JP5560743B2 - Electrode catalyst, membrane electrode assembly and fuel cell - Google Patents

Electrode catalyst, membrane electrode assembly and fuel cell Download PDF

Info

Publication number
JP5560743B2
JP5560743B2 JP2010021925A JP2010021925A JP5560743B2 JP 5560743 B2 JP5560743 B2 JP 5560743B2 JP 2010021925 A JP2010021925 A JP 2010021925A JP 2010021925 A JP2010021925 A JP 2010021925A JP 5560743 B2 JP5560743 B2 JP 5560743B2
Authority
JP
Japan
Prior art keywords
catalyst
acid group
fuel cell
group density
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010021925A
Other languages
Japanese (ja)
Other versions
JP2011156511A (en
Inventor
聡三郎 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010021925A priority Critical patent/JP5560743B2/en
Publication of JP2011156511A publication Critical patent/JP2011156511A/en
Application granted granted Critical
Publication of JP5560743B2 publication Critical patent/JP5560743B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Description

本発明は、燃料電池用の電極触媒と、この電極触媒を具備する膜電極接合体および燃料電池セルに関するものである。   The present invention relates to an electrode catalyst for a fuel cell, a membrane electrode assembly including the electrode catalyst, and a fuel cell.

固体高分子型燃料電池の燃料電池セルは、イオン透過性の電解質膜と、該電解質膜を挟持するアノード側およびカソード側の各電極触媒層(電極触媒)と、から膜電極接合体(MEA:Membrane Electrode Assembly)を成し、各電極触媒の外側にガス流れの促進と集電効率を高めるためのガス拡散層(GDL)が設けられて電極体(MEGA:MEAとGDLの接合体)を成し、このガス拡散層の外側にセパレータが配されて燃料電池セルが形成されている。実際には、これらの燃料電池セルが発電性能に応じた基数だけ積層され、燃料電池スタックが形成されることになる。   A fuel cell of a polymer electrolyte fuel cell includes a membrane electrode assembly (MEA: an ion permeable electrolyte membrane) and electrode catalyst layers (electrode catalysts) on the anode side and the cathode side that sandwich the electrolyte membrane. Membrane Electrode Assembly), gas diffusion layers (GDL) for promoting gas flow and increasing current collection efficiency are provided outside each electrode catalyst to form electrode bodies (MEGA: MEA and GDL assembly) A separator is arranged outside the gas diffusion layer to form a fuel cell. Actually, these fuel cells are stacked in the number corresponding to the power generation performance to form a fuel cell stack.

上記する燃料電池では、アノード電極に燃料ガスとして水素ガス等が提供され、カソード電極には酸化剤ガスとして酸素や空気が提供され、各電極では固有のガス流路層もしくはセパレータのガス流路溝にて面内方向にガスが流れ、次いでガス拡散層にて拡散されたガスが電極触媒に導かれて電気化学反応がおこなわれるものである。この電気化学反応では、アノード電極にて生成された水素イオンと水が水和状態で電解質膜を透過してカソード電極に至り、カソード電極にて生成水が生成されることとなる。したがって、膜電極接合体内における水の移動態様や電気化学反応による生成水の生成態様により、発電経過とともにアノード電極は乾燥し易く、場合によってはドライアップに至る一方、カソード電極では水分過多となり易く、場合によってはフラッティングに至り易いという課題がある。なお、ドライアップの場合には、水素ガスが乾燥しているためにイオン交換膜である電解質膜のプロトン伝導性が低下し、燃料電池セルの発電性能が低下するし、フラッティングの場合には、カソード側のガス拡散層やガス流路層(もしくはセパレータのガス流路溝)に水が滞留して酸化剤ガスの流れを阻害し、膜電極接合体に十分な酸化剤ガスが提供されないために燃料電池セルの発電性能が低下する。   In the fuel cell described above, hydrogen gas or the like is provided as fuel gas to the anode electrode, oxygen or air is provided as oxidant gas to the cathode electrode, and each electrode has its own gas channel layer or gas channel groove of the separator. The gas flows in the in-plane direction, and then the gas diffused in the gas diffusion layer is guided to the electrode catalyst to cause an electrochemical reaction. In this electrochemical reaction, hydrogen ions and water generated at the anode electrode pass through the electrolyte membrane in a hydrated state to reach the cathode electrode, and generated water is generated at the cathode electrode. Therefore, depending on the movement mode of water in the membrane electrode assembly and the generation mode of water generated by electrochemical reaction, the anode electrode is easily dried with the progress of power generation, and in some cases, it is dry up, while the cathode electrode is likely to be excessively watery. In some cases, there is a problem that it is easy to lead to flatting. In the case of dry-up, since the hydrogen gas is dry, the proton conductivity of the electrolyte membrane, which is an ion exchange membrane, decreases, and the power generation performance of the fuel cell decreases. Since water stays in the cathode side gas diffusion layer and gas flow path layer (or the gas flow path groove of the separator), the flow of the oxidant gas is hindered, and sufficient oxidant gas is not provided to the membrane electrode assembly. In addition, the power generation performance of the fuel cell decreases.

上記する燃料電池では、カソード側に提供される酸化剤ガス、アノード側に提供される燃料ガスともに、加湿モジュールにて加湿された状態で燃料電池セル内に提供されるようになっている。しかし、この加湿モジュールの存在により、燃料電池や加湿モジュール等からなる燃料電池システム全体の体格が増大し、さらにはシステムの重量が嵩んでしまうことから、この加湿モジュールを廃して、セル内での自己加湿を可能とし、もって軽量化を図ることのできる燃料電池の開発が進んでいる。ここで、この「自己加湿」とは、カソード側で生成された生成水をアノード側に逆拡散させ、カソード側からのプロトン移動に伴って随伴水をカソード側へ移動させることにより、セル内で水分循環を図るものである。   In the fuel cell described above, both the oxidant gas provided on the cathode side and the fuel gas provided on the anode side are provided in the fuel cell while being humidified by the humidification module. However, the presence of the humidification module increases the overall size of the fuel cell system including the fuel cell and the humidification module, and further increases the weight of the system. Development of fuel cells that can be self-humidified and can be reduced in weight has been underway. Here, the “self-humidification” means that the generated water generated on the cathode side is back-diffused to the anode side, and the accompanying water is moved to the cathode side along with the proton movement from the cathode side. It is intended for water circulation.

このように、燃料電池の発電性能を向上させ、さらにその自己加湿を実現するためには、膜電極接合体を構成する電極触媒(触媒層)の性能を一層向上させることは極めて重要であり、中でも、自己加湿にとって重要な触媒性能の一つに電極触媒の保水性が挙げられ、保水性を向上させることでプロトン伝導性の向上にも繋がる。たとえば、触媒担持担体に親水性官能基を付与することは、保水性を向上させるに有効な方策の一つである。   Thus, in order to improve the power generation performance of the fuel cell and further realize its self-humidification, it is extremely important to further improve the performance of the electrode catalyst (catalyst layer) constituting the membrane electrode assembly, Among them, one of the important catalyst performances for self-humidification is the water retention of the electrode catalyst, and improving the water retention leads to an improvement in proton conductivity. For example, imparting a hydrophilic functional group to the catalyst-supporting carrier is one effective measure for improving water retention.

上記するように、電極触媒の保水性が重要である一方で、その保水性能が高すぎると、今度は、既述するフラッティングの原因となり得、逆に燃料電池の性能低下に繋がってしまう。   As described above, while water retention of the electrode catalyst is important, if its water retention performance is too high, this may cause the flatting described above, and conversely lead to a decrease in the performance of the fuel cell.

したがって、特に、燃料電池セルの自己加湿を図るに際しては、電極触媒の保水性能を適正な範囲内に調整する必要があり、この適正範囲を特定することが当該技術分野における重要な課題の一つとなっている。   Therefore, in particular, when self-humidifying the fuel battery cell, it is necessary to adjust the water retention performance of the electrode catalyst within an appropriate range, and identifying this appropriate range is one of the important issues in the technical field. It has become.

ここで、従来の公開技術へ目を転じるに、電極触媒(触媒層)を形成する電極粉末の水蒸気吸着量を所定範囲に規定してなる電極触媒と、これを備えた燃料電池が特許文献1に開示されている。この技術は、特に電極触媒の親水性を直接的に数値化し、定量的な評価指標を規定したものであるが、本発明者等は、触媒担持担体(触媒)の酸性官能基と電極触媒を形成する高分子電解質(アイオノマ)のスルホン酸基がともに親水性を有すること、したがって、電極触媒の保水性は、これら触媒担持担体の酸性官能基と高分子電解質のスルホン酸基の双方を考慮する必要があること、より詳細に言えば、電極触媒の保水性能を決定する指標として、この触媒担持担体の酸性官能基の量(もしくは、酸基密度)と、高分子電解質のスルホン酸基の量(もしくは、スルホン酸基密度)の間の相間を規定し、これによって電極触媒の最適な保水性能を保証できることを見出し、本発明に至っている。   Here, to turn to the conventional published technology, an electrode catalyst in which the water vapor adsorption amount of the electrode powder forming the electrode catalyst (catalyst layer) is defined within a predetermined range, and a fuel cell including the same are disclosed in Patent Document 1. Is disclosed. In particular, this technique quantifies the hydrophilicity of the electrode catalyst directly and defines a quantitative evaluation index. However, the present inventors have determined the acidic functional group of the catalyst support (catalyst) and the electrode catalyst. Both the sulfonic acid groups of the polymer electrolyte (ionomer) to be formed are hydrophilic, and therefore the water retention of the electrode catalyst takes into account both the acidic functional groups of these catalyst-supported carriers and the sulfonic acid groups of the polymer electrolyte. More specifically, more specifically, as an index for determining the water retention performance of the electrode catalyst, the amount of acidic functional groups (or acid group density) of the catalyst-supported carrier and the amount of sulfonic acid groups of the polymer electrolyte It has been found that the interphase between (or sulfonic acid group density) is defined, and that the optimum water retention performance of the electrode catalyst can be ensured thereby, leading to the present invention.

特開2009−26602号公報JP 2009-26602 A

本発明は、上記する問題に鑑みてなされたものであり、触媒担持担体(もしくはその形成成分である触媒)の酸基密度と電極触媒を形成する高分子電解質のスルホン酸基密度の相間に基づいて、自己加湿可能な燃料電池を実現するための、適正な保水性能が保証された電極触媒と、この電極触媒を具備する膜電極接合体および燃料電池セルを提供することを目的とする。   The present invention has been made in view of the above problems, and is based on the phase between the acid group density of the catalyst-supporting carrier (or the catalyst that is a component of the catalyst support) and the sulfonic acid group density of the polymer electrolyte that forms the electrode catalyst. Thus, it is an object of the present invention to provide an electrode catalyst that guarantees proper water retention performance, a membrane electrode assembly and a fuel battery cell including the electrode catalyst, in order to realize a fuel cell capable of self-humidification.

前記目的を達成すべく、本発明による電極触媒は、電極触媒を形成する触媒担持担体と高分子電解質に関し、触媒担持担体の酸基密度をX,高分子電解質のスルホン酸基密度をYとした際に、以下の2式で規定される範囲内の酸基密度とスルホン酸基密度を有する、(1)Y=−0.285X+0.99、(2)Y=−0.285X+1.09、電極触媒である。   In order to achieve the above object, the electrode catalyst according to the present invention relates to a catalyst-supported carrier and a polymer electrolyte that form an electrode catalyst, wherein the catalyst-supported carrier has an acid group density of X and the polymer electrolyte has a sulfonic acid group density of Y. In this case, (1) Y = −0.285X + 0.99, (2) Y = −0.285X + 1.09, an electrode having an acid group density and a sulfonic acid group density within the range defined by the following two formulas It is a catalyst.

既述するように、触媒担持担体(触媒)の酸性官能基と、電極触媒を形成する高分子電解質(アイオノマ)のスルホン酸基は、ともに親水性を有することから、電極触媒の保水性を適正範囲に制御するためには、これら触媒担持担体の酸性官能基と高分子電解質のスルホン酸基の双方を考慮する必要がある。たとえば、触媒担持担体の酸基密度が高められた際には、高分子電解質のスルホン酸基密度を一定量以下に抑制することを要する。   As described above, the acidic functional group of the catalyst-supporting carrier (catalyst) and the sulfonic acid group of the polymer electrolyte (ionomer) forming the electrode catalyst are both hydrophilic, so that the water retention of the electrode catalyst is appropriate. In order to control the range, it is necessary to consider both the acidic functional group of the catalyst-supporting support and the sulfonic acid group of the polymer electrolyte. For example, when the acid group density of the catalyst-supporting carrier is increased, it is necessary to suppress the sulfonic acid group density of the polymer electrolyte to a certain amount or less.

一方で、触媒担持担体に対する高分子電解質の被覆や、良好なプロトン伝導性を確保する観点から、ある一定量の高分子電解質を要することは理解に易い。したがって、触媒担持担体の酸基密度と高分子電解質のスルホン酸基密度との間に、電極触媒の保水性を最適範囲とできる相間が見出せれば、この相間に基づいて双方の酸基密度およびスルホン酸基密度を調整でき、電極触媒の良好な保水性能を保証することが可能となる。   On the other hand, it is easy to understand that a certain amount of polymer electrolyte is required from the viewpoint of coating the catalyst-supporting carrier with the polymer electrolyte and ensuring good proton conductivity. Therefore, if a phase between the acid support density of the catalyst-supporting support and the sulfonic acid group density of the polymer electrolyte can be found within the optimum range of water retention of the electrode catalyst, both acid group densities and The density of the sulfonic acid group can be adjusted, and it is possible to ensure good water retention performance of the electrode catalyst.

この知見に基づいて本発明者等が検証した結果、触媒担持担体の酸基密度をX,高分子電解質のスルホン酸基密度をYとした際に、上記する2式で規定される範囲内の酸基密度とスルホン酸基密度とすることにより、電極触媒の良好な保水性能を保証できることが特定されている。   As a result of the verification by the present inventors based on this knowledge, when the acid group density of the catalyst-supporting carrier is X and the sulfonic acid group density of the polymer electrolyte is Y, it is within the range defined by the above two formulas. It has been specified that the good water retention performance of the electrode catalyst can be guaranteed by using the acid group density and the sulfonic acid group density.

ここで、電極触媒の製造方法を概説する。まず、上記する2式で規定される範囲内の酸基密度とスルホン酸基密度に調整された触媒担持担体および高分子電解質を分散溶媒に投入し、攪拌して触媒溶液(触媒インク)を生成する。この生成された触媒溶液を、基材である電解質膜にたとえば塗工ブレードにて層状に引き伸ばして塗膜を形成し、ホットプレス、温風乾燥炉等で乾燥することにより、電解質膜の両側のアノード側およびカソード側に電極触媒(触媒層)が形成され、また、両極の電極触媒が形成されることによって膜電極接合体が得られることになる。   Here, a method for producing an electrode catalyst will be outlined. First, a catalyst supporting carrier and a polymer electrolyte adjusted to have acid group density and sulfonic acid group density within the range defined by the above two formulas are put into a dispersion solvent, and stirred to produce a catalyst solution (catalyst ink). To do. The produced catalyst solution is stretched into a layer on the electrolyte membrane as a base material by a coating blade, for example, to form a coating film, and dried in a hot press, a hot air drying furnace, etc. The electrode catalyst (catalyst layer) is formed on the anode side and the cathode side, and the membrane electrode assembly is obtained by forming the electrode catalyst of both electrodes.

そして、この膜電極接合体のアノード側およびカソード側にガス透過層(ガス拡散層やガス流路層)を配し、さらにその両側にセパレータを配することで燃料電池セルが形成される。上記する本発明の電極触媒を具備する燃料電池セルは、当該電極触媒の保水性能が最適範囲に制御されており、したがって、自己加湿可能であって、かつ、フラッティングの危険性のない、もしくは危険性の極めて少ない燃料電池セルである。そのため、燃料電池セル自身の性能向上に加えて、自己加湿を可能としたことによって燃料電池システムから加湿モジュールを廃してその全体重量を格段に低減できることから、近時その生産が拡大しており、車載機器に一層の高性能と軽量性を要求している電気自動車やハイブリッド車用の燃料電池に好適なものとなる。   A fuel cell is formed by disposing a gas permeable layer (gas diffusion layer or gas flow path layer) on the anode side and cathode side of the membrane electrode assembly and further disposing a separator on both sides thereof. In the fuel cell comprising the above-described electrode catalyst of the present invention, the water retention performance of the electrode catalyst is controlled in the optimum range, and therefore, self-humidification is possible and there is no risk of fluttering. It is a fuel cell with extremely low risk. Therefore, in addition to improving the performance of the fuel cell itself, by enabling self-humidification, the humidification module can be eliminated from the fuel cell system and its overall weight can be significantly reduced. This is suitable for fuel cells for electric vehicles and hybrid vehicles that require higher performance and light weight for in-vehicle devices.

以上の説明から理解できるように、本発明の電極触媒によれば、規定された、触媒担持担体の酸基密度と高分子電解質のスルホン酸基密度の相間によってその良好な保水性能が保証され、もって、発電性能に優れ、自己加湿を可能とした燃料電池に供されるものである。   As can be understood from the above description, according to the electrode catalyst of the present invention, good water retention performance is ensured by the defined phase difference between the acid group density of the catalyst-supporting carrier and the sulfonic acid group density of the polymer electrolyte, Therefore, the fuel cell is provided for a fuel cell that has excellent power generation performance and enables self-humidification.

電極触媒を形成する触媒担持担体と高分子電解質を模擬した図であって、(a)は、触媒担持担体の酸基密度が低い場合を示した図であり、(b)は、触媒担持担体の酸基密度が高い場合を示した図である。FIG. 2 is a diagram simulating a catalyst-supporting carrier and a polymer electrolyte that form an electrode catalyst, in which (a) shows a case where the acid group density of the catalyst-supporting carrier is low, and (b) shows a catalyst-supporting carrier. It is the figure which showed the case where the acid group density of is high. 触媒担持担体の酸基密度を変化させ、酸基密度ごとに高分子電解質のスルホン酸基密度を変化させてできる電極触媒を具備する燃料電池セルの発電電圧値を測定した実験結果を示すグラフである。FIG. 6 is a graph showing experimental results of measuring the power generation voltage value of a fuel cell equipped with an electrode catalyst obtained by changing the acid group density of the catalyst-supporting carrier and changing the sulfonic acid group density of the polymer electrolyte for each acid group density. is there. 図2で示す実験結果に基づいて作成された、触媒担持担体の酸基密度と高分子電解質のスルホン酸基密度の相間、および、電極触媒の最適な保水性能を保証する、酸基密度とスルホン酸基密度の制御範囲を規定したグラフである。The acid group density and the sulfone, which are based on the experimental results shown in FIG. 2 and guarantee the optimum water retention performance between the acid support density of the catalyst-supporting carrier and the sulfonic acid group density of the polymer electrolyte and the electrode catalyst. It is the graph which prescribed | regulated the control range of the acid group density.

以下、図面を参照して本発明の電極触媒の一実施の形態を説明する。   Hereinafter, an embodiment of an electrode catalyst of the present invention will be described with reference to the drawings.

図1は、電極触媒を形成する触媒担持担体と高分子電解質を模擬した図であり、図1aは、触媒担持担体の酸基密度が低い場合を示した図、図1bは、触媒担持担体の酸基密度が高い場合を示した図である。   FIG. 1 is a diagram simulating a catalyst supporting carrier and a polymer electrolyte forming an electrode catalyst, FIG. 1a is a diagram showing a case where the acid group density of the catalyst supporting carrier is low, and FIG. 1b is a diagram of the catalyst supporting carrier. It is the figure which showed the case where an acid group density is high.

燃料電池セルの膜電極接合体を構成する電極触媒は、プロトンや酸素の伝導路となる高分子電解質20(アイオノマ)が多数の触媒担持担体10同士を被覆して繋ぎ、所定厚の層を形成したものである。この触媒担持担体10は、導電性担体1の表面に触媒金属2(触媒)が付着してなるものであり、さらに、導電性担体1の表面に酸性官能基11が形成されている。   In the electrode catalyst constituting the membrane electrode assembly of the fuel cell, a polymer electrolyte 20 (ionomer) serving as a conduction path for protons and oxygen covers and connects a large number of catalyst-supporting carriers 10 to form a layer having a predetermined thickness. It is a thing. The catalyst-supporting carrier 10 is obtained by attaching a catalytic metal 2 (catalyst) to the surface of the conductive carrier 1, and further has an acidic functional group 11 formed on the surface of the conductive carrier 1.

一方、高分子電解質20はスルホン酸基21を有しており、触媒担持担体10の酸性官能基11と高分子電解質20のスルホン酸基21は、ともに親水性を有している。   On the other hand, the polymer electrolyte 20 has a sulfonic acid group 21, and the acidic functional group 11 of the catalyst-supporting carrier 10 and the sulfonic acid group 21 of the polymer electrolyte 20 are both hydrophilic.

したがって、電極触媒の保水性を適正範囲に制御するためには、これら触媒担持担体10の酸性官能基11と高分子電解質20のスルホン酸基21の双方を考慮する必要がある。たとえば、図1aで示すように、触媒担持担体10の酸性官能基11の量、すなわち、酸基密度が低い場合は、高分子電解質20のスルホン酸21の量、すなわち、スルホン酸基密度を高める必要があり、図1bで示すように、触媒担持担体10の酸基密度が高い場合は、高分子電解質20のスルホン酸基密度を低くする必要がある。このことは、既述するように、電極触媒の性能向上にその保水性を高めることが重要である一方で、保水性能が高すぎることは、フラッティングの一要因となり得ることに依拠するものである。   Therefore, in order to control the water retention of the electrode catalyst within an appropriate range, it is necessary to consider both the acidic functional group 11 of the catalyst-supporting carrier 10 and the sulfonic acid group 21 of the polymer electrolyte 20. For example, as shown in FIG. 1a, when the amount of the acidic functional group 11 of the catalyst-supporting carrier 10, ie, the acid group density is low, the amount of the sulfonic acid 21 of the polymer electrolyte 20, ie, the sulfonic acid group density is increased. If the acid density of the catalyst-supporting carrier 10 is high as shown in FIG. 1b, the density of the sulfonic acid group of the polymer electrolyte 20 needs to be low. As described above, it is important to increase the water retention capacity for improving the performance of the electrocatalyst. On the other hand, the fact that the water retention performance is too high is based on the fact that it can be a factor of flatting. is there.

上記するように、触媒担持担体10の酸基密度と高分子電解質20のスルホン酸基密度が所望に制御され、これらをその主成分とする電極触媒の製造方法を以下で概説する。   As described above, the acid group density of the catalyst-supporting carrier 10 and the sulfonic acid group density of the polymer electrolyte 20 are controlled as desired, and a method for producing an electrode catalyst having these as its main components will be outlined below.

まず、用意された容器内に収容された分散溶媒へ、触媒担持担体の酸基密度と高分子電解質のスルホン酸基密度が予め所望に調整された該触媒担持担体および高分子電解質を投入し、超音波ホモジナイザー、ビーズミル、ボールミルなどを使用して攪拌等することによって触媒溶液(触媒インク)を得る。   First, the catalyst-supported carrier and the polymer electrolyte, in which the acid group density of the catalyst-supporting carrier and the sulfonic acid group density of the polymer electrolyte are previously adjusted as desired, are charged into the dispersion solvent accommodated in the prepared container. A catalyst solution (catalyst ink) is obtained by stirring using an ultrasonic homogenizer, a bead mill, a ball mill, or the like.

ここで、溶液を形成する高分子電解質は、プロトン伝導性ポリマーである、有機系の含フッ素高分子を骨格とするイオン交換樹脂、例えばパーフルオロカーボンスルフォン酸樹脂、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレン等のスルホン化プラスチック系電解質、スルホアルキル化ポリエーテルエーテルケトン、スルホアルキル化ポリエーテルスルホン、スルホアルキル化ポリエーテルエーテルスルホン、スルホアルキル化ポリスルホン、スルホアルキル化ポリスルフィド、スルホアルキル化ポリフェニレンなどのスルホアルキル化プラスチック系電解質などを挙げることができる。なお、市販素材としては、ナフィオン(Nafion)(登録商標、デュポン社製)やフレミオン(Flemion)(登録商標、旭硝子株式会社製)などを挙げることができる。   Here, the polymer electrolyte forming the solution is an ion exchange resin having a skeleton of an organic fluorine-containing polymer, which is a proton conductive polymer, such as perfluorocarbon sulfonic acid resin, sulfonated polyether ketone, sulfonated polymer. Ether sulfone, sulfonated polyether ether sulfone, sulfonated polysulfone, sulfonated polysulfide, sulfonated plastic electrolytes such as sulfonated polyphenylene, sulfoalkylated polyetheretherketone, sulfoalkylated polyethersulfone, sulfoalkylated polyetherether Examples thereof include sulfoalkylated plastic electrolytes such as sulfone, sulfoalkylated polysulfone, sulfoalkylated polysulfide, and sulfoalkylated polyphenylene. Examples of commercially available materials include Nafion (registered trademark, manufactured by DuPont) and Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.).

また、蒸着やスパッタリング、イオンブレーディング等のPVD法、もしくはプラズマCVD,熱CVD等のCVD法を適用して、導電性担体の表面に触媒金属を付着させ、触媒担持担体を得る。ここで、導電性担体としては、カーボンブラック、カーボンナノチューブ、カーボンナノファイバーなどの炭素材料のほか、炭化ケイ素などに代表される炭素化合物などを挙げることができ、触媒金属としては、たとえば、白金や白金合金、パラジウム、ロジウム、金、銀、オスミウム、イリジウムなどのうちのいずれか一種を使用することができ、好ましくは白金または白金合金を使用するのがよい。さらに、この白金合金としては、たとえば、白金と、アルミニウム、クロム、マンガン、鉄、コバルト、ニッケル、ガリウム、ジルコニウム、モリブデン、ルテニウム、ロジウム、パラジウム、バナジウム、タングステン、レニウム、オスミウム、イリジウム、チタンおよび鉛のうちの少なくとも一種との合金を挙げることができる。   In addition, a PVD method such as vapor deposition, sputtering, or ion braiding, or a CVD method such as plasma CVD or thermal CVD is applied to attach a catalytic metal to the surface of the conductive carrier to obtain a catalyst-carrying carrier. Here, examples of the conductive support include carbon materials such as carbon black, carbon nanotubes, and carbon nanofibers, as well as carbon compounds typified by silicon carbide. Examples of the catalytic metal include platinum and Any one of platinum alloy, palladium, rhodium, gold, silver, osmium, iridium and the like can be used, and preferably platinum or platinum alloy is used. Further, examples of the platinum alloy include platinum, aluminum, chromium, manganese, iron, cobalt, nickel, gallium, zirconium, molybdenum, ruthenium, rhodium, palladium, vanadium, tungsten, rhenium, osmium, iridium, titanium, and lead. An alloy with at least one of them can be mentioned.

さらに、分散溶媒としては、水のほか、メタノール、エタノール、1−プロパノール、2−プロパノール、エチレングリコール、ジエチレングリコール等のアルコール類、アセトン、メチルエチルケトン、ジメチルホルムアミド、ジメチルイミダゾリジノン、ジメチルスルホキシド、ジメチルアセトアミド、N−メチルピロリドン、プロピレンカーボネート、酢酸エチルや酢酸ブチルなどのエステル類、芳香族系あるいはハロゲン系の種々の溶媒を挙げることができ、さらには、これらを単独で、もしくは混合液として使用することができる。   Furthermore, as a dispersion solvent, in addition to water, alcohols such as methanol, ethanol, 1-propanol, 2-propanol, ethylene glycol, diethylene glycol, acetone, methyl ethyl ketone, dimethylformamide, dimethylimidazolidinone, dimethyl sulfoxide, dimethylacetamide, Examples include N-methylpyrrolidone, propylene carbonate, esters such as ethyl acetate and butyl acetate, and various aromatic or halogen solvents, and these may be used alone or as a mixture. it can.

生成された触媒溶液は、基材である電解質膜、ガス拡散層、支持フィルムのいずれか一種に塗工等され、温風乾燥、ホットプレス等されることによって基材表面に触媒層(電極触媒)が形成される。ここで、この電解質膜は、たとえば、スルホン酸基やカルボニル基を持つフッ素系イオン交換膜、置換フェニレンオキサイドやスルホン化ポリアリールエーテルケトン、スルホン化ポリアリールエーテルスルホン、スルホン化フェニレンスルファイドなどの非フッ素系のポリマーなどから形成されるものである。また、ガス拡散層は、ポリアクリロニトリルからの焼成体、ピッチからの焼成体、黒鉛及び膨張黒鉛等の炭素材やこれらのナノカーボン材料、ステンレススチール、モリブデン、チタン等から形成されるものである。さらに、支持フィルムは、ポリエチレンフィルム、ポリプロピレンフィルム、ポリテトラフルオロエチレンフィルム、エチレン/テトラフルオロエチレン共重合体フィルム、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体フィルム、ポリフッ化ビニリデンフィルム、ポリイミドフィルム、ポリアミドフィルム、ポリエチレンテレフタレートフィルムなどを挙げることができ、これらの素材からなるシートを2層以上積層して基材としてもよい。   The produced catalyst solution is applied to any one of an electrolyte membrane, a gas diffusion layer, and a support film, which is a base material, and is dried on a hot air, hot pressed, etc., to form a catalyst layer (electrode catalyst) on the surface of the base material. ) Is formed. Here, this electrolyte membrane is, for example, a non-fluorine ion exchange membrane having a sulfonic acid group or a carbonyl group, a substituted phenylene oxide, a sulfonated polyaryletherketone, a sulfonated polyarylethersulfone, a sulfonated phenylenesulfide or the like. It is formed from a fluorine-based polymer or the like. The gas diffusion layer is formed from a fired body made of polyacrylonitrile, a fired body made of pitch, carbon materials such as graphite and expanded graphite, nanocarbon materials thereof, stainless steel, molybdenum, titanium, and the like. Furthermore, the support film is a polyethylene film, a polypropylene film, a polytetrafluoroethylene film, an ethylene / tetrafluoroethylene copolymer film, a tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer film, a polyvinylidene fluoride film, a polyimide film. , Polyamide film, polyethylene terephthalate film, and the like. Two or more sheets made of these materials may be laminated to form a base material.

[触媒担持担体の酸基密度を変化させ、酸基密度ごとに高分子電解質のスルホン酸基密度を変化させてできる電極触媒を具備する燃料電池セルの発電電圧値を測定した実験とその結果]
本発明者等は、触媒担持担体の酸基密度を変化させ、酸基密度ごとに高分子電解質のスルホン酸基密度を変化させてそれぞれに対応した触媒インクを調合し、各触媒インクを使用して電極触媒および膜電極接合体を作成し、この膜電極接合体にガス拡散層を配して燃料電池セルを作成した。
[Experiment and results of measuring the power generation voltage value of a fuel cell equipped with an electrode catalyst by changing the acid group density of the catalyst support and changing the sulfonic acid group density of the polymer electrolyte for each acid group density]
The inventors changed the acid group density of the catalyst-carrying support, changed the sulfonic acid group density of the polymer electrolyte for each acid group density, prepared a corresponding catalyst ink, and used each catalyst ink. Thus, an electrode catalyst and a membrane electrode assembly were prepared, and a gas diffusion layer was disposed on the membrane electrode assembly to prepare a fuel cell.

より具体的には、導電性担体として、市販のケッチェンEC(ケッチェンブラックインターナショナル製)やVulcan(Cabot社)などのカーボンブラックを使用し、これを蒸留水に懸濁攪拌し、塩化白金酸(白金化合物)を滴下する。これに、エタノールなどの還元剤を滴下することで白金をカーボン上に析出させる。そして、この混合物を濾過し、濾過後の固形物を乾燥させることで、白金触媒が担持された触媒担持担体を得た。   More specifically, carbon black such as commercially available Ketjen EC (manufactured by Ketjen Black International) or Vulcan (Cabot) is used as the conductive carrier, and this is suspended and stirred in distilled water, and chloroplatinic acid ( A platinum compound) is added dropwise. To this, platinum is deposited on the carbon by dropping a reducing agent such as ethanol. The mixture was filtered, and the solid after the filtration was dried to obtain a catalyst-carrying carrier carrying a platinum catalyst.

この触媒担持担体を逆滴定法にてその酸基密度を測定したところ、0.3mmol/g−Cの触媒担持担体が得られた。また、得られた触媒担持担体を0.5N硝酸により、以下の3つの条件、すなわち、50℃で0.5時間、80℃で0.5時間、80℃で24時間の各条件にて加熱処理し、それぞれ、0.5mmol/g−C、0.7mmol/g−C、1.0mmol/g−Cの各触媒担持担体が得られた。なお、ここでの「酸」とは、主としてカルボン酸(−COOH基)である。   When the acid group density of this catalyst-supported carrier was measured by a back titration method, a catalyst-supported carrier of 0.3 mmol / g-C was obtained. The obtained catalyst-supported carrier was heated with 0.5N nitric acid under the following three conditions: 50 ° C for 0.5 hours, 80 ° C for 0.5 hours, and 80 ° C for 24 hours. The respective catalyst-supported carriers of 0.5 mmol / g-C, 0.7 mmol / g-C, and 1.0 mmol / g-C were obtained by processing. The “acid” here is mainly carboxylic acid (—COOH group).

得られた触媒担持担体に蒸留水を加え、エタノールや1−プロパノールなどの分散溶媒を加える。さらに、プロトン伝導体である高分子電解質として、市販のナフィオン溶液(デュポン社製、EW1000)をさらに加えて溶液を得た。ここで、このナフィオンの投入量は、そのスルホン酸基密度が導電性担体であるカーボンブラックに対し、質量比で、0.6,0.75,0.85,0.9,1.05,1.2となるように調整した。最後に、生成された混合物を十分に攪拌し、粒子の微粒化や均一分散のために超音波照射やビーズミルなどによって分散処理をおこない、触媒溶液(触媒インク)を製作した。   Distilled water is added to the resulting catalyst-supported carrier, and a dispersion solvent such as ethanol or 1-propanol is added. Furthermore, as a polymer electrolyte which is a proton conductor, a commercially available Nafion solution (manufactured by DuPont, EW1000) was further added to obtain a solution. Here, the amount of Nafion charged is 0.6, 0.75, 0.85, 0.9, 1.05 in terms of mass ratio with respect to the carbon black whose sulfonic acid group density is the conductive carrier. It adjusted so that it might become 1.2. Finally, the resulting mixture was sufficiently stirred, and dispersion treatment was performed by ultrasonic irradiation, bead milling, etc. to make the particles fine and uniform, thereby producing a catalyst solution (catalyst ink).

製作された触媒溶液をドクターブレード式アプリケータにてテフロン基材上に塗布し、100℃で真空乾燥させることにより、当該基材上に電極触媒(触媒層)を形成した。   The produced catalyst solution was applied onto a Teflon substrate with a doctor blade type applicator and vacuum dried at 100 ° C. to form an electrode catalyst (catalyst layer) on the substrate.

テフロン基材表面上に形成された電極触媒を、ナフィオン112からなる電解質膜の両側、すなわちアノード側とカソード側の双方に配し、130℃でホットプレスすることで電極触媒の両側に電極触媒を接合し、テフロン基材を除去して膜電極接合体を製作した。   The electrode catalyst formed on the surface of the Teflon substrate is placed on both sides of the electrolyte membrane made of Nafion 112, that is, on both the anode side and the cathode side, and hot-pressed at 130 ° C. to put the electrode catalyst on both sides of the electrode catalyst. The membrane electrode assembly was manufactured by bonding and removing the Teflon substrate.

得られた膜電極接合体の両側に、カーボン基材と撥水層(カーボンとPTFEとからなる)とからなるガス拡散層を配して燃料電池セルを作成し、アノード側に水素を、カソード側に空気を提供することでその発電を図り、各負荷電流の際の電圧値を測定して、燃料電池セルの性能を評価した。なお、加湿条件として、セル温度に対してアノード極、カソード極ともに40%RHとしている。   A gas diffusion layer composed of a carbon base material and a water repellent layer (consisting of carbon and PTFE) is disposed on both sides of the obtained membrane electrode assembly to produce a fuel cell, and hydrogen is applied to the anode side, Electricity was generated by providing air to the side, and the voltage value at each load current was measured to evaluate the performance of the fuel cell. The humidification condition is 40% RH for both the anode and cathode with respect to the cell temperature.

図2に、触媒担持担体の酸基密度がそれぞれ、0.3mmol/g−C、0.5mmol/g−C、0.7mmol/g−C、1.0mmol/g−Cであり、各酸基密度において、高分子電解質のスルホン酸基密度を変化させてできる電極触媒を具備する燃料電池セルの電圧値の測定結果を示している。   In FIG. 2, the acid group density of the catalyst-supported carrier is 0.3 mmol / g-C, 0.5 mmol / g-C, 0.7 mmol / g-C, and 1.0 mmol / g-C, respectively. The measurement result of the voltage value of the fuel cell provided with the electrode catalyst formed by changing the sulfonic acid group density of the polymer electrolyte in the group density is shown.

同図より、それぞれの酸基密度の燃料電池セルに対応するグラフは、電圧ピークを有する曲線グラフとなることが実証されている。   From the figure, it is proved that the graph corresponding to the fuel cell of each acid group density is a curve graph having a voltage peak.

同図のグラフを使用し、本発明者等はさらに、電圧ピークが得られるスルホン酸基密度を酸基密度に対してプロットし、図3で示す触媒担持担体の酸基密度と高分子電解質のスルホン酸基密度の相間グラフを得た。   Using the graph of the figure, the present inventors further plotted the sulfonic acid group density at which a voltage peak is obtained against the acid group density, and the acid group density of the catalyst-supported carrier and the polymer electrolyte shown in FIG. An interphase graph of sulfonic acid group density was obtained.

同図において、この相間グラフは、触媒担持担体の酸基密度をX,高分子電解質のスルホン酸基密度をYとした際に、以下の式1で規定されることとなる。
Y=−0.285X+1.04・・・・・・(式1)
In this figure, this interphase graph is defined by the following formula 1 when the acid group density of the catalyst support is X and the sulfonic acid group density of the polymer electrolyte is Y.
Y = −0.285X + 1.04 (Formula 1)

ここで、実際にこの燃料電池セルが積層され、スタッキングされてなる燃料電池スタックのハイブリッド車や電気自動車の車両性能への影響を勘案し、出力変動を±5%の範囲に抑制することを前提として、上記する式1に対して±5%の範囲の広がりを設け、この範囲(図3における範囲A)を、電圧ピーク最大を付与し得る、触媒担持担体の酸基密度および高分子電解質のスルホン酸基密度の制御範囲と規定した。すなわち、上記式1に±5%の範囲の広がりを付与してなる範囲Aは、以下の式2,3の2式を範囲Aの下限ラインおよび上限ラインとするものである。
Y=−0.285X+0.99・・・・・(式2)
Y=−0.285X+1.09・・・・・(式3)
Here, it is assumed that the output fluctuation is suppressed to a range of ± 5% in consideration of the effect of the fuel cell stack actually stacked and stacked on the vehicle performance of the hybrid vehicle and the electric vehicle. As described above, the spread of a range of ± 5% is provided with respect to the above-described formula 1, and this range (range A in FIG. 3) can be used to give the maximum voltage peak, and the acid group density of the catalyst-supporting support and the polymer electrolyte It was defined as the control range of sulfonic acid group density. That is, the range A formed by adding a range of ± 5% to the above formula 1 is to set the following two formulas 2 and 3 as the lower limit line and the upper limit line of the range A.
Y = −0.285X + 0.99 (Formula 2)
Y = −0.285X + 1.09 (Formula 3)

触媒担持担体の酸基密度と高分子電解質のスルホン酸基密度がともに、上記式2,3で規定される範囲内となるように双方の密度を制御しながら製造し、これらを使用して電極触媒を得、この電極触媒を具備する燃料電池セル、ひいては燃料電池を製造することにより、電極触媒の保水性能が最適範囲内に制御され、発電性能に優れた燃料電池を得ることができる。そして、この燃料電池を使用することにより、フラッティングの発生を効果的に抑制しながら、自己加湿をも可能とした燃料電池、さらには燃料電池システムを構築することができ、出力性能に優れ、軽量で燃費性能に優れた燃料電池を具備するハイブリッド車、電気自動車に供することができるものである。   Produced while controlling the density so that both the acid group density of the catalyst-supporting carrier and the sulfonic acid group density of the polymer electrolyte are within the range defined by the above formulas 2 and 3, and using these, the electrode By obtaining a catalyst and producing a fuel cell comprising this electrode catalyst, and thus a fuel cell, the water retention performance of the electrode catalyst is controlled within the optimum range, and a fuel cell with excellent power generation performance can be obtained. And by using this fuel cell, it is possible to build a fuel cell that can also self-humidify while effectively suppressing the occurrence of flatting, and further a fuel cell system, excellent output performance, It can be used for hybrid vehicles and electric vehicles equipped with fuel cells that are lightweight and have excellent fuel efficiency.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

1…導電性担体、2…触媒金属(触媒)、10…触媒担持担体、11…触媒酸基、20…高分子電解質、21…スルホン酸基 DESCRIPTION OF SYMBOLS 1 ... Conductive support | carrier, 2 ... Catalytic metal (catalyst), 10 ... Catalyst support | carrier, 11 ... Catalytic acid group, 20 ... Polymer electrolyte, 21 ... Sulphonic acid group

Claims (3)

電極触媒を形成する触媒担持担体と高分子電解質に関し、触媒担持担体の酸基密度をX,高分子電解質のスルホン酸基密度をYとした際に、以下の2式で規定される範囲内の酸基密度とスルホン酸基密度を有する、
(1)Y=−0.285X+0.99、
(2)Y=−0.285X+1.09、
(ただし、X<0.3の範囲を除く)
電極触媒。
Regarding the catalyst-carrying support and polymer electrolyte that form the electrode catalyst, when the acid group density of the catalyst-carrying support is X and the sulfonic acid group density of the polymer electrolyte is Y, it falls within the range defined by the following two formulas: Having acid group density and sulfonic acid group density,
(1) Y = −0.285X + 0.99
(2) Y = −0.285X + 1.09,
(Excluding the range of X <0.3)
Electrocatalyst.
請求項1に記載の電極触媒を電解質膜のアノード側およびカソード側のそれぞれに備えてなる膜電極接合体。   A membrane electrode assembly comprising the electrode catalyst according to claim 1 on each of an anode side and a cathode side of an electrolyte membrane. 請求項2に記載の膜電極接合体を備えてなる燃料電池セル。   A fuel cell comprising the membrane electrode assembly according to claim 2.
JP2010021925A 2010-02-03 2010-02-03 Electrode catalyst, membrane electrode assembly and fuel cell Active JP5560743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010021925A JP5560743B2 (en) 2010-02-03 2010-02-03 Electrode catalyst, membrane electrode assembly and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010021925A JP5560743B2 (en) 2010-02-03 2010-02-03 Electrode catalyst, membrane electrode assembly and fuel cell

Publications (2)

Publication Number Publication Date
JP2011156511A JP2011156511A (en) 2011-08-18
JP5560743B2 true JP5560743B2 (en) 2014-07-30

Family

ID=44588966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010021925A Active JP5560743B2 (en) 2010-02-03 2010-02-03 Electrode catalyst, membrane electrode assembly and fuel cell

Country Status (1)

Country Link
JP (1) JP5560743B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6478677B2 (en) * 2015-02-09 2019-03-06 株式会社キャタラー Fuel cell electrode

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE541330T1 (en) * 2003-06-24 2012-01-15 Asahi Glass Co Ltd MEMBRANE ELECTRODE ASSEMBLY FOR A SOLID POLYMER FUEL CELL AND PRODUCTION METHOD THEREOF
WO2007013533A1 (en) * 2005-07-27 2007-02-01 Asahi Glass Company, Limited Electrolyte material for solid polymer fuel cell, electrolyte membrane and membrane-electrode assembly
JP5233075B2 (en) * 2006-03-09 2013-07-10 大日本印刷株式会社 Catalyst layer-electrolyte membrane laminate and method for producing the same
JP2011014488A (en) * 2009-07-06 2011-01-20 Toyota Motor Corp Electrode catalyst and fuel cell
JP5417288B2 (en) * 2010-09-06 2014-02-12 トヨタ自動車株式会社 Electrode catalyst on anode side and cathode side, membrane electrode assembly and fuel cell

Also Published As

Publication number Publication date
JP2011156511A (en) 2011-08-18

Similar Documents

Publication Publication Date Title
WO2013027627A1 (en) Electrode catalyst layer for fuel cells, electrode for fuel cells, membrane electrode assembly for fuel cells, and fuel cell
US20160233520A1 (en) Carbon powder for catalyst, catalyst, electrode catalyst layer, membrane electrode assembly, and fuel cell using the carbon powder
US20100323265A1 (en) Membrane electrode assembly and fuel cell
JP2006216503A (en) Catalyst layer of solid polymer fuel cell
JP5532630B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP5298436B2 (en) Membrane-electrode assembly and fuel cell having the same
Kumar et al. Effect of catalyst layer with zeolite on the performance of a proton exchange membrane fuel cell operated under low-humidity conditions
KR20170069783A (en) Catalyst slurry composition for polymer electrolyte fuel cell, membrane electrode assembly, and manufacturing methode of membrane electrode assembly
JP2008204664A (en) Membrane-electrode assembly for fuel cell, and fuel cell using it
JP5613181B2 (en) Membrane electrode structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP5417288B2 (en) Electrode catalyst on anode side and cathode side, membrane electrode assembly and fuel cell
JP2007128665A (en) Electrode catalyst layer for fuel cell, and manufacturing method of membrane-electrode assembly using it
US20100196790A1 (en) Membrane and electrode assembly and fuel cell
JP2011014488A (en) Electrode catalyst and fuel cell
JP5560743B2 (en) Electrode catalyst, membrane electrode assembly and fuel cell
JP2020057516A (en) Electrode layer, membrane electrode assembly including the electrode layer, and fuel cell
US20220263099A1 (en) Catalyst for fuel cell, method for manufacturing same, and membraneelectrode assembly comprising same
JP6672622B2 (en) Electrode catalyst layer for fuel cell, method for producing the same, and membrane electrode assembly using the catalyst layer, fuel cell, and vehicle
JP2011255336A (en) Method for manufacturing catalyst support carrier, and method for manufacturing electrode catalyst
JP2013059741A (en) Catalyst-supporting carrier and method for manufacturing the same
JP2011258452A (en) Electrode catalyst, membrane electrode assembly and polymer electrolyte fuel cell
JP2010257669A (en) Membrane electrode assembly, method for manufacturing the same, and polymer electrolyte fuel cell
JP5458774B2 (en) Electrolyte membrane-electrode assembly
JP2019139952A (en) Membrane electrode assembly and polymer electrolyte fuel cell having the same
JP2010113876A (en) Membrane electrode assembly, and fuel cell with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140526

R151 Written notification of patent or utility model registration

Ref document number: 5560743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151