JP5564341B2 - Rotating electric machine - Google Patents

Rotating electric machine Download PDF

Info

Publication number
JP5564341B2
JP5564341B2 JP2010140050A JP2010140050A JP5564341B2 JP 5564341 B2 JP5564341 B2 JP 5564341B2 JP 2010140050 A JP2010140050 A JP 2010140050A JP 2010140050 A JP2010140050 A JP 2010140050A JP 5564341 B2 JP5564341 B2 JP 5564341B2
Authority
JP
Japan
Prior art keywords
conductive layer
rotor
insulating
core
armature winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010140050A
Other languages
Japanese (ja)
Other versions
JP2012005307A (en
JP2012005307A5 (en
Inventor
功治 尾畑
猛夫 今野
恵輔 安部
宣長 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2010140050A priority Critical patent/JP5564341B2/en
Publication of JP2012005307A publication Critical patent/JP2012005307A/en
Publication of JP2012005307A5 publication Critical patent/JP2012005307A5/ja
Application granted granted Critical
Publication of JP5564341B2 publication Critical patent/JP5564341B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Motor Or Generator Frames (AREA)

Description

本発明は、インバータ駆動に適した回転電機の構造に関する。   The present invention relates to a structure of a rotating electrical machine suitable for driving an inverter.

近年、省エネルギー化の観点から、インバータ電源を用いた回転電機の可変速運転が、電力、産業、自動車、鉄道、家電などの様々な分野で盛んに行われている。   In recent years, from the viewpoint of energy saving, variable speed operation of a rotating electrical machine using an inverter power supply has been actively performed in various fields such as electric power, industry, automobiles, railways, and home appliances.

しかしながら、回転電機では、インバータ駆動に伴い、軸受電食、絶縁、EMI/EMCなどの様々な問題が発生し、これらの問題に対して様々な対策技術が開発されている。   However, in rotating electrical machines, various problems such as electric corrosion of bearings, insulation, and EMI / EMC are generated along with inverter driving, and various countermeasure technologies have been developed for these problems.

インバータ駆動に伴う軸受電食に対しては、固定子巻線(電機子巻線あるいは励磁巻線)から回転子へのインバータコモンモード電圧の静電結合を導電材でシールドすることで、回転子に誘起されるコモンモード電圧を低減し、回転子を支える軸受の内輪と外輪の間に加わる電圧を低減して、軸受の電食を防止する方法がある。   For the electric corrosion of bearings that accompanies inverter drive, the rotor can be shielded with a conductive material by electrostatically coupling the inverter common mode voltage from the stator winding (armature winding or excitation winding) to the rotor. There is a method for preventing the electrolytic corrosion of the bearing by reducing the common mode voltage induced in the bearing and reducing the voltage applied between the inner ring and the outer ring of the bearing supporting the rotor.

しかしながら、電機子巻線やコアの表面に導電層を直接設けると、コアの積層鋼板同士が短絡して渦電流が流れて回転機の損失が増加する恐れがあった。また、大型回転機では最悪の場合、コアが溶解する恐れがあった。   However, when a conductive layer is directly provided on the surface of the armature winding or the core, the laminated steel sheets of the core are short-circuited, and an eddy current flows to increase the loss of the rotating machine. Further, in the worst case for a large rotating machine, the core may be dissolved.

このような問題に対し、特許文献1,2のように、コアをモールド樹脂で絶縁してから、導電層を設置する方法が有効である。   For such a problem, as in Patent Documents 1 and 2, it is effective to install the conductive layer after insulating the core with the mold resin.

特開2004−297876号公報JP 2004-297876 A 特開2009−118628号公報JP 2009-118628 A

しかしながら、特許文献1,2においては、コア全体を絶縁するため、高周波に対する接地が適切に行えていない場合にはコアが浮動電位となり、この結果、導電層がかえって電極となり、固定子巻線のコモンモード電圧が回転子に誘起されやすくなる恐れがあった。   However, in Patent Documents 1 and 2, since the entire core is insulated, if grounding for high frequency is not properly performed, the core has a floating potential. As a result, the conductive layer becomes an electrode, and the stator winding There is a possibility that the common mode voltage is likely to be induced in the rotor.

また、導電層でコア全体を覆っていたため、高周波交番磁束が鎖交すると、導電層に高周波渦電流が流れ発熱し、この結果、導電層の下部の絶縁層が焼損する恐れがあった。   Further, since the entire core is covered with the conductive layer, when the high-frequency alternating magnetic flux is linked, a high-frequency eddy current flows through the conductive layer and heat is generated. As a result, the insulating layer below the conductive layer may be burned out.

さらに、近年、インバータのスイッチングのdV/dtが高くなると、静電シールド部にi=C・dV/dtの変位電流が流れ、この電流が加わる事でさらに静電シールドが発熱し、導電層下部の絶縁層の焼損が加速される恐れがあった。   Further, in recent years, when the dV / dt of switching of the inverter becomes high, a displacement current of i = C · dV / dt flows through the electrostatic shield part, and the electrostatic shield further generates heat by adding this current, and the lower part of the conductive layer There was a risk of burning out of the insulating layer.

以上の理由から、従来の方法では、近年の高速・高周波インバータ駆動回転機の軸受の電食を防止することが困難になっていた。   For the above reasons, it has been difficult for conventional methods to prevent electrolytic corrosion of bearings in recent high-speed, high-frequency inverter-driven rotating machines.

本発明の目的は、高速高周波インバータで駆動する回転電機においても、電機子巻線あるいは励磁巻線から発生する高周波電界を静電シールドし、インバータ駆動に伴う軸受の電食を防止し、信頼性の高いインバータ駆動回転電機システムを提供することである。   An object of the present invention is to provide a high-frequency electric field generated from an armature winding or an excitation winding by electrostatic shielding even in a rotating electric machine driven by a high-speed high-frequency inverter, thereby preventing the electric corrosion of the bearing caused by the inverter driving and improving reliability. It is to provide a high-speed inverter-driven rotating electrical machine system.

本発明の目的は以下の方法によって実現できる。すなわち、電機子巻線あるいは励磁巻線から発生する磁束の流れに対し、垂直方向の導電率が異なる導電層を設けた回転電機であり、例えばこの垂直方向に異なる導電率は、磁束の流れに対し垂直方向に導電材と絶縁を交互に設けることで実現する。具体的には、回転軸方向に対し平行に導電材と絶縁を交互配置する、回転軸方向に対し垂直に導電材と絶縁を交互配置する、回転軸方向に対し導電材と絶縁を格子状に配置する。また、上記の導電層はいずれも電機子巻線あるいは励磁巻線を納めたコアの軸方向端部でコアに接続する。以上の導電層は、電機子巻線あるいは励磁巻線を納めたコア表面に設けた絶縁層表面か、あるいは表面を絶縁処理した磁性コアの表面に設ける。絶縁層は絶縁樹脂をコア表面に塗布するかあるいは導電材料を表面に塗布した絶縁シートをコア表面に貼り付けて形成する。絶縁層の表面に設ける導電層は所定のパターンを刻んだマスクの上から塗布して形成するか、あるいは可動式のノズルで導電材料の所定のパターンを描画する。あるいは、絶縁シートを使用する場合には、予め絶縁シート表面に導電材料を塗布あるいは貼り付けることができる。なお、この際、特にスロット部とコイルエンド部では導電塗料のパターンを変え、コイルエンド部で導電層部分の総面積を広くした回転電機によって実現できる。   The object of the present invention can be realized by the following method. That is, it is a rotating electric machine provided with conductive layers having different conductivity in the vertical direction with respect to the flow of magnetic flux generated from the armature winding or the excitation winding. On the other hand, this is realized by alternately providing conductive material and insulation in the vertical direction. Specifically, the conductive material and insulation are alternately arranged in parallel to the rotation axis direction, the conductive material and insulation are alternately arranged perpendicular to the rotation axis direction, and the conductive material and insulation are arranged in a lattice pattern in the rotation axis direction. Deploy. Further, each of the conductive layers is connected to the core at the axial end of the core containing the armature winding or the excitation winding. The above conductive layer is provided on the surface of the insulating layer provided on the surface of the core containing the armature winding or the excitation winding, or on the surface of the magnetic core whose surface is insulated. The insulating layer is formed by applying an insulating resin to the core surface or attaching an insulating sheet having a conductive material applied to the surface to the core surface. The conductive layer provided on the surface of the insulating layer is formed by applying from a mask engraved with a predetermined pattern, or a predetermined pattern of the conductive material is drawn with a movable nozzle. Or when using an insulating sheet, a conductive material can be previously apply | coated or affixed on the surface of an insulating sheet. In this case, it can be realized by a rotating electric machine in which the pattern of the conductive paint is changed particularly in the slot portion and the coil end portion and the total area of the conductive layer portion is widened in the coil end portion.

本発明によって、高速高周波のインバータ駆動する回転電機においても電機子巻線あるいは励磁巻線から発生する高周波電界を静電シールドし、回転子の軸受の電食を防止し、信頼性の高い高効率可変速インバータ駆動回転電機システムを提供することができる。   According to the present invention, even in a rotating electric machine driven by a high-speed and high-frequency inverter, a high-frequency electric field generated from an armature winding or an excitation winding is electrostatically shielded to prevent galvanic corrosion of the rotor bearing, and high reliability and high efficiency. A variable-speed inverter-driven rotating electrical machine system can be provided.

本発明の実施例1による回転電機の軸方向断面構造図である。It is an axial direction cross-section figure of the rotary electric machine by Example 1 of this invention. 図1のA−A’断面図である。It is A-A 'sectional drawing of FIG. 図1のB−B’断面図である。It is B-B 'sectional drawing of FIG. 本発明の実施例2による回転電機の軸方向断面構造図である。It is an axial cross-section figure of the rotary electric machine by Example 2 of this invention. 図4のA−A’断面図である。FIG. 5 is a cross-sectional view taken along line A-A ′ of FIG. 4. 図4のB−B’断面図である。FIG. 5 is a B-B ′ cross-sectional view of FIG. 4. 本発明の実施例3による回転電機の軸方向断面構造図である。It is an axial sectional structure figure of the rotary electric machine by Example 3 of this invention. 図7のA−A’断面図である。It is A-A 'sectional drawing of FIG. 図7のB−B’断面図である。It is B-B 'sectional drawing of FIG. 本発明の実施例4による回転電機の軸方向断面構造図である。It is an axial cross-section figure of the rotary electric machine by Example 4 of this invention. 図10のA−A’視図である。It is A-A 'view of FIG. 本発明の実施例5による回転電機の軸方向断面構造図である。It is an axial direction cross-section figure of the rotary electric machine by Example 5 of this invention. 図12のA−A’視図である。It is A-A 'view of FIG. 本発明の実施例6による回転電機の軸方向断面構造図である。It is an axial direction cross-section figure of the rotary electric machine by Example 6 of this invention. 図14のA−A’視図である。It is A-A 'view of FIG. 図14のB−B’視図である。It is a B-B 'view of FIG. 本発明の実施例7による回転電機の軸方向断面構造図である。It is an axial direction cross-section figure of the rotary electric machine by Example 7 of this invention. 図17のA−A’断面図である。It is A-A 'sectional drawing of FIG. 本発明の実施例8の方法による絶縁層製作工程図である。It is an insulating-layer manufacturing process figure by the method of Example 8 of this invention. 本発明の実施例8の方法による導電層製作工程図である。It is a conductive layer manufacturing process figure by the method of Example 8 of this invention. 図20のA−A’断面図である。It is A-A 'sectional drawing of FIG. 図20のB−B’断面図である。It is B-B 'sectional drawing of FIG. 導電材料を表面に塗布した絶縁シートフィルムInsulating sheet film with conductive material coated on the surface 導電材料を表面にパターン状に塗布した絶縁シートフィルムInsulating sheet film with conductive material coated in a pattern on the surface 導電材料を表面に配置したボビンBobbin with conductive material on the surface 図25のA−A’断面図である。It is A-A 'sectional drawing of FIG. 図25のB−B’断面図である。It is B-B 'sectional drawing of FIG.

以下、図面を用いて本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に実施例1の回転電機1を示す。本回転電機は電機子巻線7を納めた固定子コア2と、電機子巻線7から発生した回転磁束に同期して回転する回転子3および回転子軸4からなり、回転子軸4は軸受5,6によって機械的に支持される。なお、電機子巻線7には、図示しないインバータから三相交流電圧が印加され、流れる電流によって回転磁束が作られる。   FIG. 1 shows a rotating electrical machine 1 according to the first embodiment. This rotary electric machine includes a stator core 2 in which an armature winding 7 is housed, a rotor 3 and a rotor shaft 4 that rotate in synchronization with a rotating magnetic flux generated from the armature winding 7, and the rotor shaft 4 is It is mechanically supported by bearings 5 and 6. A three-phase AC voltage is applied to the armature winding 7 from an inverter (not shown), and a rotating magnetic flux is generated by the flowing current.

回転子3に相対する固定子コア2の内周面には、絶縁層8が、周方向に360°に亘って配置される。また、コア2から軸方向に張り出したコイル7のコイルエンド部にも、絶縁層9,10が、周方向に360°に亘って配置される。この絶縁層8,9,10の表面には、それぞれ導電層11,12,13が配置される。導電層11,12,13は軸方向端部14.15でコアと接続される。コア2はコア外周面に接続されたハウジング16を介して接地される。   On the inner peripheral surface of the stator core 2 facing the rotor 3, the insulating layer 8 is arranged over 360 ° in the circumferential direction. Further, the insulating layers 9 and 10 are also arranged in the circumferential direction over 360 ° in the coil end portion of the coil 7 projecting in the axial direction from the core 2. Conductive layers 11, 12, and 13 are disposed on the surfaces of the insulating layers 8, 9, and 10, respectively. The conductive layers 11, 12, and 13 are connected to the core at the axial end 14.15. The core 2 is grounded via a housing 16 connected to the core outer peripheral surface.

図2は、図1のコア2の中央部を軸に垂直方向に断面したA−A’断面図である。   FIG. 2 is a cross-sectional view taken along the line A-A ′ in which the central portion of the core 2 of FIG.

この実施例1では、固定子コア2の内周のうち、スロット開口部に磁束18の流れに対し垂直方向に複数条(図では3条)づつの導電層11を設けている。このようにすることで、スロット開口部から漏れ、ロータ3に誘導される高周波コモンモード電圧を遮蔽できる。なお、これらは、内周面の周方向に、導電材料と絶縁層(ここでは空気)が交互に配置されるように、周方向に間隔を置きながら、軸方向に細長い多数(図では18条)の導電層11を配置している。これにより、固定子コア2の内周面において、電機子巻線7で作られた磁束あるいは回転子から発せられた磁束と垂直方向(周方向)には、導電層が広がりを持つこと無く、導電層と絶縁層が交互に配置されることによって、電機子巻線7で作られた磁束あるいは回転子から発せられた磁束による渦電流の発生を防止している。さらに、導電層と電機子巻線の間の静電容量を低減し、導電層を流れて接地部分14、15に流れ込む変位電流量を抑制することで、接地部分付近の導電層の発熱量を低減することができる。なお、スロット開口部では、導電層の幅を2mm以下にすると渦電流と変位電流(i=Cdv/dt)を低減し、導電層の発熱を防止することができる。一方、周方向の導電層の幅を0.5mm以上にしないと、高周波コモンモード電圧の遮蔽効果が低下する。したがって、本発明では、スロット開口部の導電層の幅を0.5〜2mmにすることで、渦電流や変位電流の抑制と高周波コモンモード電圧の遮蔽を効果的に行うことができる。なお、導電層と導電層の間に配置する絶縁層の幅は0.1mm以上あれば渦電流を十分絶縁できる。   In the first embodiment, among the inner periphery of the stator core 2, a plurality of (three in the figure) conductive layers 11 are provided in the slot opening in the direction perpendicular to the flow of the magnetic flux 18. By doing in this way, the high frequency common mode voltage which leaks from the slot opening part and is induced | guided | derived to the rotor 3 can be shielded. These are many elongated in the axial direction (18 in the figure) while being spaced apart in the circumferential direction so that the conductive material and the insulating layer (here, air) are alternately arranged in the circumferential direction of the inner circumferential surface. ) Conductive layer 11 is disposed. Thereby, on the inner peripheral surface of the stator core 2, the conductive layer has no spread in the direction perpendicular to the magnetic flux generated by the armature winding 7 or the magnetic flux generated from the rotor (circumferential direction) By alternately disposing conductive layers and insulating layers, generation of eddy currents due to magnetic flux generated by the armature winding 7 or magnetic flux generated from the rotor is prevented. Furthermore, by reducing the capacitance between the conductive layer and the armature winding and suppressing the amount of displacement current flowing through the conductive layer and flowing into the ground portions 14 and 15, the amount of heat generated in the conductive layer near the ground portion can be reduced. Can be reduced. In the slot opening, when the width of the conductive layer is 2 mm or less, the eddy current and the displacement current (i = Cdv / dt) can be reduced, and heat generation of the conductive layer can be prevented. On the other hand, unless the width of the conductive layer in the circumferential direction is 0.5 mm or more, the shielding effect of the high frequency common mode voltage is lowered. Therefore, in the present invention, by setting the width of the conductive layer in the slot opening to 0.5 to 2 mm, it is possible to effectively suppress eddy currents and displacement currents and shield high frequency common mode voltages. Note that the eddy current can be sufficiently insulated if the width of the insulating layer disposed between the conductive layers is 0.1 mm or more.

図3は、図1のコイルエンド部を、軸に垂直方向に断面したB−B’断面図である。この実施例1では、固定子のコイルエンド部の内周面には、周方向に一様に磁束18の流れに対し垂直方向となるように間隔を置きながら、軸方向に細長い多数(図では42条)の導電層13を縞模様に配置している。このようにすることで、コイルエンド部から漏れ、ロータ3に誘導される高周波コモンモード電圧を遮蔽できる。また、コイルエンド内周面の周方向には、導電層が広がりを持つこと無く、導電層と絶縁層が交互に配置されており、電機子巻線7で作られたコイルエンド漏れ磁束あるいは回転子から発せられた磁束による渦電流の発生を防止している。さらに、導電層と電機子巻線の間の静電容量を低減し、導電層を流れて接地部分14,15に流れ込む変位電流量を抑制することで、接地部分付近の導電層の発熱量を低減することができる。   FIG. 3 is a cross-sectional view taken along the line B-B ′ in which the coil end portion of FIG. 1 is cut in a direction perpendicular to the axis. In the first embodiment, on the inner peripheral surface of the coil end portion of the stator, a large number (in the drawing) are elongated in the axial direction while being spaced apart so as to be perpendicular to the flow of the magnetic flux 18 uniformly in the circumferential direction. 42) conductive layers 13 are arranged in a striped pattern. By doing in this way, the high frequency common mode voltage which leaks from a coil end part and is induced | guided | derived to the rotor 3 can be shielded. Further, the conductive layer and the insulating layer are alternately arranged in the circumferential direction of the coil end inner peripheral surface, and the coil end leakage magnetic flux or the rotation formed by the armature winding 7 is alternately arranged. Generation of eddy current due to magnetic flux generated from the child is prevented. Furthermore, by reducing the capacitance between the conductive layer and the armature winding and suppressing the amount of displacement current flowing through the conductive layer and flowing into the ground portions 14 and 15, the amount of heat generated in the conductive layer near the ground portion can be reduced. Can be reduced.

なお、図面ではコイルエンド部の導電層の幅をスロット部の導電層の幅と同じにしているが、コイルエンド部では磁束および電束量がスロット部よりも少ないことから、スロット部よりも導電層の幅を広くしても効果がある。具体的には0.5mm〜概ね固定子のティース17の幅までの範囲であれば渦電流や変位電流の抑制と高周波コモンモード電圧の遮蔽を効果的に行うことができる。なお、導電層と導電層の間に配置する絶縁層の幅は0.1mm以上あれば渦電流を十分絶縁できる。しかし、1mm以上では遮蔽効果が低下するため、本発明では0.1〜1mmの範囲にすることが望ましい。   In the drawing, the width of the conductive layer in the coil end portion is the same as the width of the conductive layer in the slot portion. However, the coil end portion has a smaller amount of magnetic flux and electric flux than the slot portion. Increasing the layer width is also effective. Specifically, in the range from 0.5 mm to approximately the width of the stator teeth 17, eddy current and displacement current can be suppressed and high-frequency common mode voltage can be effectively shielded. Note that the eddy current can be sufficiently insulated if the width of the insulating layer disposed between the conductive layers is 0.1 mm or more. However, since the shielding effect is reduced at 1 mm or more, it is desirable that the thickness be in the range of 0.1 to 1 mm in the present invention.

図4は、本発明の実施例2による回転電機の軸方向断面構造図である。   FIG. 4 is an axial sectional view of the rotating electrical machine according to the second embodiment of the present invention.

