JP5567405B2 - Comb-shaped MOS semiconductor device for electrostatic protection - Google Patents

Comb-shaped MOS semiconductor device for electrostatic protection Download PDF

Info

Publication number
JP5567405B2
JP5567405B2 JP2010140893A JP2010140893A JP5567405B2 JP 5567405 B2 JP5567405 B2 JP 5567405B2 JP 2010140893 A JP2010140893 A JP 2010140893A JP 2010140893 A JP2010140893 A JP 2010140893A JP 5567405 B2 JP5567405 B2 JP 5567405B2
Authority
JP
Japan
Prior art keywords
region
conductivity type
comb
esd element
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010140893A
Other languages
Japanese (ja)
Other versions
JP2012004500A (en
Inventor
洸一 島崎
智光 理崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2010140893A priority Critical patent/JP5567405B2/en
Publication of JP2012004500A publication Critical patent/JP2012004500A/en
Application granted granted Critical
Publication of JP5567405B2 publication Critical patent/JP5567405B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は半導体装置に関する。特に、静電気保護用のMOS型半導体装置に関する。   The present invention relates to a semiconductor device. In particular, the present invention relates to a MOS type semiconductor device for electrostatic protection.

ICの機能に関係ないが信頼性上無くてはならないのがESD(Electrostatic Discharge)素子である。これは静電気放電素子のことで、静電気によってICが破壊されないように静電気を放電させる素子のことである。   An ESD (Electrostatic Discharge) element is indispensable for reliability although it is not related to the function of the IC. This is an electrostatic discharge element that discharges static electricity so that the IC is not destroyed by static electricity.

そのため、静電気によってESD素子自体が熱破壊されず、内部回路に静電気が入る前に素早く電荷を引き抜き、内部回路を守れることが必須条件となる。近年のCMOS(Complementary Metal Oxide Semiconductor)集積回路内に設けられているESD素子は寄生バイポーラ動作を利用したMOS型が多く、これはスナップバック現象を利用した素子である。ESD素子に求められる静電気からの保護性能を満たすために、MOS型ESD素子のチャネル幅は数100μm程度である場合が多い。   Therefore, it is an essential condition that the ESD element itself is not thermally destroyed by static electricity, and that the internal circuit can be protected by quickly extracting charges before static electricity enters the internal circuit. In recent years, an ESD element provided in a CMOS (Complementary Metal Oxide Semiconductor) integrated circuit is often a MOS type using a parasitic bipolar operation, which is an element using a snapback phenomenon. In order to satisfy the protection performance against static electricity required for the ESD element, the channel width of the MOS type ESD element is often about several hundred μm.

しかし、通常CMOS集積回路内にESD素子を設置する際、パッドや内部回路素子などの集積回路を構成する要素を効率的に設置するために、単位幅が10〜50μm程度の小型のMOS型ESD素子(単位ESD素子)を複数個の櫛型に並列に接続した櫛型ESD素子を用いることで効率的に設置する方法が用いられている。   However, when installing an ESD element in a normal CMOS integrated circuit, a small MOS type ESD having a unit width of about 10 to 50 μm is required in order to efficiently install an element constituting the integrated circuit such as a pad or an internal circuit element. A method of efficiently installing an element (unit ESD element) by using a comb-shaped ESD element in which a plurality of comb-shaped elements are connected in parallel is used.

図10に従来の櫛型ESD素子の実施例の平面図、図11には図10で示した破線C−C´の位置の断面図を示す。図10及び図11に示すように、櫛型ESD素子20は複数の単位ESD素子30から構成され、半導体基板1表面に形成したP型ウェル領域2上にゲート絶縁膜12を介して、一方向に延びた複数本のゲート電極3が相互に平行に設けられており、P型ウェル領域2の表面におけるゲート電極3の直下域がチャネル領域9になっている。そして、チャネル領域9間の領域がN+ソース領域5又はN+ドレイン領域4となっており、N+ソース領域5とN+ドレイン領域4とは交互に配列されている。さらに、櫛型ESD素子20の外周には単位ESD素子30を囲むようにP+ウェルタップ領域6が設けられている。   FIG. 10 is a plan view of an embodiment of a conventional comb-type ESD element, and FIG. 11 is a cross-sectional view taken along a broken line CC ′ shown in FIG. As shown in FIGS. 10 and 11, the comb-type ESD element 20 is composed of a plurality of unit ESD elements 30, and is unidirectionally arranged on a P-type well region 2 formed on the surface of the semiconductor substrate 1 with a gate insulating film 12 interposed therebetween. A plurality of gate electrodes 3 extending in parallel to each other are provided in parallel with each other, and a region immediately below the gate electrode 3 on the surface of the P-type well region 2 is a channel region 9. A region between the channel regions 9 is an N + source region 5 or an N + drain region 4, and the N + source region 5 and the N + drain region 4 are alternately arranged. Further, a P + well tap region 6 is provided on the outer periphery of the comb-shaped ESD element 20 so as to surround the unit ESD element 30.

この櫛型ESD素子においては、単位ESD素子が同時に寄生バイポーラ動作に入らず、最初に動作した単位ESD素子に電流が集中し、隣接する他の単位ESD素子が動作する前に最初に動作した単位ESD素子が破壊してしまうという問題がある。これは、基板抵抗の差によるものと説明できる。   In this comb-type ESD element, the unit ESD element does not simultaneously enter the parasitic bipolar operation, the current concentrates on the unit ESD element that operates first, and the unit that operates first before other adjacent unit ESD elements operate There is a problem that the ESD element is destroyed. This can be explained by the difference in substrate resistance.

櫛型ESD素子の周囲に設置されているグラウンド電位から各単位ESD素子のチャネル領域、すなわち寄生バイポーラのベースまでの距離が異なる。つまり、ベース抵抗が各々の櫛によって差があるため、アバランシェブレークダウン後の基板抵抗の上昇の速さが異なる。ベース抵抗が高い寄生バイポーラが最初に動作に必要なベース電位まで達しバイポーラ動作に至ると、その単位ESD素子に電流が集中する。そのため、隣接する単位ESD素子に流れるドレイン電流が減少し、インパクトイオン化により発生する基板電流が減少する。これにより、隣接する単位ESD素子の寄生バイポーラのベース電位の上昇が鈍り、動作しにくくなる。隣接する単位ESD素子が動作をする前に、最初に動作した単位ESD素子が破壊に至ってしまう。櫛型ESD素子のESD耐性を上昇させるためには、特定の単位ESD素子が破壊に至る前に連続して単位ESD素子を動作させることが重要となる。   The distance from the ground potential installed around the comb ESD element to the channel region of each unit ESD element, that is, the base of the parasitic bipolar element is different. That is, since the base resistance varies depending on each comb, the rate of increase in substrate resistance after avalanche breakdown differs. When a parasitic bipolar having a high base resistance first reaches a base potential necessary for operation and reaches a bipolar operation, current concentrates on the unit ESD element. Therefore, the drain current flowing through the adjacent unit ESD elements is reduced, and the substrate current generated by impact ionization is reduced. As a result, the increase in the base potential of the parasitic bipolar of the adjacent unit ESD element becomes dull and it becomes difficult to operate. Before the adjacent unit ESD element operates, the unit ESD element that operates first will be destroyed. In order to increase the ESD tolerance of the comb-type ESD element, it is important to operate the unit ESD element continuously before the specific unit ESD element breaks down.

特許文献1は、櫛型ESD素子を構成する単位ESD素子を連続して動作させるための発明である。特許文献1の発明の回路図を図12に示す。単位ESD素子のゲート電極を、隣接する単位ESD素子のソースに接続した構造を有する。ESDのサージが櫛型ESD素子に入ると、最初にバイポーラ動作した単位ESD素子のソース電位が上昇し、そのソースと接続している隣接単位ESD素子のゲート電位を上昇させることにより、端子ESD素子の基板電流が増幅しベース電位を上昇させることによってバイポーラ動作をさせる。これを繰り返すことにより、連続的にバイポーラ動作を広げていくというのがこの発明である。   Patent Document 1 is an invention for continuously operating unit ESD elements constituting a comb-type ESD element. A circuit diagram of the invention of Patent Document 1 is shown in FIG. The gate electrode of the unit ESD element is connected to the source of the adjacent unit ESD element. When the ESD surge enters the comb-type ESD element, the source potential of the unit ESD element that has first performed the bipolar operation rises, and the gate potential of the adjacent unit ESD element that is connected to the source increases, thereby increasing the terminal ESD element. Bipolar operation is performed by amplifying the substrate current and raising the base potential. By repeating this, the present invention continuously expands the bipolar operation.

特開2005−64462号公報JP 2005-64462 A

しかしながら、特許文献1に開示されているのは各単位ESD素子の基板抵抗の差自体を低減する発明ではないため、ベース電位の上昇のし易さに差異が大きく、単位ESD素子が連続的に動作しない可能性がある。櫛型ESD素子を構成する単位ESD素子を連続的にバイポーラ動作させESD耐性を向上させるには、各単位ESD素子の基板電位の上昇の速さの差異を低減すること、つまり隣接する単位ESD素子のチャネル領域間の基板抵抗を低減させることが重要となる。   However, since the invention disclosed in Patent Document 1 is not an invention for reducing the difference in substrate resistance of each unit ESD element itself, there is a large difference in easiness of increasing the base potential. It may not work. In order to improve the ESD resistance by continuously performing bipolar operation on the unit ESD elements constituting the comb-type ESD element, it is possible to reduce the difference in the rate of increase in the substrate potential of each unit ESD element, that is, adjacent unit ESD elements. It is important to reduce the substrate resistance between the channel regions.

そこで、上記課題を解決するために、以下に示す手段を用いた。   Therefore, in order to solve the above problems, the following means were used.

まず、半導体基板と、前記半導体基板表面に設けられた前記半導体基板よりも不純物濃度が高い第一導電型ウェル領域と、前記第一導電型ウェル領域よりも不純物濃度が高い第二導電型ソース領域と第二導電型ドレイン領域が交互に配置され、前記第二導電型ソース領域と前記第二導電型ドレイン領域の間に位置するチャネル領域と、前記チャネル領域上にゲート絶縁膜を介して設けられたゲート電極を有する静電気保護用のMOS型半導体装置において、並列に隣接するチャネル領域間に第一導電型不純物領域を設けることを特徴とする静電気保護用のMOS型半導体装置とした。   First, a semiconductor substrate, a first conductivity type well region having an impurity concentration higher than that of the semiconductor substrate provided on the surface of the semiconductor substrate, and a second conductivity type source region having an impurity concentration higher than that of the first conductivity type well region And a second conductivity type drain region are alternately arranged, a channel region located between the second conductivity type source region and the second conductivity type drain region, and a gate insulating film on the channel region. A static electricity protection MOS type semiconductor device having a gate electrode, wherein a first conductivity type impurity region is provided between adjacent channel regions in parallel.

また、前記第一導電型不純物領域は、並列に隣接するチャネル領域間の第二導電型ドレイン領域の一部に設けられ、前記第二導電型ドレイン領域を挟むチャネル領域どうしを前記第一導電型不純物領域で接続することを特徴とする静電気保護用のMOS型半導体装置とした。   The first conductivity type impurity region is provided in a part of the second conductivity type drain region between the channel regions adjacent in parallel, and the channel regions sandwiching the second conductivity type drain region are connected to the first conductivity type. A MOS type semiconductor device for electrostatic protection, characterized by being connected in an impurity region.

また、前記第一導電型不純物領域は、並列に隣接するチャネル領域間の第二導電型ソース領域の一部に設けられ、前記第二導電型ソース領域を挟むチャネル領域どうしを前記第一導電型不純物領域で接続することを特徴とする静電気保護用のMOS型半導体装置とした。   The first conductivity type impurity region is provided in a part of a second conductivity type source region between adjacent channel regions in parallel, and channel regions sandwiching the second conductivity type source region are connected to the first conductivity type. A MOS type semiconductor device for electrostatic protection, characterized by being connected in an impurity region.

また、前記第一導電型不純物領域の上にはゲート電極接続領域が形成されていることを特徴とする静電気保護用のMOS型半導体装置とした。   In addition, the MOS type semiconductor device for electrostatic protection is characterized in that a gate electrode connection region is formed on the first conductivity type impurity region.

また、前記第一導電型不純物領域の不純物濃度は、前記チャネル領域の不純物濃度と同等であることを特徴とする静電気保護用のMOS型半導体装置とした。   Further, the MOS type semiconductor device for electrostatic protection is characterized in that the impurity concentration of the first conductivity type impurity region is equal to the impurity concentration of the channel region.

また、前記第一導電型不純物領域の不純物濃度は、前記チャネル領域の不純物濃度より高いことを特徴とする静電気保護用のMOS型半導体装置。   An electrostatic protection MOS semiconductor device, wherein the impurity concentration of the first conductivity type impurity region is higher than the impurity concentration of the channel region.

また、前記第一導電型不純物領域の不純物濃度は、前記第二導電型ドレイン領域よりも深い位置に設けられ、かつ前記第一導電型ウェル領域の不純物濃度よりも高い不純物濃度であることを特徴とする静電気保護用のMOS型半導体装置とした。   Further, the impurity concentration of the first conductivity type impurity region is provided at a position deeper than the second conductivity type drain region and is higher than the impurity concentration of the first conductivity type well region. It was set as the MOS type semiconductor device for electrostatic protection.

また、前記第一導電型不純物領域の不純物濃度は、前記第二導電型ソース領域よりも深い位置に設けられ、かつ前記第一導電型ウェル領域の不純物濃度よりも高い不純物濃度であることを特徴とする静電気保護用のMOS型半導体装置とした。   Further, the impurity concentration of the first conductivity type impurity region is provided at a position deeper than the second conductivity type source region, and is higher than the impurity concentration of the first conductivity type well region. It was set as the MOS type semiconductor device for electrostatic protection.

そして、前記第一導電型不純物領域の不純物濃度は、前記第二導電型ドレイン領域及び前記第二導電型ソース領域よりも深い位置に、ESD素子領域全体に設けられ、かつ前記第一導電型ウェル領域の不純物濃度よりも高い不純物濃度であることを特徴とする静電気保護用のMOS型半導体装置とした。   The impurity concentration of the first conductivity type impurity region is provided in the entire ESD element region at a position deeper than the second conductivity type drain region and the second conductivity type source region, and the first conductivity type well. The MOS type semiconductor device for electrostatic protection is characterized in that the impurity concentration is higher than the impurity concentration of the region.

上述の手段を用いることにより、隣接する単位ESD素子のチャネル領域間の基板抵抗の差を低減することで、ベース電位の上昇の速さの差異を低減することで、単位ESD素子が連続的に動作することになりESD耐量が向上する。   By using the above-mentioned means, the difference in the substrate resistance between the channel regions of the adjacent unit ESD elements is reduced, so that the difference in the rate of increase of the base potential is reduced. It will operate | move and ESD tolerance will improve.

本発明の実施例1を示す平面図である。It is a top view which shows Example 1 of this invention. 本発明の実施例1を示す断面図である。It is sectional drawing which shows Example 1 of this invention. 本発明の実施例2を示す平面図である。It is a top view which shows Example 2 of this invention. 本発明の実施例3を示す平面図である。It is a top view which shows Example 3 of this invention. 本発明の実施例3を示す断面図である。It is sectional drawing which shows Example 3 of this invention. 本発明の実施例4を示す平面図である。It is a top view which shows Example 4 of this invention. 本発明の実施例5を示す断面図である。It is sectional drawing which shows Example 5 of this invention. 本発明の実施例6を示す断面図である。It is sectional drawing which shows Example 6 of this invention. 本発明の実施例7を示す断面図である。It is sectional drawing which shows Example 7 of this invention. 従来の櫛型ESD素子の実施例を示す平面図である。It is a top view which shows the Example of the conventional comb-shaped ESD element. 従来の櫛型ESD素子の実施例を示す断面図である。It is sectional drawing which shows the Example of the conventional comb-shaped ESD element. 特許文献1の発明を示す回路図である。It is a circuit diagram which shows invention of patent document 1. FIG.

以下では図面を用いて、それぞれの実施例について説明する。   Each example will be described below with reference to the drawings.

図1は本発明の実施例1の平面図であり、図2は図1記載の破線A−A´に沿った断面図である。図1及び図2に示すように、ESD素子21は半導体基板1の表面に形成したP型ウェル領域2上にゲート絶縁膜12を介して、一方向に延びた複数本のゲート電極3が相互に平行に設けられており、P型ウェル領域2の表面におけるゲート電極3の直下域がチャネル領域9になっている。そして、チャネル領域9間の領域がN+ソース領域5又はN+ドレイン領域4となっており、N+ソース領域5とN+ドレイン領域4とは交互に配列されている。さらに、ESD素子21の外周にはP+ウェルタップ領域6が設けられている。ここで、P+ウェルタップ領域6とN+ソース領域5とゲート電極3は電気的に接続され、グランド電位となっている。そして、並列して隣接するゲート電極3間に位置するN+ドレイン領域4を分割し、かつ隣接するゲート電極3を接続するようにゲート電極接合領域10を設ける。なお、ゲート電極接合領域10はゲート電極3と同じ材料からなり、ゲート電極接合領域10の直下域にはチャネル領域9と同一の不純物濃度を有する領域11が設けられている。   FIG. 1 is a plan view of Embodiment 1 of the present invention, and FIG. 2 is a cross-sectional view taken along a broken line AA ′ in FIG. As shown in FIGS. 1 and 2, the ESD element 21 includes a plurality of gate electrodes 3 extending in one direction on a P-type well region 2 formed on the surface of a semiconductor substrate 1 with a gate insulating film 12 interposed therebetween. The channel region 9 is a region immediately below the gate electrode 3 on the surface of the P-type well region 2. A region between the channel regions 9 is an N + source region 5 or an N + drain region 4, and the N + source region 5 and the N + drain region 4 are alternately arranged. Further, a P + well tap region 6 is provided on the outer periphery of the ESD element 21. Here, the P + well tap region 6, the N + source region 5, and the gate electrode 3 are electrically connected and are at a ground potential. Then, the N + drain region 4 positioned between the adjacent gate electrodes 3 in parallel is divided, and the gate electrode junction region 10 is provided so as to connect the adjacent gate electrodes 3. The gate electrode junction region 10 is made of the same material as the gate electrode 3, and a region 11 having the same impurity concentration as the channel region 9 is provided immediately below the gate electrode junction region 10.

このように、ドレイン領域4を挟んで互いに隣接し、分離していたゲート電極を接続することにより、互いに隣接し分離していたチャネル領域がゲート電極接合領域10の直下域において接続され、最初にバイポーラ動作に至った単位ESD素子からの基板電流が他方の単位ESD素子のベースに低抵抗で流れることで、他方のベース電位も容易に上昇させることが可能となる。   In this way, by connecting the gate electrodes that are adjacent to and separated from each other with the drain region 4 interposed therebetween, the channel regions that are adjacent to and separated from each other are connected in the region immediately below the gate electrode junction region 10. Since the substrate current from the unit ESD element that has reached the bipolar operation flows to the base of the other unit ESD element with low resistance, the other base potential can be easily raised.

これにより、最初にバイポーラ動作に至った単位ESD素子に電流が集中し破壊に至る前に、隣接する単位ESD素子をバイポーラ動作に至らせることができる。その結果、従来技術の櫛型ESD素子よりもESD耐量を向上させることができる。   As a result, the adjacent unit ESD element can be brought into the bipolar operation before the current is concentrated on the unit ESD element that has first reached the bipolar operation and the breakdown occurs. As a result, the ESD tolerance can be improved as compared with the conventional comb-type ESD element.

図3は本発明の実施例2の平面図である。実施例1では、N+ドレイン領域4を分割するようにゲート電極接続領域を設けたが、ここではN+ドレイン領域4に代えて、N+ソース領域5を分割し、かつ並列して隣接するゲート電極3を接続するようにゲート電極接合領域10を設ける。なお、ゲート電極接合領域10はゲート電極3と同じ材料からなり、ゲート電極接合領域10の直下域にはチャネル領域9と同一の不純物濃度を有する領域が設けられている。   FIG. 3 is a plan view of Embodiment 2 of the present invention. In the first embodiment, the gate electrode connection region is provided so as to divide the N + drain region 4, but here, instead of the N + drain region 4, the N + source region 5 is divided and the gate electrode 3 adjacent in parallel is divided. A gate electrode junction region 10 is provided so as to connect the two. The gate electrode junction region 10 is made of the same material as the gate electrode 3, and a region having the same impurity concentration as that of the channel region 9 is provided immediately below the gate electrode junction region 10.

このように、ソース領域5を挟んで互いに隣接し、分離していたゲート電極を接続することにより、互いに隣接し分離していたチャネル領域がゲート電極接合領域10の直下域において接続され、最初にバイポーラ動作に至った単位ESD素子からの基板電流が他方の単位ESD素子のベースに低抵抗で流れることで、他方のベース電位も容易に上昇させることが可能となる。   In this way, by connecting the gate electrodes that are adjacent to and separated from each other with the source region 5 interposed therebetween, the channel regions that are adjacent to each other and separated are connected in the region immediately below the gate electrode junction region 10. Since the substrate current from the unit ESD element that has reached the bipolar operation flows to the base of the other unit ESD element with low resistance, the other base potential can be easily raised.

これにより、最初にバイポーラ動作に至った単位ESD素子に電流が集中し破壊に至る前に、隣接する単位ESD素子をバイポーラ動作に至らせることができる。その結果、実施例1と同様に、従来技術の櫛型ESD素子よりもESD耐量を向上させることができる。   As a result, the adjacent unit ESD element can be brought into the bipolar operation before the current is concentrated on the unit ESD element that has first reached the bipolar operation and the breakdown occurs. As a result, like the first embodiment, the ESD tolerance can be improved as compared with the comb-type ESD element of the prior art.

図4は本発明の実施例3の平面図であり、図5は図4記載の破線B−B´に沿った断面図である。図1及び図2に示すように、ESD素子21は半導体基板1表面に形成したP型ウェル領域2上にゲート絶縁膜12を介して、一方向に延びた複数本のゲート電極3が相互に平行に設けられており、P型ウェル領域2の表面におけるゲート電極3の直下域がチャネル領域9になっている。そして、チャネル領域9間の領域がN+ソース領域5又はN+ドレイン領域4となっており、N+ソース領域5とN+ドレイン領域4とは交互に配列されている。さらに、ESD素子21の外周にはP+ウェルタップ領域6が設けられている。   FIG. 4 is a plan view of the third embodiment of the present invention, and FIG. 5 is a cross-sectional view taken along the broken line BB ′ of FIG. As shown in FIGS. 1 and 2, the ESD element 21 includes a plurality of gate electrodes 3 extending in one direction on a P-type well region 2 formed on the surface of the semiconductor substrate 1 with a gate insulating film 12 interposed therebetween. A channel region 9 is provided in parallel, and a region immediately below the gate electrode 3 on the surface of the P-type well region 2 is a channel region 9. A region between the channel regions 9 is an N + source region 5 or an N + drain region 4, and the N + source region 5 and the N + drain region 4 are alternately arranged. Further, a P + well tap region 6 is provided on the outer periphery of the ESD element 21.

ここで、P+ウェルタップ領域6とN+ソース領域5とゲート電極3は電気的に接続され、グランド電位となっている。そして、並列して隣接するチャネル領域9間に位置するN+ドレイン領域4の一部に短絡用P+領域8を隣接するチャネル領域9どうしを接続するように形成する。   Here, the P + well tap region 6, the N + source region 5, and the gate electrode 3 are electrically connected and are at a ground potential. Then, a shorting P + region 8 is formed so as to connect the adjacent channel regions 9 to a part of the N + drain region 4 located between the adjacent channel regions 9 in parallel.

これにより、最初にバイポーラ動作に至った単位ESD素子からの基板電流が他方の単位ESD素子のベースに短絡用P+領域8を介して低抵抗で流れることで、他方のベース電位も容易に上昇させることが可能となる。そして、最初にバイポーラ動作に至った単位ESD素子に電流が集中し破壊に至る前に、隣接する単位ESD素子をバイポーラ動作に至らせることができる。その結果、従来技術の櫛型ESD素子よりもESD耐量を向上させることができる。   As a result, the substrate current from the unit ESD element that has first reached the bipolar operation flows to the base of the other unit ESD element with a low resistance via the P + region 8 for short circuit, so that the other base potential easily rises. It becomes possible to make it. The adjacent unit ESD element can be brought into the bipolar operation before the current concentrates on the unit ESD element that has first reached the bipolar operation and causes the breakdown. As a result, the ESD tolerance can be improved as compared with the conventional comb-type ESD element.

図6は本発明の実施例4の平面図である。これは上述の実施例3の変形例で、N+ドレイン領域4に代えてN+ソース領域5の一部に短絡用P+領域8を隣接するチャネル領域9どうしを接続するように形成したものである。   FIG. 6 is a plan view of Embodiment 4 of the present invention. This is a modification of the above-described third embodiment, and instead of the N + drain region 4, a short-circuiting P + region 8 is formed so as to connect adjacent channel regions 9 to a part of the N + source region 5. is there.

これにより、最初にバイポーラ動作に至った単位ESD素子からの基板電流が他方の単位ESD素子のベースに低抵抗で流れることで、他方のベース電位も容易に上昇させることが可能となる。そして、最初にバイポーラ動作に至った単位ESD素子に電流が集中し破壊に至る前に、隣接する単位ESD素子をバイポーラ動作に至らせることができる。その結果、実施例3と同様に、従来技術の櫛型ESD素子よりもESD耐量を向上させることができる。   As a result, the substrate current from the unit ESD element that first reaches the bipolar operation flows to the base of the other unit ESD element with a low resistance, so that the other base potential can be easily raised. The adjacent unit ESD element can be brought into the bipolar operation before the current concentrates on the unit ESD element that has first reached the bipolar operation and causes the breakdown. As a result, like the third embodiment, the ESD tolerance can be improved as compared with the comb-type ESD element of the prior art.

図7は本発明の実施例5の断面図である。図10および11に示す従来例との違いは、N+ドレイン領域4よりも下となる基板表面から深い位置に、P型ウェル領域2よりも不純物濃度が高くP+ウェルタップ領域6よりは不純物濃度が低いP±領域7を設けたものである。なお、P±領域7はP型ウェル領域2の内部に納まるように配置される。   FIG. 7 is a cross-sectional view of Embodiment 5 of the present invention. 10 and 11 is different from the conventional example shown in FIGS. 10 and 11 in that the impurity concentration is higher than that of the P-type well region 2 and higher than that of the P + well tap region 6 at a position deeper than the substrate surface below the N + drain region 4. A low P ± region 7 is provided. The P ± region 7 is arranged so as to be contained in the P-type well region 2.

これにより、互いに隣接し分離していたチャネル領域が低抵抗のP±領域を介して接続され、最初にバイポーラ動作に至った単位ESD素子からの基板電流が他方の単位ESD素子のベースに低抵抗で流れることで、他方のベース電位も容易に上昇させることが可能となる。そして、最初にバイポーラ動作に至った単位ESD素子に電流が集中し破壊に至る前に、隣接する単位ESD素子をバイポーラ動作に至らせることができる。その結果、従来技術の櫛型ESD素子よりもESD耐量を向上させることができる。   As a result, the channel regions adjacent to and separated from each other are connected via the low resistance P ± region, and the substrate current from the unit ESD element that has first reached the bipolar operation is applied to the base of the other unit ESD element with a low resistance. It is possible to easily increase the other base potential. The adjacent unit ESD element can be brought into the bipolar operation before the current concentrates on the unit ESD element that has first reached the bipolar operation and causes the breakdown. As a result, the ESD tolerance can be improved as compared with the conventional comb-type ESD element.

図8は本発明の実施例6の断面図である。図10および11に示す従来例との違いは、N+ソース領域5よりも下となる基板表面から深い位置に、P型ウェル領域2よりも不純物濃度が高くP+ウェルタップ領域6よりは不純物濃度が低いP±領域7を設けたものである。   FIG. 8 is a cross-sectional view of Embodiment 6 of the present invention. 10 and 11 is different from the conventional example shown in FIGS. 10 and 11 in that the impurity concentration is higher than that of the P-type well region 2 and higher than that of the P + well tap region 6 at a position deeper than the substrate surface below the N + source region 5. A low P ± region 7 is provided.

これにより、互いに隣接し分離していたチャネル領域が低抵抗のP±領域を介して接続され、最初にバイポーラ動作に至った単位ESD素子からの基板電流が他方の単位ESD素子のベースに低抵抗で流れることで、他方のベース電位も容易に上昇させることが可能となる。そして、最初にバイポーラ動作に至った単位ESD素子に電流が集中し破壊に至る前に、隣接する単位ESD素子をバイポーラ動作に至らせることができる。その結果、従来技術の櫛型ESD素子よりもESD耐量を向上させることができる。   As a result, the channel regions adjacent to and separated from each other are connected via the low resistance P ± region, and the substrate current from the unit ESD element that has first reached the bipolar operation is applied to the base of the other unit ESD element with a low resistance. It is possible to easily increase the other base potential. The adjacent unit ESD element can be brought into the bipolar operation before the current concentrates on the unit ESD element that has first reached the bipolar operation and causes the breakdown. As a result, the ESD tolerance can be improved as compared with the conventional comb-type ESD element.

図9は本発明の実施例7の断面図である。図10および11に示す従来例との違いは、N+ドレイン領域4及びN+ソース領域5よりも下となる基板表面から深い位置に、P型ウェル領域2よりも不純物濃度が高くP+ウェルタップ領域6よりは不純物濃度が低いP±領域7をESD素子領域全体に設けたものである。   FIG. 9 is a cross-sectional view of Embodiment 7 of the present invention. 10 and 11 is different from the conventional example shown in FIGS. 10 and 11 in that the impurity concentration is higher than that of the P-type well region 2 and deeper than the N + drain region 4 and the N + source region 5 in the P + well tap region 6. Further, a P ± region 7 having a lower impurity concentration is provided in the entire ESD element region.

これにより、互いに隣接し分離していたチャネル領域が低抵抗のP±領域を介して接続され、最初にバイポーラ動作に至った単位ESD素子からの基板電流が他方の単位ESD素子のベースに低抵抗で流れることで、他方のベース電位も容易に上昇させることが可能となる。そして、最初にバイポーラ動作に至った単位ESD素子に電流が集中し破壊に至る前に、隣接する単位ESD素子をバイポーラ動作に至らせることができる。その結果、従来技術の櫛型ESD素子よりもESD耐量を向上させることができる。   As a result, the channel regions adjacent to and separated from each other are connected via the low resistance P ± region, and the substrate current from the unit ESD element that has first reached the bipolar operation is applied to the base of the other unit ESD element with a low resistance. It is possible to easily increase the other base potential. The adjacent unit ESD element can be brought into the bipolar operation before the current concentrates on the unit ESD element that has first reached the bipolar operation and causes the breakdown. As a result, the ESD tolerance can be improved as compared with the conventional comb-type ESD element.

なお、本発明は上記の実施形態に限定されるものではなく、本発明はその要旨を逸脱しない範囲で変形して実施できる。   In addition, this invention is not limited to said embodiment, This invention can be deform | transformed and implemented in the range which does not deviate from the summary.

1 半導体基板
2 P型ウェル領域
3 ゲート電極
4 N+ドレイン領域
5 N+ソース領域
6 P+ウェルタップ領域
7 P±領域
8 短絡用P+領域
9 チャネル領域
10 ゲート電極接合領域
11 チャネル領域と同一の不純物濃度を有する領域
12 ゲート絶縁膜
20 櫛型ESD素子
21 ESD素子
30 単位ESD素子
1 Semiconductor substrate 2 P-type well region 3 Gate electrode 4 N + drain region 5 N + source region 6 P + well tap region 7 P ± region 8 P + region for short circuit 9 Channel region 10 Gate electrode junction region 11 Impurity concentration same as channel region Region 12 Gate Insulating Film 20 Comb ESD Element 21 ESD Element 30 Unit ESD Element

Claims (6)

半導体基板と、
前記半導体基板の表面から内部にかけて設けられた前記半導体基板よりも不純物濃度が高い第一導電型ウェル領域と、
前記第一導電型ウェル領域内に交互に配置された、前記第一導電型ウェル領域よりも高い不純物濃度を有する第二導電型ソース領域および第二導電型ドレイン領域と、
前記交互に配置された第二導電型ソース領域および前記第二導電型ドレイン領域の間に位置する複数のチャネル領域と、
前記複数のチャネル領域のうち隣接するチャネル領域間において、前記半導体基板の前記表面の一部に接して配置された、前記隣接するチャネル領域どうしを電気的に接続する第一導電型不純物領域と、
を有する櫛形の静電気保護用のMOS型半導体装置。
A semiconductor substrate;
A first conductivity type well region having a higher impurity concentration than the semiconductor substrate provided from the surface to the inside of the semiconductor substrate;
A second conductivity type source region and a second conductivity type drain region having an impurity concentration higher than that of the first conductivity type well region, alternately disposed in the first conductivity type well region;
A plurality of channel regions positioned between the alternately disposed second conductivity type source regions and the second conductivity type drain regions;
A first conductivity type impurity region that is disposed between and in contact with part of the surface of the semiconductor substrate between adjacent channel regions of the plurality of channel regions, and electrically connects the adjacent channel regions;
Comb-shaped MOS type semiconductor device for electrostatic protection.
前記第一導電型不純物領域は、前記第二導電型ドレイン領域のうち、前記隣接するチャネル領域間に存在する第二導電型ドレイン領域の一部に設けられている請求項1記載の櫛形の静電気保護用のMOS型半導体装置。 The comb-shaped electrostatic region according to claim 1, wherein the first conductivity type impurity region is provided in a part of the second conductivity type drain region existing between the adjacent channel regions in the second conductivity type drain region. MOS type semiconductor device for protection. 前記第一導電型不純物領域は、前記第二導電型ソース領域のうち、前記隣接するチャネル領域間に存在する第二導電型ソース領域の一部に設けられている請求項1記載の櫛形の静電気保護用のMOS型半導体装置。 The comb-shaped electrostatic region according to claim 1, wherein the first conductivity type impurity region is provided in a part of the second conductivity type source region existing between the adjacent channel regions in the second conductivity type source region. MOS type semiconductor device for protection. 前記第一導電型不純物領域の上にはゲート電極接続領域が形成されていることを特徴とする請求項1乃至3のいずれか1項に記載の櫛形の静電気保護用のMOS型半導体装置。 4. The comb-shaped MOS semiconductor device for electrostatic protection according to claim 1, wherein a gate electrode connection region is formed on the first conductivity type impurity region. 5. 前記第一導電型不純物領域の不純物濃度は、前記チャネル領域の不純物濃度と同等であることを特徴とする請求項1乃至4のいずれか1項に記載の櫛形の静電気保護用のMOS型半導体装置。 5. The comb-shaped electrostatic protection MOS semiconductor device according to claim 1, wherein an impurity concentration of the first conductivity type impurity region is equal to an impurity concentration of the channel region. 6. . 前記第一導電型不純物領域の不純物濃度は、前記チャネル領域の不純物濃度より高いことを特徴とする請求項1乃至4のいずれか1項に記載の櫛形の静電気保護用のMOS型半導体装置。 5. The comb- type MOS semiconductor device for electrostatic protection according to claim 1, wherein an impurity concentration of the first conductivity type impurity region is higher than an impurity concentration of the channel region. 6.
JP2010140893A 2010-06-21 2010-06-21 Comb-shaped MOS semiconductor device for electrostatic protection Expired - Fee Related JP5567405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010140893A JP5567405B2 (en) 2010-06-21 2010-06-21 Comb-shaped MOS semiconductor device for electrostatic protection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010140893A JP5567405B2 (en) 2010-06-21 2010-06-21 Comb-shaped MOS semiconductor device for electrostatic protection

Publications (2)

Publication Number Publication Date
JP2012004500A JP2012004500A (en) 2012-01-05
JP5567405B2 true JP5567405B2 (en) 2014-08-06

Family

ID=45536106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010140893A Expired - Fee Related JP5567405B2 (en) 2010-06-21 2010-06-21 Comb-shaped MOS semiconductor device for electrostatic protection

Country Status (1)

Country Link
JP (1) JP5567405B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3257519B2 (en) * 1998-08-24 2002-02-18 日本電気株式会社 Electrostatic protection element circuit, semiconductor device having electrostatic protection circuit
JP3879063B2 (en) * 2002-06-11 2007-02-07 富士通株式会社 Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2012004500A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP6243720B2 (en) Semiconductor device provided with ESD protection circuit
JP6600491B2 (en) Semiconductor device having ESD element
JP5296450B2 (en) Semiconductor device
TWI575699B (en) Semiconductor device
JP2013008715A (en) Semiconductor device
US9373614B2 (en) Transistor assembly as an ESD protection measure
US9721939B2 (en) Semiconductor device
JP2013153019A (en) Semiconductor device
JP6471557B2 (en) Semiconductor device and method for testing semiconductor device
US10615076B2 (en) Semiconductor chip having on-chip noise protection circuit
KR102158458B1 (en) Semiconductor device
JP2009032968A (en) Semiconductor device, and manufacturing method thereof
US9006830B2 (en) Semiconductor device
US9006831B2 (en) Semiconductor device
JP5567405B2 (en) Comb-shaped MOS semiconductor device for electrostatic protection
JP2011100933A (en) Semiconductor device
KR20070092637A (en) Semiconductor device
JP2012028380A (en) Semiconductor device
JP5130843B2 (en) Semiconductor device
JP5437598B2 (en) ESD protection element and semiconductor device provided with the ESD protection element
JP2011171662A (en) Protective transistor, and semiconductor integrated circuit
WO2012120802A1 (en) Semiconductor device
JP2010212517A (en) Semiconductor device and method of manufacturing semiconductor device
JP2010093003A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140619

R150 Certificate of patent or registration of utility model

Ref document number: 5567405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees