JP5566772B2 - Conductor connection method and conductor connection structure - Google Patents

Conductor connection method and conductor connection structure Download PDF

Info

Publication number
JP5566772B2
JP5566772B2 JP2010115862A JP2010115862A JP5566772B2 JP 5566772 B2 JP5566772 B2 JP 5566772B2 JP 2010115862 A JP2010115862 A JP 2010115862A JP 2010115862 A JP2010115862 A JP 2010115862A JP 5566772 B2 JP5566772 B2 JP 5566772B2
Authority
JP
Japan
Prior art keywords
conductor
compression
tubular member
connection
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010115862A
Other languages
Japanese (ja)
Other versions
JP2011243467A (en
Inventor
良之 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Electric Industrial Cable Co Ltd
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Electric Industrial Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Furukawa Electric Industrial Cable Co Ltd filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2010115862A priority Critical patent/JP5566772B2/en
Publication of JP2011243467A publication Critical patent/JP2011243467A/en
Application granted granted Critical
Publication of JP5566772B2 publication Critical patent/JP5566772B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)

Description

本発明は、導体接続方法及び導体接続構造体に関する。   The present invention relates to a conductor connection method and a conductor connection structure.

電力ケーブルや電力用絶縁電線などの導体に、端子などの導体接続具を接続する技術として、圧縮接続による手法と圧着接続による手法とが知られている。   As a technique for connecting a conductor connector such as a terminal to a conductor such as a power cable or a power insulated wire, a technique using a compression connection and a technique using a crimp connection are known.

圧縮接続は、導体接続具における厚肉・中空筒状の接続管部に導体を挿入した後、その接続管部を一対の六角ダイスで挟み込み、ダイス同士が接触するまで圧縮して接続管部を塑性加工する接続方法である。この圧縮接続によれば、六角ダイスで圧縮された接続管部には中心方向に向かう歪が発生し、内周面は円形を保ったまま相似的に収縮するので、接続管部が導体の周囲に均一に密着した状態で、導体接続具と導体とが固着される。圧縮接続については、例えばJIS規格などに規定されている(例えば、非特許文献1参照。)。
この圧縮接続であれば、導体接続具と導体との固着が均一で強固であるので、安定した通電性能を得ることができる。但し、ダイス同士が接触するまで接続管部を圧縮するには、例えば40MPaの圧縮力を要し、40〜200トンの油圧プレスが必要となるため、圧縮接続の施工は容易であるとは言い難い。
For compression connection, after inserting the conductor into the thick-walled hollow cylindrical connecting pipe part in the conductor connector, the connecting pipe part is sandwiched between a pair of hexagonal dies and compressed until the dies come into contact with each other to compress the connecting pipe part. It is a connection method for plastic working. According to this compression connection, the connecting pipe portion compressed by the hexagonal die is distorted toward the center, and the inner peripheral surface contracts in a similar manner while maintaining a circular shape. The conductor connector and the conductor are fixed in a state of being in close contact with each other. The compression connection is defined in, for example, the JIS standard (for example, see Non-Patent Document 1).
With this compression connection, the conductor connector and the conductor are firmly fixed and uniform, so that stable energization performance can be obtained. However, in order to compress the connecting pipe portion until the dies come into contact with each other, for example, a compressive force of 40 MPa is required, and a hydraulic press of 40 to 200 tons is required. Therefore, it is said that the construction of the compression connection is easy. hard.

圧着接続は、図8に示すように、導体接続具10における薄肉・中空筒状の接続管部11に導体30を挿入した後、ダイスで挟み、その接続管部11の一部を潰すように窪みをつける塑性加工を行い、接続管部11を導体30に食い込ませて圧着することによって、導体接続具10と導体30を固着する技術である。圧着接続については、例えばJIS規格などに規定されている(例えば、非特許文献2〜4参照。)。
この圧着接続では、ダイス同士が接触してこれ以上変形できない領域まで圧着接続部を塑性変形することまでは求められておらず、塑性変形途中で圧着加工を完了することが許容されている。例えば、導体サイズが60sqmm(mm)以上の電線では、圧着成形箇所の高さ(クリンプハイト)が、圧着成形箇所の反力と電線接続工具の油圧力制限値とから工具製造業者が決定する高さ以下になるように接続加工をする(例えば、非特許文献4参照)。
このような圧着接続の方法においては、クリンプハイトのバラツキが生じやすく、圧縮接続に比べて接続強度や通電性能の信頼性が劣ることがある。
また、圧着接続に関するJIS規格は、円形より線導体について定められているため、導体が円形圧縮より線である場合は、圧着接続すると導体素線切れが生じ易く、導体が可撓より線である場合は、素線間の密着が不足し易く、これらの面でも、圧着接続は圧縮接続に比べて接続強度や通電性能の信頼性が劣ることがある。
As shown in FIG. 8, the crimping connection is performed so that the conductor 30 is inserted into the thin-walled / hollow cylindrical connecting tube portion 11 in the conductor connector 10, and then sandwiched with dies so that a part of the connecting tube portion 11 is crushed. This is a technique for fixing the conductor connector 10 and the conductor 30 by performing plastic working for forming a depression, causing the connecting pipe portion 11 to bite into the conductor 30 and crimping. The crimp connection is defined in, for example, the JIS standard (for example, see Non-Patent Documents 2 to 4).
In this crimping connection, it is not required to plastically deform the crimping connection part to a region where the dies come into contact with each other and cannot be further deformed, and it is allowed to complete the crimping process in the middle of plastic deformation. For example, in the case of an electric wire having a conductor size of 60 sqmm (mm 2 ) or more, the tool manufacturer determines the height (crimp height) of the crimping portion from the reaction force of the crimping portion and the oil pressure limit value of the wire connecting tool. Connection processing is performed so that the height is less than or equal to the height (for example, see Non-Patent Document 4).
In such a crimping connection method, the crimp height tends to vary, and the connection strength and the reliability of the current-carrying performance may be inferior compared to the compression connection.
In addition, since the JIS standard for crimping connection is defined for a circular twisted wire conductor, when the conductor is a circular compression strand, if the crimping connection is made, the conductor strand is likely to break, and the conductor is a flexible twisted wire. In such a case, the close contact between the strands is likely to be insufficient, and even in these aspects, the crimp connection may be inferior in the connection strength and the reliability of the energization performance compared to the compression connection.

JIS C2804「圧縮端子」JIS C2804 “compression terminal” JIS C2805「銅線用圧着端子」JIS C2805 "Crimping terminal for copper wire" JIS C2806「銅線用裸圧着スリーブ」JIS C2806 "Nude crimping sleeve for copper wire" JIS C9711「屋内配線用電線接続工具」JIS C9711 "Wire connection tool for indoor wiring"

ところで、近年、電力設備も多様化し、電力会社以外で発電・変電・送電の運営を行う場合もある。その一例に自家用コージェネレーションやソーラシステム、風力発電、バイオマス発電などがある。いずれも民間の採算ベースで企業や地方公共団体がエネルギーを確保する設備である。
これまで電力会社が管理運営する設備では、安定した大電流の電力送電を実現するために、信頼性の高い圧縮接続の技術を採用してきたが、民間ベースの発想では機能を満足すれば少しでも経済的に優れた技術が優先される傾向がある。
その結果、従来民間では使用頻度が少なかった導体公称断面積325sqmm(mm)などの大電流ケーブルの接続に圧縮端子でなく圧着端子を使用する試みがあったり、圧着端子であっても圧縮接続並みに強固に接続する技術が要望されたりしている。
By the way, in recent years, electric power facilities have also diversified, and there are cases in which power generation / transformation / transmission is operated outside of an electric power company. Examples include private cogeneration, solar systems, wind power generation, and biomass power generation. Both are facilities that secure energy for companies and local governments on a private profit basis.
Until now, facilities managed and operated by electric power companies have adopted highly reliable compression connection technology in order to achieve stable and high-current power transmission. Economically superior technology tends to be prioritized.
As a result, there have been attempts to use crimp terminals instead of compression terminals for the connection of large current cables such as the nominal cross-sectional area of conductors of 325 sqmm (mm 2 ), which has been rarely used in the private sector, and compression connection even for crimp terminals. There is a demand for technology to connect as firmly as possible.

本発明の目的は、圧着接続用の導体接続具を良好に導体に接続することである。   An object of the present invention is to satisfactorily connect a conductor connector for crimp connection to a conductor.

以上の課題を解決するため、本発明の一の態様は、
導体と、前記導体を挿入する接続管部を有する圧着接続用の導体接続具とを、管状部材を用いて圧縮接続する導体接続方法であって、
前記導体接続具は、前記接続管部の外周面と連続する外周側平面を有する略平板状の端子部を備え、前記管状部材は、前記接続管部の外径の4/3倍の外径を有しており、
前記接続管部の外側にその接続管部の外周を覆う圧縮接続用の管状部材を装着し、前記接続管部の内側に前記導体を挿入した後、前記管状部材を断面六角形に少なくとも2回圧縮する圧縮工程を備え
前記圧縮工程は、
前記管状部材の外径を正六角形の対角寸法とする第1六角ダイスで、前記外周側平面に対し60度傾いた方向に前記管状部材を挟み込む第1の圧縮処理と、
前記第1六角ダイスの対辺寸法を正六角形の対角寸法とする第2六角ダイスで、前記外周側平面に対し垂直な方向に前記管状部材を挟み込む第2の圧縮処理と、を含むことを特徴とする。
In order to solve the above problems, one aspect of the present invention provides:
A conductor connection method for compressively connecting a conductor and a conductor connector for crimping connection having a connecting pipe portion into which the conductor is inserted , using a tubular member ,
The conductor connector includes a substantially flat terminal portion having an outer peripheral side plane continuous with the outer peripheral surface of the connection pipe portion, and the tubular member has an outer diameter 4/3 times the outer diameter of the connection pipe portion. Have
A tubular member for compression connection that covers the outer periphery of the connecting tube portion is attached to the outside of the connecting tube portion, and the conductor is inserted inside the connecting tube portion, and then the tubular member is formed into a hexagonal cross section at least twice. Comprising a compression step to compress ,
The compression step includes
A first compression process for sandwiching the tubular member in a direction inclined by 60 degrees with respect to the outer peripheral side plane, with a first hexagonal die having an outer diameter of the tubular member as a diagonal dimension of a regular hexagon;
And a second compression process of sandwiching the tubular member in a direction perpendicular to the outer peripheral side plane with a second hexagonal die having a diagonal dimension of a regular hexagon as the opposite dimension of the first hexagonal die. And

圧着接続用の導体接続具の接続管部の外周に装着可能な圧縮接続用の管状部材を用い、これを複数回、断面六角形に圧縮することで、導体接続具の接続管部を導体の周囲に均一に圧縮することができ、その導体接続具を良好に導体に圧縮接続することができる。
なお、接続管部の外側に管状部材を装着することと、接続管部の内側に導体を挿入することの順は問わず、任意の順でよい。
また、管状部材の外径寸法を4/3倍以下にすることで、少ない圧縮処理回数でブスバー等と接続し易い形状に加工することが可能になる。
また、例えば、導体接続具の接続管部の外径寸法を「D」、管状部材の外径寸法を「(4/3)×D」に設計した場合、第1の圧縮処理と第2の圧縮処理とを行うことで、圧縮工程後の管状部材の外径寸法(対辺寸法)を「D」に減じることができ、圧縮接続部分をコンパクトに圧縮して良好な導体接続を成すことができる。
また、第1の圧縮処理で、導体接続具の端子部の外周側平面に対し60度傾いた方向に管状部材を第1六角ダイスで圧縮し、第2の圧縮処理で、その外周側平面に対し垂直な方向に管状部材を第2六角ダイスで圧縮することによれば、圧縮接続後の端子部の外周側平面と、管状部材の外周面における6面の内の1つの面とが略面一になる。
管状部材の外周面における6面の内の1つの面が圧縮接続後の端子部の外周側平面と略面一かそれより凹んだ状態であれば、例えばブスバーなどの外部導体に、端子部を配設して接続する際に、管状部材がブスバーに干渉することがなく、端子部の外周側平面をブスバーに密接させて良好な導体接続をすることができる。そして、ブスバーに対する端子部の接続部分をコンパクトにすることができる。
A tubular member for compression connection that can be attached to the outer periphery of the connection pipe part of the conductor connection tool for crimp connection is used, and the connection pipe part of the conductor connection tool is compressed to a hexagonal cross section several times. The surroundings can be compressed uniformly, and the conductor connector can be well compressed and connected to the conductor.
The order of attaching the tubular member to the outside of the connecting pipe part and inserting the conductor to the inside of the connecting pipe part may be any order.
Moreover, by making the outer diameter dimension of the tubular member 4/3 or less, it becomes possible to process into a shape that can be easily connected to a bus bar or the like with a small number of compression processes.
Further, for example, when the outer diameter dimension of the connection pipe portion of the conductor connector is designed to be “D” and the outer diameter dimension of the tubular member is “(4/3) × D”, the first compression treatment and the second compression treatment are performed. By performing the compression process, the outer diameter dimension (opposite side dimension) of the tubular member after the compression process can be reduced to “D”, and the compression connection portion can be compactly compressed to form a good conductor connection. .
Further, in the first compression process, the tubular member is compressed with a first hexagonal die in a direction inclined by 60 degrees with respect to the outer peripheral side plane of the terminal portion of the conductor connector, and on the outer peripheral side plane in the second compression process. By compressing the tubular member in the direction perpendicular to the second hexagonal die, the outer peripheral side plane of the terminal portion after compression connection and one of the six surfaces of the outer peripheral surface of the tubular member are substantially planes. Become one.
If one of the six surfaces of the outer peripheral surface of the tubular member is substantially flush with or recessed from the outer peripheral plane of the terminal portion after compression connection, the terminal portion is connected to an external conductor such as a bus bar, for example. When arranging and connecting, the tubular member does not interfere with the bus bar, and the outer peripheral side plane of the terminal portion can be brought into close contact with the bus bar to achieve a good conductor connection. And the connection part of the terminal part with respect to a bus bar can be made compact.

また、好ましくは、前記管状部材は、前記導体接続具よりも熱膨張係数が大きい材料からなる。   Preferably, the tubular member is made of a material having a larger coefficient of thermal expansion than the conductor connector.

管状部材が導体接続具よりも熱膨張係数が大きい材料であれば、圧縮接続してなる管状部材と導体接続具が、通電に伴う発熱とその後の冷却とを繰り返した場合でも、管状部材と導体接続具との界面に隙間が生じてしまう不具合が生じ難く、製品安定性が維持される。   If the tubular member is a material having a coefficient of thermal expansion greater than that of the conductor connector, the tubular member and the conductor are connected even when the tubular member and the conductor connector formed by compression connection repeatedly generate heat upon energization and subsequent cooling. The problem that a gap is generated at the interface with the connector is unlikely to occur, and product stability is maintained.

また、本発明の他の態様は、
ケーブルの導体と、この導体を挿入した接続管部およびこの接続管部の外周面から連続する外周側平面を有する略平板状の端子部を有する圧着接続用の導体接続具と、前記接続管部の外側に装着した圧縮接続用の管状部材とからなり、
前記接続管部の外径の4/3倍の外径を有する前記管状部材周囲から、前記管状部材の外径を正六角形の対角寸法とする第1六角ダイスで、前記外周側平面に対し60度傾いた方向に前記管状部材を挟み込んだ後、前記第1六角ダイスの対辺寸法を正六角形の対角寸法とする第2六角ダイスで、前記外周側平面に対し垂直な方向に前記管状部材を挟み込んで、前記管状部材および前記接続管部を正六角形に圧縮し、当該正六角形の一つの面を前記端子部の外周側平面と略面一にしていることを特徴とする導体接続構造体である。
Another aspect of the present invention is as follows:
A conductor connector for crimping connection having a conductor of a cable, a connecting pipe part into which the conductor is inserted, and a substantially flat terminal part having an outer peripheral side plane continuous from the outer peripheral surface of the connecting pipe part, and the connecting pipe part A compression connecting tubular member mounted on the outside of
From the periphery of the tubular member having an outer diameter 4/3 times the outer diameter of the connecting pipe portion, a first hexagonal die having a diagonal dimension of a regular hexagon as the outer diameter of the tubular member is formed on the outer peripheral side plane. After sandwiching the tubular member in a direction inclined by 60 degrees, a second hexagonal die having the opposite side dimension of the first hexagonal die as a diagonal dimension of a regular hexagon, and the tubular member in a direction perpendicular to the outer peripheral side plane A conductor connection structure characterized by sandwiching a member and compressing the tubular member and the connection pipe portion into a regular hexagon, and one surface of the regular hexagon is substantially flush with an outer peripheral side plane of the terminal portion. Is the body.

この導体接続構造では、圧着接続用の導体接続具の接続管部の外周に圧縮接続用の管状部材を被せて圧縮しているので、圧着接続用の導体接続具を導体に電気的にも機械的にも良好に接続できる。
その上、管状部材の外周面における6面の内の1つの面が圧縮接続後の端子部の外周側平面と面一かより奥まらせてあるので、例えばブスバーなどの外部導体に、端子部を配設して接続する際に、管状部材がブスバーに干渉することがないので、端子部の外周側平面をブスバーに密接させて接続することができる。そして、ブスバーに対する端子部の接続部分をコンパクトにすることができる。
In this conductor connection structure, since the compression connection tubular member is put on the outer periphery of the connection pipe portion of the conductor connection tool for crimp connection, the conductor connection tool for crimp connection is electrically connected to the conductor. Can be connected well.
In addition, since one of the six surfaces of the outer peripheral surface of the tubular member is deeper than the outer peripheral side plane of the terminal portion after compression connection, the terminal is connected to an external conductor such as a bus bar, for example. When the portion is disposed and connected, the tubular member does not interfere with the bus bar, so that the outer peripheral side plane of the terminal portion can be connected in close contact with the bus bar. And the connection part of the terminal part with respect to a bus bar can be made compact.

本発明によれば、圧着接続用の導体接続具の接続管部の外周に装着可能な圧縮接続用の管状部材を用いることで、導体接続具の接続管部を周方向全体に亘ってケーブルの導体に圧着(密着)することができ、導体接続具と導体を電気的にも機械的にも確りと接続することができる。
そして、例えば、管状部材の外径寸法を、接続管部の外径寸法の4/3倍以下にすることで、少ない圧縮処理回数でブスバー等と接続し易い形状に加工することが可能になる。
According to the present invention, by using a tubular member for compression connection that can be mounted on the outer periphery of the connection pipe portion of the conductor connection tool for crimping connection, the connection pipe portion of the conductor connection tool is connected to the cable in the entire circumferential direction. It can be crimped (contacted) to the conductor, and the conductor connector and the conductor can be securely connected both electrically and mechanically.
For example, when the outer diameter of the tubular member is set to 4/3 times or less than the outer diameter of the connecting pipe portion, it can be processed into a shape that can be easily connected to a bus bar or the like with a small number of compression processes. .

導体接続構造体の一部を成す圧着端子と圧縮用カラーを示す平面図である。It is a top view which shows the crimp terminal and compression collar which comprise a part of conductor connection structure. 圧着端子に圧縮用カラーを組み付けた状態を示す平面図(a)と、図2(a)のb−b線における断面図(b)と、図2(a)の矢印c方向からの矢視図(c)である。FIG. 2A is a plan view showing a state where the compression collar is assembled to the crimp terminal, FIG. 2A is a cross-sectional view taken along the line bb in FIG. 2A, and FIG. It is a figure (c). 導体接続構造体を構成する導体と圧着端子と圧縮用カラーを接続する配置を断面視して示す説明図である。It is explanatory drawing which shows the arrangement | positioning which connects the conductor which comprises a conductor connection structure, a crimp terminal, and a compression collar in cross section. 圧縮工程における第1の圧縮処理を示す説明図である。It is explanatory drawing which shows the 1st compression process in a compression process. 圧縮工程における第2の圧縮処理を示す説明図である。It is explanatory drawing which shows the 2nd compression process in a compression process. 導体と圧着端子と圧縮用カラーとを圧縮接続してなる導体接続構造体を示す説明図である。It is explanatory drawing which shows the conductor connection structure formed by compressing and connecting a conductor, a crimp terminal, and the compression collar. 各種導体接続構造体における圧縮率の測定値(計算値)を示す表である。It is a table | surface which shows the measured value (calculated value) of the compressibility in various conductor connection structures. 従来の圧着接続を示す説明図である。It is explanatory drawing which shows the conventional crimping connection.

以下に、本発明を実施するための好ましい形態について図面を用いて説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、本発明の範囲を以下の実施形態及び図示例に限定するものではない。   Hereinafter, preferred embodiments for carrying out the present invention will be described with reference to the drawings. However, the embodiments described below are given various technically preferable limitations for carrying out the present invention, but the scope of the present invention is not limited to the following embodiments and illustrated examples.

図1は、導体接続構造体の一部を成す圧着端子と圧縮用カラーを示す平面図である。図2(a)(b)(c)は、圧着端子に圧縮用カラーを組み付けた状態を示す説明図である。図3は、導体接続構造体を構成する導体と圧着端子と圧縮用カラーを接続する配置を示す説明図である。   FIG. 1 is a plan view showing a crimp terminal and a compression collar forming a part of the conductor connection structure. 2A, 2B, and 2C are explanatory views showing a state in which a compression collar is assembled to a crimp terminal. FIG. 3 is an explanatory view showing an arrangement for connecting a conductor, a crimp terminal, and a compression collar constituting the conductor connection structure.

圧着端子10は、図1から図3に示すように、導体30を挿入する接続管部11と、接続管部11と一体成型された端子部12とを備えている圧着接続用の導体接続具である。
接続管部11は、略円筒形状を呈しており、ケーブルや電線の導体30を内装する挿通穴11aを有している。
端子部12は、略平板形状を呈しており、接続管部11の外周面と連続する外周側平面13を有している。また、端子部12は、その略中央側に形成された円形の小孔14を有している。
As shown in FIGS. 1 to 3, the crimp terminal 10 includes a connection pipe part 11 into which the conductor 30 is inserted and a terminal part 12 integrally formed with the connection pipe part 11. It is.
The connecting pipe portion 11 has a substantially cylindrical shape, and has an insertion hole 11 a that houses a conductor 30 of a cable or an electric wire.
The terminal portion 12 has a substantially flat plate shape and has an outer peripheral side plane 13 that is continuous with the outer peripheral surface of the connecting pipe portion 11. Moreover, the terminal part 12 has the circular small hole 14 formed in the approximate center side.

この圧着端子10は、JIS C2805「銅線用圧着端子」の規格に準じており、薄肉筒状の接続管部11は、例えば100〜325sqmm(mm)の比較的大きいサイズのものである。
また、圧着端子10は、例えば、JIS H3100 C1020Pの規格に準じた無酸素銅板を材料にしてなる。無酸素銅板は銅の中でも電気伝導率(導電率)に優れ、また加工のための展延性に優れているので、導体接続具(圧着端子10)の材料として適している。特に、銅板を成形して薄肉筒状の接続管部11を形作るにはろう付けを行うため、適度に焼鈍され展延性が増すので、圧着接続用の導体接続具の材料に極めて適している。
なお、圧着端子10は、市販の既製品であってよい。
The crimp terminal 10 conforms to the standard of JIS C2805 “Copper Wire Crimp Terminal”, and the thin-walled tubular connecting pipe portion 11 has a relatively large size of, for example, 100 to 325 sqmm (mm 2 ).
The crimp terminal 10 is made of, for example, an oxygen-free copper plate conforming to the standard of JIS H3100 C1020P. An oxygen-free copper plate is excellent in electrical conductivity (conductivity) among copper and is excellent in extensibility for processing, and is therefore suitable as a material for a conductor connector (crimp terminal 10). In particular, brazing is performed to form a thin-walled cylindrical connecting pipe portion 11 by forming a copper plate, and therefore, it is appropriately annealed to increase the spreadability. Therefore, it is extremely suitable as a material for a conductor connector for crimping connection.
The crimp terminal 10 may be a commercially available ready-made product.

圧縮用カラー20は、図1から図3に示すように、略円筒形状を呈しており、圧着端子10の接続管部11を内装する挿通穴20aを有している圧縮接続用の管状部材である。また、圧縮用カラー20は、接続管部11と略同じ長さを有する厚肉筒状体
であり、その両端部に端部側ほど外径が小さくなるテーパ部21,21を有している。
この圧縮用カラー20の内径寸法は、接続管部11の外径寸法に対応しており、圧着端子10が既製品であるか否かを問わず、圧着端子10の接続管部11をなるべく隙間なくかつ確実に挿入でき、圧縮用カラー20を接続管部11の外周に適切に装着できるサイズである。
特に、圧縮用カラー20の外径は、圧着端子10の接続管部11の外径の7/6倍(約1.17倍)以上、4/3倍(約1.33倍)以下であることが好ましい。
本実施形態では、接続管部11の外径を「D」とした場合、圧縮用カラー20は、その4/3倍である「(4/3)×D」の外径を有している。なお、ここでいう圧縮用カラー20の外径とは、圧縮用カラー20の最も太い部分に対応する最大の外径寸法のことである。
As shown in FIGS. 1 to 3, the compression collar 20 has a substantially cylindrical shape, and is a compression connection tubular member having an insertion hole 20 a that houses the connection tube portion 11 of the crimp terminal 10. is there. The compression collar 20 is a thick cylindrical body having substantially the same length as that of the connecting pipe portion 11, and has tapered portions 21 and 21 whose outer diameters become smaller toward the end portions at both ends thereof. .
The inner diameter dimension of the compression collar 20 corresponds to the outer diameter dimension of the connecting tube portion 11, and the connecting tube portion 11 of the crimp terminal 10 is as small as possible regardless of whether the crimp terminal 10 is an off-the-shelf product. The size is such that the compression collar 20 can be properly inserted to the outer periphery of the connecting pipe portion 11 without being inserted.
In particular, the outer diameter of the compression collar 20 is not less than 7/6 times (about 1.17 times) and not more than 4/3 times (about 1.33 times) the outer diameter of the connecting pipe portion 11 of the crimp terminal 10. It is preferable.
In this embodiment, when the outer diameter of the connecting pipe portion 11 is “D”, the compression collar 20 has an outer diameter of “(4/3) × D” that is 4/3 times that. . The outer diameter of the compression collar 20 referred to here is the maximum outer diameter dimension corresponding to the thickest part of the compression collar 20.

また、圧縮用カラー20は、例えば、JIS H3250「銅及び銅合金棒」に規定されているC2600黄銅(7・3真鍮)を材料にしてなる。このように、圧縮用カラー20は、銅製の圧着端子10よりも熱膨張係数が大きい材料(真鍮)からなる。   The compression collar 20 is made of, for example, C2600 brass (7.3 brass) defined in JIS H3250 “Copper and copper alloy rod”. Thus, the compression collar 20 is made of a material (brass) having a larger thermal expansion coefficient than that of the copper crimp terminal 10.

次に、圧縮用カラー20を利用して、導体30と圧着端子10を圧縮接続する導体接続方法について説明する。   Next, a conductor connection method for compressing and connecting the conductor 30 and the crimp terminal 10 using the compression collar 20 will be described.

まず、図3に示すように、圧着端子10における接続管部11の内側に導体30を挿入し、その接続管部11の外側に圧縮用カラー20を装着する。
前述したように、圧着端子10の接続管部11の外径は「D」であり、圧縮用カラー20の外径は、「(4/3)×D」である。
なお、導体30は、ケーブルまたは電線の絶縁層を剥いで中心導体を露出させたものであり、この導体30は、複数の導体素線を撚り合わせてなる円形撚り導体である。
First, as shown in FIG. 3, the conductor 30 is inserted inside the connection tube portion 11 in the crimp terminal 10, and the compression collar 20 is attached to the outside of the connection tube portion 11.
As described above, the outer diameter of the connecting tube portion 11 of the crimp terminal 10 is “D”, and the outer diameter of the compression collar 20 is “(4/3) × D”.
In addition, the conductor 30 peels off the insulation layer of a cable or an electric wire, and the center conductor is exposed, This conductor 30 is a circular twisted conductor formed by twisting together several conductor strands.

次いで、図4に示すように、圧着端子10の接続管部11に装着した圧縮用カラー20を、その圧縮用カラー20の外径「(4/3)×D」を正六角形の対角寸法とする第1六角ダイス50で挟み込んで圧縮する第1の圧縮処理を施す。なお、第1六角ダイス50は、正六角形の角部で2分割した一対のダイス51,51からなる。
この第1の圧縮処理では、圧着端子10の端子部12の外周側平面13に対して60度傾いた方向から一対のダイス51,51で圧縮用カラー20を挟み込み、その60度傾いた方向に圧縮用カラー20を第1六角ダイス50で圧縮する。
なお、図4はダイス51,51を傾けて描いたが、端子部12の外周側平面13の方を傾け、ダイス51,51の圧縮方向を垂直にしても良い。
こうして、第1の圧縮処理によって、圧縮用カラー20は、対角寸法が「(4/3)×D」、対辺寸法が「(2/3)×√3×D」の断面正六角形に圧縮されている。
ここで、第1の圧縮処理後の圧縮用カラー20の対辺寸法「(2/3)×√3×D」は、対角寸法「(4/3)×D」の√3/2倍となっている。これは、外径が「(4/3)×D」である圧縮用カラー20を、「(4/3)×D」を対角寸法とする第1六角ダイス50で正六角形に圧縮変形したことによる。
Next, as shown in FIG. 4, the compression collar 20 attached to the connecting tube portion 11 of the crimp terminal 10 is the outer diameter “(4/3) × D” of the compression collar 20 and is a regular hexagonal diagonal dimension. A first compression process is performed in which the first hexagonal die 50 is sandwiched and compressed. The first hexagonal die 50 is composed of a pair of dice 51 and 51 divided into two at regular hexagonal corners.
In this first compression treatment, the compression collar 20 is sandwiched between a pair of dies 51, 51 from a direction inclined by 60 degrees with respect to the outer peripheral side plane 13 of the terminal portion 12 of the crimp terminal 10, and in the direction inclined by 60 degrees. The compression collar 20 is compressed with a first hexagonal die 50.
In FIG. 4, the dies 51, 51 are drawn at an angle, but the outer peripheral side plane 13 of the terminal portion 12 may be tilted so that the compression direction of the dies 51, 51 is vertical.
Thus, by the first compression process, the compression collar 20 is compressed into a regular hexagonal cross section having a diagonal dimension of “(4/3) × D” and an opposite dimension of “(2/3) × √3 × D”. Has been.
Here, the opposite side dimension “(2/3) × √3 × D” of the compression collar 20 after the first compression processing is √3 / 2 times the diagonal dimension “(4/3) × D”. It has become. This is because the compression collar 20 having an outer diameter of “(4/3) × D” is compression-deformed into a regular hexagon with a first hexagonal die 50 having a diagonal dimension of “(4/3) × D”. It depends.

次いで、図5に示すように、第1の圧縮処理後の圧縮用カラー20部分を、第1六角ダイス50の対辺寸法「(2/3)×√3×D」を正六角形の対角寸法とする第2六角ダイス60で挟み込んで圧縮する第2の圧縮処理を施す。なお、第2六角ダイス60は、正六角形の角部で2分割した一対のダイス61,61からなる。
この第2の圧縮処理では、圧着端子10の端子部12の外周側平面13に対して垂直をなす方向に一対のダイス61,61で圧縮用カラー20を挟み込み、その垂直方向に圧縮用カラー20を第2六角ダイス60で圧縮する。
こうして、第2の圧縮処理によって、圧縮用カラー20は、対角寸法が「(2/3)×√3×D」、対辺寸法が「D」の断面正六角形に圧縮されている。
ここで、第2の圧縮処理後の圧縮用カラー20の対辺寸法「D」は、対角寸法「(2/3)×√3×D」の√3/2倍となっている。これは、正六角形の対辺寸法が「(2/3)×√3×D」である圧縮用カラー20を、「(2/3)×√3×D」を対角寸法とする第2六角ダイス60で正六角形に圧縮変形したことによる。
Next, as shown in FIG. 5, the compression collar 20 portion after the first compression processing is set so that the opposite side dimension “(2/3) × √3 × D” of the first hexagonal die 50 is a regular hexagonal diagonal dimension. A second compression process is performed in which the second hexagonal die 60 is inserted and compressed. In addition, the 2nd hexagon die 60 consists of a pair of dice | dies 61 and 61 divided into 2 by the corner | angular part of the regular hexagon.
In the second compression process, the compression collar 20 is sandwiched between a pair of dies 61 and 61 in a direction perpendicular to the outer peripheral side plane 13 of the terminal portion 12 of the crimp terminal 10, and the compression collar 20 is inserted in the vertical direction. Is compressed with a second hexagonal die 60.
Thus, by the second compression process, the compression collar 20 is compressed into a regular hexagonal cross section having a diagonal dimension of “(2/3) × √3 × D” and an opposite side dimension of “D”.
Here, the opposite side dimension “D” of the compression collar 20 after the second compression processing is √3 / 2 times the diagonal dimension “(2/3) × √3 × D”. This is because the compression hexagon 20 whose opposite dimension of the regular hexagon is “(2/3) × √3 × D” is the second hexagon whose diagonal dimension is “(2/3) × √3 × D”. This is because the die 60 is compressed into a regular hexagon.

そして、図5、図6に示すように、圧縮用カラー20に対し、第1の圧縮処理と第2の圧縮処理とを施した圧縮工程を経て、圧縮用カラー20を用いて導体30と圧着端子10を圧縮接続した導体接続構造体100を形成することができる。
このように、圧縮用カラー20を用いることで、圧着端子10の接続管部11を導体30の周囲に均一に圧縮することができ、圧着端子10を導体30に良好に圧縮接続することができる。
Then, as shown in FIGS. 5 and 6, the compression collar 20 is subjected to a compression process in which a first compression process and a second compression process are performed, and the conductor 30 is pressure-bonded using the compression collar 20. The conductor connection structure 100 in which the terminals 10 are compression-connected can be formed.
As described above, by using the compression collar 20, the connection tube portion 11 of the crimp terminal 10 can be uniformly compressed around the conductor 30, and the crimp terminal 10 can be compressed and connected to the conductor 30 in a favorable manner. .

図6に示すように、導体接続構造体100における圧縮用カラー20の外周面を成す6面の内の1つの面は、圧着端子10の端子部12の外周側平面13と一致する。
これは、図3に示す、外径寸法が「(4/3)×D」であった圧縮用カラー20に、2回の正六角形圧縮処理(第1の圧縮処理と第2の圧縮処理)を施して、その外径を2回、√3/2倍に圧縮し、(√3/2)×(√3/2)の3/4倍に減じて、圧縮用カラー20の対辺寸法を「D」に減じたことによる。
つまり、予め圧縮用カラー20の外径寸法を、接続管部11の外径寸法「D」の4/3倍に設計しておいたことにより、当初の接続管部11の外周面と連続する配置にあった端子部12の外周側平面13が、圧縮加工後の圧縮用カラー20の外周面の一部(6面の内の1つの面)と略面一となるのである。
このように、導体接続構造体100における端子部12の外周側平面13と、圧縮用カラー20の外周面(6面の内の1つの面)とが略面一であれば、導体接続構造体100の端子部12を、例えばブスバーに接続する際に、圧縮用カラー20部分がブスバーに干渉することなく、端子部12の外周側平面13をブスバーに密接させて螺子止め接続することが可能になる。
As shown in FIG. 6, one of the six surfaces forming the outer peripheral surface of the compression collar 20 in the conductor connection structure 100 coincides with the outer peripheral side plane 13 of the terminal portion 12 of the crimp terminal 10.
This is because two regular hexagonal compression processes (first compression process and second compression process) are performed on the compression collar 20 whose outer diameter dimension is “(4/3) × D” shown in FIG. The outer diameter of the compression collar 20 is compressed twice to √3 / 2 and reduced to 3/4 times (√3 / 2) × (√3 / 2), and the opposite side dimension of the compression collar 20 is reduced. This is because it was reduced to “D”.
That is, the outer diameter of the compression collar 20 is designed to be 4/3 times the outer diameter “D” of the connecting pipe portion 11 in advance, so that it continues to the outer peripheral surface of the original connecting pipe portion 11. The outer peripheral side plane 13 of the terminal portion 12 in the arrangement is substantially flush with a part of the outer peripheral surface of the compression collar 20 after compression processing (one of the six surfaces).
Thus, if the outer peripheral side plane 13 of the terminal part 12 in the conductor connection structure 100 and the outer peripheral surface (one of the six surfaces) of the compression collar 20 are substantially flush, the conductor connection structure When connecting the 100 terminal portions 12 to, for example, a bus bar, the outer peripheral side plane 13 of the terminal portion 12 can be screwed in close contact with the bus bar without the compression collar 20 portion interfering with the bus bar. Become.

また、圧縮工程における第1の圧縮処理に使用する第1六角ダイス50と、第2の圧縮処理に使用する第2六角ダイス60の、導体30の軸方向に沿う長さ寸法は、圧縮用カラー20の長さ寸法と同等あるいはそれ以上のサイズであり、圧縮用カラー20の外周全面に密着しての圧縮加工を行うことを可能にしている。
そして、圧縮用カラー20の両端部にはテーパ部21があるため、圧縮用カラー20の端部側ほど圧縮加工による接触圧力が弱まるので、圧縮用カラー20(接続管部11)の端部開口付近の導体30には僅かにしか圧力がかからず、導体30は殆ど圧縮されていない。
このようにテーパ部21を有する圧縮用カラー20は、比較的穏やかに接続管部11を導体30に対して圧縮しているので、圧縮用カラー20(接続管部11)の開口の縁が導体30に圧接することはない。そして、圧縮用カラー20の圧縮によって導体30の素線が切れてしまうようなことはなく、導体接続構造体100における導体30の断線を防止するようになっている。
The length dimension of the first hexagonal die 50 used for the first compression process in the compression process and the second hexagonal die 60 used for the second compression process along the axial direction of the conductor 30 is a compression collar. The size is equal to or larger than the length dimension of 20 and enables compression processing in close contact with the entire outer periphery of the compression collar 20.
Since both end portions of the compression collar 20 have taper portions 21, the contact pressure due to the compression process becomes weaker toward the end portion of the compression collar 20, so that the end opening of the compression collar 20 (connecting tube portion 11) is opened. The nearby conductor 30 is only slightly pressurized, and the conductor 30 is hardly compressed.
Since the compression collar 20 having the taper portion 21 compresses the connection pipe portion 11 with respect to the conductor 30 relatively gently, the edge of the opening of the compression collar 20 (connection pipe portion 11) is the conductor. 30 is not pressed. The wire of the conductor 30 is not cut by the compression of the compression collar 20, and the conductor 30 in the conductor connection structure 100 is prevented from being disconnected.

次に、導体30と圧着端子10を圧縮接続する際に用いる圧縮用カラー20の好ましい外径寸法について説明する。   Next, a preferable outer diameter dimension of the compression collar 20 used when the conductor 30 and the crimp terminal 10 are compression-connected will be described.

圧縮接続における圧縮程度の評価基準としては圧縮率が用いられ、導体断面積の圧縮率が6%以上であることが、強固な圧縮接続を成し、安定した長期通電特性を得る条件であることが知られている。例えば、JIS C2804「圧縮端子」は、圧縮率6%以上を満足するものである。
ここでの圧縮率は、圧縮加工前の接続管部11とその接続管部11に挿入される導体30の断面積の総和が、圧縮加工後に減じた断面積の変化率(減少率)のことである。なお、圧縮加工により導体30の導体素線間の隙間と、接続管部11の内径と導体30の外径との隙間は埋まり、導体30と接続管部11の断面積に変化が無い状態は圧縮率0%とされる。また、圧縮率が負の数値であれば、それらの隙間が埋まる前の状態といえる。
The compression ratio is used as an evaluation standard for the degree of compression in the compression connection, and the compression ratio of the conductor cross-sectional area is 6% or more, which is a condition for forming a strong compression connection and obtaining a stable long-term conduction characteristic. It has been known. For example, JIS C2804 “compression terminal” satisfies a compression rate of 6% or more.
The compression rate here is the change rate (decrease rate) of the cross-sectional area obtained by reducing the sum of the cross-sectional areas of the connecting pipe portion 11 before compression processing and the conductor 30 inserted into the connecting pipe portion 11 after the compression processing. It is. In addition, the state where the gap between the conductor strands of the conductor 30 and the gap between the inner diameter of the connecting pipe portion 11 and the outer diameter of the conductor 30 is filled by compression processing, and the cross-sectional area of the conductor 30 and the connecting pipe portion 11 is not changed. The compression rate is 0%. Moreover, if the compression rate is a negative numerical value, it can be said that the state before these gaps are filled.

図7に示す導体接続構造体に関する圧縮率表は、各種サイズの圧着端子10(接続管部11)と、各種サイズの導体30と、各種サイズの圧縮用カラー20との対応関係と、それら組み合わせて圧縮接続した導体接続構造体100における圧縮率との対応関係を調べた結果である。この表から、圧着端子10(接続管部11)の外径に対する圧縮用カラー20の外径倍率が、7/6倍(約1.17倍)以上であれば、いずれのサイズにおいても圧縮率6%を満足することがわかる。
また、圧縮加工における第2の圧縮処理後の圧縮用カラー20の対辺寸法が、圧着端子10の外径寸法を超える値であると、導体接続構造体100における端子部12の外周側平面13と、圧縮用カラー20の外周面(6面の内の1つの面)とが略面一にならない不具合が生じる。そこで、端子部12の外周側平面13より、圧縮用カラー20の外周面(6面の内の1つの面)が突出しないように、第2の圧縮処理後の圧縮用カラー20の対辺寸法が、圧着端子10の外径寸法より小さいことを満足するためには、前述したように、圧着端子10(接続管部11)の外径に対する圧縮用カラー20の外径倍率は、4/3倍(約1.33倍)以下でなければならない。図7に示す導体接続構造体に関する圧縮率表から分かるように、外径倍率4/3倍(約1.33倍)までの圧縮用カラー20は、第2の圧縮処理後の圧縮率が良好な値を示している。
The compression ratio table relating to the conductor connection structure shown in FIG. 7 is a correspondence relationship between the crimp terminals 10 (connection pipe portions 11) of various sizes, the conductors 30 of various sizes, and the compression collars 20 of various sizes, and combinations thereof. It is the result of investigating the correspondence with the compression rate in the conductor connection structure 100 compressed and connected. From this table, as long as the outer diameter magnification of the compression collar 20 with respect to the outer diameter of the crimp terminal 10 (connecting tube portion 11) is 7/6 times (about 1.17 times) or more, the compression ratio is any size. It can be seen that 6% is satisfied.
Further, when the opposite side dimension of the compression collar 20 after the second compression process in the compression process is a value exceeding the outer diameter dimension of the crimp terminal 10, the outer peripheral side plane 13 of the terminal portion 12 in the conductor connection structure 100 and There is a problem that the outer peripheral surface (one of the six surfaces) of the compression collar 20 is not substantially flush. Therefore, the opposite side dimension of the compression collar 20 after the second compression process is such that the outer peripheral surface (one of the six surfaces) of the compression collar 20 does not protrude from the outer peripheral side plane 13 of the terminal portion 12. In order to satisfy that the outer diameter of the crimp terminal 10 is smaller than the outer diameter, the outer diameter magnification of the compression collar 20 with respect to the outer diameter of the crimp terminal 10 (connection tube portion 11) is 4/3 times as described above. Must be less than (approximately 1.33 times). As can be seen from the compression ratio table for the conductor connection structure shown in FIG. 7, the compression collar 20 up to an outer diameter magnification of 4/3 times (about 1.33 times) has a good compression ratio after the second compression treatment. The value is shown.

こうして、圧縮用カラー20の外径寸法を、圧着端子10の接続管部11の外径寸法の7/6倍(約1.17倍)以上、4/3倍(約1.33倍)以下であるようにすることで、圧縮率6%以上を満足する強固な圧縮接続を成し、安定した長期通電特性を有する導体接続構造体100を形成することができる。   In this way, the outer diameter of the compression collar 20 is 7/6 times (about 1.17 times) or more and 4/3 times (about 1.33 times) or less of the outer diameter of the connecting tube portion 11 of the crimp terminal 10. By doing so, it is possible to form a conductor connection structure 100 having a strong compression connection satisfying a compression ratio of 6% or more and having a stable long-term conduction characteristic.

次に、材質について考察する。導体接続構造体100に用いる圧着端子10の材料を無酸素銅またはタフピッチ銅とした場合、圧縮用カラー20の材料は真鍮であることが望ましい。以下、その理由について説明する。   Next, the material will be considered. When the material of the crimp terminal 10 used for the conductor connection structure 100 is oxygen-free copper or tough pitch copper, the material of the compression collar 20 is preferably brass. The reason will be described below.

導体接続構造体100を形成する際、圧縮用カラー20を接続管部11に装着して、2回の正六角形圧縮処理を行うことで、圧縮用カラー20と圧着端子10(接続管部11)とは一体化するが、単に圧縮しただけで金属原子間結合はできていないので、解体すれば分離可能な密着状態にある。   When forming the conductor connection structure 100, the compression collar 20 and the crimp terminal 10 (connection pipe part 11) are attached to the connection pipe part 11 and subjected to two regular hexagonal compression treatments. However, the metal atoms are simply compressed and no intermetallic bonds are formed, so that they can be separated when disassembled.

この導体接続構造体100を外部導体(例えばブスバー)に繋いで電流通電を行うと、電流は導体30から接続管部11、端子部12へ流れ、さらに端子部12が接続している外部導体(ブスパー)へと流れる。このとき、圧縮用カラー20にも多少分流するが極めて微小な電流であり、圧縮用カラー20が通電に伴い発熱することはない。むしろ圧縮用カラー20は熱放散素子として有効に機能するようになる。こうした状況から圧縮用カラー20の温度は接続管部11よりも低いことになる。
そして、通電に伴い発熱した接続管部11が熱膨張すると、圧縮用カラー20に対する密着力が高まる。この接続管部11の熱膨張が圧縮用カラー20により制限されることで、外径方向に膨張できない分、軸方向に膨張することになる。一見不都合がないように見えるが、軸方向に伸びて細くなった接続管部11の外径は、温度降下した後もそのまま維持されてしまい、冷却後に接続管部11と圧縮用カラー20の界面に隙間が生じやすくなる。
こうして、温度上昇と降下が繰り返されると、密着していた接続管部11と圧縮用カラー20の界面に隙間が生じるようになり、その隙間に湿気が浸入することによる腐食などの弊害が憂慮される。
これが、圧縮用カラー20の材料に真鍮を選択することになる1つ目の事情(熱膨張に関する事情)である。
When the conductor connection structure 100 is connected to an external conductor (for example, a bus bar) to conduct current, the current flows from the conductor 30 to the connecting tube portion 11 and the terminal portion 12, and the external conductor (to which the terminal portion 12 is connected) ( Flows to (Busper). At this time, the current is diverted to the compression collar 20 to some extent, but the current is very small, and the compression collar 20 does not generate heat when energized. Rather, the compression collar 20 effectively functions as a heat dissipation element. Under such circumstances, the temperature of the compression collar 20 is lower than that of the connecting pipe portion 11.
When the connecting pipe portion 11 that has generated heat due to energization is thermally expanded, the adhesion to the compression collar 20 is increased. Since the thermal expansion of the connecting pipe portion 11 is limited by the compression collar 20, the connecting tube portion 11 expands in the axial direction because it cannot expand in the outer diameter direction. Although it seems that there is no inconvenience at first glance, the outer diameter of the connecting pipe portion 11 that is elongated in the axial direction is maintained even after the temperature is lowered, and the interface between the connecting pipe portion 11 and the compression collar 20 is cooled after cooling. It becomes easy to produce a gap in.
Thus, when the temperature rise and fall are repeated, a gap is formed at the interface between the connecting pipe portion 11 and the compression collar 20 that are in close contact with each other, and there is a concern about adverse effects such as corrosion caused by moisture entering the gap. The
This is the first situation (situation relating to thermal expansion) in which brass is selected as the material of the compression collar 20.

また、圧縮用カラー20は非磁性材料からなることが好ましい。
圧縮用カラー20は円形に導体30を包み込んでいるので、圧縮用カラー20が磁性材料であると電流通電による誘導によって発熱が生じてしまう。圧縮用カラー20の発熱が圧着端子10の温度上昇を招くと電力ロスの原因となる。
例えば、オーステナイト系ステンレスは磁性の極めて弱い材料であるので、誘導が起きうるところに使用する実績があるが、オーステナイト系ステンレスは圧縮加工における冷間塑性加工により磁性が高まることがあり、圧縮用カラー20の材料には適さない。
これが、圧縮用カラー20の材料に真鍮を選択することになる2つ目の事情(非磁性材料としての事情)である。
The compression collar 20 is preferably made of a nonmagnetic material.
Since the compression collar 20 wraps the conductor 30 in a circle, if the compression collar 20 is made of a magnetic material, heat is generated due to induction by current conduction. If the heat generated by the compression collar 20 causes the temperature of the crimping terminal 10 to rise, it causes power loss.
For example, since austenitic stainless steel is a material with extremely weak magnetism, it has a track record of use where induction can occur. Not suitable for 20 materials.
This is the second situation (the situation as a non-magnetic material) in which brass is selected as the material of the compression collar 20.

こうした事情などを踏まえ、圧縮用カラー20の材料として、JIS H3250「銅及び銅合金棒」に規定されているC2600黄銅(7・3真鍮)を用いる。
圧縮用カラー20の材料を真鍮とした場合、以下のメリットがある。
(1)真鍮の熱膨張係数は20×10−6/℃であり、圧着端子10の無酸素銅やタフピッチ銅より大きいので、熱膨張によって接続管部11と圧縮用カラー20の界面に隙間が発生する恐れがない。
(2)真鍮は、銅を70%含有する合金であり、圧着端子10の無酸素銅やタフピッチ銅との電位傾度は略同一であるので、接続管部11と圧縮用カラー20に水分が付着した際に電蝕が起こる恐れがない。
(3)真鍮は冷間加工性(展延性)に優れるので、圧縮加工時に割れなどの破損が生じる恐れがない。
(4)真鍮は汎用銅合金であるので、入手が容易で価格は銅より安価である。
(5)真鍮の電気伝導率(導電率)は、銅を100としての28と極めて低いが、圧縮用カラー20は通電機能を負担していないので問題視する必要はない。
(6)真鍮は、完全な非磁性体である。
これら8項目が、圧縮用カラー20の材料に真鍮を選定する理由である。
In consideration of such circumstances, C2600 brass (7.3 brass) specified in JIS H3250 “Copper and copper alloy rod” is used as the material of the compression collar 20.
When the material of the compression collar 20 is brass, there are the following merits.
(1) The thermal expansion coefficient of brass is 20 × 10 −6 / ° C., which is larger than the oxygen-free copper or tough pitch copper of the crimp terminal 10, so that there is a gap at the interface between the connecting pipe portion 11 and the compression collar 20 due to thermal expansion. There is no fear of it occurring.
(2) Brass is an alloy containing 70% copper, and since the potential gradient of oxygen-free copper and tough pitch copper of the crimp terminal 10 is substantially the same, moisture adheres to the connecting pipe portion 11 and the compression collar 20. There is no risk of electric corrosion.
(3) Since brass is excellent in cold workability (expandability), there is no fear of breakage or the like during compression processing.
(4) Since brass is a general-purpose copper alloy, it is easily available and is cheaper than copper.
(5) The electrical conductivity (conductivity) of brass is as low as 28 with copper as 100, but the compression collar 20 does not bear the current-carrying function, so there is no need to consider it as a problem.
(6) Brass is a complete non-magnetic material.
These eight items are the reasons for selecting brass as the material of the compression collar 20.

以上のように、導体接続構造体100に圧縮用カラー20を用いることで、圧着端子10の接続管部11を導体30の周囲に均一に圧縮することができ、圧着端子10を導体30に良好に圧縮接続することができる。
特に、圧縮用カラー20の外径寸法を、圧着端子10の接続管部11の外径寸法の7/6倍(約1.17倍)以上、4/3倍(約1.33倍)以下にすることで、圧縮率6%以上を満足する強固な圧縮接続を成し、安定した長期通電特性を有する導体接続構造体100を形成することができると共に、少ない圧縮処理回数で接続し易い形状、すなわちブスバー等と螺子で接続できるような形状に加工することが可能になる。すなわち、この範囲の外径寸法の圧縮用カラー20を用いることにより、電気的にも機械的にも接続性が良い接続構造体を得ることができる。
As described above, by using the compression collar 20 for the conductor connection structure 100, the connection tube portion 11 of the crimp terminal 10 can be uniformly compressed around the conductor 30, and the crimp terminal 10 is good for the conductor 30. Can be compressed and connected.
In particular, the outer diameter of the compression collar 20 is 7/6 times (about 1.17 times) or more and 4/3 times (about 1.33 times) or less of the outer diameter of the connecting pipe portion 11 of the crimp terminal 10. By doing so, it is possible to form a strong connection that satisfies a compression ratio of 6% or more, and to form the conductor connection structure 100 having stable long-term current-carrying characteristics, and a shape that can be easily connected with a small number of compression processes. In other words, it is possible to process into a shape that can be connected to a bus bar or the like with a screw. That is, by using the compression collar 20 having an outer diameter in this range, a connection structure having good electrical and mechanical connectivity can be obtained.

以上のようにして、JIS C2805「銅線用圧着端子」、JIS C2806「銅線用裸圧着スリーブ」で規定される圧着端子10の接続管部11に、厚肉筒状の圧縮用カラー20を装着して、JIS C2804「圧縮端子」に規定されている六角圧縮接続と同等の導体接続を可能にした。
例えば100sqmm(mm)、特に150sqmm(mm)を超える大導体に対して、従来の圧着接続の手法で圧着接続を行った場合、導体素線切れ、接触圧力不足、圧着工具誤差の影響などの問題が生じないように慎重な作業が求められたが、圧縮用カラー20を応用することによって、圧着接続用の圧着端子10を用いても、圧縮接続で得られる高信頼性を有する導体接続を可能にした。
本発明にかかる導体接続方法は、100sqmm(mm)を超える大導体に対して特に有効な導体接続に関する技術であるといえる。
As described above, the thick cylindrical compression collar 20 is attached to the connecting pipe portion 11 of the crimp terminal 10 defined by JIS C2805 “Copper wire crimp terminal” and JIS C2806 “Copper wire bare crimp sleeve”. It was installed to enable conductor connection equivalent to the hexagonal compression connection specified in JIS C2804 “compression terminal”.
For example, when a crimping connection is made to a large conductor exceeding 100 sqmm (mm 2 ), especially 150 sqmm (mm 2 ) by the conventional crimping connection method, the conductor wire is broken, the contact pressure is insufficient, the influence of crimping tool error, etc. However, by applying the compression collar 20, even if the crimp terminal 10 for crimp connection is used, the conductor connection having high reliability obtained by the compression connection is required. Made possible.
The conductor connection method according to the present invention can be said to be a technique relating to conductor connection particularly effective for a large conductor exceeding 100 sqmm (mm 2 ).

なお、以上の実施の形態においては、圧着端子10に圧縮用カラー20を装着し、それらを圧縮接続するようにしたが、本発明はこれに限定されるものではなく、予め圧縮用カラーを圧着端子に装着した形状の導体接続具を、鍛造又は鋳造などで成形したものであってもよい。こうすることで、圧縮用カラーの装着の手間が省けるとともに、圧縮用カラーと圧着端子の間の隙間をなくして接続性の向上を図ることができる。   In the above embodiment, the compression collar 20 is attached to the crimp terminal 10 and they are compression-connected. However, the present invention is not limited to this, and the compression collar is crimped in advance. The conductor connector having a shape attached to the terminal may be formed by forging or casting. By doing so, it is possible to save the effort of mounting the compression collar and to eliminate the gap between the compression collar and the crimp terminal and to improve the connectivity.

また、その他、具体的な細部構造等についても適宜に変更可能であることは勿論である。   In addition, it is needless to say that other specific detailed structures can be appropriately changed.

10 圧着端子(導体接続具)
11 接続管部
11a 挿通穴
12 端子部
13 外周側平面
20 圧縮用カラー(管状部材)
20a 挿通穴
21 テーパ部
30 導体
50 第1六角ダイス
60 第2六角ダイス
100 導体接続構造体
10 Crimp terminal (conductor connector)
DESCRIPTION OF SYMBOLS 11 Connection pipe part 11a Insertion hole 12 Terminal part 13 Outer peripheral side plane 20 Collar for compression (tubular member)
20a Insertion hole 21 Tapered portion 30 Conductor 50 First hexagon die 60 Second hexagon die 100 Conductor connection structure

Claims (3)

導体と、前記導体を挿入する接続管部を有する圧着接続用の導体接続具とを、管状部材を用いて圧縮接続する導体接続方法であって、
前記導体接続具は、前記接続管部の外周面と連続する外周側平面を有する略平板状の端子部を備え、前記管状部材は、前記接続管部の外径の4/3倍の外径を有しており、
前記接続管部の外側にその接続管部の外周を覆う圧縮接続用の管状部材を装着し、前記接続管部の内側に前記導体を挿入した後、前記管状部材を断面六角形に少なくとも2回圧縮する圧縮工程を備え
前記圧縮工程は、
前記管状部材の外径を正六角形の対角寸法とする第1六角ダイスで、前記外周側平面に対し60度傾いた方向に前記管状部材を挟み込む第1の圧縮処理と、
前記第1六角ダイスの対辺寸法を正六角形の対角寸法とする第2六角ダイスで、前記外周側平面に対し垂直な方向に前記管状部材を挟み込む第2の圧縮処理と、を含むことを特徴とする導体接続方法。
A conductor connection method for compressively connecting a conductor and a conductor connector for crimping connection having a connecting pipe portion into which the conductor is inserted , using a tubular member ,
The conductor connector includes a substantially flat terminal portion having an outer peripheral side plane continuous with the outer peripheral surface of the connection pipe portion, and the tubular member has an outer diameter 4/3 times the outer diameter of the connection pipe portion. Have
A tubular member for compression connection that covers the outer periphery of the connecting tube portion is attached to the outside of the connecting tube portion, and the conductor is inserted inside the connecting tube portion, and then the tubular member is formed into a hexagonal cross section at least twice. Comprising a compression step to compress ,
The compression step includes
A first compression process for sandwiching the tubular member in a direction inclined by 60 degrees with respect to the outer peripheral side plane, with a first hexagonal die having an outer diameter of the tubular member as a diagonal dimension of a regular hexagon;
And a second compression process of sandwiching the tubular member in a direction perpendicular to the outer peripheral side plane with a second hexagonal die having a diagonal dimension of a regular hexagon as the opposite dimension of the first hexagonal die. Conductor connection method.
前記管状部材は、前記導体接続具よりも熱膨張係数が大きい材料からなることを特徴とする請求項1記載の導体接続方法。 The conductor connection method according to claim 1 , wherein the tubular member is made of a material having a thermal expansion coefficient larger than that of the conductor connector. ケーブルの導体と、この導体を挿入した接続管部およびこの接続管部の外周面から連続する外周側平面を有する略平板状の端子部を有する圧着接続用の導体接続具と、前記接続管部の外側に装着した圧縮接続用の管状部材とからなり、
前記接続管部の外径の4/3倍の外径を有する前記管状部材周囲から、前記管状部材の外径を正六角形の対角寸法とする第1六角ダイスで、前記外周側平面に対し60度傾いた方向に前記管状部材を挟み込んだ後、前記第1六角ダイスの対辺寸法を正六角形の対角寸法とする第2六角ダイスで、前記外周側平面に対し垂直な方向に前記管状部材を挟み込んで、前記管状部材および前記接続管部を正六角形に圧縮し、当該正六角形の一つの面を前記端子部の外周側平面と略面一にしていることを特徴とする導体接続構造体。
A conductor connector for crimping connection having a conductor of a cable, a connecting pipe part into which the conductor is inserted, and a substantially flat terminal part having an outer peripheral side plane continuous from the outer peripheral surface of the connecting pipe part, and the connecting pipe part A compression connecting tubular member mounted on the outside of
From the periphery of the tubular member having an outer diameter 4/3 times the outer diameter of the connecting pipe portion, a first hexagonal die having a diagonal dimension of a regular hexagon as the outer diameter of the tubular member is formed on the outer peripheral side plane. After sandwiching the tubular member in a direction inclined by 60 degrees, a second hexagonal die having the opposite side dimension of the first hexagonal die as a diagonal dimension of a regular hexagon, and the tubular member in a direction perpendicular to the outer peripheral side plane A conductor connection structure characterized by sandwiching a member and compressing the tubular member and the connection pipe portion into a regular hexagon, and one surface of the regular hexagon is substantially flush with an outer peripheral side plane of the terminal portion. body.
JP2010115862A 2010-05-20 2010-05-20 Conductor connection method and conductor connection structure Expired - Fee Related JP5566772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010115862A JP5566772B2 (en) 2010-05-20 2010-05-20 Conductor connection method and conductor connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010115862A JP5566772B2 (en) 2010-05-20 2010-05-20 Conductor connection method and conductor connection structure

Publications (2)

Publication Number Publication Date
JP2011243467A JP2011243467A (en) 2011-12-01
JP5566772B2 true JP5566772B2 (en) 2014-08-06

Family

ID=45409933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010115862A Expired - Fee Related JP5566772B2 (en) 2010-05-20 2010-05-20 Conductor connection method and conductor connection structure

Country Status (1)

Country Link
JP (1) JP5566772B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056672A1 (en) 2013-10-15 2015-04-23 古河電気工業株式会社 Crimp-connection structure, wire harness, method for manufacturing crimp-connection structure, and device for manufacturing crimp-connection structure
US9853367B2 (en) 2013-11-01 2017-12-26 Furukawa Electric Co., Ltd. Wire harness, method of connecting terminal and coated wire, and mold
JP6827015B2 (en) * 2018-06-19 2021-02-10 矢崎総業株式会社 connector
CN114430127A (en) * 2021-12-31 2022-05-03 中国航空工业集团公司西安飞机设计研究所 Waterproof integral crimping terminal

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52230Y2 (en) * 1971-06-01 1977-01-06
JPS573383A (en) * 1980-06-05 1982-01-08 Showa Electric Wire & Cable Co Method of compressing sleeve
JPS6154673U (en) * 1984-09-14 1986-04-12
JPH0487283A (en) * 1990-07-27 1992-03-19 Showa Electric Wire & Cable Co Ltd Pressure connection method for lead wire terminal
JP2010067445A (en) * 2008-09-10 2010-03-25 Asahi Electric Works Ltd Conductive connection device and conductive connection structure

Also Published As

Publication number Publication date
JP2011243467A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
TWI431647B (en) Coil coil and copper wire washing machine with electrical connection mechanism
CN112041160B (en) Termination device for overhead cable
CN102089940A (en) Terminal fitting-equipped electric wire and method of manufacturing terminal fitting-equipped electric wire
JP2013048078A (en) Electric wire with terminal and manufacturing method thereof
TW200525840A (en) Connector and coaxial cable with outer conductor cylindrical section axial compression connection
JP2004193073A (en) Solderless terminal
JP5566772B2 (en) Conductor connection method and conductor connection structure
CN104584341A (en) Terminal connection method for litz wire and litz wire with terminal fitting
JP2005339850A (en) Waterproof structure of terminal for aluminum wire cable
JP2007073491A (en) Aluminum electric wire with terminal, and its manufacturing method
JP2005327690A (en) Terminal crimping structure and terminal crimping method to aluminum cable and manufacturing method of aluminum cable with terminal
CN103140986A (en) Crimping sleeve for crimped connections
WO2021197420A1 (en) Electric energy transmission aluminum part, aluminum connecting part and copper-aluminum connector
JP2013016430A (en) Wire with terminal metal and manufacturing method therefor
KR20220161449A (en) Electrical energy transmission aluminum parts and their processing process
WO2015199078A1 (en) Electrical wire-connecting structure and method for manufacturing electrical wire-connecting structure
JP4128994B2 (en) Tube terminal and manufacturing method thereof
CN111886756A (en) Method for establishing a connection between an electrical connection element for an on-board electrical system of a motor vehicle and a cable of the on-board electrical system of the motor vehicle
JP5008821B2 (en) Electric wire with terminal and manufacturing method thereof
JP5881067B2 (en) Connecting the power cable
JP7380459B2 (en) Electric wire with terminal
CN213460112U (en) Microneedle type lead connecting device
JP2016144306A (en) Apparatus direct connection terminal and cable connection structure
JP2018133194A (en) Terminal-equipped wire
CN214754268U (en) Connecting structure of soft connecting piece and applied this soft connecting piece

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140618

R150 Certificate of patent or registration of utility model

Ref document number: 5566772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees