、例えば、第2の溶接工程において第1の溶接跡33Fと同じ位置をレーザ溶接することとしてもよい。
As described above, according to the method for manufacturing the rolling bearing device 10 according to the present embodiment, the fitting portions 29A, 29B, 29C, and 29D are made to have low strength by the first welding process and the second welding process. The rolling bearing device 10 is manufactured by reducing the outgas generation and preventing the occurrence of resonance frequency fluctuation and torque fluctuation while securing sufficient bonding strength by joining the power and high laser power in two times. can do.
In the present embodiment, laser welding is performed at a position different from the first welding mark 33F in the circumferential direction in the second welding process. For example, in the second welding process, the first welding mark 33F and The same position may be laser welded.

また、本実施形態においては、すべての嵌合部分29A,29B,29C,29Dに第1の溶接工程および第2の溶接工程を施すことしたが、嵌合部分29A,29B,29C,29Dの少なくとも1つの嵌合部分に第1の溶接工程および第2の溶接工程を施すこととしてもよい。例えば、内輪3a,3bとシャフト13との嵌合部分29A,29Bはレーザ溶接により接合し、外輪5a,5bとスリーブ23の嵌合孔25との嵌合部分29C,29Dは接着剤により接合することとしてもよい。   In the present embodiment, the first welding process and the second welding process are performed on all the fitting parts 29A, 29B, 29C, and 29D, but at least the fitting parts 29A, 29B, 29C, and 29D are used. It is good also as giving a 1st welding process and a 2nd welding process to one fitting part. For example, the fitting portions 29A and 29B between the inner rings 3a and 3b and the shaft 13 are joined by laser welding, and the fitting portions 29C and 29D between the outer rings 5a and 5b and the fitting hole 25 of the sleeve 23 are joined by an adhesive. It is good as well.

また、本実施形態においては、第2の溶接工程が、周方向に等間隔で3箇所にレーザ溶接を施すこととしたが、これに代えて、例えば、図9および図10に示すように、同一の嵌合部分29A(29B,29C,29D)におけるレーザ溶接を溶接箇所33の一部を重ね合わせて複数回(例えば、2回)行うこととしてもよい。重ね合わせる範囲としては、例えば、オーバラップ率が第2溶接跡33の面積の10%以上となるようにすることが好ましい。このようにすることで、1度のレーザ溶接により接合する場合と比較して溶接箇所33の固定力が向上し、より高い接合強度を確保することができる。   Further, in the present embodiment, the second welding step is to perform laser welding at three locations at equal intervals in the circumferential direction, but instead, for example, as shown in FIGS. 9 and 10, Laser welding in the same fitting portion 29A (29B, 29C, 29D) may be performed a plurality of times (for example, twice) with a part of the welded portion 33 overlapped. As the overlapping range, for example, it is preferable that the overlap rate is 10% or more of the area of the second welding trace 33. By doing in this way, the fixing force of the welding location 33 improves compared with the case where it joins by 1 time of laser welding, and higher joint strength can be ensured.

また、同一の嵌合部分29A(29B,29C,29D)において、例えば、第1の溶接工程によるレーザ溶接と第2の溶接工程によるレーザ溶接とを、図11および図12に示すように、周方向に交互に等間隔で複数箇所(同図においては3箇所ずつ)に施すこととしてもよい。このようにすることで、第1の溶接工程および第2の溶接工程により嵌合部分29Aを周方向にバランスして接合することができる。   Further, in the same fitting portion 29A (29B, 29C, 29D), for example, laser welding by the first welding process and laser welding by the second welding process are performed as shown in FIGS. Alternatively, it may be applied to a plurality of locations (three locations in the figure) at equal intervals alternately in the direction. By doing in this way, 29 A of fitting parts can be balanced and joined to the circumferential direction by the 1st welding process and the 2nd welding process.

また、本実施形態においては、第2の溶接工程が単に第2レーザパワーによりレーザ溶接することとしたが、例えば、図13または図14に示すように、第2の溶接工程が所定のレーザパワー、例えば、第2レーザパワーにより5msec以下の溶融時間で溶融する溶融工程と、溶融工程により溶融された溶接箇所33に第2レーザパワーより強度が低いレーザパワーを一定時間(例えば、10msec以上)照射しながら冷却する冷却工程とを含むこととしてもよい。このようにすることで、溶融工程により第2レーザパワーで溶融された溶接箇所33が冷却工程により強度が低いレーザパワーで徐々に冷却されて凝固されるので、急激な冷却によるクラックの発生を防ぎ、より接合強度が高い転がり軸受装置10を製造することができる。この場合、冷却工程は、図13に示すように、レーザパワーの強度を変化させずに一定時間照射し続けることとしてもよいし、あるいは、図14に示すように、レーザパワーの強度を徐々に低減させながら照射することとしてもよい。   In the present embodiment, the second welding process is simply laser welding with the second laser power. For example, as shown in FIG. 13 or FIG. 14, the second welding process has a predetermined laser power. For example, a melting process in which the second laser power is melted in a melting time of 5 msec or less, and a laser power lower in intensity than the second laser power is irradiated for a certain time (for example, 10 msec or more) to the welded portion 33 melted by the melting process. It is good also as including the cooling process cooled while doing. By doing so, the welded portion 33 melted by the second laser power in the melting step is gradually cooled and solidified by the laser power having a low strength by the cooling step, so that generation of cracks due to rapid cooling is prevented. Thus, it is possible to manufacture the rolling bearing device 10 having higher bonding strength. In this case, in the cooling step, as shown in FIG. 13, the irradiation may be continued for a certain time without changing the intensity of the laser power, or the intensity of the laser power is gradually increased as shown in FIG. It is good also as irradiating, reducing.

また、本実施形態においては、第2の部材として、嵌合孔25の内面にスペーサ部27を備えるスリーブ23を例示して説明したが、これに代えて、例えば、スペーサ部27を備えないスリーブを採用し、転がり軸受1A,1Bの内輪3a,3b間にリング状の間座を挟む構成としてもよい。この場合、外輪5a,5bに間座の長さに応じた隙間が形成されるので、外輪5a,5bどうしを近接させる方向に押圧することとすればよい。   In the present embodiment, the sleeve 23 provided with the spacer portion 27 on the inner surface of the fitting hole 25 has been described as an example of the second member. Instead, for example, a sleeve without the spacer portion 27 is described. The ring-shaped spacer may be sandwiched between the inner rings 3a and 3b of the rolling bearings 1A and 1B. In this case, since a gap corresponding to the length of the spacer is formed in the outer rings 5a and 5b, the outer rings 5a and 5b may be pressed in a direction in which they approach each other.

また、本実施形態においては、転がり軸受装置10がスリーブ23を備えることとしたが、例えば、図15に示す転がり軸受装置110ように、スリーブ23を備えず、転がり軸受1A,1Bの外輪5a,5b間にリング状のスペーサ部127を挟む構成としてもよい。この場合、内輪3a,3bにスペーサ部127の長さに応じた隙間が形成されるので、内輪3a,3bどうしを近接させる方向に押圧することとすればよい。   In the present embodiment, the rolling bearing device 10 includes the sleeve 23. For example, unlike the rolling bearing device 110 illustrated in FIG. 15, the sleeve 23 is not provided, and the outer rings 5a of the rolling bearings 1A and 1B are provided. It is good also as a structure which pinches | interposes the ring-shaped spacer part 127 between 5b. In this case, since a gap corresponding to the length of the spacer portion 127 is formed in the inner rings 3a and 3b, the inner rings 3a and 3b may be pressed in a direction in which they approach each other.

また、本実施形態は、以下のように変形することができる。
例えば、本実施形態の一変形例として、図16に示すように、第1の溶接工程が、内輪3a,3bとシャフト13および外輪5a,5bとスリーブ23を相対的に半径方向の一方向に寄せ、各部材が相互に接触あるいは近接した箇所(近接箇所)をレーザ溶接することとしてもよい。また、接触あるいは近接した箇所に対して周方向に異なる位置(例えば、異なる2箇所)を接触あるいは近接した箇所より溶接範囲の径寸法(スポット径)を大きくしてさらにレーザ溶接することとしてもよい。
Further, the present embodiment can be modified as follows.
For example, as a modification of the present embodiment, as shown in FIG. 16, the first welding process is performed in such a manner that the inner rings 3 a and 3 b and the shaft 13 and the outer rings 5 a and 5 b and the sleeve 23 are relatively arranged in one radial direction. It is good also as laser welding the location (proximity location) where each member contacted or approached each other. Alternatively, laser welding may be performed by increasing the diameter size (spot diameter) of the welding range at a position different in the circumferential direction (for example, two different positions) with respect to the contacted or adjacent part, and making the diameter size (spot diameter) of the welding range larger than that of the adjacent part. .

具体的には、図17のフローチャートに示されるように、まず、内輪3a,3bとシャフト13との嵌合部分29A,29Bおよび外輪5a,5bとスリーブ23との嵌合部分29C,29Dにそれぞれ接着剤を塗布し(ステップSm1)、転がり軸受装置10の組立体を組み立て(ステップSm2)、内輪3aと内輪3bとを相互に近接させる方向に押圧して転がり軸受1A,1Bに予圧をかける(ステップSm3)。   Specifically, as shown in the flowchart of FIG. 17, first, fitting portions 29A, 29B between the inner rings 3a, 3b and the shaft 13 and fitting portions 29C, 29D between the outer rings 5a, 5b and the sleeve 23 are respectively provided. Adhesive is applied (step Sm1), the assembly of the rolling bearing device 10 is assembled (step Sm2), and the inner ring 3a and the inner ring 3b are pressed in a direction approaching each other to pre-load the rolling bearings 1A and 1B ( Step Sm3).

続いて、第1の溶接工程により、スリーブ23の外周面に対して半径方向外方から半径方向内方(シャフト13の中心)に向かって一方向に押圧し、内輪3a,3bとシャフト13および外輪5a,5bとスリーブ23を半径方向の一方向に寄せる(ステップSm4)。これにより、内輪3a,3bとシャフト13および外輪5a,5bとスリーブ23をそれぞれ部分的に接触あるいは近接させ、2つの転がり軸受1A,1Bの軸心を一致させることができる。なお、スリーブ23の外周面を押圧する強さは、転がり軸受1A,1Bに予圧をかける際に内輪3aと内輪3bを押圧する強さより弱いことが望ましい。このようにすることで、転がり軸受1A,1Bに予圧をかけた状態を維持し転がり軸受装置10の組立体にひずみが生じるのを防止することができる。   Subsequently, in the first welding step, the outer circumferential surface of the sleeve 23 is pressed in one direction from the radially outer side to the radially inner side (center of the shaft 13), and the inner rings 3a and 3b and the shaft 13 and The outer rings 5a and 5b and the sleeve 23 are moved in one radial direction (step Sm4). As a result, the inner rings 3a and 3b and the shaft 13 and the outer rings 5a and 5b and the sleeve 23 can be partially brought into contact with each other or brought into close proximity with each other, so that the axes of the two rolling bearings 1A and 1B can be aligned. It is desirable that the strength of pressing the outer peripheral surface of the sleeve 23 is weaker than the strength of pressing the inner ring 3a and the inner ring 3b when preloading the rolling bearings 1A and 1B. By doing in this way, the state which applied the preload to rolling bearing 1A, 1B can be maintained, and it can prevent that a distortion arises in the assembly of rolling bearing apparatus 10. FIG.

次に、嵌合部分29Bにおける内輪3bとシャフト13が接触あるいは近接する箇所を第1レーザパワーで最初にレーザ溶接する(この箇所を最初の溶接箇所33F1とする。)。最初の溶接箇所33F1はスポット径を約100μmとする。続いて、最初の溶接箇所33F1に対して周方向に約120°間隔でずらした位置をそれぞれ第1レーザパワーでレーザ溶接する(これらの箇所を2番目の溶接箇所33F2、3番目の溶接箇所33F3とする。ステップSm5)。2番目の溶接箇所33F2および3番目の溶接箇所33F3はそれぞれスポット径を約150μmとする。   Next, the portion where the inner ring 3b and the shaft 13 are in contact with or close to each other in the fitting portion 29B is first laser welded with the first laser power (this portion is referred to as the first welding portion 33F1). The first welding location 33F1 has a spot diameter of about 100 μm. Subsequently, laser welding is performed at positions shifted by about 120 ° in the circumferential direction with respect to the first welding point 33F1 with the first laser power (these points are the second welding point 33F2 and the third welding point 33F3. Step Sm5). The spot diameter of each of the second welded spot 33F2 and the third welded spot 33F3 is about 150 μm.

2番目の溶接箇所33F2および3番目の溶接箇所33F3は最初の溶接箇所33F1よりも隙間が大きいので、嵌合部分の隙間の大きさに応じてスポット径を個別に設定することで、嵌合部分における周方向の複数箇所に安定した溶接を施すことができる。したがって、第2の溶接工程のレーザ溶接による被溶接材(ここでは、内輪3bとシャフト13)の位置ずれをより確実に抑制することができる。なお、スリーブ23の外周面を押圧したままレーザ溶接してもよいし、内輪3bとシャフト13が接触あるいは近接した状態を維持することができれば押圧するのをやめてレーザ溶接してもよい。   Since the second welded spot 33F2 and the third welded spot 33F3 have a larger gap than the first welded spot 33F1, by setting the spot diameter individually according to the size of the gap of the fitted part, the fitted part Stable welding can be performed at a plurality of locations in the circumferential direction. Therefore, it is possible to more reliably suppress the displacement of the material to be welded (here, the inner ring 3b and the shaft 13) by the laser welding in the second welding process. Laser welding may be performed while the outer peripheral surface of the sleeve 23 is pressed, or laser welding may be performed without pressing the inner ring 3b and the shaft 13 as long as the state can be maintained in contact or close proximity.

次に、第2の溶接工程により、最初の溶接箇所33F1、2番目の溶接箇所33F2および3番目の溶接箇所33F3に対してそれぞれ周方向にずらした位置を第2レーザパワーでレーザ溶接し、内輪3bとシャフト13とを接合する(ステップSm6)。これにより、転がり軸受装置10の組立ては終了し、転がり軸受装置10は製造ラインから取り出される(ステップSm7)。   Next, in the second welding process, the positions shifted in the circumferential direction with respect to the first welding location 33F1, the second welding location 33F2 and the third welding location 33F3 are laser-welded with the second laser power, respectively. 3b and the shaft 13 are joined (step Sm6). Thereby, the assembly of the rolling bearing device 10 is completed, and the rolling bearing device 10 is taken out from the production line (step Sm7).

その後、他の嵌合部分29A,29C,29Dが接着剤によって接合されることにより転がり軸受装置10が完成する。例えば、接着剤として嫌気性接着剤を用いた場合は、所定の時間放置することにより接着剤が硬化し嵌合部分29A,29C,29Dが接合される。また、接着剤として熱硬化接着剤を用いた場合は、所定の熱を加えることにより接着剤が硬化し嵌合部分29A,29C,29Dが接合される。   Thereafter, the other fitting portions 29A, 29C, and 29D are joined by an adhesive, whereby the rolling bearing device 10 is completed. For example, when an anaerobic adhesive is used as the adhesive, the adhesive is cured by allowing it to stand for a predetermined time, and the fitting portions 29A, 29C, and 29D are joined. When a thermosetting adhesive is used as the adhesive, the adhesive is cured by applying predetermined heat, and the fitting portions 29A, 29C, and 29D are joined.

以上、本変形例によれば、各嵌合部分29A,29B,29C,29Dに隙間がある場合であっても、嵌合部分29A,29B,29C,29Dの一部を相互に接触または近接させて隙間が小さくなった箇所を特定し、レーザ溶接によりこの箇所を確実に固定することができる。また、2つの転がり軸受1A,1Bの軸心を一致させ、シャフト13とスリーブ23が精度よく相対回転可能な転がり軸受装置10を製造することができる。   As described above, according to the present modification, even when there is a gap between the fitting portions 29A, 29B, 29C, and 29D, a part of the fitting portions 29A, 29B, 29C, and 29D is brought into contact with or close to each other. Thus, it is possible to identify the location where the gap has become small and to fix this location reliably by laser welding. Further, it is possible to manufacture the rolling bearing device 10 in which the shaft centers of the two rolling bearings 1A and 1B coincide with each other so that the shaft 13 and the sleeve 23 can relatively rotate with high accuracy.

なお、本変形例においては、転がり軸受装置10の組立体を組み立てた後、内輪3bとシャフト13のみをレーザ溶接する場合を例示して説明したが、例えば、外輪5a,5bとスリーブ25の嵌合部分29C,29Dをそれぞれ同様にして半径方向の一方向に寄せた状態でレーザ溶接することとしてもよい。また、接着剤を用いないこととしてもよい。また、スペーサ部27を備えないスリーブを採用して内輪3a,3b間にリング状の間座を配置する場合には、内輪3a,3bとシャフト13との嵌合部分29A,29Bごと、また、外輪5a,5bとスリーブ25の嵌合部分29C,29Dごとに第1の溶接工程により半径方向の一方向に寄せた状態でレーザ溶接することとしてもよい。   In this modification, the case where only the inner ring 3b and the shaft 13 are laser-welded after the assembly of the rolling bearing device 10 has been assembled has been described as an example. However, for example, the fitting of the outer rings 5a and 5b and the sleeve 25 is performed. Laser welding may be performed in a state where the joint portions 29C and 29D are moved in one direction in the same manner. Moreover, it is good also as not using an adhesive agent. When a ring-shaped spacer is disposed between the inner rings 3a and 3b using a sleeve that does not include the spacer portion 27, each of the fitting portions 29A and 29B between the inner rings 3a and 3b and the shaft 13, Laser welding may be performed in a state where the fitting portions 29C and 29D of the outer rings 5a and 5b and the sleeve 25 are moved in one radial direction by the first welding process.

また、本変形例においては、嵌合部分における接触または近接した箇所を最初にレーザ溶接することとしたが、例えば、接触または近接した箇所に対して周方向に異なる位置を最初にレーザ溶接することとしてもよい。この場合、嵌合部分における隙間の大きさに応じてスポット径を個別に設定することとすればよい。また、本変形例においては、嵌合部分における周方向の3箇所をレーザ溶接することとしたが、例えば、周方向の2箇所以下、または、周方向の4箇所以上をレーザ溶接することとしてもよい。   Further, in this modification, the laser welding is first performed on the contact or the close part in the fitting portion, but for example, the position different in the circumferential direction with respect to the contact or the close part is first laser welded. It is good. In this case, the spot diameter may be individually set according to the size of the gap in the fitting portion. Moreover, in this modification, it decided to laser-weld three places of the circumferential direction in a fitting part, For example, as laser welding of two places or less of the circumferential direction, or four places or more of the circumferential direction Good.

また、本実施形態およびその変形例においては、転がり軸受装置10がシャフト13およびスリーブ23を備えることとしたが、これに代えて、例えば、転がり軸受装置10がスリーブ23を備えず、HDD等に用いるスイングアームの軸受嵌合孔に外輪5a,5bが直接嵌合されるような構成としてもよい。また、例えば、転がり軸受装置10がシャフト13を備えず、内輪3a,3bにスイングアームを直接嵌合させるような構成としてもよい。   In the present embodiment and its modification, the rolling bearing device 10 includes the shaft 13 and the sleeve 23. Instead, for example, the rolling bearing device 10 does not include the sleeve 23, and the HDD or the like. The outer rings 5a and 5b may be directly fitted into the bearing fitting holes of the swing arm used. Further, for example, the rolling bearing device 10 may be configured not to include the shaft 13 but to fit the swing arm directly to the inner rings 3a and 3b.

1A 第1の転がり軸受
1B 第2の転がり軸受
3a,3b 内輪
5a,5b 外輪
7 転動体
10、110 転がり軸受装置
13 シャフト(第1の部材)
23 スリーブ(第2の部材)
25 嵌合孔
27,127 スペーサ部
S1、S3,S5,S7 第1の溶接工程
S2、S4、S6、S8 第2の溶接工程
DESCRIPTION OF SYMBOLS 1A 1st rolling bearing 1B 2nd rolling bearing 3a, 3b Inner ring 5a, 5b Outer ring 7 Rolling element 10, 110 Rolling bearing apparatus 13 Shaft (1st member)
23 Sleeve (second member)
25 Fitting hole 27, 127 Spacer part S1, S3, S5, S7 First welding step S2, S4, S6, S8 Second welding step

Claims (16)

軸方向に間隔をあけて同軸に配列される2つの転がり軸受の各内輪とこれらの内輪に嵌合される第1の部材との各嵌合部分の少なくとも1箇所を、前記内輪に熱変形を生じさせないレーザパワーによりレーザ溶接する第1の溶接工程と、
該第1の溶接工程により接合された状態の前記嵌合部分を前記第1の溶接工程より高いレーザパワーによりレーザ溶接する第2の溶接工程とを含む転がり軸受装置の製造方法であって、
前記第2の溶接工程が、同一の前記嵌合部分における前記第1の溶接工程時の溶接箇所とは周方向に異なる位置をレーザ溶接することを特徴とする転がり軸受装置の製造方法。
At least one of the fitting portions of the inner rings of the two rolling bearings arranged coaxially with an interval in the axial direction and the first member fitted to the inner rings is subjected to thermal deformation on the inner ring. A first welding process in which laser welding is performed with laser power that does not occur;
A method of manufacturing a rolling bearing device including a second welding step of laser welding the fitting portions in a state of being joined by the first welding step with a laser power higher than that of the first welding step ,
The method for manufacturing a rolling bearing device, wherein the second welding step performs laser welding at a position that is different in the circumferential direction from a welding location in the same fitting portion at the time of the first welding step.
前記2つの転がり軸受の外輪間の軸方向にスペーサ部を挟み、前記内輪どうしを前記軸方向に相対的に近接させる方向に押圧した状態で、押圧した前記内輪と前記第1の部材との嵌合部分に前記第1の溶接工程によるレーザ溶接および前記第2の溶接工程によるレーザ溶接を施す請求項1に記載の転がり軸受装置の製造方法。   Fitting between the pressed inner ring and the first member in a state where the spacer portion is sandwiched in the axial direction between the outer rings of the two rolling bearings and the inner rings are pressed in a direction relatively close to the axial direction. The method for manufacturing a rolling bearing device according to claim 1, wherein laser welding by the first welding process and laser welding by the second welding process are performed on a joint portion. 前記第1のレーザ溶接工程が、各前記内輪と前記第1の部材を相対的に半径方向の一方向に寄せて相互に近接させた近接箇所をレーザ溶接する請求項1または請求項2に記載の転がり軸受装置の製造方法。   3. The first laser welding process according to claim 1 or 2, wherein the first laser welding step performs laser welding of adjacent portions where the inner rings and the first member are relatively moved toward one direction in the radial direction to be close to each other. Method of rolling bearing device of the present invention. 軸方向に間隔をあけて同軸に配列される2つの転がり軸受の各外輪とこれらの外輪を嵌合させる第2の部材との各嵌合部分の少なくとも1箇所を、前記外輪に熱変形を生じさせないレーザパワーによりレーザ溶接する第1の溶接工程と、
該第1の溶接工程により接合された状態の前記嵌合部分を前記第1の溶接工程より高いレーザパワーによりレーザ溶接する第2の溶接工程とを含む転がり軸受装置の製造方法であって、
前記第2の溶接工程が、同一の前記嵌合部分における前記第1の溶接工程時の溶接箇所とは周方向に異なる位置をレーザ溶接することを特徴とする転がり軸受装置の製造方法。
At least one of the fitting portions of the outer rings of the two rolling bearings arranged coaxially with an interval in the axial direction and the second member for fitting the outer rings is subjected to thermal deformation in the outer ring. A first welding process in which laser welding is performed with laser power that is not allowed;
A method of manufacturing a rolling bearing device including a second welding step of laser welding the fitting portions in a state of being joined by the first welding step with a laser power higher than that of the first welding step ,
The method for manufacturing a rolling bearing device, wherein the second welding step performs laser welding at a position that is different in the circumferential direction from a welding location in the same fitting portion at the time of the first welding step.
前記2つの転がり軸受の内輪間の軸方向にスペーサ部を挟み、前記外輪どうしを前記軸方向に相対的に近接させる方向に押圧した状態で、押圧した前記外輪と前記第2の部材との嵌合部分に前記第1の溶接工程によるレーザ溶接および前記第2の溶接工程によるレーザ溶接を施す請求項4に記載の転がり軸受装置の製造方法。   Fitting between the pressed outer ring and the second member in a state where the spacer portion is sandwiched in the axial direction between the inner rings of the two rolling bearings and the outer rings are pressed in a direction relatively close to the axial direction. The method for manufacturing a rolling bearing device according to claim 4, wherein laser welding by the first welding process and laser welding by the second welding process are performed on a joint portion. 前記第1のレーザ溶接工程が、各前記外輪と前記第2の部材を相対的に半径方向の一方向に寄せて相互に近接させた近接箇所をレーザ溶接する請求項4または請求項5に記載の転がり軸受装置の製造方法。   6. The first laser welding process according to claim 4 or 5, wherein the first laser welding step performs laser welding of adjacent portions where the outer rings and the second member are relatively moved toward one direction in the radial direction to be close to each other. Method of rolling bearing device of the present invention. 前記第1の溶接工程が、前記近接箇所に対して周方向に異なる位置を前記近接箇所より溶接範囲の径寸法を大きくしてさらにレーザ溶接する請求項3または請求項6に記載の転がり軸受装置の製造方法。   The rolling bearing device according to claim 3 or 6, wherein the first welding step further performs laser welding at a position that is different in the circumferential direction with respect to the adjacent portion by increasing a diameter size of a welding range from the adjacent portion. Manufacturing method. 軸方向に間隔をあけて同軸に配列される2つの転がり軸受の各内輪とこれらの内輪に嵌合される第1の部材との各嵌合部分、および、前記2つの転がり軸受の各外輪とこれらの外輪を嵌合させる第2の部材との各嵌合部分の少なくとも1箇所を、前記内輪または前記外輪に熱変形を生じさせないレーザパワーによりレーザ溶接する第1の溶接工程と、
該第1の溶接工程により接合された状態の前記嵌合部分を前記第1の溶接工程より高いレーザパワーによりレーザ溶接する第2の溶接工程とを含む転がり軸受装置の製造方法であって、
前記第2の溶接工程が、同一の前記嵌合部分における前記第1の溶接工程時の溶接箇所とは周方向に異なる位置をレーザ溶接することを特徴とする転がり軸受装置の製造方法。
Each fitting part of each inner ring of two rolling bearings arranged coaxially at intervals in the axial direction and a first member fitted to these inner rings, and each outer ring of said two rolling bearings A first welding step of laser welding at least one portion of each fitting portion with the second member for fitting these outer rings by laser power that does not cause thermal deformation of the inner ring or the outer ring;
A method of manufacturing a rolling bearing device including a second welding step of laser welding the fitting portions in a state of being joined by the first welding step with a laser power higher than that of the first welding step ,
The method for manufacturing a rolling bearing device, wherein the second welding step performs laser welding at a position that is different in the circumferential direction from a welding location in the same fitting portion at the time of the first welding step.
一方の前記転がり軸受の内輪を前記第1の部材の半径方向外方に突出する鍔部に突き当てるとともに、前記2つの転がり軸受を各外輪間の軸方向にスペーサ部を挟んだ状態で配置し、他方の前記転がり軸受の内輪を前記一方の転がり軸受の内輪に近接させる方向に押圧した状態で、前記第1の部材と前記他方の転がり軸受の内輪との嵌合部分に前記第1の溶接工程によるレーザ溶接および前記第2の溶接工程によるレーザ溶接を施す請求項8に記載の転がり軸受装置の製造方法。   The inner ring of one of the rolling bearings is abutted against a flange portion protruding radially outward of the first member, and the two rolling bearings are arranged with a spacer portion sandwiched between the outer rings in the axial direction. In the state where the inner ring of the other rolling bearing is pressed in the direction of approaching the inner ring of the one rolling bearing, the first weld is applied to the fitting portion between the first member and the inner ring of the other rolling bearing. The method of manufacturing a rolling bearing device according to claim 8, wherein laser welding according to a process and laser welding according to the second welding process are performed. 前記第1のレーザ溶接工程が、各前記内輪と前記第1の部材および/または各前記外輪と前記第2の部材を相対的に半径方向の一方向に寄せて相互に近接させた近接箇所をレーザ溶接する請求項8または請求項9に記載の転がり軸受装置の製造方法。   In the first laser welding step, the inner ring and the first member and / or the outer ring and the second member are moved closer to one direction in the radial direction to approach each other. The method for manufacturing a rolling bearing device according to claim 8 or 9, wherein laser welding is performed. 前記第1の溶接工程が、前記近接箇所に対して周方向に異なる位置を前記近接箇所より溶接範囲の径寸法を大きくしてさらにレーザ溶接する請求項10に記載の転がり軸受装置の製造方法。   The manufacturing method of the rolling bearing device according to claim 10, wherein the first welding step further performs laser welding at a position different in the circumferential direction with respect to the adjacent portion by increasing a diameter size of a welding range from the adjacent portion. 前記第1の溶接工程が、5msec以下の溶接時間で100μm以下の径寸法の第1の溶接跡が形成されるレーザ溶接を施し、前記第2の溶接工程が、前記第1の溶接跡より大きい径寸法の第2の溶接跡が形成されるレーザ溶接を施す請求項1から請求項11のいずれかに記載の転がり軸受装置の製造方法。   The first welding process performs laser welding in which a first welding trace having a diameter of 100 μm or less is formed in a welding time of 5 msec or less, and the second welding process is larger than the first welding trace. The method for manufacturing a rolling bearing device according to any one of claims 1 to 11, wherein laser welding is performed to form a second welding mark having a radial dimension. 前記第1の溶接工程が、同一の前記嵌合部分における前記レーザ溶接を周方向に間隔をあけて少なくとも3箇所以上に施す請求項1から請求項12のいずれかに記載の転がり軸受装置の製造方法。   The manufacturing of the rolling bearing device according to any one of claims 1 to 12, wherein in the first welding step, the laser welding in the same fitting portion is performed at least at three or more locations in the circumferential direction. Method. 前記第2の溶接工程が、同一の前記嵌合部分における前記レーザ溶接を溶接箇所の一部を重ね合わせて複数回行う請求項1から請求項13のいずれかに記載の転がり軸受装置の製造方法。   The method for manufacturing a rolling bearing device according to any one of claims 1 to 13, wherein in the second welding step, the laser welding in the same fitting portion is performed a plurality of times by overlapping a part of the welding portion. . 前記第2の溶接工程が、同一の前記嵌合部分における前記レーザ溶接を周方向に等間隔で複数箇所に施す請求項1から請求項14のいずれかに記載の転がり軸受装置の製造方法。   The method for manufacturing a rolling bearing device according to any one of claims 1 to 14, wherein the second welding step performs the laser welding in the same fitting portion at a plurality of locations at equal intervals in the circumferential direction. 前記第2の溶接工程が、所定のレーザパワーにより5msec以下の溶融時間で溶融する溶融工程と、該溶融工程により溶融された前記溶接箇所に前記溶融工程時より低いレーザパワーを照射しながら冷却する冷却工程とを含む請求項1から請求項15のいずれかに記載の転がり軸受装置の製造方法。   The second welding step is a melting step that melts with a predetermined laser power in a melting time of 5 msec or less, and cooling while irradiating the welding spot melted by the melting step with a laser power lower than that in the melting step. The manufacturing method of the rolling bearing apparatus in any one of Claims 1-15 including a cooling process.
JP2010073329A 2009-09-25 2010-03-26 Method for manufacturing rolling bearing device Active JP5570268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010073329A JP5570268B2 (en) 2009-09-25 2010-03-26 Method for manufacturing rolling bearing device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009221236 2009-09-25
JP2009221236 2009-09-25
JP2010073329A JP5570268B2 (en) 2009-09-25 2010-03-26 Method for manufacturing rolling bearing device

Publications (2)

Publication Number Publication Date
JP2011089634A JP2011089634A (en) 2011-05-06
JP5570268B2 true JP5570268B2 (en) 2014-08-13

Family

ID=44108059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010073329A Active JP5570268B2 (en) 2009-09-25 2010-03-26 Method for manufacturing rolling bearing device

Country Status (1)

Country Link
JP (1) JP5570268B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5967889B2 (en) * 2011-09-30 2016-08-10 セイコーインスツル株式会社 Method and apparatus for manufacturing rolling bearing device
US20150330449A1 (en) * 2014-05-15 2015-11-19 Aktiebolaget Skf Method for manufacturing a rolling bearing and rolling bearing manufactured according to such a method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2728623B2 (en) * 1993-09-10 1998-03-18 川崎重工業株式会社 Laser welding method
JP2000061674A (en) * 1998-08-19 2000-02-29 Toshiba Corp Production of gas insulation switchgear
JP4756544B2 (en) * 2006-02-09 2011-08-24 セイコーインスツル株式会社 Double row bearing and manufacturing method of double row bearing

Also Published As

Publication number Publication date
JP2011089634A (en) 2011-05-06

Similar Documents

Publication Publication Date Title
JP4756544B2 (en) Double row bearing and manufacturing method of double row bearing
JP5465967B2 (en) Rolling bearing device
JP5606116B2 (en) Rolling bearing device and pivot device
US8622621B2 (en) Rolling bearing apparatus, manufacture method thereof, and hard disk apparatus
JP2013018035A (en) Weld structure and welding method
JP5570268B2 (en) Method for manufacturing rolling bearing device
JP5485763B2 (en) Method for manufacturing rolling bearing device
JP5967889B2 (en) Method and apparatus for manufacturing rolling bearing device
JPH08338436A (en) Fixing method into hole of mounting plate made of metal of shaft support bush made of material incapable of being welded
JP5570308B2 (en) Method for manufacturing rolling bearing device
JP5465971B2 (en) Rolling bearing device
JP5603117B2 (en) Rolling bearing device and pivot device
JP5465970B2 (en) Rolling bearing device
JP5465972B2 (en) Rolling bearing device
JP2014070701A (en) Bearing device, manufacturing method of bearing device, and information recording and reproducing device
JP5967888B2 (en) Method and apparatus for manufacturing rolling bearing device
JP5181342B2 (en) Bearing device, bearing device manufacturing method, and information recording / reproducing device
JP6751814B2 (en) Rolling bearings and manufacturing methods for rolling bearings
JP2018167276A (en) Manufacturing method of conjugate and conjugate
JP7219706B2 (en) Rolling bearing and rolling bearing manufacturing method
JP6095262B6 (en) Method and apparatus for manufacturing rolling bearing device
JP2014126075A (en) Antifriction bearing device, hard disk drive device, and manufacturing method of antifriction bearing device
JP2008082451A (en) Manufacturing method for dynamic bearing device
JP5822736B2 (en) Centering device and rotor manufacturing method
JP2014098481A (en) Bearing device, manufacturing method of bearing device, and information recording and reproducing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140624

R150 Certificate of patent or registration of utility model

Ref document number: 5570268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250