JP5568022B2 - Shaft construction member and shaft structure - Google Patents

Shaft construction member and shaft structure Download PDF

Info

Publication number
JP5568022B2
JP5568022B2 JP2011001797A JP2011001797A JP5568022B2 JP 5568022 B2 JP5568022 B2 JP 5568022B2 JP 2011001797 A JP2011001797 A JP 2011001797A JP 2011001797 A JP2011001797 A JP 2011001797A JP 5568022 B2 JP5568022 B2 JP 5568022B2
Authority
JP
Japan
Prior art keywords
shaft
end side
construction member
inclined plate
shaft construction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011001797A
Other languages
Japanese (ja)
Other versions
JP2012144853A (en
Inventor
明久 三浦
雅治 加藤
吾郎 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2011001797A priority Critical patent/JP5568022B2/en
Publication of JP2012144853A publication Critical patent/JP2012144853A/en
Application granted granted Critical
Publication of JP5568022B2 publication Critical patent/JP5568022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sewage (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Description

本発明は、垂直方向に複数個積み重ねられることによって立坑を構築する立坑構築用部材、及びこの立坑構築用部材によって構築された立坑構造物に関する。   The present invention relates to a shaft construction member for constructing a shaft by being stacked in a vertical direction, and a shaft structure constructed by the shaft construction member.

地中に埋設された下水道、暗渠、電気・通信ケーブルなどには、通常、その管理を行う作業員が地上から出入りできるように、立坑(人坑(マンホール)とも称される。)が設けられている。   Sewers, culverts, electrical / communication cables, etc. buried underground are usually provided with vertical shafts (also called manholes) so that workers who manage them can enter and exit from the ground. ing.

この立坑に流入した雨水や下水等の水(以下、単に「水」と称する。)が、立坑内を垂直方向に自由落下して、立坑底部に継続的な衝撃を与えると、立坑底部において損傷が生じる。そのため、最近では、立坑内に滑らかなヘリコイド面を有する螺旋状の案内路を設けた垂直導水管(ドロップシャフト)を用い、案内路に沿って水を旋回させながら流下させる手段が提案されている。   If water such as rainwater or sewage (hereinafter simply referred to as “water”) that flows into this shaft falls freely in the vertical direction within the shaft and gives a continuous impact to the shaft bottom, damage will occur at the shaft bottom. Occurs. Therefore, recently, a means has been proposed in which a vertical water guide pipe (drop shaft) provided with a spiral guideway having a smooth helicoid surface in a shaft is used to flow down water while swirling along the guideway. .

しかしながら、螺旋状の案内路に沿って旋廻しながら流下する水は立坑の底部に至るまで継続的に加速されるため、依然として到達流速が大きいものであった。   However, since the water flowing down while rotating along the spiral guide path is continuously accelerated up to the bottom of the shaft, the flow velocity reached is still high.

この点に鑑み、半楕円形の傾斜平板を左右交互に配置し、それらを三角形又は台形の垂直平板で繋いで、段差のある直線状の折曲した螺旋による案内路を形成し、水の自由落下運動と螺旋落下運動とを組み合わせ、自由落下エネルギー分を螺旋落下エネルギーに衝突させ、落下の初期段階からエネルギーを消費させることにより、加速度勾配を小さくし、もって到達流速を下げる垂直導水管が開発されている(例えば、下記特許文献1参照)。   In view of this point, semi-elliptical inclined flat plates are arranged alternately on the left and right sides, and they are connected with triangular or trapezoidal vertical flat plates to form a guide path with a stepped linear bent spiral, thereby freeing water. Developed a vertical conduit that reduces the gradient of acceleration and lowers the flow velocity by combining the falling motion and the spiral falling motion, colliding the free fall energy with the spiral fall energy, and consuming energy from the initial stage of the fall. (For example, refer to Patent Document 1 below).

即ち、特許文献1に記載の螺旋流方式の垂直導水管は、傾斜板に沿って流下する水と傾斜板の途中から次の傾斜板へ滝落としのように落下する水とをぶつかり合わせることによって、落下エネルギーを減衰させるものである。   That is, the vertical flow guide pipe of the spiral flow method described in Patent Document 1 collides the water flowing down along the inclined plate and the water falling like a waterfall from the middle of the inclined plate to the next inclined plate. The fall energy is attenuated.

特開2004‐339922号公報JP 2004-339922 A

しかしながら、傾斜板に沿って流下する水と傾斜板の途中から落下する水とをぶつかり合わせる方式では、減衰する落下エネルギーの程度を予想して設計流量を設定することが困難であり、その結果、所期の設計流量を流下させることができなくなる場合がある。流入する水が増加する一方で落下エネルギーが過度に減衰すると、排水が不十分となって漏水が発生する。   However, in the method of colliding the water flowing down along the inclined plate and the water falling from the middle of the inclined plate, it is difficult to set the design flow rate in anticipation of the degree of fall energy to be attenuated. The intended design flow rate may not be able to flow down. If the inflowing water increases while the falling energy is excessively attenuated, the drainage becomes insufficient and water leakage occurs.

又、傾斜板に沿って流下する水と傾斜板の途中から落下する水とをぶつかり合わせると、流下する水の流れは案内路全体にわたって非常に乱れる。しかも比較的多量の跳水が継続的に発生するため、流下する水には多量の空気が混ざり込み、水と共に下流幹線へ空気が連行される。下流幹線にポンプ場が併設されている場合、空気を多量に包含する水がポンプの正常動作を阻害し、ポンプ故障の原因となる。更に、下流幹線に連行された空気は下流幹線に存する別の立坑内に移り、多くの場合良好に排出されること無く係る立坑内に長期間留まり、係る立坑内の内圧を上げる。立坑内の内圧が上がった状態で豪雨が発生すると、空気が更に圧縮され、最悪の場合、立坑を塞ぐ蓋が吹き飛ばされる事故が発生する。   Moreover, when the water flowing down along the inclined plate and the water falling from the middle of the inclined plate collide with each other, the flow of the flowing down water is very disturbed over the entire guide path. Moreover, since a relatively large amount of jumping water is continuously generated, a large amount of air is mixed in the flowing water, and the air is taken to the downstream trunk line together with the water. When a pump station is installed along the downstream trunk line, water containing a large amount of air hinders the normal operation of the pump and causes pump failure. Furthermore, the air entrained in the downstream trunk line moves to another shaft existing in the downstream trunk line, and in many cases, the air stays in the shaft for a long time without being discharged well, thereby increasing the internal pressure in the shaft. If heavy rain occurs when the internal pressure in the shaft is raised, the air is further compressed, and in the worst case, an accident occurs in which the lid that closes the shaft is blown away.

加えて、継続的に傾斜板に沿って流下する水と傾斜板の途中から落下する水とをぶつかり合わせると、低周波振動が発生し、周辺環境に対する振動公害を与える。   In addition, when the water continuously flowing along the inclined plate and the water falling from the middle of the inclined plate collide with each other, a low frequency vibration is generated, which causes vibration pollution to the surrounding environment.

特に、汚水管渠、雨水管渠、合流管渠、遮集管渠などの汚水を流下させる管渠において跳水が発生した場合、跳水と共に硫化水素ガス等が多量に発生し、管壁の早期腐食につながる。管壁の早期腐食は改築費用が増加するばかりか、作業者の滑落の原因にもなる。又、硫化水素ガスの発生は、管内作業環境を悪化させ、作業者の健康を害する。   In particular, when jumping water occurs in pipes that flow down sewage, such as sewage pipes, rainwater pipes, confluence pipes, and interception pipes, a large amount of hydrogen sulfide gas is generated along with the jumping water, resulting in early corrosion of the pipe wall. Connected. The early corrosion of the pipe wall not only increases the cost of reconstruction, but also causes the operator to slip. Also, the generation of hydrogen sulfide gas worsens the working environment in the pipe and harms the health of the worker.

本発明は、前記技術的課題を解決するために開発されたもので、空気連行量が少なく、立坑内に流入した水の到達流速を好適に下げることができる立坑を構築することができる新規な立坑構築用部材、及びこの立坑構築用部材によって構築された立坑構造物を提供することを目的とする。   The present invention was developed in order to solve the technical problem, and has a novel structure capable of constructing a shaft that has a small amount of air entrainment and that can suitably lower the arrival flow rate of water that has flowed into the shaft. It is an object to provide a shaft construction member and a shaft structure constructed by the shaft construction member.

本発明の立坑構築用部材は、垂直方向に複数個積み重ねられることによって、内壁面に沿って周回しつつ垂直方向に変位する旋廻流路を有する立坑を構築するための立坑構築用部材であって、この立坑構築用部材は、中空の筒体と、筒体の内面に沿って設けられた、前記旋廻流路の一部をなす傾斜板と、を具備し、傾斜板の上端及び下端には、傾斜板の縦断勾配より緩やかな縦断勾配を付与された上端側接続部及び下端側接続部が各々設けられ、且つ、上端側接続部及び下端側接続部のうちの少なくとも一方が筒体の開放端より外部に向かって突出されてなり、垂直方向に積み重ねられた際に、前記上端側接続部は、上位に位置する他の立坑構築用部材に存する下端側接続部と隣接され、一方、前記下端側接続部は、下位に位置する更に他の立坑構築用部材に存する上端側接続部と隣接されて、それぞれの隣接箇所において、上端側接続部の上面と下端側接続部の上面とが連続した減速流路を形成するものであることを特徴とする。   The shaft construction member of the present invention is a shaft construction member for constructing a shaft having a turning channel that is rotated along the inner wall surface and displaced in the vertical direction by being stacked in the vertical direction. The shaft construction member includes a hollow cylindrical body and an inclined plate that is provided along the inner surface of the cylindrical body and forms a part of the rotating flow path. The upper end side connection portion and the lower end side connection portion are each provided with a longitudinal gradient that is gentler than the vertical gradient of the inclined plate, and at least one of the upper end side connection portion and the lower end side connection portion is open to the cylindrical body. When projecting from the end toward the outside and stacked in the vertical direction, the upper end side connection portion is adjacent to the lower end side connection portion existing in the other shaft construction member located at the upper position, The lower end side connection part is further located at the lower level. Adjacent to the upper end side connection portion existing in the mine construction member, the upper surface of the upper end side connection portion and the upper surface of the lower end side connection portion form a continuous deceleration channel at each adjacent location. And

本発明の立坑構築用部材においては、接続部が、0±5%の縦断勾配を有してなるものが好ましい。   In the shaft construction member of the present invention, it is preferable that the connecting portion has a longitudinal gradient of 0 ± 5%.

又、本発明の立坑構築用部材においては、下端側接続部の上面と筒体内面とがなす角部が、傾斜板の縦断勾配に対して反対向きの縦断勾配を有する緩衝部によって埋められてなるものが好ましい。   In the shaft construction member of the present invention, the corner formed by the upper surface of the lower end side connecting portion and the inner surface of the cylindrical body is filled with a buffer portion having a longitudinal gradient opposite to the longitudinal gradient of the inclined plate. Is preferred.

本発明の立坑構造物は、前記本発明の立坑構築用部材が、垂直方向に複数個積み重ねられてなることを特徴とする。   The shaft structure according to the present invention is characterized in that a plurality of the shaft construction members according to the present invention are stacked in the vertical direction.

本発明によれば、空気連行量が少なく、立坑内に流入した水の到達流速を好適に下げることができる。   According to the present invention, the amount of air entrainment is small, and the arrival flow rate of water flowing into the shaft can be suitably reduced.

図1は、実施形態1に係る本発明の立坑構築用部材を一部透過状態で示す斜視図である。FIG. 1 is a perspective view showing a shaft construction member of the present invention according to Embodiment 1 in a partially transparent state. 図2は、実施形態1に係る本発明の立坑構築用部材を示す断面図(a)、及び上面図(b)である。FIG. 2: is sectional drawing (a) which shows the shaft construction member of this invention which concerns on Embodiment 1, and top view (b). 図3は、実施形態1に係る本発明の立坑構築用部材を複数個積み重ねて構築した本発明の立坑構造物を示す断面図(a)、及び筒体を一部切り欠いて示す斜視図(b)である。FIG. 3: is sectional drawing (a) which shows the shaft structure of this invention constructed by piling up the plurality of shaft construction members of this invention which concern on Embodiment 1, and a perspective view which cuts off a cylindrical body partially ( b). 図4は、実施形態2に係る本発明の立坑構築用部材を一部透過状態で示す斜視図である。FIG. 4 is a perspective view showing a shaft construction member according to the second embodiment in a partially transparent state. 図5は、実施形態2に係る本発明の立坑構築用部材を複数個積み重ねて構築した本発明の立坑構造物を示す断面図(a)、及び筒体を一部切り欠いて示す斜視図(b)である。FIG. 5 is a cross-sectional view (a) showing a shaft structure of the present invention constructed by stacking a plurality of shaft construction members of the present invention according to Embodiment 2, and a perspective view showing a partially cut-out cylinder. b). 図6は、実施形態3に係る本発明の立坑構築用部材を一部透過状態で示す斜視図である。FIG. 6 is a perspective view showing the shaft construction member according to the third embodiment in a partially transparent state.

以下、本発明の実施形態を図面に基づいて説明するが、本発明はこの実施形態に限定されるものではない。   Hereinafter, although an embodiment of the present invention is described based on a drawing, the present invention is not limited to this embodiment.

<実施形態1>
図1に実施形態1に係る本発明の立坑構築用部材1を示す。本実施形態に係る立坑構築用部材1は、コンクリートを型枠に打設した後、養生・硬化させて形成したプレキャストコンクリートである。この立坑構築用部材1は、中空の筒体2と、筒体2の内面に沿って設けられた傾斜板3とを具備する。なお、本発明において、立坑構築用部材1を形成する素材は特に限定されるものではない。立坑構築用部材1は、例えば、樹脂や金属などを用いて形成しても良い。又、立坑構築用部材1は、必ずしも一体的に形成する必要は無く、例えば、筒体2と傾斜板3とを別体として形成し、合体させることによって立坑構築用部材1を形成しても良い。
<Embodiment 1>
FIG. 1 shows a shaft construction member 1 according to Embodiment 1 of the present invention. The shaft construction member 1 according to the present embodiment is precast concrete formed by curing and hardening after placing concrete on a formwork. The shaft construction member 1 includes a hollow cylinder 2 and an inclined plate 3 provided along the inner surface of the cylinder 2. In addition, in this invention, the raw material which forms the shaft construction member 1 is not specifically limited. The shaft construction member 1 may be formed using, for example, resin or metal. Moreover, the shaft construction member 1 is not necessarily formed integrally. For example, the shaft construction member 1 may be formed by forming the cylindrical body 2 and the inclined plate 3 as separate bodies and combining them. good.

本実施形態において筒体2は円筒形状、即ち水平断面形状が円形となっている。なお、本発明において、筒体2の形状は特に限定されるものではない。筒体2の形状としては、円筒形状の他、例えば、水平断面形状が、楕円、四角形或いは更なる多角形状となっているものであっても良い。又、筒体2は、縦方向や横方向などに分割された分割体として形成し、係る分割体を合体させることによって形成しても良い。   In the present embodiment, the cylindrical body 2 has a cylindrical shape, that is, a horizontal sectional shape is circular. In the present invention, the shape of the cylindrical body 2 is not particularly limited. As the shape of the cylindrical body 2, in addition to the cylindrical shape, for example, the horizontal cross-sectional shape may be an ellipse, a quadrangle, or a further polygonal shape. The cylinder 2 may be formed as a divided body divided in the vertical direction or the horizontal direction, and the divided bodies may be combined.

本実施形態において傾斜板3は、筒体2内壁に沿って配されてなり、図2(a)に示すように、筒体2の上部開放端から下部開放端に向かって傾斜する縦断勾配を有する。傾斜板3の縦断勾配は、通常、10〜100%程度(傾斜角にして約5〜45度程度)に設定される。本実施形態においては、60%(傾斜角にして約30度)の縦断勾配を付与した。傾斜板3の上面は強度及び製造の容易性の観点などから平面状とすることが好ましいが、これに限られず、例えば、なだらかな曲面状等とすることも可能である。又、本実施形態において、傾斜板3は縦断勾配のみが付与されているが、横断勾配を加えた合成勾配を付与しても良い。但し、傾斜板3の上端から下端に向かう水の円滑な流れを維持すべく、横断勾配は、0±5%(傾斜角にして約±3度)内に留めることが好ましい。   In the present embodiment, the inclined plate 3 is arranged along the inner wall of the cylindrical body 2, and as shown in FIG. 2 (a), has a longitudinal gradient that is inclined from the upper open end to the lower open end of the cylindrical body 2. Have. The longitudinal gradient of the inclined plate 3 is normally set to about 10 to 100% (about 5 to 45 degrees as an inclination angle). In the present embodiment, a longitudinal gradient of 60% (inclination angle of about 30 degrees) was given. The upper surface of the inclined plate 3 is preferably flat from the viewpoint of strength and ease of manufacture, but is not limited to this, and may be, for example, a gentle curved surface. Moreover, in this embodiment, although only the longitudinal gradient is provided to the inclined plate 3, you may provide the synthetic | combination gradient which added the cross gradient. However, in order to maintain a smooth flow of water from the upper end to the lower end of the inclined plate 3, the transverse gradient is preferably kept within 0 ± 5% (inclination angle of about ± 3 degrees).

傾斜板3の上端及び下端には、傾斜板3の縦断勾配より緩やかな縦断勾配が付与された上端側接続部4H及び下端側接続部4Lが各々設けられている。各接続部4H、4Lの面積は、設計流量等に応じて適宜決定すればよく、特に限定されるものではない。通常、各接続部4H、4Lの面積は、傾斜板3の面積に対し、それぞれ5〜20%程度とされる。本実施形態においては、各接続部4H、4Lの面積を、傾斜板3の面積に対して、それぞれ約10%に設定している。   An upper end side connecting portion 4H and a lower end side connecting portion 4L to which a gentler vertical gradient than the vertical gradient of the inclined plate 3 is provided are provided at the upper end and the lower end of the inclined plate 3, respectively. The area of each connection part 4H, 4L should just be determined suitably according to a design flow volume etc., and is not specifically limited. Usually, the area of each connection part 4H and 4L is about 5 to 20% with respect to the area of the inclined plate 3, respectively. In the present embodiment, the area of each connecting portion 4H, 4L is set to about 10% with respect to the area of the inclined plate 3.

本実施形態においては、上端側接続部4Hを筒体2の上部開放端より外部(上部)に向かって突出させている。なお、本発明においては、下端側接続部4Lを筒体2の下部開放端より外部(下部)に向かって突出させても良い。又、各接続部4H、4Lをそれぞれ筒体2の開放端より外部に突出させても良い。   In the present embodiment, the upper end side connection portion 4H is projected from the upper open end of the cylindrical body 2 toward the outside (upper portion). In the present invention, the lower end side connection portion 4L may protrude from the lower open end of the cylindrical body 2 toward the outside (lower portion). Further, each of the connecting portions 4H and 4L may be protruded from the open end of the cylindrical body 2 to the outside.

各接続部4H、4Lの縦断勾配は、傾斜板3の縦断勾配より緩やかになっていれば特に限定されるものではない。通常は、0±5%(好ましくは0±2%(傾斜角にして約±1度))程度として、各接続部4H、4Lの上面がほぼ水平面となるようにすることが好ましい。前記傾斜板3と同様、各接続部4H、4Lの上面も平面状とすることが好ましいが、これに限られず、なだらかな曲面状とすることも可能である。又、本実施形態において、各接続部4H、4Lの勾配は、横断勾配を加えた合成勾配としても良い。なお、各接続部4H、4Lの横断勾配は、前記傾斜板3と同様に、0±5%内(好ましくは0±2%内)に留めることが好ましい。   The longitudinal gradient of each connecting portion 4H, 4L is not particularly limited as long as it is gentler than the longitudinal gradient of the inclined plate 3. Usually, it is preferable that the upper surface of each of the connection portions 4H and 4L is substantially horizontal as 0 ± 5% (preferably 0 ± 2% (inclination angle is about ± 1 degree)). Similar to the inclined plate 3, the upper surfaces of the connecting portions 4H and 4L are preferably flat, but the present invention is not limited to this, and a gentle curved surface is also possible. In the present embodiment, the gradient of each of the connecting portions 4H and 4L may be a combined gradient that includes a transverse gradient. In addition, it is preferable to keep the transverse gradient of each connection part 4H and 4L within 0 ± 5% (preferably within 0 ± 2%) similarly to the inclined plate 3.

本実施形態においては、前記傾斜板3と共に各接続部4H、4Lの横断勾配を0%(Level)に設定していることから、図2(b)に示すように、各接続部4H、4Lの上面と傾斜板3の上面とがなす角部(勾配の変化点)は、傾斜板の縦断勾配に対し垂直に交差する。傾斜板3や各接続部に曲面や横断勾配が付与されている場合、係る勾配の変化点は、曲面や横断勾配の程度に応じて、傾斜板の縦断勾配に対し垂直からずれた状態で交差する。係る勾配の変化点は、面取りしたり、埋めたりすることによって縦断曲線を付与することが好ましい。   In the present embodiment, since the transverse gradient of each connecting portion 4H, 4L together with the inclined plate 3 is set to 0% (Level), as shown in FIG. 2B, each connecting portion 4H, 4L The corner (gradient change point) formed by the upper surface of the inclined plate 3 and the upper surface of the inclined plate 3 intersects the vertical gradient of the inclined plate perpendicularly. When a curved surface or a transverse gradient is given to the inclined plate 3 or each connecting portion, the change point of the gradient intersects with the vertical gradient of the inclined plate in a state shifted from the vertical depending on the degree of the curved surface or the transverse gradient. To do. It is preferable to provide a longitudinal curve by chamfering or filling the change point of the gradient.

傾斜板3と各接続部4H、4Lは、筒体2内を上部開放端から下部開放端に向かって平行投影した際に筒体2の開口面積の半分を占める。本実施形態においては、平板状の傾斜板3にできるだけ大きな面積と緩やかな傾斜角を付与すべく、傾斜板3と各接続部4H、4Lが筒体2の開口面積の半分を占めるように配置しているが、筒体2の開口面積に対して傾斜板3と各接続部4H、4Lが占める割合は適宜変更して設計することが可能である。又、本実施形態において傾斜板3と各接続部4H、4Lは、筒体2の内壁のみによって支持されているが、更にリブや支柱などの支持部材で支持することによって支持強度を高めることが好ましい。   The inclined plate 3 and the connecting portions 4H and 4L occupy half of the opening area of the cylindrical body 2 when the inside of the cylindrical body 2 is projected in parallel from the upper open end to the lower open end. In the present embodiment, the inclined plate 3 and the connecting portions 4H and 4L are arranged so as to occupy half of the opening area of the cylindrical body 2 in order to give the flat inclined plate 3 as large an area as possible and a gentle inclination angle. However, the ratio of the inclined plate 3 and the connecting portions 4H and 4L to the opening area of the cylindrical body 2 can be designed by changing as appropriate. In the present embodiment, the inclined plate 3 and the connecting portions 4H and 4L are supported only by the inner wall of the cylindrical body 2. However, the support strength can be increased by further supporting the inclined plate 3 and supporting members such as ribs and columns. preferable.

図3(a)に示すように、立坑構築用部材1は、垂直方向に複数個積み重ねられることによって立坑(本発明の立坑構造物)10を構築するものである。図3(b)に示すように、立坑構築用部材1を積み重ねるにあたっては、下位に位置する立坑構築用部材1における上端側接続部4Hと、その上位に位置する立坑構築用部材1における下端側接続部4Lとを隣接させ、各隣接箇所において、上端側接続部4Hの上面と下端側接続部4Lの上面とが連続した減速流路7を形成する。この際、筒体2の上部開放端より外部(上部)に向かって突出させた上端側接続部4Hが、その突出高さ分、上位に位置する立坑構築用部材1側に入り込むため、隣接させた上端側接続部4Hの上面と下端側接続部4Lの上面との間に生じる段差が小さくなる。本実施形態においては、減速流路7を構成する上端側接続部4Hの上面と、下端側接続部4Lの上面とが平坦面となるように、上端側接続部4Hの突出高さを設定している。   As shown to Fig.3 (a), the vertical shaft construction member 1 constructs the vertical shaft (the vertical shaft structure of the present invention) 10 by being stacked in the vertical direction. As shown in FIG. 3 (b), when stacking the shaft construction member 1, the upper end side connection portion 4 </ b> H in the lower shaft construction member 1 and the lower end side in the shaft construction member 1 located in the upper position. The connecting portion 4L is adjacent to each other, and the deceleration channel 7 in which the upper surface of the upper end side connecting portion 4H and the upper surface of the lower end side connecting portion 4L are continuous is formed at each adjacent portion. At this time, the upper end side connection portion 4H that protrudes from the upper open end of the cylindrical body 2 toward the outside (upper portion) enters the shaft construction member 1 side located at the upper position by the protruding height, and is therefore adjacent. The step generated between the upper surface of the upper end side connection portion 4H and the upper surface of the lower end side connection portion 4L is reduced. In the present embodiment, the protruding height of the upper end side connection portion 4H is set so that the upper surface of the upper end side connection portion 4H constituting the deceleration flow path 7 and the upper surface of the lower end side connection portion 4L are flat surfaces. ing.

このようにして複数の立坑構築用部材1を垂直方向に積み重ねると、立坑10の内部には、内壁面に沿って周回しつつ垂直方向に変位する旋廻流路が形成される。この旋廻流路は、傾斜板3の上面と減速流路7とが交互に繋がった流路である。   When the plurality of shaft construction members 1 are stacked in the vertical direction in this way, a whirling passage that is displaced in the vertical direction while rotating around the inner wall surface is formed in the shaft 10. This whirling channel is a channel in which the upper surface of the inclined plate 3 and the deceleration channel 7 are alternately connected.

立坑10内に流入した水は、旋廻流路に沿って立坑10内を旋廻しながら流下する。図3(a)、(b)において矢印で示すように、旋廻流路に沿って旋廻しながら流下する水は、各傾斜板3において位置エネルギーを運動エネルギーに変換しつつ加速していく。その後、減速流路7に至った水は、立坑10の内壁と衝突し、立坑10の内壁に沿ってベクトルを変化させつつ、ほぼ水平な減速流路7を拡がりながら移動し、運動エネルギーを消費して減速する。その後、運動エネルギーを消費して減速した水は、更に下段に位置する傾斜板3に沿って流下する。この繰り返しによって、水の到達流速は好適に下がる。   The water that has flowed into the shaft 10 flows down while turning in the shaft 10 along the turning channel. As shown by arrows in FIGS. 3A and 3B, the water flowing down while rotating along the rotating flow path accelerates while converting the potential energy into kinetic energy in each inclined plate 3. Thereafter, the water that reaches the deceleration channel 7 collides with the inner wall of the shaft 10, moves along the inner wall of the shaft 10 while expanding the almost horizontal deceleration channel 7, and consumes kinetic energy. Then slow down. Thereafter, the water decelerated by consuming kinetic energy flows down along the inclined plate 3 positioned at the lower stage. By repeating this, the arrival flow rate of water is preferably lowered.

旋廻流路に沿って流下する水は立坑10の内壁と衝突してその向きを変えるため、減速流路7において多少の流れの乱れが生じる。しかしながら、この流れの乱れは、豪雨時などの高流量時以外、即ち、小〜中流量時であれば比較的穏やかである。又、傾斜板3においては、流れの乱れはほとんど発生しない。更に、跳水については高流量時以外殆ど生じない。旋回流路において跳水がほとんど生じないことから、硫化水素ガスの発生や振動公害の発生は抑制される。又、下流幹線への空気の連行は少なくなる。   Since the water flowing down along the whirling channel collides with the inner wall of the shaft 10 and changes its direction, some turbulence occurs in the deceleration channel 7. However, this turbulence of the flow is relatively gentle except when the flow rate is high, such as during heavy rain, that is, when the flow rate is small to medium. Further, in the inclined plate 3, the flow disturbance is hardly generated. Furthermore, almost no jumping occurs except at high flow rates. Since almost no water jump occurs in the swirling flow path, generation of hydrogen sulfide gas and generation of vibration pollution are suppressed. Also, air entrainment to the downstream trunk line is reduced.

特に、本実施形態においては、減速流路7を構成する上端側接続部4Hの上面と下端側接続部4Lの上面とが平坦面となるように、上端側接続部4Hの突出高さを設定しているから、下端側接続部4Lから隣接する上端側接続部4Hへ向かう水の移行が円滑となり、減速流路7において跳水の発生がより一層少なくなる。   In particular, in the present embodiment, the protrusion height of the upper end side connection portion 4H is set so that the upper surface of the upper end side connection portion 4H constituting the deceleration channel 7 and the upper surface of the lower end side connection portion 4L are flat surfaces. Therefore, the water is smoothly transferred from the lower end side connection portion 4L to the adjacent upper end side connection portion 4H, and the occurrence of water jump is further reduced in the deceleration flow path 7.

下記表1において、特許文献1に記載された垂直導水管と、本実施形態に係る立坑構築用部材1によって構築された立坑10のそれぞれについて、同一条件下で汚水を流下させた際の空気連行量、騒音、跳水の発生、硫化ガスの発生量及び流下流量を比較した結果を示す。   In Table 1 below, air entrainment when sewage flows down under the same conditions for each of the vertical water conduit described in Patent Document 1 and the shaft 10 constructed by the shaft construction member 1 according to this embodiment. The result of comparing the amount, noise, occurrence of jump water, generation amount of sulfide gas, and flow down.

Figure 0005568022
Figure 0005568022

ところで、本発明において、上端側接続部4Hの上面と下端側接続部4Lの上面とを連続させて減速流路7を形成するにあたっては、本実施形態のように、上端側接続部4Hの上面と下端側接続部4Lの上面とが平坦面となるようにすることが最も好ましい態様となるが、隣接させた上端側接続部4Hの上面と、下端側接続部4Lの上面との間に多少の段差が生じていても良い。   By the way, in this invention, when forming the deceleration flow path 7 by making the upper surface of the upper end side connection part 4H and the upper surface of the lower end side connection part 4L continuous, the upper surface of the upper end side connection part 4H as in this embodiment. And the upper surface of the lower end side connection portion 4L are most preferably flat, but there is a slight difference between the upper surface of the adjacent upper end side connection portion 4H and the upper surface of the lower end side connection portion 4L. There may be a difference in level.

減速流路7において生じ得る段差としては、下端側接続部4Lの上面が高位置となる段差と、上端側接続部4Hの上面が高位置となる段差の二通りの段差がある。このうち、上端側接続部4Hの上面が高位置となる段差が生じている場合、係る段差が障壁となり、減速流路7を流れる水は、係る段差を乗り越えるために運動エネルギーを多く消費する。これより、水の到達流速をより一層下げることが可能となる。なお、係る段差が大きすぎると水の円滑な流れを阻害する場合があるため、通常係る段差は、5cm以下、好ましくは3cm以下に留めることが好ましい。又、係る段差は、なだらかな段差となるようにモルタル等で埋めて緩やかな傾斜面を付与することが好ましい。   As the steps that can occur in the deceleration flow path 7, there are two steps: a step where the upper surface of the lower end side connection portion 4L is at a high position and a step where the upper surface of the upper end side connection portion 4H is at a high position. Among these, when the level | step difference which the upper surface of the upper end side connection part 4H becomes a high position has arisen, the level | step difference concerned becomes a barrier, and the water which flows through the deceleration flow path 7 consumes much kinetic energy in order to get over the level | step difference. This makes it possible to further reduce the water arrival flow rate. In addition, since the smooth flow of water may be inhibited when the level difference is too large, it is usually preferable that the level difference is 5 cm or less, preferably 3 cm or less. Moreover, it is preferable that the step is filled with mortar or the like so as to be a gentle step to give a gentle inclined surface.

<実施形態2>
図4に実施形態2に係る本発明の立坑構築用部材1を示す。前記実施形態1に係る立坑構築用部材1と異なる点は、下端側接続部4Lの上面と筒体2の内面とがなす角部が、傾斜板3の縦断勾配に対して反対向きの縦断勾配を有する緩衝部5によって埋められてなることにある。
<Embodiment 2>
FIG. 4 shows a shaft construction member 1 according to the second embodiment of the present invention. The difference from the shaft construction member 1 according to the first embodiment is that the corner formed by the upper surface of the lower end side connection portion 4L and the inner surface of the cylinder 2 has a longitudinal gradient opposite to the longitudinal gradient of the inclined plate 3. It is to be filled with the buffer part 5 having

ここで下端側接続部4Lの上面と筒体2の内面とがなす角部を緩衝部5によって埋めるにあたっては、各接続部4H、4Lの上面の面積が50〜80%程度残るようにすることが好ましい。本実施形態においては、各接続部4H、4Lの上面の面積が70%程度残るように、係る角部を緩衝部5によって埋めている。   Here, when the corner portion formed by the upper surface of the lower end side connection portion 4L and the inner surface of the cylindrical body 2 is filled with the buffer portion 5, the area of the upper surface of each connection portion 4H, 4L should remain about 50 to 80%. Is preferred. In the present embodiment, the corner portions are filled with the buffer portion 5 so that the area of the upper surface of each connection portion 4H, 4L remains about 70%.

又、緩衝部5の縦断勾配は、傾斜板3の縦断勾配に対して反対向きの勾配であれば特に限定されるものではない。通常は、40〜160%(傾斜角にして、約20〜60度)程度に設定することが好ましい。本実施形態においては、緩衝部5の縦断勾配を100%(傾斜角にして45度)に設定している。なお、緩衝部5の傾斜面は平面状であっても曲面状であっても良い。又、緩衝部5の傾斜面は横断勾配を加えた合成勾配としても良い。   Further, the vertical gradient of the buffer portion 5 is not particularly limited as long as the gradient is opposite to the vertical gradient of the inclined plate 3. Usually, it is preferable to set it to about 40 to 160% (inclination angle of about 20 to 60 degrees). In the present embodiment, the vertical gradient of the buffer portion 5 is set to 100% (45 degrees as an inclination angle). In addition, the inclined surface of the buffer part 5 may be flat or curved. Moreover, the inclined surface of the buffer part 5 is good also as a synthetic | combination gradient which added the transverse gradient.

なお、本実施形態においては、上端側接続部4Hの上面と筒体2の内面の延長線とがなす角部において、補助緩衝部51を設けている。この補助緩衝部51は、立坑10を構築した際に、前記緩衝部5と隣接して並び、緩衝部5を補完するものである。   In the present embodiment, the auxiliary buffer portion 51 is provided at the corner portion formed by the upper surface of the upper end side connection portion 4H and the extension line of the inner surface of the cylindrical body 2. The auxiliary buffer 51 is arranged adjacent to the buffer 5 when the shaft 10 is constructed, and complements the buffer 5.

図5(a)、(b)に示すように、この立坑構築用部材1は、前記実施形態1と同様にして、垂直方向に複数個積み重ねられることによって立坑10を構築するものである。構築された立坑10の内部には、内壁面に沿って周回しつつ垂直方向に変位する旋廻流路が形成される。   As shown in FIGS. 5 (a) and 5 (b), the shaft construction member 1 is constructed in the same manner as in the first embodiment to construct a shaft 10 by being stacked in the vertical direction. In the constructed shaft 10, a swirl passage that is displaced along the inner wall surface and that is displaced in the vertical direction is formed.

立坑10内に流入した水は、旋廻流路の上面に沿って立坑10内を旋廻しながら流下する。図5(a)、(b)において矢印で示すように、旋廻流路の上面に沿って旋廻しながら流下する水は、各傾斜板3において位置エネルギーを運動エネルギーに変換しつつ加速していくが、減速流路7において運動エネルギーを消費して減速する。   The water that has flowed into the shaft 10 flows down while turning around the shaft 10 along the upper surface of the turning channel. As shown by arrows in FIGS. 5A and 5B, the water flowing down while rotating along the upper surface of the rotating flow path accelerates while converting potential energy into kinetic energy in each inclined plate 3. However, the deceleration channel 7 consumes kinetic energy and decelerates.

前記実施形態1においては、減速流路7に至った水は、立坑2の内壁に直接衝突することによってベクトルを変えるが、本実施形態においては、減速流路7に至った水は、傾斜板3とは逆向きの傾斜を有する緩衝部5の傾斜面を登りながら、ベクトルを変える。緩衝部5の傾斜面を登る際に、水の運動エネルギーが更に消費されるため、水の到達流速をより下げることができる。又、水が立坑10の内壁に直接衝突しないことから、跳水の発生をより減じることができる。更に、水の衝突に起因する立坑10内壁の浸食を抑制することができる。   In the first embodiment, the water reaching the deceleration flow path 7 changes its vector by directly colliding with the inner wall of the shaft 2, but in this embodiment, the water reaching the deceleration flow path 7 is an inclined plate. The vector is changed while climbing the inclined surface of the buffer portion 5 having an inclination opposite to 3. Since the kinetic energy of water is further consumed when climbing the inclined surface of the buffer part 5, the flow velocity of water can be further reduced. Moreover, since water does not directly collide with the inner wall of the shaft 10, the occurrence of jumping water can be further reduced. Furthermore, erosion of the inner wall of the shaft 10 caused by water collision can be suppressed.

なお、本実施形態において、緩衝部5(及び補助緩衝部51)は、立坑構築用部材1と一体的に形成されたものであるが、立坑構築用部材1とは別体として形成した後に取り付けても良い。又、立坑10の構築の際、モルタル等で角部を埋めることによって設けても良い。   In addition, in this embodiment, although the buffer part 5 (and auxiliary buffer part 51) is formed integrally with the shaft construction member 1, it is attached after being formed as a separate body from the shaft construction member 1. May be. Further, when the shaft 10 is constructed, it may be provided by filling the corners with mortar or the like.

<実施形態3>
図6に実施形態3に係る本発明の立坑構築用部材1を示す。前記実施形態1に係る立坑構築用部材1と異なる点は、傾斜板3における筒体2中心側の端辺(自由端)に沿って階段6を配したことである。
<Embodiment 3>
FIG. 6 shows a shaft construction member 1 according to the third embodiment of the present invention. The difference from the shaft construction member 1 according to the first embodiment is that the staircase 6 is arranged along the end side (free end) on the center side of the cylindrical body 2 in the inclined plate 3.

この階段6は、立坑10の維持管理作業などの作業者が立坑10内に入る必要が生じたときに足場として使用されるものである。本発明の立坑構築用部材1によって構築された立坑10は、流入した水が立坑10の内壁に沿って旋廻しながら流下し、又、跳水の発生が少ないため、階段6が濡れて滑りやすくなることが好適に防止される。   This staircase 6 is used as a scaffold when an operator such as the maintenance work of the shaft 10 needs to enter the shaft 10. In the shaft 10 constructed by the shaft construction member 1 of the present invention, the inflowed water flows down while turning along the inner wall of the shaft 10, and since there is little occurrence of water jump, the stairs 6 gets wet and becomes slippery. Is preferably prevented.

なお、本発明の立坑構築用部材1においては、階段6に替えて梯子を設けたり、階段6と共に手摺りを設けたりしても良い。又、跳水の発生が非常に少ないことから、照明設備を取り付けることも可能である。   In the shaft construction member 1 of the present invention, a ladder may be provided instead of the stairs 6, or a handrail may be provided together with the stairs 6. Moreover, since there is very little jumping water, it is also possible to attach a lighting installation.

更に、本発明の立坑構築用部材1においては、傾斜板3の自由端において適宜切り欠きを設けても良い。この切り欠きを設けると、立坑10を構築した際に、立坑10内を上下にわたって連通する吹き抜けとなり、立坑10内に侵入した空気をより一層好適に排出することが可能となる。   Furthermore, in the shaft construction member 1 of the present invention, a notch may be appropriately provided at the free end of the inclined plate 3. When this notch is provided, when the shaft 10 is constructed, it becomes a blow-through communicating with the inside of the shaft 10 in the vertical direction, and the air that has entered the shaft 10 can be more suitably discharged.

本発明は、地中に埋設された下水道、暗渠、電気・通信ケーブルなどに設けられる立坑として好適に用いることができる。   INDUSTRIAL APPLICABILITY The present invention can be suitably used as a shaft provided in a sewer, a culvert, an electric / communication cable or the like buried in the ground.

1 立坑構築用部材
2 筒体
3 傾斜板
4H 上端側接続部
4L 下端側接続部
5 緩衝部
6 階段
7 減速流路
10 立坑(立坑構造物)
DESCRIPTION OF SYMBOLS 1 Member for shaft construction 2 Cylindrical body 3 Inclined plate 4H Upper end side connection part 4L Lower end side connection part 5 Buffer part 6 Stairway 7 Deceleration flow path 10 Shaft (vertical structure)

Claims (4)

垂直方向に複数個積み重ねられることによって、内壁面に沿って周回しつつ垂直方向に変位する旋廻流路を有する立坑を構築するための立坑構築用部材であって、
この立坑構築用部材は、
中空の筒体と、
筒体の内面に沿って設けられた、前記旋廻流路の一部をなす傾斜板と、
を具備し、
傾斜板の上端及び下端には、傾斜板の縦断勾配より緩やかな縦断勾配を付与された上端側接続部及び下端側接続部が各々設けられ、
且つ、上端側接続部及び下端側接続部のうちの少なくとも一方が筒体の開放端より外部に向かって突出されてなり、
垂直方向に積み重ねられた際に、
前記上端側接続部は、上位に位置する他の立坑構築用部材に存する下端側接続部と隣接され、
一方、前記下端側接続部は、下位に位置する更に他の立坑構築用部材に存する上端側接続部と隣接されて、
それぞれの隣接箇所において、上端側接続部の上面と下端側接続部の上面とが連続した減速流路を形成するものであることを特徴とする立坑構築用部材。
A shaft construction member for constructing a shaft having a revolving channel that is displaced in the vertical direction while circling along the inner wall surface by being stacked in the vertical direction,
This shaft construction member is
A hollow cylinder,
An inclined plate that is provided along the inner surface of the cylindrical body and forms a part of the revolving channel;
Comprising
At the upper end and the lower end of the inclined plate, an upper end side connecting portion and a lower end side connecting portion each provided with a gentle vertical gradient than the vertical gradient of the inclined plate are provided, respectively.
And at least one of the upper end side connecting portion and the lower end side connecting portion is projected outward from the open end of the cylindrical body,
When stacked vertically,
The upper end side connection part is adjacent to a lower end side connection part existing in another member for constructing a vertical shaft located at an upper position,
On the other hand, the lower end side connection portion is adjacent to the upper end side connection portion existing in yet another shaft construction member located in the lower part,
A shaft construction member characterized in that, in each adjacent portion, the upper surface of the upper end side connection portion and the upper surface of the lower end side connection portion form a continuous deceleration channel.
請求項1に記載の立坑構築用部材において、
接続部が、0±5%の縦断勾配を有してなる立坑構築用部材。
In the shaft construction member according to claim 1,
A shaft construction member in which the connecting portion has a vertical gradient of 0 ± 5%.
請求項1又は2のいずれか1項に記載の立坑構築用部材において、
下端接続部の上面と筒体内面とがなす角部が、傾斜板の縦断勾配とは反対向きの勾配を有する緩衝部によって埋められてなる立坑構築用部材。
In the shaft construction member according to any one of claims 1 and 2,
A shaft construction member in which a corner portion formed by the upper surface of the lower end connection portion and the inner surface of the cylindrical body is filled with a buffer portion having a gradient opposite to the longitudinal gradient of the inclined plate.
請求項1ないし3のいずれか1項に記載の立坑構築用部材が、垂直方向に複数個積み重ねられてなることを特徴とする立坑構造物。   A shaft structure in which a plurality of shaft construction members according to any one of claims 1 to 3 are stacked in a vertical direction.
JP2011001797A 2011-01-07 2011-01-07 Shaft construction member and shaft structure Active JP5568022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011001797A JP5568022B2 (en) 2011-01-07 2011-01-07 Shaft construction member and shaft structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011001797A JP5568022B2 (en) 2011-01-07 2011-01-07 Shaft construction member and shaft structure

Publications (2)

Publication Number Publication Date
JP2012144853A JP2012144853A (en) 2012-08-02
JP5568022B2 true JP5568022B2 (en) 2014-08-06

Family

ID=46788696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011001797A Active JP5568022B2 (en) 2011-01-07 2011-01-07 Shaft construction member and shaft structure

Country Status (1)

Country Link
JP (1) JP5568022B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6887138B2 (en) * 2017-02-06 2021-06-16 ベルテクス株式会社 Unit of vertical water pipe Water pipe
CN113090269A (en) * 2021-04-14 2021-07-09 国网重庆市电力公司经济技术研究院 Comprehensive hidden excavation cable channel shaft
JP7001304B1 (en) * 2021-10-13 2022-01-19 ベルテクス株式会社 Assembled box-shaped manhole

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5049051B2 (en) * 2007-05-15 2012-10-17 積水化学工業株式会社 How to repair a vertical pipe with a spiral guideway

Also Published As

Publication number Publication date
JP2012144853A (en) 2012-08-02

Similar Documents

Publication Publication Date Title
JP6966287B2 (en) Stormwater drainage system
CN105421569B (en) Rotational flow silo formula energy dissipating drop well
JP4738168B2 (en) Spillway drainage water reduction method and method
JP5568022B2 (en) Shaft construction member and shaft structure
RU2609237C1 (en) Flow energy damper for discharge sewerage
JP2010249120A (en) Vortex prevention device and pump device
JP2012215003A (en) Slope drain ditch
JP5221176B2 (en) Fluid flow direction changer
JP6624980B2 (en) Drainage pumping station and drainage method
JP6616657B2 (en) Reduction pipe
JP2006070537A (en) Right-angled v-shaped energy dissipator, cascade work using the same, and stepped-down waterway using them
JP5340863B2 (en) Inner sub pipe device for combined sewer
CN204645011U (en) One-sided Main Corridor road-horizontal gallery-topmast hole ship lock dispersed delivery system
CN108130948B (en) Pressure flow water inlet runner system suitable for deep underground drainage lifting pump station
CN110094231A (en) It is a kind of prevention and reduction deep layer regulate and store tunnel trapped air mass harm structure
JP2008214948A (en) Structure of inflow section of riser with spiral guide passage
CN211646049U (en) Outlet structure for high retaining wall culvert
JP3889012B2 (en) Vertical conduit
CN217679540U (en) Large-diameter high-fall compact type combined drainage energy dissipation linear drop well
CN112921975A (en) Device for vertically sliding and conveying concrete
LU502171B1 (en) Method for pouring artesian energy-dissipating concrete to deep foundation pit and concrete automatic-flow energy-dissipating structure
JP6620047B2 (en) Drainage station and drainage method
CN102892959A (en) Block for construction and method to build walls with said block
JP5641579B2 (en) Stair structure
KR102550970B1 (en) A pipe coupling device for increasing the flow rate of a fluid discharged from a fluid storage device and a pipe including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140620

R151 Written notification of patent or utility model registration

Ref document number: 5568022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250