本実施例2の回転電機は、電機子巻線407を納めた固定子コア402と、電機子巻線407から発生した回転磁束に同期して回転する回転子403および回転子軸404からなり、回転子軸404は、軸受405,406によって機械的に支持される。なお、電機子巻線407には、図示しないインバータから三相交流電圧が印加され、流れる電流によって回転磁束が作られる。   The rotating electrical machine according to the second embodiment includes a stator core 402 in which an armature winding 407 is housed, a rotor 403 that rotates in synchronization with a rotating magnetic flux generated from the armature winding 407, and a rotor shaft 404. The rotor shaft 404 is mechanically supported by bearings 405 and 406. A three-phase AC voltage is applied to the armature winding 407 from an inverter (not shown), and a rotating magnetic flux is created by the flowing current.

電機子巻線を納めた固定子コア402の内周面には、絶縁層408が周方向に360°に亘って配置される。また、コア402から軸方向に張り出したコイル407のコイルエンド部にも絶縁層409,410が周方向に360°に亘って配置される。この絶縁層408,409,410の表面には、それぞれ導電層411,412,413が配置される。   On the inner peripheral surface of the stator core 402 in which the armature winding is accommodated, an insulating layer 408 is disposed over 360 ° in the circumferential direction. Insulating layers 409 and 410 are also arranged at 360 ° in the circumferential direction at the coil end portion of the coil 407 projecting in the axial direction from the core 402. Conductive layers 411, 412, and 413 are disposed on the surfaces of the insulating layers 408, 409, and 410, respectively.

これらの導電層411,412,413は、いずれも周方向に360°に亘って連続した細いリング状であって、軸方向に間隔を置きながら、多数(図では11輪)のリング状導電層411,412,413が配置されている。導電層411、412、413は軸方向端部414.415でコアと接続される。コア402はコア外周面に接続されたハウジング416を介して接地される。   These conductive layers 411, 412, and 413 are all thin ring-shaped continuous over 360 ° in the circumferential direction, and a large number (in the figure, 11 rings) of ring-shaped conductive layers are spaced apart in the axial direction. 411, 412 and 413 are arranged. The conductive layers 411, 412, and 413 are connected to the core at axial end portions 414.415. The core 402 is grounded via a housing 416 connected to the core outer peripheral surface.

このように、実施例2においては、電機子巻線407からロータ403に誘導される高周波コモンモード電圧を遮蔽できる。また、電機子巻線407で作られた磁束あるいは回転子から発せられた磁束と垂直方向(軸方向)には、導電層が広がりを持つこと無く、導電層と絶縁層が交互に配置されるているため、電機子巻線407で作られた磁束あるいは回転子から発せられた磁束による渦電流の発生を防止できる。さらに、導電層と電機子巻線の間の静電容量を低減し、導電層を流れて接地部分14、15に流れ込む変位電流量を抑制することで、接地部分付近の導電層の発熱量を低減することができる。   Thus, in Example 2, the high frequency common mode voltage induced from the armature winding 407 to the rotor 403 can be shielded. In addition, the conductive layer and the insulating layer are alternately arranged in the direction (axial direction) perpendicular to the magnetic flux generated by the armature winding 407 or the magnetic flux generated from the rotor without extending the conductive layer. Therefore, the generation of eddy currents due to the magnetic flux generated by the armature winding 407 or the magnetic flux generated from the rotor can be prevented. Furthermore, by reducing the capacitance between the conductive layer and the armature winding and suppressing the amount of displacement current flowing through the conductive layer and flowing into the ground portions 14 and 15, the amount of heat generated in the conductive layer near the ground portion can be reduced. Can be reduced.

図5は、図4のコア402の中央部を軸に垂直方向に断面したA−A’断面図である。   FIG. 5 is a cross-sectional view taken along the line A-A ′ in which the central portion of the core 402 in FIG. 4 is cut in a direction perpendicular to the axis.

リング状の導電層411は、固定子コア402の内周面に、周方向360°に配置されている。しかし、図4で示したように、この導電層411は、軸方向への広がりを持たず(ここでは空気で絶縁されている)、渦電流の発生を防止している。   The ring-shaped conductive layer 411 is disposed on the inner peripheral surface of the stator core 402 in the circumferential direction 360 °. However, as shown in FIG. 4, the conductive layer 411 does not expand in the axial direction (here, insulated by air), and prevents the generation of eddy currents.

ところが、反面、コアとの導通がとれなくなる問題が発生する。このため、実施例2では、軸方向に細長い複数(図では6本)の短絡線501が設けられ、軸方向に独立した5条の導電層411間を接続すると共に、コア402とコアの軸方向端部414.415において電気的に接続している。   However, on the other hand, there arises a problem that conduction with the core cannot be obtained. Therefore, in the second embodiment, a plurality of (six in the figure) short-circuit wires 501 that are elongated in the axial direction are provided to connect the five conductive layers 411 that are independent in the axial direction, and between the core 402 and the core shaft. Electrical connection is made at the direction end 414.415.

図6は、図4のコイルエンド部を、軸に垂直方向に断面したB−B’断面図である。   FIG. 6 is a cross-sectional view taken along the line B-B ′ of the coil end portion of FIG. 4 taken in the direction perpendicular to the axis.

コイルエンド部においても、導電層412,413は周方向に360°繋がるリング状であり、図4に示したように、これらの導電層412,413も、軸方向への広がりを持たず(ここでは空気で絶縁されている)、渦電流の発生を防止している。また、コア部と同様に、コアとの導通がとれなくなる問題が発生する。このため、実施例2では軸方向に短絡線601が設けられ、軸方向に独立した導電層412,413間を接続すると共に、コア402とコアの軸方向端部414.415において電気的に接続している。   Also in the coil end portion, the conductive layers 412 and 413 are ring-shaped connected to each other by 360 ° in the circumferential direction, and as shown in FIG. 4, these conductive layers 412 and 413 also do not expand in the axial direction (here Insulating with air) prevents the generation of eddy currents. Further, similarly to the core part, there arises a problem that conduction with the core cannot be obtained. For this reason, in the second embodiment, the short-circuit line 601 is provided in the axial direction, and the conductive layers 412 and 413 that are independent in the axial direction are connected to each other, and the core 402 is electrically connected at the axial end portion 414.415 of the core. doing.

図7に実施例3の回転電機701を示す。本回転電機は電機子巻線707を納めた固定子コア702と、電機子巻線707から発生した回転磁束に同期して回転する回転子703および回転子軸704からなり、回転子軸704は軸受705、706によって機械的に支持される。なお、電機子巻線707には、図示しないインバータから三相交流電圧が印加され、流れる電流によって回転磁束が作られる。電機子巻線を納めた固定子コア702と回転子が相対する固定子コア702内周面には絶縁層708が周方向に360°設けられる。また、コアから軸方向に突き出したコイル707のコイルエンド部にも絶縁層709、710が周方向に360°設けられる。この絶縁層708、709、710の表面にはそれぞれ導電層711、712、713が軸方向に導電材料と絶縁(ここでは空気)が交互になるように配置されている。   FIG. 7 shows a rotating electrical machine 701 according to the third embodiment. This rotating electric machine includes a stator core 702 in which an armature winding 707 is housed, a rotor 703 that rotates in synchronization with a rotating magnetic flux generated from the armature winding 707, and a rotor shaft 704. It is mechanically supported by bearings 705 and 706. Note that a three-phase AC voltage is applied to the armature winding 707 from an inverter (not shown), and a rotating magnetic flux is created by the flowing current. An insulating layer 708 is provided at 360 ° in the circumferential direction on the inner peripheral surface of the stator core 702 facing the rotor and the stator core 702 containing the armature winding. Insulating layers 709 and 710 are also provided in the circumferential direction at 360 ° in the coil end portion of the coil 707 protruding in the axial direction from the core. Conductive layers 711, 712, and 713 are disposed on the surfaces of the insulating layers 708, 709, and 710, respectively, so that the conductive material and the insulation (here, air) are alternately arranged in the axial direction.

これらの導電層711,712,713は、いずれも周方向に360°に亘って連続した細いリング状であって、軸方向に間隔を置きながら、多数(図では11輪)のリング状導電層711,712,713が配置されている。導電層711,712,713は軸方向端部714,715でコアと接続される。コア702はコア外周面に接続されたハウジング716を介して接地される。   These conductive layers 711, 712, and 713 are all thin ring-shaped continuous over 360 ° in the circumferential direction, and a large number (in the figure, 11 rings) of ring-shaped conductive layers are spaced apart in the axial direction. 711, 712, 713 are arranged. The conductive layers 711, 712, 713 are connected to the core at axial ends 714, 715. The core 702 is grounded via a housing 716 connected to the outer peripheral surface of the core.

このようにすることで、電機子巻線707からロータ703に誘導される高周波コモンモード電圧を遮蔽できる。また、電機子巻線707で作られた磁束あるいは回転子から発せられた磁束と垂直方向(軸方向ならびに周方向)には、導電層が広がりを持つこと無く、電機子巻線7で作られた磁束あるいは回転子から発せられた磁束による渦電流の発生を防止している。さらに、導電層と電機子巻線の間の静電容量を低減し、導電層を流れて接地部分714、715に流れ込む変位電流量を抑制することで、接地部分付近の導電層の発熱量を低減することができる。   By doing in this way, the high frequency common mode voltage induced | guided | derived to the rotor 703 from the armature winding 707 can be shielded. In addition, the conductive layer is not spread in the direction perpendicular to the magnetic flux generated by the armature winding 707 or the magnetic flux generated from the rotor (axial direction and circumferential direction), and the armature winding 7 is used. The generation of eddy currents due to the magnetic flux generated from the rotor or the magnetic flux generated from the rotor is prevented. Furthermore, by reducing the capacitance between the conductive layer and the armature winding and suppressing the amount of displacement current flowing through the conductive layer and into the ground portions 714 and 715, the amount of heat generated in the conductive layer near the ground portion can be reduced. Can be reduced.

ところで、実施例3では、さらに導電層711、712、713の表面に絶縁層7080、7090、7100が配置されており、この表面に導電層7110、7120、7130が内周面の周方向に、導電材料と絶縁層(ここでは空気)が交互に格子状になるように配置される。このように、径方向に二重に独立した導電層を格子状にすることで、電機子巻線707からロータ703に誘導される高周波コモンモード電圧をより効率的に遮蔽できる。   By the way, in Example 3, insulating layers 7080, 7090, and 7100 are further arranged on the surfaces of the conductive layers 711, 712, and 713, and the conductive layers 7110, 7120, and 7130 are arranged on the surface in the circumferential direction of the inner peripheral surface. The conductive material and the insulating layer (here, air) are alternately arranged in a lattice pattern. In this way, by making the conductive layers doubly independent in the radial direction into a lattice shape, the high-frequency common mode voltage induced from the armature winding 707 to the rotor 703 can be shielded more efficiently.

図8に図7のコア部のA−A’断面図を示す。導電層711は軸方向に短絡線801で相互に接続されている。一方、内周側の導電層7110は導電材料と絶縁(ここでは空気)が周方向に交互に配置されている。このため、導電層7110でも、電機子巻線707で作られた磁束あるいは回転子から発せられた磁束と垂直方向(軸方向ならびに周方向)には、導電層が広がりを持つこと無く、導電層と絶縁層が交互に配置されることにより、電機子巻線707で作られた磁束あるいは回転子から発せられた磁束による渦電流の発生を防止している。また、導電層と電機子巻線の間の静電容量を低減し、導電層を流れて接地部分714、715に流れ込む変位電流量を抑制することで、接地部分付近の導電層の発熱量を低減している。   FIG. 8 is a cross-sectional view taken along the line A-A ′ of the core portion of FIG. 7. The conductive layers 711 are connected to each other by a short-circuit line 801 in the axial direction. On the other hand, in the conductive layer 7110 on the inner peripheral side, a conductive material and insulation (here, air) are alternately arranged in the circumferential direction. For this reason, even in the conductive layer 7110, the conductive layer does not spread in the direction (axial direction and circumferential direction) perpendicular to the magnetic flux generated by the armature winding 707 or the magnetic flux generated from the rotor. And insulating layers are alternately arranged to prevent generation of eddy current due to magnetic flux generated by the armature winding 707 or magnetic flux generated from the rotor. In addition, the capacitance between the conductive layer and the armature winding is reduced, and the amount of displacement current flowing through the conductive layer and flowing into the ground portions 714 and 715 is suppressed, thereby reducing the heat generation amount of the conductive layer near the ground portion. Reduced.

図9に図7のコア部のB−B’断面図を示す。導電層713は軸方向に短絡線901で相互に接続されている。一方、内周側の導電層7130は導電材料と絶縁(ここでは空気)が周方向に交互に配置されされている。このため、導電層7130でも、電機子巻線707で作られた磁束あるいは回転子から発せられた磁束による渦電流の発生を防止している。   FIG. 9 shows a B-B ′ cross-sectional view of the core portion of FIG. 7. The conductive layers 713 are connected to each other by a short-circuit line 901 in the axial direction. On the other hand, in the conductive layer 7130 on the inner peripheral side, a conductive material and insulation (here, air) are alternately arranged in the circumferential direction. For this reason, the conductive layer 7130 also prevents the generation of eddy currents due to the magnetic flux generated by the armature winding 707 or the magnetic flux generated from the rotor.

図10に実施例4の回転電機1001を示す。実施例1〜3では、ラジアルギャップ型回転電機の導電層パターンであった。しかし、アキシャルギャップ型の回転電機でもインバータ駆動に伴う軸受電食問題が発生するため、対策が必要である。実施例4の回転電機では電機子巻線1007を納めた固定子コア1002と、電機子巻線1007から発生した回転磁束に同期して回転する回転子1003および回転子軸1004からなり、回転子軸1004は軸受1005、1006によって機械的に支持される。なお、電機子巻線107には、図示しないインバータから三相交流電圧が印加され、流れる電流によって回転磁束が作られる。電機子巻線を納めた固定子コア1002と回転子が相対する固定子コア1002表面全体に絶縁層1008が設けられる。この絶縁層1008の表面に導電層1011が配置される。   FIG. 10 shows a rotating electrical machine 1001 according to the fourth embodiment. In Examples 1-3, it was the conductive layer pattern of the radial gap type rotary electric machine. However, an axial gap type rotating electrical machine also has a problem of bearing corrosion due to the inverter drive, so a countermeasure is necessary. The rotating electric machine according to the fourth embodiment includes a stator core 1002 in which an armature winding 1007 is housed, a rotor 1003 that rotates in synchronization with a rotating magnetic flux generated from the armature winding 1007, and a rotor shaft 1004. The shaft 1004 is mechanically supported by bearings 1005 and 1006. A three-phase AC voltage is applied to the armature winding 107 from an inverter (not shown), and a rotating magnetic flux is generated by the flowing current. An insulating layer 1008 is provided on the entire surface of the stator core 1002 where the rotor faces the stator core 1002 containing the armature winding. A conductive layer 1011 is disposed on the surface of the insulating layer 1008.

図11に実施例4の導電層1011のパターンを示す。実施例4では、32条の導電層1011が放射状に配置されている。導電層1011は、周方向には導電材料と絶縁(ここでは空気)が交互に配置されているため、渦電流の発生を防止できる。なお、導電層は内径側と外径側でコアと接続されている。   FIG. 11 shows a pattern of the conductive layer 1011 of Example 4. In Example 4, 32 conductive layers 1011 are arranged radially. In the conductive layer 1011, conductive material and insulation (here, air) are alternately arranged in the circumferential direction, so that generation of eddy current can be prevented. The conductive layer is connected to the core on the inner diameter side and the outer diameter side.

図12に実施例5の回転電機1201を示す。実施例5の回転電機では電機子巻線1207を納めた固定子コア1202と、電機子巻線1207から発生した回転磁束に同期して回転する回転子1203および回転子軸1204からなり、回転子軸1204は軸受1205、1206によって機械的に支持される。なお、電機子巻線1207には、図示しないインバータから三相交流電圧が印加され、流れる電流によって回転磁束が作られる。電機子巻線を納めた固定子コア1202と回転子が相対する固定子コア1202表面全体に絶縁層1208が設けられる。この絶縁層1208の表面に導電層1211が配置される。   FIG. 12 shows a rotating electrical machine 1201 according to the fifth embodiment. The rotating electric machine according to the fifth embodiment includes a stator core 1202 in which an armature winding 1207 is housed, a rotor 1203 that rotates in synchronization with a rotating magnetic flux generated from the armature winding 1207, and a rotor shaft 1204. The shaft 1204 is mechanically supported by bearings 1205 and 1206. Note that a three-phase AC voltage is applied to the armature winding 1207 from an inverter (not shown), and a rotating magnetic flux is created by the flowing current. An insulating layer 1208 is provided on the entire surface of the stator core 1202 facing the rotor and the stator core 1202 containing the armature winding. A conductive layer 1211 is disposed on the surface of the insulating layer 1208.

図12に実施例5の導電層1211のパターンを示す。実施例5では導電層が同心円状に配置されている。導電層は径方向に導電材料と絶縁(ここでは空気)が交互に配置されているため、渦電流の発生を防止できる。なお、同心円状に導電材料を配置する実施例5ではコアとの導通のため、少なくとも1本の短絡線1212が設けられ、内径側から外径側の導電層をコアと接続している。   FIG. 12 shows a pattern of the conductive layer 1211 of Example 5. In Example 5, the conductive layers are arranged concentrically. Since the conductive layer and the insulating material (here, air) are alternately arranged in the radial direction in the conductive layer, generation of eddy current can be prevented. In Example 5 in which conductive materials are arranged concentrically, at least one short-circuit wire 1212 is provided for connection with the core, and the conductive layer from the inner diameter side to the outer diameter side is connected to the core.

図14は、実施例6の回転電機1401を示す。実施例6の回転電機では電機子巻線1407を納めた固定子コア1402と、電機子巻線1407から発生した回転磁束に同期して回転する回転子1403および回転子軸1404からなり、回転子軸1404は軸受1405、1406によって機械的に支持される。なお、電機子巻線1407には、図示しないインバータから三相交流電圧が印加され、流れる電流によって回転磁束が作られる。電機子巻線を納めた固定子コア1402と回転子が相対する固定子コア1402表面全体に絶縁層1408が設けられる。この絶縁層1408の表面に導電層1411が配置される。さらに、この導電層1411の表面には絶縁層14080が配置され、この上に導電層14110が配置される。   FIG. 14 illustrates a rotating electrical machine 1401 according to the sixth embodiment. The rotating electric machine according to the sixth embodiment includes a stator core 1402 in which an armature winding 1407 is housed, a rotor 1403 that rotates in synchronization with a rotating magnetic flux generated from the armature winding 1407, and a rotor shaft 1404. The shaft 1404 is mechanically supported by bearings 1405 and 1406. A three-phase AC voltage is applied to the armature winding 1407 from an inverter (not shown), and a rotating magnetic flux is generated by the flowing current. An insulating layer 1408 is provided on the entire surface of the stator core 1402 in which the armature winding is housed and the stator core 1402 where the rotor faces. A conductive layer 1411 is disposed on the surface of the insulating layer 1408. Further, an insulating layer 14080 is disposed on the surface of the conductive layer 1411, and a conductive layer 14110 is disposed thereon.

図15に実施例6の図14のA−A‘視図を示す。実施例6では導電層14110が周方向に交互に配置されている。このため、渦電流の発生を防止できる。図16に図14のB−B‘視図を示す。絶縁層1408の下の導電層1411は径方向に交互に配置されている。このため、電機子巻線1407で作られた磁束あるいは回転子1403から発せられた磁束渦電流の発生を防止できる。なお、実施例6では、外径側で導電層をコアが接続されている。また、導電層1411は短絡線1412によって相互に接続され、外径が和でコアと接続されている。   FIG. 15 shows an A-A ′ view of FIG. In Example 6, the conductive layers 14110 are alternately arranged in the circumferential direction. For this reason, generation | occurrence | production of an eddy current can be prevented. FIG. 16 shows a BB ′ view of FIG. The conductive layers 1411 below the insulating layers 1408 are alternately arranged in the radial direction. For this reason, it is possible to prevent the magnetic flux generated by the armature winding 1407 or the magnetic flux eddy current generated from the rotor 1403 from being generated. In Example 6, the core is connected to the conductive layer on the outer diameter side. In addition, the conductive layers 1411 are connected to each other by a short-circuit wire 1412 and are connected to the core with a sum of outer diameters.

図17に実施例7の回転電機1701を示す。実施例7の回転電機では電機子巻線1707を納めた固定子コア1702と、電機子巻線1707から発生した回転磁束に同期して回転する回転子1703および回転子軸1704からなり、回転子軸1704は軸受1705、1706によって機械的に支持される。なお、電機子巻線1707には、図示しないインバータから三相交流電圧が印加され、流れる電流によって回転磁束が作られる。電機子巻線を納めた固定子コア1702は表面を絶縁処理した軟磁性体粉を圧縮成型して製作されている。このため、実施例1〜6のようにけい素鋼板を使ったコアと異なり、コア表面に絶縁層を設けずに直接、表面に導電層1711を配置できる。   FIG. 17 shows a rotating electrical machine 1701 according to the seventh embodiment. The rotating electric machine according to the seventh embodiment includes a stator core 1702 in which an armature winding 1707 is housed, a rotor 1703 that rotates in synchronization with a rotating magnetic flux generated from the armature winding 1707, and a rotor shaft 1704. The shaft 1704 is mechanically supported by bearings 1705 and 1706. A three-phase AC voltage is applied to the armature winding 1707 from an inverter (not shown), and a rotating magnetic flux is generated by the flowing current. The stator core 1702 in which the armature winding is housed is manufactured by compression-molding soft magnetic powder whose surface is insulated. For this reason, unlike the core using a silicon steel plate like Examples 1-6, the conductive layer 1711 can be arrange | positioned directly on the surface, without providing an insulating layer in the core surface.

図18に実施例7の導電層1711のパターンを示す。実施例7では導電層は、周方向に導電材料と絶縁(ここでは空気)が交互に配置されている。このため、電機子巻線1707で作られた磁束あるいは回転子1703から発せられた磁束による渦電流の発生を防止している。   FIG. 18 shows a pattern of the conductive layer 1711 of Example 7. In Example 7, the conductive layer has the conductive material and the insulation (here, air) alternately arranged in the circumferential direction. For this reason, generation | occurrence | production of the eddy current by the magnetic flux made from the armature winding 1707 or the magnetic flux emitted from the rotor 1703 is prevented.

実施例8で実施例1の回転電機の絶縁層と導電層の製作方法の例を説明する。図19に絶縁層の製作工程の例を示す。実施例8では、電機子コイル7を格納した固定子コア2の内径側から可動ノズル1901によって絶縁樹脂をコア表面および電機子コイル7のコイルエンド表面に塗布する。この結果、絶縁層8、9、10を製作することができる。   In Example 8, an example of a method for manufacturing the insulating layer and the conductive layer of the rotating electrical machine of Example 1 will be described. FIG. 19 shows an example of an insulating layer manufacturing process. In the eighth embodiment, an insulating resin is applied to the core surface and the coil end surface of the armature coil 7 from the inner diameter side of the stator core 2 in which the armature coil 7 is stored by the movable nozzle 1901. As a result, the insulating layers 8, 9, and 10 can be manufactured.

図20に導電層の製作工程の例を示す。また、図21、22にそれぞれ、製作工程における図20のA−A‘断面、B−B’断面を示す。実施例8ではパターンを刻んだマスク2002の上から銀、アルミ、銅などの非磁性金属粉を含んだ樹脂や導電性高分子などの導電材料を可動ノズル2001で塗布する。この結果、導電層11や13を製作することができる。   FIG. 20 shows an example of the manufacturing process of the conductive layer. FIGS. 21 and 22 respectively show the A-A ′ section and the B-B ′ section in FIG. 20 in the manufacturing process. In Example 8, a conductive material such as a resin containing a nonmagnetic metal powder such as silver, aluminum, or copper, or a conductive polymer is applied on the mask 2002 having a pattern cut by a movable nozzle 2001. As a result, the conductive layers 11 and 13 can be manufactured.

以上の実施例8では、コイル表面に絶縁樹脂と導電材料を塗布したが、図23に示すように導電材料2301を表面に塗布した絶縁シートフィルム2302をコア表面に所定のパターン状に貼り付けるか、あるいは、図24のように、予めパターン状に導電材料2401を塗布した
絶縁シートフィルム2402をコア表面に貼り付けることでも実施例1の回転電機の絶縁層と導電層を製作できる。
In Example 8 above, the insulating resin and the conductive material are applied to the coil surface. However, as shown in FIG. 23, is the insulation sheet film 2302 coated with the conductive material 2301 applied to the core surface in a predetermined pattern? Alternatively, as shown in FIG. 24, the insulating layer and the conductive layer of the rotating electrical machine of Example 1 can also be manufactured by pasting an insulating sheet film 2402 coated with a conductive material 2401 in a pattern on the core surface.

あるいは、集中巻回転電機では、絶縁ボビンの表面に導電材料を配置することもできる。   Alternatively, in the concentrated winding rotary electric machine, a conductive material can be disposed on the surface of the insulating bobbin.

図25に、絶縁ボビンの側面図を示す。また、図26、27に図25のボビンのA−A‘,B−B’断面を示す。絶縁ボビン2501の内径側にスロット部とコイルエンド部にそれぞれ導電材料2502、2503を、電機子巻線を巻きつける巻き付ける前に設置しておくことで、電機子巻線表面への導電塗料の付着を防止することができる。   FIG. 25 shows a side view of the insulating bobbin. 26 and 27 show A-A 'and B-B' cross sections of the bobbin of FIG. By attaching conductive materials 2502 and 2503 on the inner diameter side of the insulating bobbin 2501 to the slot portion and the coil end portion before winding the armature winding, the conductive paint adheres to the surface of the armature winding. Can be prevented.

本発明によって、高速高周波のインバータ駆動する回転電機においても、電機子巻線あるいは励磁巻線から発生する高周波電界を静電シールドし、回転子の軸受の電食を防止し、信頼性の高い高効率可変速インバータ駆動回転電機システムを提供することができる。   According to the present invention, even in a rotating electric machine driven by a high-speed and high-frequency inverter, a high-frequency electric field generated from an armature winding or an excitation winding is electrostatically shielded to prevent galvanic corrosion of the rotor bearing and to provide a high reliability. An efficient variable speed inverter-driven rotating electrical machine system can be provided.

1…回転電機、2…固定子コア、3…回転子、4…回転子軸、5,6…軸受、7…電機子巻線、8,9,10…絶縁層、11,12,13…導電層、14.15…軸方向端部、16…ハウジング、17…ティース、18…磁束。   DESCRIPTION OF SYMBOLS 1 ... Rotary electric machine, 2 ... Stator core, 3 ... Rotor, 4 ... Rotor shaft, 5, 6 ... Bearing, 7 ... Armature winding, 8, 9, 10 ... Insulating layer, 11, 12, 13 ... Conductive layer, 14.15 ... axial end, 16 ... housing, 17 ... teeth, 18 ... magnetic flux.

Claims (4)

固定子巻線を埋め込んだ固定子コア部及び/又はそのコイルエンド部の回転子と向合う面のみに絶縁層を配置し、
前記絶縁層の表面に、前記固定子コアの磁束の流れに垂直の方向に導電層と絶縁部を交互に形成し、
前記固定子巻線を埋め込んだ前記固定子コア部及び/又は前記コイルエンド部の前記回転子と向合う面に、周方向に前記導電層と前記絶縁部を交互に形成し、
前記導電層と前記絶縁部の交互配置が、回転軸方向に対し垂直面上に形成されていることを特徴とする回転電機。
An insulating layer is arranged only on the face of the stator core part in which the stator winding is embedded and / or the coil end part facing the rotor,
On the surface of the insulating layer, conductive layers and insulating portions are alternately formed in a direction perpendicular to the magnetic flux flow of the stator core ,
On the surface of the stator core portion and / or the coil end portion in which the stator winding is embedded facing the rotor, the conductive layers and the insulating portions are alternately formed in the circumferential direction,
The rotating electrical machine wherein the alternating arrangement of the conductive layer and the insulating portion is formed on a plane perpendicular to the rotation axis direction .
固定子巻線を埋め込んだ固定子コア部及び/又はそのコイルエンド部の回転子と向合う面のみに絶縁層を配置し、
前記絶縁層の表面に、前記固定子コアの磁束の流れに垂直の方向に、細長い複数の導電層を間隔を置いて配置し、
前記固定子巻線を埋め込んだ前記固定子コア部及び/又は前記コイルエンド部の前記回転子と向合う面に、周方向に前記導電層と前記絶縁部を交互に形成し、
前記導電層と前記絶縁部の交互配置が、回転軸方向に対し垂直面上に形成されていることを特徴とする回転電機。
An insulating layer is arranged only on the face of the stator core part in which the stator winding is embedded and / or the coil end part facing the rotor,
On the surface of the insulating layer, a plurality of elongated conductive layers are arranged at intervals in a direction perpendicular to the magnetic flux flow of the stator core ,
On the surface of the stator core portion and / or the coil end portion in which the stator winding is embedded facing the rotor, the conductive layers and the insulating portions are alternately formed in the circumferential direction,
The rotating electrical machine wherein the alternating arrangement of the conductive layer and the insulating portion is formed on a plane perpendicular to the rotation axis direction .
前記導電層を、前記固定子コアと電気的に接続したことを特徴とする請求項1または請求項2に記載の回転電機。The rotating electrical machine according to claim 1, wherein the conductive layer is electrically connected to the stator core. 前記固定子コア部の前記導電層の総面積に比べ、前記コイルエンド部の導電層の総面積を広く形成したことを特徴とする請求項1〜3のいずれかに記載の回転電機。4. The rotating electrical machine according to claim 1, wherein a total area of the conductive layer of the coil end portion is formed wider than a total area of the conductive layer of the stator core portion.
JP2010140050A 2010-06-21 2010-06-21 Rotating electric machine Expired - Fee Related JP5564341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010140050A JP5564341B2 (en) 2010-06-21 2010-06-21 Rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010140050A JP5564341B2 (en) 2010-06-21 2010-06-21 Rotating electric machine

Publications (3)

Publication Number Publication Date
JP2012005307A JP2012005307A (en) 2012-01-05
JP2012005307A5 JP2012005307A5 (en) 2012-10-11
JP5564341B2 true JP5564341B2 (en) 2014-07-30

Family

ID=45536635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010140050A Expired - Fee Related JP5564341B2 (en) 2010-06-21 2010-06-21 Rotating electric machine

Country Status (1)

Country Link
JP (1) JP5564341B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014011827A (en) * 2012-06-28 2014-01-20 Hitachi Appliances Inc Rotary electric machine, and compressor
JP5851432B2 (en) * 2013-02-08 2016-02-03 株式会社日立製作所 Rotating electric machine
CN105684269A (en) * 2013-11-22 2016-06-15 株式会社日立制作所 Axial gap type rotating electric machine
US10530210B2 (en) * 2014-04-11 2020-01-07 Hitachi Industrial Equipment Systems Co., Ltd. Axial air gap rotating electric machine
CN106416024B (en) 2014-04-14 2019-06-07 株式会社日立产机系统 Axial-gap rotary electric machine
WO2017090074A1 (en) * 2015-11-24 2017-06-01 株式会社日立産機システム Axial gap-type rotary electric machine and rotary electric machine stator
JP6771537B2 (en) 2016-02-24 2020-10-21 株式会社日立製作所 Axial gap type rotary electric machine
JP7254574B2 (en) * 2019-03-22 2023-04-10 住友重機械工業株式会社 particle accelerator
JP2021010275A (en) * 2019-07-03 2021-01-28 株式会社日立産機システム Rotary electric machine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05236717A (en) * 1992-02-25 1993-09-10 Sony Corp Motor
JP3546776B2 (en) * 1998-10-23 2004-07-28 三菱電機株式会社 Rotating electric machine
JP3626869B2 (en) * 1999-03-19 2005-03-09 松下エコシステムズ株式会社 Rotating electric machine
JP2000333396A (en) * 1999-05-19 2000-11-30 Meidensha Corp Motor and variable speed drive system therefor
JP2002008928A (en) * 2000-06-23 2002-01-11 Fuji Electric Co Ltd Inductor
JP2006187144A (en) * 2004-12-28 2006-07-13 Honda Motor Co Ltd Electric rotary machine
JP4665566B2 (en) * 2005-03-15 2011-04-06 パナソニック株式会社 Rotating electric machine
JP2009118628A (en) * 2007-11-06 2009-05-28 Panasonic Corp Molded motor
JP2009119080A (en) * 2007-11-15 2009-06-04 Nippon Koden Corp Faraday shield component and bioinformation measuring method
JP2010011593A (en) * 2008-06-25 2010-01-14 Panasonic Electric Works Co Ltd Motor-integrated line pump

Also Published As

Publication number Publication date
JP2012005307A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP5564341B2 (en) Rotating electric machine
EP3133721B1 (en) Axial-gap dynamo-electric machine
JP5851432B2 (en) Rotating electric machine
US9590457B2 (en) Stator of a rotary electric machine
JP2013070595A (en) Three-phase dynamo-electric machine and manufacturing method thereof
US20120086288A1 (en) Electric rotating machine
US20230318410A1 (en) Dynamoelectric rotary machine with a can
US9825495B2 (en) Rotating electric machine
JP2009232607A (en) Winding for stator of rotating electric machine and rotating electric machine
EP2896115B1 (en) Stator of rotating electric machine
JP2014112985A (en) Dynamo-electric machine
JP2010239679A (en) Coil wire, stator, and rotary electric machine
EP2806534B1 (en) Electrical machine having partially parallel slots and teeth
WO2016080191A1 (en) Interior magnet rotary electric machine
KR101636330B1 (en) Rotor having function for filtering flux and synchronous motor having the rotor
JP2007336771A (en) External-rotation type permanent magnet rotary electric machine
JP5245348B2 (en) Rotor structure of rotary motor
JP2013153608A (en) Rotary electric machine
WO2003043164A1 (en) Dynamo-electric machine
JP2013153609A (en) Rotary electric machine
WO2023157521A1 (en) Cooling structure in rotating electric machine
US20240274340A1 (en) Magnet for a surface permanent magnet machine
KR100866871B1 (en) induction motor
JP2012249439A (en) Rotary electric machine
JP2005253198A (en) Motor or generator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140616

R150 Certificate of patent or registration of utility model

Ref document number: 5564341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees