JP5561101B2 - Method for producing polyurethane foam molded article - Google Patents

Method for producing polyurethane foam molded article Download PDF

Info

Publication number
JP5561101B2
JP5561101B2 JP2010241210A JP2010241210A JP5561101B2 JP 5561101 B2 JP5561101 B2 JP 5561101B2 JP 2010241210 A JP2010241210 A JP 2010241210A JP 2010241210 A JP2010241210 A JP 2010241210A JP 5561101 B2 JP5561101 B2 JP 5561101B2
Authority
JP
Japan
Prior art keywords
stock solution
urethane stock
molding
polyurethane foam
urethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010241210A
Other languages
Japanese (ja)
Other versions
JP2012091416A (en
Inventor
一成 江部
浩二 實藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2010241210A priority Critical patent/JP5561101B2/en
Publication of JP2012091416A publication Critical patent/JP2012091416A/en
Application granted granted Critical
Publication of JP5561101B2 publication Critical patent/JP5561101B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ポリウレタンフォーム成形品の製造方法に係り、特に2種以上のウレタン原液を発泡成形用金型内に注入して発泡させることにより、物性ないし特性が異なる2部分以上のポリウレタンフォーム成形部を有するポリウレタンフォーム成形品を一体成形するポリウレタンフォーム成形品の製造方法に関する。   The present invention relates to a method for producing a polyurethane foam molded article, and in particular, two or more polyurethane foam molded parts having different physical properties or characteristics by injecting two or more kinds of urethane stock solution into a foam molding mold and foaming. The present invention relates to a method for producing a polyurethane foam molded product, in which a polyurethane foam molded product having the above is integrally molded.

自動車等のシートに取り付けられる車両用シートパッドは、一般に軟質ポリウレタンフォーム又は半硬質ポリウレタンフォームで構成されている。   A vehicle seat pad attached to a seat of an automobile or the like is generally made of a flexible polyurethane foam or a semi-rigid polyurethane foam.

車両用シートパッドにおいては、座面の尻下部は搭乗者の体重が最も多くかかり、この部分の材質は座り心地や乗り心地と密接な関係がある。従って、尻下部の構成材料は座り心地、乗り心地の観点から重要であるが、それ以外の部分は体重の負荷も小さく、相対的な重要度は低い。   In a vehicle seat pad, the weight of the occupant is the most under the seat bottom, and the material of this portion is closely related to the seating comfort and riding comfort. Therefore, the constituent material of the lower part of the hip is important from the viewpoint of sitting comfort and riding comfort, but the other parts have a small weight load and are relatively low in importance.

座り心地、乗り心地及び耐久性を損なうことなく、軽量化及びコストダウンを図った車両用シートパッドとして、座面の尻下部以外の一部又は全部が、該尻下部を構成する材料よりも低密度でかつ硬度がほぼ同等の材料で構成されている車両用シートパッドが特開2002−353102に記載されている。前述の如く、座り心地、乗り心地に加え、耐久性といった観点から、尻下部以外の部分には大きな負荷はかからず、従って、このように尻下部を構成する材料と硬度がほぼ同一であれば、尻下部以外の部分に低密度の安価な材料を用いても、十分に良好な性能を得ることができる。   As a vehicle seat pad that achieves weight reduction and cost reduction without impairing sitting comfort, riding comfort, and durability, a part or all of the seat surface other than the bottom part of the seat is lower than the material constituting the bottom part. Japanese Patent Application Laid-Open No. 2002-353102 discloses a vehicle seat pad made of a material having a density and a hardness substantially equal to each other. As mentioned above, from the viewpoint of sitting comfort, riding comfort, and durability, there is no heavy load on the parts other than the bottom of the bottom, and therefore the hardness of the material constituting the bottom of the bottom is almost the same. For example, a sufficiently good performance can be obtained even if an inexpensive material having a low density is used for a portion other than the bottom portion.

ポリウレタンフォームの成形方法として、金型に2種以上のウレタン原液を同時に或いは時間差をおいて注入して一体成形する方法は従来行われている。再表2004/058473には、いずれの成形部においても所定の成形圧(発泡成形時に発泡成形用金型内で到達する最大内圧)となるようにウレタン原液の注入量を設定してポリウレタンフォームを一体成形することが記載されている。このように、いずれの成形部においても所定の成形圧となるようにウレタン原液の注入量を設定することにより、各成形部が、より確実に目的とする物性ないし特性を有したポリウレタンフォーム成形品を製造することが可能となる。   As a method for forming a polyurethane foam, a method in which two or more kinds of urethane stock solutions are injected into a mold simultaneously or at a time difference and integrally molded is conventionally performed. In Table 2004/058473, the polyurethane foam is prepared by setting the injection amount of the urethane stock solution so that a predetermined molding pressure (maximum internal pressure reached in the foam molding die during foam molding) is set in any molding part. One-piece molding is described. In this way, by setting the injection amount of the urethane stock solution so that a predetermined molding pressure is obtained at any molding part, each molded part has a desired physical property or characteristic more reliably. Can be manufactured.

なお、金型の一半側に第1のウレタン原液を注入し、他半側に別種の第2のウレタン原液を注入する場合、第1のウレタン原液と第2のウレタン原液とを同時に注入すると、金型の中央部付近で第1のウレタン原液と第2のウレタン原液とが混ざり合ってしまう。これに対し、第1のウレタン原液の注入から所定時間遅れて第2のウレタン原液を注入すると、第1のウレタン原液から発泡しつつある第1の発泡物がある程度硬化してから第2のウレタン原液からの第2の発泡物が該第1の発泡物に接触するので、第1の発泡物と第2の発泡物とがそれ程混ざり合わないようになる。この結果、第1のウレタン原液から発泡成形された第1の成形部と、第2のウレタン原液から発泡成形される第2の成形部とからなる成形体が、両者間に比較的明瞭な境界部を有するように成形される。   In addition, when injecting the first urethane undiluted solution to one half side of the mold and injecting another type of second urethane undiluted solution to the other half side, when simultaneously injecting the first urethane undiluted solution and the second urethane undiluted solution, The first urethane stock solution and the second urethane stock solution are mixed near the center of the mold. On the other hand, when the second urethane stock solution is injected after a predetermined time delay from the injection of the first urethane stock solution, the second foam is cured after the first foam that is foaming from the first urethane stock solution is cured to some extent. Since the second foam from the stock solution contacts the first foam, the first foam and the second foam are not so mixed. As a result, a molded body composed of the first molded part foam-molded from the first urethane stock solution and the second molded part foam-molded from the second urethane stock solution has a relatively clear boundary between them. Molded to have a part.

かかる時間差注入方式によると、例えば、低密度の腿下部と高密度の尻下部とが明確に区分されたポリウレタンフォーム製シートパッドが製造される。もちろん、このシートパッドは、腿下部から尻下部にかけて一連一体であるが、腿下部と尻下部との境界付近で、腿下部から尻下部にかけて密度が明確に変化する密度分布を有する。   According to such a time difference injection method, for example, a polyurethane foam seat pad in which a low-density thigh lower part and a high-density bottom part are clearly separated is manufactured. Of course, this seat pad is integrated in a series from the lower thigh to the lower buttocks, but has a density distribution in which the density clearly changes from the lower thigh to the lower buttocks near the boundary between the lower thigh and the lower buttocks.

特開2002−353102JP 2002-353102 A 再表2004/058473Table 2004/058473

物性ないし特性が異なる2部分以上の成形部を一体成形してなるポリウレタンフォーム成形品を製造するに当り、各成形部を成形するウレタン原液を、時間差をおいて発泡成形用金型内に注入して発泡させた場合、先に注入されたウレタン原液(以下、第1のウレタン原液という。)が、後から注入されたウレタン原液(以下、第2のウレタン原液という。)よりも早く発泡を開始するため、第1のウレタン原液から発泡成形される成形部(以下、第1の成形部という。)と第2のウレタン原液から発泡成形される成形部(以下、第2の成形部という。)との予定境界位置(設計上の第1の成形部と第2の成形部との境界部)に、該第1のウレタン原液が先に到達し、この予定境界位置を越えて第2の成形部側へ膨張する。   In manufacturing polyurethane foam molded products by integrally molding two or more molded parts with different physical properties or characteristics, the urethane stock solution for molding each molded part is injected into the foam molding mold with a time lag. In the case of foaming, the previously injected urethane stock solution (hereinafter referred to as the first urethane stock solution) starts foaming earlier than the later injected urethane stock solution (hereinafter referred to as the second urethane stock solution). Therefore, a molded part foam-molded from the first urethane stock solution (hereinafter referred to as the first molded part) and a molded part foam-molded from the second urethane stock solution (hereinafter referred to as the second molded part). The first urethane undiluted solution first reaches the planned boundary position (the boundary between the first molded part and the second molded part on the design), and the second molding is performed beyond the planned boundary position. It expands to the part side.

この場合、後から発泡を開始した第2のウレタン原液が第1のウレタン原液を押し戻すように膨張するが、先に発泡を開始した第1のウレタン原液は、第2のウレタン原液よりも先に樹脂化(硬化)し、粘度が上昇しているため、第2のウレタン原液が第1のウレタン原液を予定境界位置まで押し戻すことができないことがある。   In this case, the second urethane stock solution that has started to foam later expands so as to push back the first urethane stock solution. However, the first urethane stock solution that has started foaming earlier is prior to the second urethane stock solution. Since the resin is made (cured) and the viscosity is increased, the second urethane stock solution may not be able to push the first urethane stock solution back to the planned boundary position.

特に、第1のウレタン原液を注入してから第2のウレタン原液を注入するまでの時間差Δtが大きいほど、第1の成形部が予定境界位置をより大きく越えることになり、第1の成形部と第2の成形部との境界部が予定境界位置から離反することになる。   In particular, the larger the time difference Δt from the injection of the first urethane stock solution to the injection of the second urethane stock solution, the greater the first molding part exceeds the planned boundary position, and the first molding part And the second molding part are separated from the planned boundary position.

本発明は、物性ないし特性が異なる2部分以上のポリウレタンフォーム成形部が一体成形されてなるポリウレタンフォーム成形品の製造方法において、該成形部同士の境界部をより精度良く設計位置に配置することが可能なポリウレタンフォーム成形品の製造方法を提供することを目的とする。   According to the present invention, in a method for producing a polyurethane foam molded article in which two or more polyurethane foam molded parts having different physical properties or characteristics are integrally formed, the boundary between the molded parts can be arranged at a design position with higher accuracy. It is an object of the present invention to provide a method for producing a possible polyurethane foam molded article.

本発明(請求項1)のポリウレタンフォーム成形品の製造方法は、物性ないし特性が異なるポリウレタンフォームを成形し得る2種以上のウレタン原液を発泡成形用金型内に注入して発泡させることにより、物性ないし特性が異なる2部分以上のポリウレタンフォーム成形部を有するポリウレタンフォーム成形品を一体成形するポリウレタンフォーム成形品の製造方法であって、各ウレタン原液を所定の時間差をおいて発泡成形用金型内に注入して発泡させるポリウレタンフォーム成形品の製造方法において、各ウレタン原液を同時に該発泡成形用金型内に注入すると仮定した場合において、成形時にいずれのポリウレタンフォーム成形部においても同一の所定の成形圧となる各ウレタン原液の注入量を求め、この注入量を各ウレタン原液の基準注入量とし、前記所定の時間差が大きくなるほど、
a) 後から注入されるウレタン原液の注入量を該基準注入量よりも多くする、
b) 先に注入されるウレタン原液の注入量を該基準注入量よりも少なくする、
の少なくとも一方よりなる注入量補正を行うと共に、各ウレタン原液を前記所定の時間差をおいて発泡成形用金型内に注入して発泡させたときに、先に注入されたウレタン原液により成形された成形部と、後から注入されたウレタン原液により成形された成形部との境界部を、該後から注入されたウレタン原液の膨張力により設計上の境界位置まで押し戻すことを可能とする各ウレタン原料の成形圧を求め、
この求められた成形圧と前記所定の成形圧との差に基づき、前記注入量補正を行うことを特徴とするものである。
According to the method for producing a polyurethane foam molded article of the present invention (claim 1), two or more kinds of urethane stock solutions capable of molding polyurethane foams having different physical properties or characteristics are injected into a foaming mold and foamed. A method for producing a polyurethane foam molded product, in which a polyurethane foam molded product having two or more polyurethane foam molded parts having different physical properties or characteristics is integrally molded, wherein each urethane stock solution is placed in a foam molding mold with a predetermined time difference. In the method of manufacturing a polyurethane foam molded article that is injected into a foam and assuming that each urethane stock solution is injected into the foam molding mold at the same time, the same predetermined molding is performed in any polyurethane foam molded part at the time of molding. Determine the amount of each urethane stock solution to be used as a pressure, and use this amount for each urethane stock solution. A quasi injection volume, the greater the difference the predetermined time,
a) The injection amount of the urethane stock solution to be injected later is made larger than the reference injection amount.
b) The injection amount of the urethane stock solution injected first is less than the reference injection amount.
In addition to correcting the injection amount consisting of at least one of the above, each urethane stock solution was molded into the foam molding mold with a predetermined time difference and foamed, and was molded with the urethane stock solution previously injected. Each urethane raw material that makes it possible to push back the boundary between the molded part and the molded part molded with the urethane stock solution injected later to the designed boundary position by the expansion force of the urethane stock solution injected later. The molding pressure of
The injection amount correction is performed based on the difference between the determined molding pressure and the predetermined molding pressure .

請求項2のポリウレタンフォーム成形品の製造方法は、請求項1において、前記所定の成形圧において、硬度が同一で密度の異なるポリウレタンフォームを成形し得る2種以上のウレタン原液を前記発泡成形用金型内に注入して発泡させることにより、硬度が同一で密度の異なる2部分以上のポリウレタンフォーム成形部を有するポリウレタンフォーム成形品を一体成形することを特徴とするものである。   The method for producing a polyurethane foam molded article according to claim 2 is the method according to claim 1, wherein two or more types of urethane stock solutions capable of molding polyurethane foams having the same hardness and different densities at the predetermined molding pressure are used as the foam molding metal. A polyurethane foam molded article having two or more polyurethane foam molded parts having the same hardness and different densities is integrally molded by being injected into a mold and foamed.

請求項3のポリウレタンフォーム成形品の製造方法は、請求項2において、前記所定の成形圧において各ウレタン原液により成形されるポリウレタンフォームの密度と、各ポリウレタンフォーム成形部の設計上の容積とに基づいて、各ウレタン原液の前記基準注入量を設定することを特徴とするものである。   A method for producing a polyurethane foam molded article according to claim 3 is based on the density of polyurethane foam molded by each urethane stock solution at the predetermined molding pressure and the design volume of each polyurethane foam molded part in claim 2. Then, the reference injection amount of each urethane stock solution is set.

本発明(請求項1)のポリウレタンフォーム成形品の製造方法にあっては、各ウレタン原液を同時に発泡成形用金型内に注入すると仮定した場合において、成形時にいずれのポリウレタンフォーム成形部においても所定の成形圧となるように各ウレタン原液の注入量を求め、この注入量を各ウレタン原液の基準注入量とする。そして、ポリウレタンフォーム成形品の製造時には、各ウレタン原液の注入の時間差に基づき、後から注入されるウレタン原液の注入量を該基準注入量よりも多くするか、先に注入されるウレタン原液の注入量を該基準注入量よりも少なくするか、又はその両方を行ってウレタン原液注入量を補正する。   In the method for producing a polyurethane foam molded article according to the present invention (Claim 1), when it is assumed that each urethane stock solution is simultaneously injected into a foam molding die, it is predetermined in any polyurethane foam molded part during molding. The injection amount of each urethane undiluted solution is determined so that the molding pressure becomes the same, and this injection amount is set as the reference injection amount of each urethane undiluted solution. And at the time of manufacturing polyurethane foam molded products, based on the time difference of injection of each urethane stock solution, the injection amount of the urethane stock solution to be injected later is made larger than the reference injection amount or the injection of the urethane stock solution to be injected first. The amount is made smaller than the reference injection amount, or both are performed to correct the urethane stock solution injection amount.

このようにウレタン原液注入量を補正することにより、成形部同士の境界部をより精度良く設計位置に配置することが可能となる。   In this way, by correcting the injection amount of the urethane stock solution, it is possible to arrange the boundary portion between the molded portions at the design position with higher accuracy.

本発明は、請求項2の通り、硬度が同一で密度の異なる2部分以上のポリウレタンフォーム成形部を有するポリウレタンフォーム成形品を製造するのに好適である。この場合、所定の成形圧において、硬度が同一で密度の異なるポリウレタンフォームを成形し得る2種以上のウレタン原液を発泡成形用金型内に注入して発泡させることにより、より確実に、各ポリウレタンフォーム成形部が所期の硬度及び密度を有するポリウレタンフォーム成形品を一体成形することが可能である。   The present invention is suitable for producing a polyurethane foam molded article having two or more polyurethane foam molded parts having the same hardness and different densities as described in claim 2. In this case, at a predetermined molding pressure, two or more types of urethane stock solutions capable of forming polyurethane foams having the same hardness and different densities are injected into a foaming mold to cause foaming more reliably. It is possible to integrally form a polyurethane foam molded product in which the foam molded portion has a desired hardness and density.

この場合、請求項3の通り、前記所定の成形圧において各ウレタン原液により成形されるポリウレタンフォームの密度と、各ウレタン原液により成形されるポリウレタンフォーム成形部の設計上の容積とに基づいて、各ウレタン原液の基準注入量を設定するのが好ましい。このようにすることにより、各ウレタン原液の基準注入量を容易に設定することが可能となる。   In this case, as in claim 3, based on the density of the polyurethane foam molded with each urethane stock solution at the predetermined molding pressure and the design volume of the polyurethane foam molded part molded with each urethane stock solution, It is preferable to set the reference injection amount of the urethane stock solution. By doing in this way, it becomes possible to easily set the reference injection amount of each urethane stock solution.

請求項4の通り、各ウレタン原液を前記所定の時間差をおいて発泡成形用金型内に注入して発泡させたときに、先に注入されたウレタン原液により成形された成形部と、後から注入されたウレタン原液により成形された成形部との境界部を、該後から注入されたウレタン原液の膨張力により設計上の境界位置まで押し戻すことを可能とする各ウレタン原料の成形圧を求め、この求められた成形圧と前記所定の成形圧との差に基づき、ウレタン原液の注入量を補正することにより、各ウレタン原液の最適な注入量を、各ウレタン原液の注入の時間差に応じて容易に且つ精度良く求めることが可能となる。   As in claim 4, when each urethane stock solution is injected into the foaming mold with the predetermined time difference and foamed, a molded part molded with the urethane stock solution injected earlier, and later Obtaining the molding pressure of each urethane raw material that allows the boundary part with the molded part molded by the injected urethane stock solution to be pushed back to the designed boundary position by the expansion force of the urethane stock solution injected thereafter, By correcting the injection amount of the urethane stock solution based on the difference between the determined molding pressure and the predetermined molding pressure, the optimal injection amount of each urethane stock solution can be easily set according to the time difference of each urethane stock solution injection. In addition, it can be obtained with high accuracy.

なお、本発明において、ポリウレタンフォームの密度とは「OA密度(オーバーオール密度;総密度)」を示す。OA密度は、ポリウレタンフォームの重量を体積で除する(フォーム重量/体積)ことにより測定される。また、硬度は、「25%硬度」である。この25%硬度は、ポリウレタンフォームを直径200mmの加圧板にて厚さが加圧前の25%となるまで圧縮し、そのときの荷重を測定することにより求められる。   In the present invention, the density of the polyurethane foam means “OA density (overall density; total density)”. OA density is measured by dividing the weight of the polyurethane foam by the volume (foam weight / volume). The hardness is “25% hardness”. This 25% hardness is obtained by compressing polyurethane foam with a pressure plate having a diameter of 200 mm until the thickness reaches 25% before pressing, and measuring the load at that time.

実施の形態に係るポリウレタンフォーム成形品の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the polyurethane foam molded article which concerns on embodiment. 第1のウレタン原液及び第2のウレタン原液を、注入量を補正せずに発泡成形用金型に注入してポリウレタンフォーム成形品を製造した場合の説明図である。It is explanatory drawing at the time of inject | pouring a 1st urethane undiluted | stock solution and a 2nd urethane undiluted | stock into a foaming metal mold | die, without correct | amending injection amount, and manufacturing a polyurethane foam molded article. 図1のポリウレタンフォーム成形品の製造方法における第1のウレタン原液及び第2のウレタン原液の基準注入量の求め方の説明図である。It is explanatory drawing of how to obtain | require the reference | standard injection amount of the 1st urethane stock solution and the 2nd urethane stock solution in the manufacturing method of the polyurethane foam molded article of FIG. 参考例における注入時間差と各成形部の密度との関係を示すグラフである。It is a graph which shows the relationship between the injection time difference in a reference example, and the density of each shaping | molding part. 参考例における注入時間差と補正成形圧との関係を示すグラフである。It is a graph which shows the relationship between the injection time difference in a reference example, and correction | amendment molding pressure.

以下、図面を参照して実施の形態について説明する。なお、以下の各実施の形態では、物性ないし特性が異なる2部分のポリウレタンフォーム成形部が一体成形されてなるポリウレタンフォーム成形品の製造方法を例示しているが、本発明は、物性ないし特性が異なる3部分以上のポリウレタンフォーム成形部が一体成形されてなるポリウレタンフォーム成形品の製造方法にも適用可能である。   Hereinafter, embodiments will be described with reference to the drawings. In each of the following embodiments, a method for producing a polyurethane foam molded article in which two parts of a polyurethane foam molded part having different physical properties or characteristics are integrally formed is illustrated, but the present invention has physical properties or characteristics. The present invention can also be applied to a method for producing a polyurethane foam molded product in which three or more different polyurethane foam molded parts are integrally molded.

第1図は、実施の形態に係るポリウレタンフォーム成形品の製造方法を説明する発泡成形用金型の概略的な断面図であり、第2図は、第1のウレタン原液と第2のウレタン原液とを、各々の注入量を補正せずに発泡成形用金型に注入してポリウレタンフォーム成形品を製造した場合を説明する発泡成形用金型の概略的な断面図である。第1図及び第2図において、それぞれ、(a)図は発泡成形用金型の第1の成形空間への第1のウレタン原液の注入時を示し、(b)図は発泡成形用金型の第2の成形空間への第2のウレタン原液の注入時を示し、(c)図は該第1のウレタン原液及び第2のウレタン原液の発泡途中時を示し、(d)図は該第1のウレタン原液及び第2のウレタン原液の発泡完了時を示している。第3図は、このポリウレタンフォーム成形品の製造方法における第1のウレタン原液及び第2のウレタン原液の基準注入量の求め方の説明図であり、(a)図はウレタン原液の成形圧と、成形されたポリウレタンフォームのOA密度との関係を示すグラフであり、(b)図はこのポリウレタンフォームの25%硬度とOA密度との関係を示すグラフである。   FIG. 1 is a schematic cross-sectional view of a foam molding die for explaining a method for producing a polyurethane foam molded article according to an embodiment, and FIG. 2 shows a first urethane stock solution and a second urethane stock solution. FIG. 2 is a schematic cross-sectional view of a foam molding die for explaining a case where a polyurethane foam molded article is manufactured by injecting the above into a foam molding die without correcting each injection amount. 1 and 2, respectively, (a) shows the time when the first urethane undiluted solution is injected into the first molding space of the foam molding die, and (b) shows the foam molding die. The second urethane stock solution is injected into the second molding space, (c) the figure shows the middle of foaming of the first urethane stock solution and the second urethane stock solution, and (d) the figure shows the second The time of completion of foaming of the first urethane stock solution and the second urethane stock solution is shown. FIG. 3 is an explanatory view of how to obtain the reference injection amount of the first urethane undiluted solution and the second urethane undiluted solution in the manufacturing method of this polyurethane foam molded article, and FIG. 3 (a) shows the molding pressure of the urethane undiluted solution, It is a graph which shows the relationship with the OA density of the shape | molded polyurethane foam, (b) figure is a graph which shows the relationship between 25% hardness of this polyurethane foam, and OA density.

以下、物性ないし特性が異なる2部分のポリウレタンフォーム成形部(以下、単に成形部と略すことがある。)2,3が一体成形されてなるポリウレタンフォーム成形品1の製造方法について説明する。なお、第1図(の説明)においては、このポリウレタンフォーム成形品1は直方体形状のものとして図示されているが、ポリウレタンフォーム成形品1の形状はこれに限定されない。この実施の形態では、ポリウレタンフォーム成形品1は、その長手方向(第1図(d)における左右方向)の一半側が第1の成形部2となっており、他半側が第2の成形部3となっている。なお、各成形部2,3の形状や配置はこれに限定されない。   Hereinafter, a method for producing a polyurethane foam molded article 1 formed by integrally molding two parts of polyurethane foam molded parts (hereinafter sometimes simply referred to as molded parts) 2 and 3 having different physical properties and characteristics will be described. In FIG. 1 (explanation), the polyurethane foam molded article 1 is illustrated as a rectangular parallelepiped shape, but the shape of the polyurethane foam molded article 1 is not limited to this. In this embodiment, the polyurethane foam molded article 1 has a first molding portion 2 on one half side in the longitudinal direction (left and right direction in FIG. 1 (d)) and a second molding portion 3 on the other half side. It has become. In addition, the shape and arrangement | positioning of each shaping | molding part 2 and 3 are not limited to this.

第1の成形部2と第2の成形部3とは、所定の成形圧(発泡成形時に発泡成形用金型内で到達する最大内圧)Pにて硬度H、密度Dのポリウレタンフォームを成形し得る第1のウレタン原液Uと、この所定の成形圧(即ち第1のウレタン原液Uと同一の成形圧)にて硬度H、密度Dのポリウレタンフォームを成形し得る第2のウレタン原液Uとを発泡成形用金型(以下、単に金型と略すことがある。)10にそれぞれ所定量注入して発泡させることにより一体成形される。第1のウレタン原液Uが発泡してなるポリウレタンフォームにより第1の成形部2が成形され、第2のウレタン原液Uが発泡してなるポリウレタンフォームにより第2の成形部3が成形される。 The first molding part 2 and the second molding part 3 are made of polyurethane foam having a hardness H 1 and a density D 1 at a predetermined molding pressure P (maximum internal pressure reached in the foam molding die during foam molding) P. A first polyurethane undiluted solution U 1 that can be molded and a second polyurethane foam that can be molded with a hardness H 2 and a density D 2 with this predetermined forming pressure (that is, the same forming pressure as the first urethane undiluted solution U 1 ). urethane stock solution U 2 and the foam mold is integrally molded by respectively be foamed by a predetermined amount injected (hereinafter, simply. may be abbreviated as mold) 10. The polyurethane foam first urethane stock solution U 1 is foamed molded first molded portion 2, a second molding part 3 is formed by polyurethane foams second urethane stock solution U 2 is formed by foaming .

この実施の形態では、硬度HとHとはほぼ同一であり、密度DとDとは異なるものとなっている。ポリウレタンフォーム成形品1が車両用シートパッドの場合、硬度がほぼ同一とは、硬度差が20N以下、特に0〜4.9Nであることをいう。密度が異なるとは、密度差が3kg/m以上、特に10〜50kg/m程度異なることをいう。なお、前述の通り、密度はOA密度であり、硬度は25%硬度である。 In this embodiment, the hardnesses H 1 and H 2 are substantially the same, and the densities D 1 and D 2 are different. When the polyurethane foam molded article 1 is a vehicle seat pad, the hardness being substantially the same means that the hardness difference is 20 N or less, particularly 0 to 4.9 N. The different densities, the density difference is 3 kg / m 3 or more, in particular 10 to 50 kg / m 3 refers to the extent different. As described above, the density is OA density and the hardness is 25% hardness.

この金型10は、下型11と上型12とを有している。金型10内は、第1の成形部2と第2の成形部3との予定境界位置BL(設計上の第1の成形部2と第2の成形部3との境界部)を挟んで一半側が、第1の成形部2を成形するための第1の成形空間13となっており、他半側が、第2の成形部3を成形するための第2の成形空間14となっている。この実施の形態では、成形空間13,14同士は水平に連続している。この実施の形態では、予定境界位置BLは、ポリウレタンフォーム成形品1の長手方向の中間に配置され、第1の成形部2と第2の成形部3とがほぼ同一の形状及び体積となるように設定されているが、予定境界位置BLの配置はこれに限定されない。   The mold 10 has a lower mold 11 and an upper mold 12. The inside of the mold 10 sandwiches a planned boundary position BL between the first molding part 2 and the second molding part 3 (a boundary part between the first molding part 2 and the second molding part 3 in design). One half side is a first molding space 13 for molding the first molding part 2, and the other half side is a second molding space 14 for molding the second molding part 3. . In this embodiment, the molding spaces 13 and 14 are horizontally continuous. In this embodiment, the planned boundary position BL is arranged in the middle in the longitudinal direction of the polyurethane foam molded article 1 so that the first molded portion 2 and the second molded portion 3 have substantially the same shape and volume. However, the arrangement of the planned boundary position BL is not limited to this.

上型12には、第1の成形空間13に第1のウレタン原液Uを注入するための第1の注入部15と、第2の成形空間14に第2のウレタン原液Uを注入するための第2の注入部16とが設けられている。第1の注入部15は第1の成形空間13の中央部の上方に配置され、第2の注入部16は第2の成形空間14の中央部の上方に配置されており、第1の注入部15から予定境界位置BLまでの距離と、第2の注入部16から予定境界位置BLまでの距離とが等距離となっている。 The upper mold 12 is injected with a first injection section 15 for injecting the first urethane stock solution U 1 into the first molding space 13 and the second urethane stock solution U 2 into the second molding space 14. A second injection part 16 is provided. The first injection part 15 is arranged above the central part of the first molding space 13, and the second injection part 16 is arranged above the central part of the second molding space 14, so that the first injection The distance from the part 15 to the planned boundary position BL is equal to the distance from the second injection part 16 to the planned boundary position BL.

ポリウレタンフォーム成形品1を製造するに当っては、まず第1図(a)又は第2図(a)の通り時刻tに第1の注入部15から第1の成形空間13に第1のウレタン原液Uを注入する。ウレタン原液Uはこの注入直後から発泡を開始する。この時刻tから所定時間Δtが経過した時刻tになったならば、第1図(b)又は第2図(b)の通り第2の注入部16から第2の成形空間14に第2のウレタン原液Uを注入する。ウレタン原液Uはこの注入直後から発泡を開始する。 In producing the polyurethane foam molded article 1, first, as shown in FIG. 1 (a) or 2 (a), the first injection portion 15 enters the first molding space 13 at the time t 1 as shown in FIG. injecting urethane stock solution U 1. Urethane stock U 1 starts foaming immediately after the injection. If this time t 1 from the predetermined time Δt becomes time t 2 has elapsed, the from the street of FIG. 1 (b) or FIG. 2 (b) the second injection unit 16 into the second molding space 14 2 of the urethane stock solution U 2 is injected. Urethane stock solution U 2 starts foaming immediately after the injection.

第1のウレタン原液Uが第2のウレタン原液UよりもΔtだけ早く発泡を開始するので、第1のウレタン原液Uが先に予定境界位置BLまで膨張する。このとき、第2のウレタン原液Uは予定境界位置BLまで膨張していないため、該第1のウレタン原液Uは、その後、第1図(c)又は第2図(c)の通り、予定境界位置BLを越えて第2の成形空間14側まで膨張する。その後、後から発泡を開始した第2のウレタン原液Uが第1のウレタン原液Uを予定境界位置BLまで押し戻すように膨張するが、先に発泡を開始した第1のウレタン原液Uは、第2のウレタン原液Uよりも先に樹脂化(硬化)し、粘度が上昇しているため、第2のウレタン原液Uが十分に第1のウレタン原液Uを予定境界位置BLまで押し戻すことができないことがある。この場合、第2図(d)の通り、成形後のポリウレタンフォーム成形品1’の成形部2’,3’同士の境界部は予定境界位置BLよりも第2の成形空間14側に位置したものとなる。 Since the first of the urethane stock solution U 1 starts the fast foaming only Δt than the second urethane stock solution U 2, the first of urethane stock solution U 1 is inflated until the planned boundary position BL earlier. At this time, since the second urethane stock solution U 2 is not inflated by the scheduled boundary position BL, urethane stock solution U 1 wherein the first, then, as FIG. 1 (c) or FIG. 2 (c), It expands beyond the planned boundary position BL to the second molding space 14 side. Thereafter, the second urethane stock solution U 2 that has started to foam later expands so as to push back the first urethane stock solution U 1 to the planned boundary position BL, but the first urethane stock solution U 1 that has started foaming first is Since the resin is made (cured) prior to the second urethane stock solution U 2 and the viscosity is increased, the second urethane stock solution U 2 sufficiently passes the first urethane stock solution U 1 to the planned boundary position BL. It may not be possible to push back. In this case, as shown in FIG. 2 (d), the boundary portion between the molded portions 2 ′ and 3 ′ of the molded polyurethane foam molded product 1 ′ is located closer to the second molding space 14 than the planned boundary position BL. It will be a thing.

上記第1のウレタン原液Uの注入時刻tと第2のウレタン原液Uの注入時刻tとの時間差Δtが大きい(長い)ほど、第1の成形部2は第2の成形空間14に深く入り込み、成形品1における成形部2,3の境界部は予定境界位置BLよりも第2の成形空間14側に位置する。 The first and the injection time t 1 urethane stock solution U 1 as the second time difference Δt between the injection time t 2 of urethane stock solution U 2 is large (long), the first mold part 2 and the second molding space 14 The boundary between the molded parts 2 and 3 in the molded product 1 is located closer to the second molding space 14 than the planned boundary position BL.

第1のウレタン原液Uの注入量を少なくするか、第2のウレタン原液Uの注入量を多くするか、もしくは第1のウレタン原液Uの注入量を少なくし且つ第2のウレタン原液Uの注入量を多くすることにより、第2のウレタン原液Uの成形圧が高まるために、第2の成形部3が第1の成形部2を予定境界位置BL側に強く押し戻すことができるため、成形部2,3の境界部は予定境界位置BLに合致又は近づくことになる。 The injection amount of the first urethane undiluted solution U 1 is decreased, the injection amount of the second urethane undiluted solution U 2 is increased, or the injection amount of the first urethane undiluted solution U 1 is decreased and the second urethane undiluted solution is added. by increasing the injection amount of U 2, for the second molding pressure of urethane stock solution U 2 is increased, that the second mold part 3 pushes back strongly first mold part 2 at the scheduled boundary position BL side Therefore, the boundary between the molding parts 2 and 3 matches or approaches the planned boundary position BL.

そこで、本発明では、上記時間差Δt(=t−t)が大きくなるほど、ウレタン原液U,Uの基準注入量に比べて第1のウレタン原液Uの注入量を少なくするか、第2のウレタン原液Uの注入量を多くするか、もしくは第1のウレタン原液Uの注入量を少なくし且つ第2のウレタン原液Uの注入量を多くする。特に、その際、注入時間差Δtと各ウレタン原液U,Uの成形圧との関係を求めておけば、当該注入時間差Δtにおいて、第2のウレタン原液Uの膨張力によって成形部2,3の境界部を予定境界位置BLまで押し戻すためには該第2のウレタン原液Uの成形圧を前記所定成形圧Pからどの程度上昇させればよいか(以下、この第2のウレタン原液Uの成形圧の前記所定成形圧Pからの補正量を補正成形圧ΔPという。)、又は第1のウレタン原液Uの成形圧を前記所定成形圧Pからどの程度低下させればよいか(以下、この第1のウレタン原液Uの成形圧の前記所定成形圧Pからの補正量を補正成形圧ΔPという。)が求められ、それによってウレタン原液U,Uの注入量をどの程度補正すべきか、より正確に求めることができる。なお、この補正成形圧ΔP,ΔPの求め方については後述する。 Therefore, in the present invention, the larger the time difference Δt (= t 1 −t 2 ), the smaller the injection amount of the first urethane stock solution U 1 compared to the reference injection amount of the urethane stock solutions U 1 and U 2 . The injection amount of the second urethane stock solution U 2 is increased, or the injection amount of the first urethane stock solution U 1 is decreased and the injection amount of the second urethane stock solution U 2 is increased. In particular, if the relationship between the injection time difference Δt and the molding pressure of each of the urethane stock solutions U 1 , U 2 is determined at that time, the molding part 2, 2 is expanded by the expansion force of the second urethane stock solution U 2 at the injection time difference Δt. to push back 3 of the boundary portion to the expected boundary position BL whether the molding pressure of the urethane stock solution U 2 of the second it is sufficient to what extent elevated from the predetermined molding pressure P (hereinafter, the second urethane stock solution U a correction amount from the predetermined molding pressure P 2 of the molding pressure that correction molding pressure [Delta] P 2.), or the first molding pressure urethane stock solution U 1 it is sufficient to degree reduced from the predetermined molding pressure P (Hereinafter, the correction amount of the molding pressure of the first urethane stock solution U 1 from the predetermined molding pressure P is referred to as a correction molding pressure ΔP 1 ), and the injection amount of the urethane stock solutions U 1 and U 2 is thereby determined. How accurate it is to correct It can be determined. A method for obtaining the corrected molding pressures ΔP 1 and ΔP 2 will be described later.

このウレタン原液の基準注入量は、ウレタン原液の配合によっても異なるので、まずウレタン原液の配合決定方法を説明する。この実施の形態では、各ウレタン原液U,Uは、以下のようにして調製される。 Since the reference injection amount of this urethane stock solution varies depending on the blending of the urethane stock solution, the method for determining the blending of the urethane stock solution will be described first. In this embodiment, each urethane stock solution U 1 , U 2 is prepared as follows.

成形されるポリウレタンフォームの密度は、主にウレタン原液のポリオール配合液中に含まれる発泡剤としての水の量によって決定される。   The density of the polyurethane foam to be molded is determined mainly by the amount of water as a foaming agent contained in the polyol compounded liquid of the urethane stock solution.

従って、ウレタン原液の調製に当たり、ポリオール配合液中の水の量を調整し、後述の実施例1に示す如く、2種類のウレタン原液により成形されるポリウレタンフォームの成形圧とOA密度との関係(第3図(a))を調べる。そして、同一の成形圧において、OA密度が異なり、所望のOA密度差となる2種類のウレタン原液、即ち、より高密度のポリウレタンフォームを成形するためのウレタン原液(以下「高密度用ウレタン原液」と称す。)と、より低い密度のポリウレタンフォームを成形するためのウレタン原液(以下「低密度用ウレタン原液」と称す。)の各組成を設定する。このとき、同一の成形圧において、高密度用ウレタン原液により成形される高密度ポリウレタンフォームの密度をDとし、低密度用ウレタン原液により成形される低密度ポリウレタンフォームの密度をDとする(D>D)。 Therefore, in preparing the urethane stock solution, the amount of water in the polyol blend solution is adjusted, and as shown in Example 1 described later, the relationship between the molding pressure and the OA density of the polyurethane foam molded from the two types of urethane stock solution ( FIG. 3 (a)) is examined. And, at the same molding pressure, two types of urethane stock solutions having different OA densities and a desired OA density difference, that is, a urethane stock solution for molding a higher density polyurethane foam (hereinafter referred to as “high density urethane stock solution”). And a composition of a urethane stock solution for molding a lower density polyurethane foam (hereinafter referred to as “low density urethane stock solution”). At this time, in the same molding pressure, the density of the high density polyurethane foam to be molded by a high-density urethane stock solution and D H, the density of the low density polyurethane foam which is formed by the low-density urethane stock solution and D L ( D H > D L ).

次に、この高密度ポリウレタンフォームと低密度ポリウレタンフォームとについて、後述の実施例1に示す如く、OA密度と25%硬度との関係(第3図(b))を調べ、例えば、高密度ポリウレタンフォームの密度がDのときに、低密度ポリウレタンフォームの密度がDのときの25%硬度と同等の硬度が得られるように、高密度用ウレタン原液のイソシアネートインデックスを調整する。この調整は、例えば、イソシアネート成分とポリオール配合液との配合を微調整するのみで良い。このような調整を行うことにより、高密度用ウレタン原液によって成形されたポリウレタンフォームの密度と成形圧との関係は殆ど変わることがなく、従って、同一の成形圧にて、同一硬度、異密度のポリウレタンフォームを成形し得る高密度用ウレタン原液と低密度用ウレタン原液の組成を設定することができる。このようにして調製された高密度用ウレタン原液及び低密度用ウレタン原液を第1のウレタン原液U及び第2のウレタン原液Uとして用いる。この実施の形態では、高密度用ウレタン原液を第1のウレタン原液Uとし、低密度用ウレタン原液を第2のウレタン原液Uとする。なお、これとは逆に、低密度用ウレタン原液を第1のウレタン原液Uとし、高密度用ウレタン原液を第2のウレタン原液Uとしてもよい。 Next, for this high density polyurethane foam and low density polyurethane foam, as shown in Example 1 described later, the relationship between OA density and 25% hardness (FIG. 3 (b)) was examined. when the density of the foam is D H, the density of the low density polyurethane foam as 25% hardness equivalent to the hardness when the D L is obtained, adjusting the isocyanate index of the high density urethane stock solution. For this adjustment, for example, it is only necessary to finely adjust the blending of the isocyanate component and the polyol blending liquid. By making such adjustments, the relationship between the density and the molding pressure of the polyurethane foam molded with the high-density urethane stock solution hardly changes. Therefore, at the same molding pressure, the same hardness and different density. The composition of the high-density urethane stock solution and the low-density urethane stock solution that can form a polyurethane foam can be set. Thus using high density urethane stock solution and low density urethane stock solution was prepared as the first urethane stock solution U 1 and second urethane stock solution U 2. In this embodiment, the high-density urethane stock solution first urethane stock solution U 1, the low-density urethane stock solution and the second urethane stock solution U 2. Incidentally, on the contrary, the low-density urethane stock solution first urethane stock solution U 1, may high density urethane stock solution as a second urethane stock solution U 2.

上記のイソシアネートインデックスの調整は、低密度ポリウレタンフォームの密度がDのときに、高密度ポリウレタンフォームの密度がDのときの25%硬度と同等の硬度が得られるように、低密度用ウレタン原液に対して行っても良い。 Adjustment of the isocyanate index, when the density of the low density polyurethane foam of D L, as the density of the high density polyurethane foam is obtained 25% hardness equivalent to the hardness when the D H, low density urethane It may be performed on the stock solution.

以上のウレタン原液の調製方法は、前述の再表2004/058473と同様である。   The method for preparing the above urethane stock solution is the same as in the above-mentioned Table 2004/058473.

なお、以上の調製方法は、同一の成形圧において硬度が同一で密度の異なるポリウレタンフォームを成形可能な2種類のウレタン原液を調製する方法の一例であって、本発明におけるウレタン原液の調製方法は、何ら上記の方法に限定されるものではない。   The above preparation method is an example of a method for preparing two types of urethane stock solutions capable of forming polyurethane foams having the same hardness and different densities at the same molding pressure, and the method for preparing a urethane stock solution in the present invention is as follows. The method is not limited to the above method.

このようにして調製された第1のウレタン原液U及び第2のウレタン原液Uの基準注入量は、以下のようにして決定される。 Thus the first reference injection amount of the urethane stock solution U 1 and second urethane stock solution U 2 which is prepared is determined in the following manner.

まず、前記密度D,Dから、第1のウレタン原液U及び第2のウレタン原液Uを同時に注入すると仮定した場合において、各成形空間13,14において所定の同一の成形圧Pが得られる第1のウレタン原液U及び第2のウレタン原液Uの注入量を求め、このときの注入量を、実際にポリウレタンフォーム成形品1を製造するに当って第1のウレタン原液U及び第2のウレタン原液Uの基準注入量G,Gとする。具体的には、この第1のウレタン原液Uの基準注入量Gは、第1の成形空間13の容積Vと前記密度Dとの積から求められる(G=V×D)。また、第2のウレタン原液Uの基準注入量Gは、第2の成形空間14の容積Vと前記密度Dとの積から求められる(G=V×D)。 First, the density D H, the D L, in assuming that the first urethane stock solution U 1 and second urethane stock solution U 2 simultaneously injection, a predetermined same molding pressure P in the molding spaces 13 and 14 The injection amounts of the obtained first urethane undiluted solution U 1 and second urethane undiluted solution U 2 are determined, and the injection amounts at this time are used as the first urethane undiluted solution U 1 in actually producing the polyurethane foam molded article 1. And the reference injection amounts G 1 and G 2 of the second urethane stock solution U 2 . Specifically, the reference injection amount G 1 of the first urethane undiluted solution U 1 is obtained from the product of the volume V 1 of the first molding space 13 and the density DH (G 1 = V 1 × D H ). The reference injection amount G 2 of the second urethane stock solution U 2 is determined from the product of the volume V 2 of the second molding space 14 the density D L (G 2 = V 2 × D L).

次に、第1のウレタン原液U及び第2のウレタン原液Uに関し、それぞれ、後述の第5図のような注入時間差Δtと前記補正成形圧ΔP,ΔPとの関係を求め、当該注入時間差Δtにおける補正成形圧ΔP,ΔPに基づいて基準注入量G,Gを補正し、実際にポリウレタンフォーム成形品1を製造(量産)する際の第1のウレタン原液U及び第2のウレタン原液Uの注入量を設定する。 Next, regarding the first urethane stock solution U 1 and the second urethane stock solution U 2, the relationship between the injection time difference Δt and the corrected molding pressures ΔP 1 and ΔP 2 as shown in FIG. Based on the corrected molding pressures ΔP 1 and ΔP 2 at the injection time difference Δt, the reference injection amounts G 1 and G 2 are corrected, and the first urethane undiluted solution U 1 when the polyurethane foam molded article 1 is actually manufactured (mass produced) and setting a second injection amount of the urethane stock solution U 2.

即ち、時間差Δtが大きくなるほど、基準注入量G,Gに比べて、第1のウレタン原液Uの注入量を少なくするか、第2のウレタン原液Uの注入量を多くするか、もしくは第1のウレタン原液Uの注入量を少なくし且つ第2のウレタン原液Uの注入量を多くする。 That is, as the time difference Δt increases, the injection amount of the first urethane stock solution U 1 is decreased or the injection amount of the second urethane stock solution U 2 is increased as compared with the reference injection amounts G 1 and G 2 . or to reduce the first injection amount of the urethane stock solution U 1 and to increase the second injection amount of the urethane stock solution U 2.

注入時間差Δtと補正成形圧ΔP,ΔPとの関係は、次のように試作に基づいて求められる。この際、実際にポリウレタンフォーム成形品1を製造(量産)するのに用いられる金型で試作を行う代わりに、テストピース成形用金型を用いて試作を行うのが好ましい。このテストピース成形用金型は、一般的に、ウレタン原液を所定の大きさの直方体形状に発泡成形し、その発泡特性(成形圧等)や、成形後のポリウレタンフォームの物性(密度等)を調べるのに用いられるものである。この実施の形態では、該テストピース成形用金型は、それぞれ直方体形状(底面の直交2方向の辺の長さがそれぞれ400mm及び200mm、高さ100mm)の第1の成形空間13と第2の成形空間14とが水平に連なっており、これらの成形空間の天井部の中央にそれぞれウレタン原液を注入するための注入部が設けられた構成となっている。このテストピース成形用金型内には、第1の成形空間13及び第2の成形空間14内における成形圧をそれぞれ測定するための圧力センサが設けられている。この第1の成形空間に第1のウレタン原液Uを注入し、所定の時間差Δtをおいて第2の成形空間に第2のウレタン原液Uを注入して発泡させることにより、第1のウレタン原液Uにより成形された第1の部分2’と、第2のウレタン原液Uにより成形された第2の部分3’とを有するテストピース(試作品)1’が得られる。第2図は、このテストピース製作工程を示したものである。 The relationship between the injection time difference Δt and the corrected molding pressures ΔP 1 and ΔP 2 is obtained based on the trial production as follows. At this time, it is preferable to perform a trial production using a test piece molding die instead of a trial production using a die that is actually used for manufacturing (mass production) the polyurethane foam molded article 1. In general, this test piece molding die is formed by foaming a urethane stock solution into a rectangular parallelepiped shape of a predetermined size, and its foaming characteristics (molding pressure, etc.) and the physical properties (density, etc.) of the polyurethane foam after molding. It is used to investigate. In this embodiment, each of the test piece molding dies has a rectangular parallelepiped shape (the lengths of the sides in the two orthogonal directions of the bottom are 400 mm and 200 mm, and the height is 100 mm, respectively) and the second molding space 13. The molding space 14 is connected horizontally, and an injection part for injecting the urethane stock solution is provided at the center of the ceiling part of each molding space. In the test piece molding die, pressure sensors for measuring molding pressures in the first molding space 13 and the second molding space 14 are provided. By the first of the first urethane stock solution U 1 was injected into the molding space, thereby foaming by injecting the second urethane stock solution U 2 in the second molding space with a predetermined time difference Delta] t, the first the first portion 2 which is formed by urethane stock solution U 1 test piece having a 'and a second portion 3 which is formed by the second urethane stock solution U 2' (prototype) 1 'is obtained. FIG. 2 shows the test piece manufacturing process.

注入時間差Δtと第1のウレタン原液Uの補正成形圧ΔPとの関係は、以下のようにして求められる。ある注入時間差Δtの時に、第1のウレタン原液Uの注入量を基準注入量Gから少しずつ減らした上記試作品1’を複数個試作し、各試作品1’において、第1の成形部2’の密度D’をそれぞれ測定する。これにより、各試作品1’における第1の成形部2’の密度D’と、量産品における第1の成形部2の設定密度Dとの差がどの程度あるかが分かるので、その密度差(D’−D)から、この密度差を解消するのに必要な補正成形圧ΔPを算出する。補正成形圧ΔPは、この密度差にほぼ比例している(例えば、D’−D=ΔDkg/mである場合には、前記所定成形圧Pからの補正成形圧ΔPは、ほぼpΔD(pは比例定数。具体的には、p=0.047程度)kgf/cmとなる。)。なお、例えば仮に、試作品1’を複数個試作しているうちに、成形部2’,3’同士の境界部が設計上の予定位置とほぼ合致した試作品1’が得られた場合には、この試作品1’における密度D’と量産品の設定密度Dとの差から補正成形圧ΔPを算出する。あるいは、各試作品1’の成形部2’,3’同士の境界部が設計上の予定位置と合致しなくても、複数個の成形品1’の密度D’の値から、内挿により、成形部2’,3’同士の境界部が設計上の予定位置とほぼ合致した場合の密度D’を予想し、この密度D’の内挿値と量産品の設定密度Dとの差から補正成形圧ΔPを算出することもできる。これを、注入時間差Δtを変更して複数回繰り返すことにより、第5図のような注入時間差Δtと第1のウレタン原液Uの補正成形圧ΔPとの関係を示すグラフが得られる。 The relationship between the injection time difference Δt and the corrected molding pressure ΔP 1 of the first urethane stock solution U 1 can be obtained as follows. When a certain injection time difference Delta] t, the preform 1 with a reduced first injection amount of the urethane stock solution U 1 from the reference injection amount G 1 gradually 'a plurality prototype, the prototype 1' in the first mold The density D 1 ′ of the part 2 ′ is measured respectively. As a result, the difference between the density D 1 ′ of the first molded part 2 ′ in each prototype 1 ′ and the set density D 1 of the first molded part 2 in the mass-produced product can be understood. From the density difference (D 1 ′ −D 1 ), a correction molding pressure ΔP 1 necessary to eliminate this density difference is calculated. The corrected molding pressure ΔP 1 is substantially proportional to the density difference (for example, when D 1 ′ −D 1 = ΔD 1 kg / m 3 , the corrected molding pressure ΔP 1 from the predetermined molding pressure P is set. Is approximately pΔD 1 (p is a proportional constant, specifically, p = 0.047) kgf / cm 2 ). For example, if a prototype 1 ′ is obtained in which the boundary between the molded parts 2 ′ and 3 ′ substantially matches the planned position while a plurality of prototypes 1 ′ are prototyped. Calculates the corrected molding pressure ΔP 1 from the difference between the density D 1 ′ of the prototype 1 ′ and the set density D 1 of the mass-produced product. Alternatively, even if the boundary between the molded parts 2 ′ and 3 ′ of each prototype 1 ′ does not match the planned position in the design, the interpolation is performed from the value of the density D 1 ′ of the plurality of molded products 1 ′. Thus, the density D 1 ′ when the boundary between the molded parts 2 ′ and 3 ′ substantially matches the planned position on the design is predicted, and the interpolation value of this density D 1 ′ and the set density D 1 of the mass-produced product are predicted. The correction molding pressure ΔP 1 can also be calculated from the difference between the two. By repeating this several times while changing the injection time difference Δt, a graph showing the relationship between the injection time difference Δt and the corrected molding pressure ΔP 1 of the first urethane stock solution U 1 as shown in FIG. 5 is obtained.

注入時間差Δtと第2のウレタン原液Uの補正成形圧ΔPとの関係は、以下のようにして求められる。ある注入時間差Δtの時に、第2のウレタン原液Uの注入量を基準注入量Gから少しずつ増やした上記試作品1’を複数個試作し、各試作品1’において、第2の成形部3’の密度D’をそれぞれ測定する。これにより、各試作品1’における第2の成形部3’の密度D’と、量産品における第2の成形部3の設定密度Dとの差がどの程度であるかが分かるので、その密度差(D’−D)から、この密度差を解消するのに必要な補正成形圧ΔPを算出する。補正成形圧ΔPは、この密度差にほぼ比例している(例えば、D’−D=ΔDkg/mである場合には、前記所定成形圧Pからの補正成形圧ΔPは、ほぼpΔD(pは比例定数。具体的には、p=0.052程度)kgf/cmとなる。)。なお、例えば仮に、試作品1’を複数個試作しているうちに、成形部2’,3’同士の境界部が設計上の予定位置とほぼ合致した試作品1’が得られた場合には、この試作品1’における密度D’と量産品の設定密度Dとの差から補正成形圧ΔPを算出する。あるいは、各試作品1’の成形部2’,3’同士の境界部が設計上の予定位置と合致しなくても、複数個の成形品1’の密度D’の値から、内挿により、成形部2’,3’同士の境界部が設計上の予定位置とほぼ合致した場合の密度D’を予想し、この密度D’の内挿値と量産品の設定密度Dとの差から補正成形圧ΔPを算出することもできる。これを、注入時間差Δtを変更して複数回繰り返すことにより、第5図のような注入時間差Δtと第2のウレタン原液Uの補正成形圧ΔPとの関係を示すグラフが得られる。 The relationship between the injection time difference Δt and the corrected molding pressure ΔP 2 of the second urethane stock solution U 2 is obtained as follows. At a certain injection time difference Δt, a plurality of prototypes 1 ′, in which the injection amount of the second urethane undiluted solution U 2 is gradually increased from the reference injection amount G 2 , are prototyped, and the second molding is performed on each prototype 1 ′. The density D 2 ′ of the part 3 ′ is measured. Thus, the density D 2 'of the' second mold part 3 in the 'each preform 1, since whether the difference between a degree of the set density D 2 of the second molding part 3 of the mass production is seen, From the density difference (D 2 ′ −D 2 ), a correction molding pressure ΔP 2 necessary to eliminate the density difference is calculated. The corrected molding pressure ΔP 2 is substantially proportional to the density difference (for example, when D 2 ′ −D 2 = ΔD 2 kg / m 3 , the corrected molding pressure ΔP 2 from the predetermined molding pressure P is set. Is approximately pΔD 2 (p is a proportional constant, specifically, p = 0.052) kgf / cm 2 ). For example, if a prototype 1 ′ is obtained in which the boundary between the molded parts 2 ′ and 3 ′ substantially matches the planned position while a plurality of prototypes 1 ′ are prototyped. calculates a correction molding pressure [Delta] P 2 from the difference between the set density D 2 of the mass-produced 'density D 2' in this prototype 1. Alternatively, even if the boundary between the molded parts 2 ′ and 3 ′ of each prototype 1 ′ does not match the planned position on the design, the interpolation is performed from the value of the density D 2 ′ of the plurality of molded products 1 ′. Thus, the density D 2 ′ when the boundary between the molded parts 2 ′ and 3 ′ substantially matches the planned position on the design is predicted, and the interpolation value of this density D 2 ′ and the set density D 2 of the mass-produced product are predicted. The correction molding pressure ΔP 2 can also be calculated from the difference between the two . By repeating this several times while changing the injection time difference Δt, a graph showing the relationship between the injection time difference Δt and the corrected molding pressure ΔP 2 of the second urethane stock solution U 2 as shown in FIG. 5 is obtained.

この補正成形圧ΔP,ΔPに基づき、第2のウレタン原液Uの注入量を前記基準注入量Gからどの程度増加させればよいか(以下、この第2のウレタン原液Uの注入量の前記基準注入量Gからの補正量を補正注入量ΔGという。)、又は第1のウレタン原液Uの注入量を前記基準注入量Gからどの程度減少させればよいか(以下、この第1のウレタン原液Uの注入量の前記基準注入量Gからの補正量を補正注入量ΔGという。)が求められる。具体的には、補正注入量ΔGを求める場合には、上記の注入時間差Δtと補正成形圧ΔPとのグラフから、当該注入時間差Δtにおける補正成形圧ΔPを求める。そして、第2のウレタン原液Uの成形圧をこの補正成形圧ΔPだけ上昇させるために、第2のウレタン原液Uの注入量を前記基準注入量Gからどの程度増加させればよいか算出する。この算出値が補正注入量ΔGとなる。また、補正注入量ΔGを求める場合には、上記の注入時間差Δtと補正成形圧ΔPとのグラフから、当該注入時間差Δtにおける補正成形圧ΔPを求める。そして、第1のウレタン原液Uの成形圧をこの補正成形圧ΔPだけ下降させるために、第1のウレタン原液Uの注入量を前記基準注入量Gからどの程度減少させればよいか算出する。この算出値が補正注入量ΔGとなる。 The corrected molding pressure [Delta] P 1, on the basis of the [Delta] P 2, or the second injection amount of the urethane stock solution U 2 it is sufficient to what extent increases from the reference injection amount G 2 (hereinafter, the second urethane stock solution U 2 correction amount from the reference injection amount G 2 injection amount of correction injection amount ΔG 2.), or a first injection amount of the urethane stock solution U 1 it is sufficient to degree reduced from the reference injection amount G 1 (hereinafter, the correction amount from the reference injection amount G 1 of the first injection amount of the urethane stock solution U 1 that correction injection amount .DELTA.G 1.) is obtained. Specifically, when the correction injection amount ΔG 2 is obtained, the correction molding pressure ΔP 2 at the injection time difference Δt is obtained from the graph of the injection time difference Δt and the correction molding pressure ΔP 2 . Then, in order to increase the molding pressure of the second urethane raw solution U 2 by the corrected molding pressure ΔP 2 , how much the injection amount of the second urethane raw solution U 2 should be increased from the reference injection amount G 2. Or calculate. The calculated value is the correction injection amount .DELTA.G 2. Further, when the correction injection amount ΔG 1 is obtained, the correction molding pressure ΔP 1 at the injection time difference Δt is obtained from the graph of the injection time difference Δt and the correction molding pressure ΔP 1 . Then, in order to lower the molding pressure of the first urethane stock solution U 1 by this corrected molding pressure ΔP 1 , how much the injection amount of the first urethane stock solution U 1 should be reduced from the reference injection amount G 1. Or calculate. The calculated value is the correction injection amount .DELTA.G 1.

このように、注入時間差Δtに対する補正成形圧ΔP,ΔPを計算しておくと、ウレタン原液U,Uの配合そのものの変更や、配合の組合せの変更などに関わらず、正確にウレタン原液U,Uの補正注入量ΔG,ΔGを求めることが可能である。 As described above, when the corrected molding pressures ΔP 1 and ΔP 2 for the injection time difference Δt are calculated, the urethane is accurately determined regardless of the change in the formulation of the urethane stock solutions U 1 and U 2 or the change in the combination of the formulations. Correction injection amounts ΔG 1 and ΔG 2 of the stock solutions U 1 and U 2 can be obtained.

本発明では、具体的なウレタン原液U,Uの注入量の増減量の決定は、以下の注入量補正方法1〜3のいずれかを行う。 In the present invention, the determination of the specific urethane stock solution U 1, U 2 injection volume increase or decrease the amount, do one of the following injection amount correction method 1-3.

[注入量補正方法1]
ポリウレタンフォーム成形品1の製造時の実際の注入時間差Δtから上記の手順にて第2のウレタン原液Uの補正成形圧ΔPを求め、この補正成形圧ΔPに基づいて補正注入量ΔGを求め、第2のウレタン原液Uの注入量を前記基準注入量Gよりもこの補正注入量ΔGだけ多くする。
[Injection amount correction method 1]
Obtain correction molding pressure [Delta] P 2 of the polyurethane foam molded article 1 from the actual injection time difference Δt during manufacture in the above procedure of the second urethane stock solution U 2, the correction injection amount .DELTA.G 2 on the basis of the corrected molding pressure [Delta] P 2 And the injection amount of the second urethane undiluted solution U 2 is increased by the correction injection amount ΔG 2 from the reference injection amount G 2 .

このように補正することにより、第2のウレタン原液Uがより大きく膨張しようとするため、第2のウレタン原液Uが第1のウレタン原液Uをより強く押し戻すことが可能となり、第1図(d)の通り、成形後のポリウレタンフォーム成形品1において、成形部2,3同士の境界部が予定境界位置BLに合致するか又は接近する(成形部2,3同士の境界部と予定境界位置BLとの離反距離が好ましくは、50mm以下、特に好ましくは20mm以下となる)ようになる。なお、第1の成形部2と第2の成形部3との境界部は、第2図の通り、該第2の成形部3側へ凸曲面状に入り込むことが多いが、この成形部2,3同士の境界部と予定境界位置BLとの離反距離とは、この凸曲面を平均的に見た場合の予定境界位置BLからの離反距離(この凸曲面と予定境界位置BLとの平均離反距離)を指す。 By correcting in this way, the second urethane stock solution U 2 tends to expand more greatly, so that the second urethane stock solution U 2 can push back the first urethane stock solution U 1 more strongly. As shown in FIG. 4 (d), in the polyurethane foam molded article 1 after molding, the boundary between the molding parts 2 and 3 matches or approaches the planned boundary position BL (the boundary between the molding parts 2 and 3 and the schedule). The separation distance from the boundary position BL is preferably 50 mm or less, particularly preferably 20 mm or less. The boundary between the first molding part 2 and the second molding part 3 often enters a convex curved surface toward the second molding part 3 as shown in FIG. , 3 is the separation distance between the boundary between the three and the planned boundary position BL. The separation distance from the planned boundary position BL when the convex curved surface is viewed on average (the average separation between the convex curved surface and the planned boundary position BL). Distance).

[注入量補正方法2]
ポリウレタンフォーム成形品1の製造時の実際の注入時間差Δtから上記の手順にて第1のウレタン原液Uの補正成形圧ΔPを求め、この補正成形圧ΔPに基づいて補正注入量ΔGを求め、第1のウレタン原液Uの注入量を前記基準注入量Gよりもこの補正注入量ΔGだけ少なくする。
[Injection amount correction method 2]
The calculated correction molding pressure [Delta] P 1 of the polyurethane foam molded article 1 from the actual injection time difference Δt during manufacture by the above procedure first urethane stock solution U 1, the correction injection amount .DELTA.G 1 on the basis of the corrected molding pressure [Delta] P 1 And the injection amount of the first urethane undiluted solution U 1 is made smaller than the reference injection amount G 1 by this correction injection amount ΔG 1 .

このように補正することにより、第1のウレタン原液Uが第2のウレタン原液Uに対抗して第2の成形空間14側へ膨張しようとする力が弱くなるため、第2のウレタン原液Uが第1のウレタン原液Uを十分に押し戻すことが可能となり、成形後のポリウレタンフォーム成形品1において、成形部2,3同士の境界部が予定境界位置BLに合致するか又は接近するようになる。 By correcting in this way, the force of the first urethane undiluted solution U 1 to expand toward the second molding space 14 against the second urethane undiluted solution U 2 becomes weak, and therefore the second urethane undiluted solution U 2 can sufficiently push back the first urethane undiluted solution U 1, and in the polyurethane foam molded article 1 after molding, the boundary between the molded parts 2 and 3 matches or approaches the planned boundary position BL. It becomes like this.

[注入量補正方法3]
ポリウレタンフォーム成形品1の製造時の実際の注入時間差Δtから第1のウレタン原液Uの補正成形圧ΔPと、第2のウレタン原液Uの補正成形圧ΔPとを求め、この補正成形圧ΔP,ΔPに基づいて、第1のウレタン原液Uの注入量を前記基準注入量Gよりも少なくし、且つ第2のウレタン原液Uの注入量を前記基準注入量Gよりも多くする。
[Injection amount correction method 3]
Determined correction molding pressure [Delta] P 1 of the polyurethane foam molded article 1 from the actual injection time difference Δt during manufacture first urethane stock solution U 1, the second urethane stock solution U 2 and a correction molding pressure [Delta] P 2, this correction molding Based on the pressures ΔP 1 and ΔP 2 , the injection amount of the first urethane raw solution U 1 is made smaller than the reference injection amount G 1 and the injection amount of the second urethane raw solution U 2 is changed to the reference injection amount G 2. More than that.

この場合、例えば、補正成形圧ΔP,ΔPに基づいて求められる各ウレタン原液U,Uの補正注入量ΔG,ΔGをそれぞれ前記基準注入量G,Gに加算又は減算するのではなく、第2のウレタン原液Uの注入量をΔG/mだけ前記基準注入量Gよりも多くし、且つ第1のウレタン原液Uの注入量をΔG/nだけ前記基準注入量Gよりも少なくする。なお、m,nは、m=nであることが好ましく、特にm=n=2であることが好ましい。このように補正することにより、第2のウレタン原液Uがより大きく膨張しようとし、第1のウレタン原液Uをより強く押し戻すようになると共に、第1のウレタン原液Uが第2のウレタン原液Uに対抗して第2の成形空間14側へ膨張しようとする力が弱くなるため、第2のウレタン原液Uが第1のウレタン原液Uを十分に押し戻すことが可能となり、成形後のポリウレタンフォーム成形品1において、成形部2,3同士の境界部が予定境界位置BLに合致するか又は接近するようになる。 In this case, for example, correction molding pressure [Delta] P 1, the correction injection amount .DELTA.G 1 of the urethane stock solution U 1, U 2 obtained based on [Delta] P 2, adding or subtracting .DELTA.G 2 to each of the reference injection amount G 1, G 2 Instead, the injection amount of the second urethane stock solution U 2 is increased by ΔG 2 / m from the reference injection amount G 2 , and the injection amount of the first urethane stock solution U 1 is set by ΔG 1 / n. It is less than the reference injection amount G 1. Note that m and n are preferably m = n, and particularly preferably m = n = 2. By correcting in this way, the second urethane undiluted solution U 2 tends to expand more, the first urethane undiluted solution U 1 is pushed back more strongly, and the first urethane undiluted solution U 1 becomes the second urethane undiluted. Since the force to expand toward the second molding space 14 against the stock solution U 2 becomes weak, the second urethane stock solution U 2 can sufficiently push back the first urethane stock solution U 1. In the subsequent polyurethane foam molded article 1, the boundary between the molded portions 2 and 3 matches or approaches the planned boundary position BL.

なお、上記の補正方法は一例であり、本発明における第1のウレタン原液U及び第2のウレタン原液Uの注入量の補正方法はこれに限定されない。例えば、ポリウレタンフォーム成形品1の試作に基づいてウレタン原液U,Uの注入量を補正してもよい。このウレタン原液U,Uの補正量は経験則に基づいて決定してもよい。また、第1のウレタン原液Uを金型10に注入してから第2のウレタン原液Uを金型10に注入するまでの時間差Δtに応じて、どの程度、第1のウレタン原液U及び/又は第2のウレタン原液Uの注入量を補正すればよいか、予め実験等により指標を明らかにしておき、この指標に基づいて第1のウレタン原液U及び/又は第2のウレタン原液Uの注入量を補正するようにしてもよい。 The above correction method is an example, the correction method of the first urethane stock solution U 1 and second injection amount of the urethane stock solution U 2 in the present invention is not limited thereto. For example, the injection amount of the urethane stock solutions U 1 and U 2 may be corrected based on the trial production of the polyurethane foam molded article 1. The correction amounts of the urethane stock solutions U 1 and U 2 may be determined based on empirical rules. Further, according to the time difference Δt from when the first urethane undiluted solution U 1 is poured into the mold 10 to when the second urethane undiluted solution U 2 is poured into the mold 10, how much the first urethane undiluted solution U 1 is. and / or the second or the injection amount of the urethane stock solution U 2 may be corrected in advance by clarifying the index in advance by experiment or the like, the first urethane stock solution U 1 and / or the second urethane on the basis of the index the injection volume of the stock solution U 2 may be corrected.

このようにして第1のウレタン原液U及び/又は第2のウレタン原液Uの注入量をそれぞれ前記基準注入量G,Gから補正した後、この補正された注入量を量産時の注入量としてポリウレタンフォーム成形品1を製造する。 In this way, after correcting the injection amount of the first urethane stock solution U 1 and / or the second urethane stock solution U 2 from the reference injection amounts G 1 and G 2 , respectively, the corrected injection amount is used at the time of mass production. A polyurethane foam molded article 1 is produced as an injection amount.

以下に実施例を挙げて本発明をより具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.

<実施例1>
下記配合のウレタン原液Aとウレタン原液Bとを用意した。なお、ウレタン原液Aのイソシアネートインデックスは36であり、ウレタン原液Bイソシアネートインデックスは41である。
<Example 1>
A urethane stock solution A and a urethane stock solution B having the following composition were prepared. The urethane stock solution A has an isocyanate index of 36, and the urethane stock solution B has an isocyanate index of 41.

Figure 0005561101
Figure 0005561101

Figure 0005561101
Figure 0005561101

ウレタン原液Aとウレタン原液Bについて、OA密度と成形圧との関係を調べ、結果を第3図(a)に示した。第3図(a)より、成形圧P=0.647kgf/cm(63.4kPa)において、ウレタン原液Aにより成形されたポリウレタンフォームのOA密度は45.8kg/mであり、ウレタン原液Bにより成形されたポリウレタンフォームのOA密度は40kg/mであり、密度が異なることがわかる。 Regarding the urethane stock solution A and the urethane stock solution B, the relationship between the OA density and the molding pressure was examined, and the results are shown in FIG. 3 (a). From FIG. 3 (a), at the molding pressure P = 0.647 kgf / cm 2 (63.4 kPa), the OA density of the polyurethane foam molded with the urethane stock solution A is 45.8 kg / m 3 , and the urethane stock solution B It can be seen that the OA density of the polyurethane foam molded by is 40 kg / m 3 and the density is different.

このウレタン原液Aとウレタン原液Bについて、OA密度と25%硬度との関係を調べ、結果を第3図(b)に示した。第3図(b)より明らかなように、ウレタン原液Bにより成形されたポリウレタンフォームのOA密度が40kg/mのときに25%硬度は25.8kgfあるのに対し、ウレタン原液Aにより成形されたポリウレタンフォームのOA密度が45.8kg/mのときに、25%硬度は18kgfであり、ウレタン原液Bの25.8kgfよりもかなり低い。 With respect to this urethane stock solution A and urethane stock solution B, the relationship between OA density and 25% hardness was examined, and the results are shown in FIG. 3 (b). As is apparent from FIG. 3 (b), when the OA density of the polyurethane foam molded from the urethane stock solution B is 40 kg / m 3 , the 25% hardness is 25.8 kgf, whereas the polyurethane foam is molded from the urethane stock solution A. When the polyurethane foam has an OA density of 45.8 kg / m 3 , the 25% hardness is 18 kgf, which is considerably lower than 25.8 kgf of the urethane stock solution B.

そこで、ウレタン原液Aについて、ポリオール配合液とイソシアネート成分との混合割合を徐々に変え、その場合のOA密度と25%硬度との関係を調べた。その結果、第3図(b)に示す如く、イソシアネートインデックスを37.5としたウレタン原液A’により成形されたポリウレタンフォームは、OA密度45.8kg/mのときに25%硬度が上記と同じ25.8kgfになることが判明した。なお、このウレタン原液A’により成形されたポリウレタンフォームのOA密度と最大内圧との関係は、ウレタン原液Aにより成形されたポリウレタンフォームのOA密度と最大内圧との関係とほぼ同等であり、OA密度45.8kg/mのときの最大内圧はいずれも0.647kgf/cmであった。 Then, about the urethane stock solution A, the mixing ratio of a polyol compound liquid and an isocyanate component was changed gradually, and the relationship between the OA density and 25% hardness in that case was investigated. As a result, as shown in FIG. 3 (b), the polyurethane foam molded from the urethane stock solution A ′ having an isocyanate index of 37.5 has 25% hardness when the OA density is 45.8 kg / m 3. It was found to be the same 25.8 kgf. The relationship between the OA density and the maximum internal pressure of the polyurethane foam molded from the urethane stock solution A ′ is almost the same as the relationship between the OA density and the maximum internal pressure of the polyurethane foam molded from the urethane stock solution A. The maximum internal pressure at 45.8 kg / m 3 was 0.647 kgf / cm 2 .

上記の経緯に基づき、下記のウレタン原液A’及びウレタン原液Bを用いてポリウレタンフォーム成形品1を成形することとした。ウレタン原液A’を、第1の成形部2を成形するための第1のウレタン原液Uとし、ウレタン原液Bを、第2の成形部3を成形するための第2のウレタン原液Uとした。この実施例1では、P=0.647kgf/cm、D=45.8kg/m、D=40kg/mである。金型10の第1の成形空間13及び第2の成形空間14の容積はいずれも8000cmとした。金型10のキャビティ体積は16000cmである。 Based on the above circumstances, the polyurethane foam molded article 1 was molded using the following urethane stock solution A ′ and urethane stock solution B. The urethane stock solution A ′ is a first urethane stock solution U 1 for molding the first molding part 2, and the urethane stock solution B is a second urethane stock solution U 2 for molding the second molding part 3. did. In Example 1, P = 0.647 kgf / cm 2 , D H = 45.8 kg / m 3 , and D L = 40 kg / m 3 . The volumes of the first molding space 13 and the second molding space 14 of the mold 10 were both 8000 cm 3 . The cavity volume of the mold 10 is 16000 cm 3 .

Figure 0005561101
Figure 0005561101

このキャビティ内における成形時の最大内圧が、キャビティ内のいずれの箇所においても0.647kgf/cmとなるように各ウレタン原液U,Uの基準注入量G,Gを求めたところ、G=366.4g、G=320gであった。 When this maximum pressure during molding in the cavity is to determine the reference injection amount G 1, G 2 of the urethane stock solution so that the 0.647kgf / cm 2 at any location in the cavity U 1, U 2 G 1 = 366.4 g and G 2 = 320 g.

この基準注入量G,Gをそれぞれウレタン原液U,Uの注入量として試作品1’を製作した。第1のウレタン原液Uを金型10に注入してから第2のウレタン原液Uを金型10に注入するまでの時間差Δtは15秒とした。成形完了後、この試作品1’の各成形部2’,3’の密度D’,D’を測定した。D’はDよりも0.3kg/m小さく、D’はDよりも0.3kg/m大きなものとなった。そこで、予め作成しておいた注入時間差Δtとウレタン原液Uの補正成形圧ΔPとの関係を示すグラフから、Δt=15秒のときのウレタン原液Uの補正成形圧ΔPを求めたところ、ΔP=0.12kgf/cmであったので、それに基づきウレタン原液Uの注入量を基準注入量GよりもΔG=18.5g(即ちウレタン原液Uの成形圧を0.12kgf/cm程度上昇させるのに必要な増加量)多くして338.5gとするように補正し、この補正した注入量にてウレタン原液U,Uを金型10に注入したこと以外は試作品1’と同様にしてポリウレタンフォーム成形品1を製造した。 A prototype 1 ′ was manufactured using the reference injection amounts G 1 and G 2 as the injection amounts of the urethane stock solutions U 1 and U 2 , respectively. The time difference Δt from when the first urethane stock solution U 1 was injected into the mold 10 to when the second urethane stock solution U 2 was injected into the mold 10 was 15 seconds. After the molding was completed, the densities D 1 ′ and D 2 ′ of the molded parts 2 ′ and 3 ′ of the prototype 1 ′ were measured. D 1 'is 0.3 kg / m 3 smaller than D H, D 2' became as large 0.3 kg / m 3 than D L. Therefore, from the graph showing the relationship between the correction molding pressure [Delta] P 2 pre injection had been created time difference Delta] t and urethane stock solution U 2, was determined correction molding pressure [Delta] P 2 urethane stock solution U 2 in the case of Delta] t = 15 seconds However, since ΔP 2 = 0.12 kgf / cm 2 , the injection amount of the urethane stock solution U 2 is set to ΔG 2 = 18.5 g (that is, the molding pressure of the urethane stock solution U 2 is set to 0 than the reference injection amount G 2). The amount of increase required to increase the amount by about 12 kgf / cm 2 ) was corrected to 338.5 g, and the urethane stock solutions U 1 and U 2 were injected into the mold 10 with the corrected injection amount. Except for the above, a polyurethane foam molded article 1 was produced in the same manner as in the prototype 1 ′.

このポリウレタンフォーム成形品1を長手方向にカットし、断面を目視により確認したところ、成形部2と成形部3との境界部は、該ポリウレタンフォーム成形品1の長手方向のほぼ中間に位置していた。   When this polyurethane foam molded article 1 was cut in the longitudinal direction and the cross section was confirmed by visual observation, the boundary between the molded part 2 and the molded part 3 was located almost in the middle of the polyurethane foam molded article 1 in the longitudinal direction. It was.

以上詳述した通り、本発明によれば、物性ないし特性が異なる2部分以上のポリウレタンフォーム成形部が一体成形されてなるポリウレタンフォーム成形品を製造するに当り、成形部同士の境界部をより精度良く設計位置に配置することが可能である。   As described above in detail, according to the present invention, when producing a polyurethane foam molded product in which two or more polyurethane foam molded parts having different physical properties or characteristics are integrally molded, the boundary between the molded parts is more accurately detected. It is possible to arrange in the design position well.

<参考例>
第1のウレタン原液U及び第2のウレタン原液Uとして同一配合のウレタン原液(同一成形圧Pにおいて同一密度のポリウレタンフォームを成形しうるウレタン原液)を使用し、このウレタン原液を実施例1と同一の金型10に時間差Δtをおいて注入してポリウレタンフォーム成形品1を製作した。この際、第2のウレタン原液Uには青色の着色を行い、成形後の第1の成形部2と第2の成形部3との境界部(合わせ目)が目視により容易に確認できるようにした。注入時間差Δtを6秒、15秒、20秒、25秒と変更してそれぞれポリウレタンフォーム成形品1を製作し、それぞれについて、各成形部2,3の密度と、成形部2,3同士の密度差を測定した。結果を表4及び第4図に示す。なお、第4図は表4をグラフ化したものである。表4及び第4図から、注入時間差Δtが大きくなるほど、成形部2,3同士の密度差(体積差)が生じ、且つその程度も大きくなることが分かる。
<Reference example>
A urethane stock solution having the same composition (a urethane stock solution capable of forming a polyurethane foam of the same density at the same molding pressure P) is used as the first urethane stock solution U 1 and the second urethane stock solution U 2 , and this urethane stock solution is used in Example 1. A polyurethane foam molded article 1 was manufactured by injecting into the same mold 10 with a time difference Δt. At this time, the second urethane undiluted solution U 2 is colored in blue so that the boundary (joint) between the first molded part 2 and the second molded part 3 after molding can be easily confirmed visually. I made it. The injection time difference Δt is changed to 6 seconds, 15 seconds, 20 seconds, and 25 seconds to produce polyurethane foam molded products 1 respectively. For each, the density of the molded parts 2 and 3 and the density of the molded parts 2 and 3 are The difference was measured. The results are shown in Table 4 and FIG. FIG. 4 is a graph of Table 4. From Table 4 and FIG. 4, it can be seen that the greater the injection time difference Δt, the greater the density difference (volume difference) between the molded parts 2 and 3 and the greater the degree.

Figure 0005561101
Figure 0005561101

注入時間差Δtを6秒、15秒、20秒及び25秒にそれぞれ固定し、第2のウレタン原液Uの注入量を少しずつ増やしながらポリウレタンフォーム成形品1を複数個試作することにより、当該注入時間差Δtにおいて成形部2,3同士の境界部が予定境界位置BLとほぼ合致するようになる補正成形圧ΔPを探索した。結果を第5図に示す。 The injection time difference Δt is fixed to 6 seconds, 15 seconds, 20 seconds, and 25 seconds, respectively, and a plurality of polyurethane foam molded products 1 are manufactured by trial production while gradually increasing the injection amount of the second urethane stock solution U 2. A search was made for a corrected molding pressure ΔP 2 at which the boundary between the molding parts 2 and 3 substantially matches the planned boundary position BL at the time difference Δt. The results are shown in FIG.

この参考例においては、補正成形圧ΔPは、以下のようにして求められる。ある注入時間差Δtの時に、第2のウレタン原液Uの注入量を基準注入量Gより少しずつ増やした試作品1’を複数個試作し、各試作品1’において、成形部2’,3’の密度D’,D’をそれぞれ測定する。これにより、各試作品1’における成形部2’,3’の密度D’,D’と、量産品における設定密度D,Dとの差がどの程度であるかが分かるので、その密度差(D’−D)から、この密度差を解消するのに必要な補正成形圧ΔPを算出する。前述の通り、補正成形圧ΔPは、この密度差にほぼ比例している。仮に、試作品1’を複数個試作しているうちに、成形部2’,3’同士の境界部が設計上の予定位置とほぼ合致した試作品1’が得られた場合には、この試作品1’における密度D’と量産品の設定密度Dとの差から補正成形圧ΔPを算出する。あるいは、各試作品1’の成形部2’,3’同士の境界部が設計上の予定位置と合致しなくても、複数個の成形品1’の密度D’の値から、内挿により、成形部2’,3’同士の境界部が設計上の予定位置とほぼ合致した場合の密度D’を予想し、この密度D’の内挿値と量産品の設定密度Dとの差から補正成形圧ΔPを算出することもできる。なお、この密度差(D’−D)から直接的に補正注入量を算出しない理由は、密度−成形圧の関係がウレタン原料の配合によって異なるためである。即ち、この密度差(D’−D)から当該注入時間差Δtにおける補正成形圧ΔPを算出することにより、第2のウレタン原液Uとしてどのような配合のウレタン原液を使用する場合にも(即ち、例えば仮にこの試作品1’を製作するのに用いたウレタン原液と配合が異なるウレタン原液を用いてポリウレタンフォーム成形品1を製作することになっても)、この補正成形圧ΔPから、第2のウレタン原液Uの補正注入量を求めることが可能となる。 In this reference example, the correction molding pressure [Delta] P 2 is determined as follows. When a certain injection time difference Delta] t, prototype 1 with increased second injection amount of the urethane stock solution U 2 than portionwise reference injection amount G 2 'the plurality trial, the preform 1' in the molded part 2 ', The 3 ′ densities D 1 ′ and D 2 ′ are measured. Thereby, since the density D 1 ′, D 2 ′ of the molded parts 2 ′, 3 ′ in each prototype 1 ′ and the set density D 1 , D 2 in the mass-produced product can be seen, From the density difference (D 2 ′ −D 2 ), a correction molding pressure ΔP 2 necessary to eliminate the density difference is calculated. As described above, the correction molding pressure ΔP 2 is substantially proportional to the density difference. If a prototype 1 ′ is obtained in which the boundary between the molded parts 2 ′ and 3 ′ substantially matches the planned position while a plurality of prototypes 1 ′ are prototyped, from the difference between the set density D 2 of the mass-produced 'density D 2' in prototype 1 calculates a correction molding pressure [Delta] P 2. Alternatively, even if the boundary between the molded parts 2 ′ and 3 ′ of each prototype 1 ′ does not match the planned position on the design, the interpolation is performed from the value of the density D 2 ′ of the plurality of molded products 1 ′. Thus, the density D 2 ′ when the boundary between the molded parts 2 ′ and 3 ′ substantially matches the planned position on the design is predicted, and the interpolation value of this density D 2 ′ and the set density D 2 of the mass-produced product are predicted. The correction molding pressure ΔP 2 can also be calculated from the difference between the two . The reason why the correction injection amount is not calculated directly from the density difference (D 2 ′ −D 2 ) is that the relationship between density and molding pressure differs depending on the blending of urethane raw materials. That is, by calculating the corrected molding pressure ΔP 2 at the injection time difference Δt from the density difference (D 2 ′ −D 2 ), any type of urethane stock solution is used as the second urethane stock solution U 2. (Ie, even if the polyurethane foam molded product 1 is manufactured using a urethane stock solution having a different composition from the urethane stock solution used to produce the prototype 1 ', for example), this corrected molding pressure ΔP 2 Therefore, it becomes possible to obtain the corrected injection amount of the second urethane stock solution U2.

いくつかの注入時間差Δt(参考例では6秒、15秒、20秒及び25秒)について、上記の手順でそれぞれ補正成形圧ΔPを求めることにより、第5図の如き注入時間差Δtと補正成形圧ΔPとの関係を示すグラフが得られる。 With respect to several injection time differences Δt (6 seconds, 15 seconds, 20 seconds and 25 seconds in the reference example), the correction molding pressure ΔP 2 is obtained by the above procedure, respectively, and the injection time difference Δt and the correction molding as shown in FIG. A graph showing the relationship with the pressure ΔP 2 is obtained.

[考察]
この実験により、注入時間差Δtに応じて、補正成形圧ΔPが決定されることが明らかになった。
[Discussion]
This experiment according to the injection time difference Delta] t, the correction molding pressure [Delta] P 2 was found to be determined.

1 ポリウレタンフォーム成形品
2 第1のポリウレタンフォーム成形部
3 第2のポリウレタンフォーム成形部
10 発泡成形用金型
11 下型
12 上型
13 第1の成形空間
14 第2の成形空間
15 第1の注入部
16 第2の注入部
第1のウレタン原液
第1のウレタン原液
BL 第1の成形部と第2の成形部との予定境界位置
DESCRIPTION OF SYMBOLS 1 Polyurethane foam molded product 2 1st polyurethane foam molded part 3 2nd polyurethane foam molded part 10 Foam mold 11 Lower mold 12 Upper mold 13 1st molding space 14 2nd molding space 15 1st injection | pouring Part 16 2nd injection | pouring part U 1 1st urethane undiluted solution U 2 1st urethane undiluted solution BL Planned boundary position of the 1st forming part and the 2nd forming part

Claims (3)

物性ないし特性が異なるポリウレタンフォームを成形し得る2種以上のウレタン原液を発泡成形用金型内に注入して発泡させることにより、物性ないし特性が異なる2部分以上のポリウレタンフォーム成形部を有するポリウレタンフォーム成形品を一体成形するポリウレタンフォーム成形品の製造方法であって、
各ウレタン原液を所定の時間差をおいて発泡成形用金型内に注入して発泡させるポリウレタンフォーム成形品の製造方法において、
各ウレタン原液を同時に該発泡成形用金型内に注入すると仮定した場合において、成形時にいずれのポリウレタンフォーム成形部においても同一の所定の成形圧となる各ウレタン原液の注入量を求め、この注入量を各ウレタン原液の基準注入量とし、
前記所定の時間差が大きくなるほど、
a) 後から注入されるウレタン原液の注入量を該基準注入量よりも多くする、
b) 先に注入されるウレタン原液の注入量を該基準注入量よりも少なくする、
の少なくとも一方よりなる注入量補正を行うと共に、各ウレタン原液を前記所定の時間差をおいて発泡成形用金型内に注入して発泡させたときに、先に注入されたウレタン原液により成形された成形部と、後から注入されたウレタン原液により成形された成形部との境界部を、該後から注入されたウレタン原液の膨張力により設計上の境界位置まで押し戻すことを可能とする各ウレタン原料の成形圧を求め、
この求められた成形圧と前記所定の成形圧との差に基づき、前記注入量補正を行うことを特徴とするポリウレタンフォーム成形品の製造方法。
Polyurethane foam having two or more polyurethane foam molding parts having different physical properties or characteristics by injecting two or more types of urethane stock solutions capable of molding polyurethane foams having different physical properties or characteristics into a foaming mold and foaming. A method for producing a polyurethane foam molded product for integrally molding a molded product,
In the method for producing a polyurethane foam molded product, each urethane stock solution is injected into a foam molding die with a predetermined time difference and foamed.
When it is assumed that each urethane stock solution is injected into the foam molding die at the same time, the injection amount of each urethane stock solution having the same predetermined molding pressure is obtained in any polyurethane foam molding part at the time of molding. Is the reference injection amount of each urethane stock solution,
The larger the predetermined time difference is,
a) The injection amount of the urethane stock solution to be injected later is made larger than the reference injection amount.
b) The injection amount of the urethane stock solution injected first is less than the reference injection amount.
In addition to correcting the injection amount consisting of at least one of the above, each urethane stock solution was molded into the foam molding mold with a predetermined time difference and foamed, and was molded with the urethane stock solution previously injected. Each urethane raw material that makes it possible to push back the boundary between the molded part and the molded part molded with the urethane stock solution injected later to the designed boundary position by the expansion force of the urethane stock solution injected later. The molding pressure of
A method for producing a polyurethane foam molded article , wherein the injection amount correction is performed based on a difference between the molding pressure thus determined and the predetermined molding pressure .
請求項1において、前記所定の成形圧において、硬度が同一で密度の異なるポリウレタンフォームを成形し得る2種以上のウレタン原液を前記発泡成形用金型内に注入して発泡させることにより、硬度が同一で密度の異なる2部分以上のポリウレタンフォーム成形部を有するポリウレタンフォーム成形品を一体成形することを特徴とするポリウレタンフォーム成形品の製造方法。   In Claim 1, in the said predetermined | prescribed molding pressure, hardness is inject | poured by inject | pouring into the said foaming metal mold | die two or more types of urethane stock solutions which can shape | mold the polyurethane foam with the same hardness and different densities. A method for producing a polyurethane foam molded article, comprising integrally molding a polyurethane foam molded article having two or more polyurethane foam molded parts having the same density and different densities. 請求項2において、前記所定の成形圧において各ウレタン原液により成形されるポリウレタンフォームの密度と、各ポリウレタンフォーム成形部の設計上の容積とに基づいて、各ウレタン原液の前記基準注入量を設定することを特徴とするポリウレタンフォーム成形品の製造方法。   3. The reference injection amount of each urethane stock solution is set based on the density of the polyurethane foam molded by each urethane stock solution at the predetermined molding pressure and the design volume of each polyurethane foam molding part. A method for producing a polyurethane foam molded article.
JP2010241210A 2010-10-27 2010-10-27 Method for producing polyurethane foam molded article Expired - Fee Related JP5561101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010241210A JP5561101B2 (en) 2010-10-27 2010-10-27 Method for producing polyurethane foam molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010241210A JP5561101B2 (en) 2010-10-27 2010-10-27 Method for producing polyurethane foam molded article

Publications (2)

Publication Number Publication Date
JP2012091416A JP2012091416A (en) 2012-05-17
JP5561101B2 true JP5561101B2 (en) 2014-07-30

Family

ID=46385339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010241210A Expired - Fee Related JP5561101B2 (en) 2010-10-27 2010-10-27 Method for producing polyurethane foam molded article

Country Status (1)

Country Link
JP (1) JP5561101B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016053974A1 (en) * 2014-09-30 2016-04-07 Tempur-Pedic Management, Llc Dual density molded foam pillow
JP6971519B2 (en) * 2016-10-28 2021-11-24 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag Manufacturing method of polyurethane foam molded products
JP6993123B2 (en) 2017-06-28 2022-02-15 サンスター技研株式会社 Filling device for foamable materials and its filling method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3584424B2 (en) * 1997-08-29 2004-11-04 株式会社岡村製作所 Manufacturing method of multilayered different hardness cushion body, multilayered different hardness cushion body manufactured by the method, and seat and back of chair using the cushion body
CA2511527C (en) * 2002-12-24 2011-07-12 Bridgestone Corporation Polyurethane foam molding, method of producing the same, and seat pad for motor vehicle

Also Published As

Publication number Publication date
JP2012091416A (en) 2012-05-17

Similar Documents

Publication Publication Date Title
US7334278B2 (en) Molded polyurethane foam product, seat pad for vehicle, and method for molding polyurethane foam product
JP5561101B2 (en) Method for producing polyurethane foam molded article
CN104511997B (en) Method of manufacturing molded body and method of manufacturing seat parts for vehicles
US4670925A (en) Process for the production of a cushion for a seat or the back for a motor vehicle or the like comprising two layers of foamed material with different properties and cushion prepared by the process
CN106714624A (en) Dual density molded foam pillow
US20150035193A1 (en) Method Of Improving The Appearance Of Injection Molding And Foaming Product
CA2804637C (en) System and method of forming variable density seating materials
JP2006149466A (en) Pad for sheet and its production method
EP3673768B1 (en) Vehicle seat core and seat pad
CN109262935A (en) It is a kind of for manufacturing the frothing injection system of thermoplastic polyurethane sole, shoes
JP2023166532A (en) Vehicular cushion pad and foam for lower layer thereof
JP4898656B2 (en) Polyurethane foam and method for producing the same
JPS62240091A (en) Method and apparatus for molding different hardness seat cushion
JP5519194B2 (en) Molded product manufacturing method and molded product manufacturing apparatus
JP3211577B2 (en) Multi-layer cushion molded product and method of manufacturing the same
JP3501219B2 (en) Manufacturing method of cushioning material
JP6746448B2 (en) Polyol composition and flexible polyurethane foam
CN108882797B (en) Foam molded article, method for producing foam molded article, and automobile seat
KR20210134949A (en) Cushions and methods for manufacturing cushions
JP2005110923A (en) Shaping method of flexible urethane foam and seat pad
JPWO2019107148A1 (en) Seat pad manufacturing method
JP6514586B2 (en) Synthetic resin foam mold, method for producing synthetic resin foam molded article using the mold, and synthetic resin foam molded article molded by the production method
JP5468823B2 (en) Support material design method
JP5837771B2 (en) Urethane foam molded body and urethane foam molding method
JP2706132B2 (en) Seat cushion pad

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130614

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130905

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140526

R150 Certificate of patent or registration of utility model

Ref document number: 5561101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees