JP5558095B2 - Turbine blade cascade and steam turbine - Google Patents

Turbine blade cascade and steam turbine Download PDF

Info

Publication number
JP5558095B2
JP5558095B2 JP2009298957A JP2009298957A JP5558095B2 JP 5558095 B2 JP5558095 B2 JP 5558095B2 JP 2009298957 A JP2009298957 A JP 2009298957A JP 2009298957 A JP2009298957 A JP 2009298957A JP 5558095 B2 JP5558095 B2 JP 5558095B2
Authority
JP
Japan
Prior art keywords
blade
connecting member
turbine
moving
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009298957A
Other languages
Japanese (ja)
Other versions
JP2011137424A (en
Inventor
直紀 渋川
頼治 村田
昭博 小野田
大輔 野村
智博 手島
修 古屋
健一 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009298957A priority Critical patent/JP5558095B2/en
Priority to KR1020100126660A priority patent/KR101279491B1/en
Priority to EP10196772.7A priority patent/EP2339115B1/en
Priority to EP16200215.8A priority patent/EP3173580A1/en
Priority to US12/979,004 priority patent/US8753087B2/en
Publication of JP2011137424A publication Critical patent/JP2011137424A/en
Application granted granted Critical
Publication of JP5558095B2 publication Critical patent/JP5558095B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/04Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/321Application in turbines in gas turbines for a special turbine stage
    • F05D2220/3215Application in turbines in gas turbines for a special turbine stage the last stage of the turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise

Description

本発明は、蒸気タービンのタービン動翼翼列に係り、特に、タービン段落の低圧段に備えられるタービン動翼翼列および、このタービン動翼翼列を備えた蒸気タービンに関する。   The present invention relates to a turbine blade cascade of a steam turbine, and more particularly, to a turbine blade cascade provided in a low pressure stage of a turbine stage and a steam turbine including the turbine blade cascade.

近年、蒸気タービンの高出力化、高効率化が進むにつれて、蒸気タービンの最終段落を通過する蒸気の流量が増加する傾向にある。作動流体である蒸気を効果的に膨張させるためには、蒸気タービンの低圧部における動翼を長翼化し、環状面積を増加させる必要がある。しかしながら、動翼の長翼化は、遠心応力の増加および固有振動数の低下を招くことになる。   In recent years, the flow rate of steam passing through the final stage of the steam turbine tends to increase as the output and efficiency of the steam turbine increase. In order to effectively expand the steam that is the working fluid, it is necessary to lengthen the blades in the low-pressure part of the steam turbine and increase the annular area. However, an increase in the length of a moving blade leads to an increase in centrifugal stress and a decrease in natural frequency.

遠心応力の増加は、例えば、翼断面積の最適な分布、翼材料の高強度化や軽量化により抑制することができる。また、振動特性については、例えば、動翼の長翼化により出現する動翼または動翼群の多様な固有値が運転周波数に対して十分に離調するように動翼の構造を工夫することで対応している。   The increase in centrifugal stress can be suppressed, for example, by optimal distribution of the blade cross-sectional area, high strength and light weight of the blade material. As for vibration characteristics, for example, by devising the structure of the moving blades so that various eigenvalues of the moving blades or blade groups appearing due to the longer blades are sufficiently detuned from the operating frequency. It corresponds.

長翼を単独翼として配備すると、固有値が、多様なモードと周波数に存在するため、離調し難くなる。そのため、動翼の先端部に突起部を設け、隣接する動翼と接触させること、または動翼の先端部に連結部品を用いることで、環状全周の動翼を一群化する対応がなされることが多い。さらに、動翼の翼根元部から先端にかけたスパンの中間部に、先端部と同様の構造を設けて、振動特性を改善する技術が公開されている(例えば、特許文献1−2参照。)。   When a long wing is deployed as a single wing, eigenvalues exist in various modes and frequencies, and therefore it becomes difficult to detune. For this reason, a protrusion is provided at the tip of the moving blade and brought into contact with the adjacent moving blade, or a connecting part is used at the tip of the moving blade, thereby making it possible to group the moving blades on the entire circumference of the ring. There are many cases. Furthermore, a technique for improving vibration characteristics by providing a structure similar to the tip at the intermediate portion of the span from the blade root to the tip of the rotor blade is disclosed (for example, see Patent Document 1-2). .

ここで、特に、動翼のスパン中間部に連結構造を備える場合、本来、空気力学的な損失を極力抑制するように設計されたタービン動翼翼列の形状が大きく変形、または動翼間の流路中に抵抗要素が設置されることになる。そのため、蒸気タービンの段落性能を低下させる要因となることは自明であり、この性能低下を抑制することが蒸気タービンの高効率化を図るための課題となっている。   Here, in particular, when a connecting structure is provided in the middle span of the rotor blade, the shape of the turbine rotor blade cascade originally designed to suppress aerodynamic losses as much as possible is greatly deformed, or the flow between the rotor blades. Resistance elements will be installed in the road. Therefore, it is obvious that it becomes a factor which reduces the stage performance of a steam turbine, and suppressing this performance fall is a subject for achieving high efficiency of a steam turbine.

これに対して、材料比重に対する強度、いわゆる比強度が大きいチタンを動翼の材料とした流体機械において、中間連結部材を質量および立体的寸法の小さいピン形状として、応力低減と流体抵抗の低減を図った技術が開示されている(例えば、特許文献3参照。)。また、ファン動翼において、中間連結部材を翼形状として、空気力学的な損失の低減を図った技術が開示されている(例えば、特許文献4参照。)。さらに、蒸気タービンの動翼において、中間連結部材を流線形として、空気力学的な損失の低減を図った技術が開示されている(例えば、特許文献5参照。)。   On the other hand, in a fluid machine using titanium, which has high strength against material specific gravity, so-called specific strength, as the material of the moving blade, the intermediate connecting member has a pin shape with a small mass and three-dimensional dimensions to reduce stress and fluid resistance. The technique which was aimed at is disclosed (for example, refer patent document 3). Further, a technology has been disclosed in which fan connecting blades have a blade shape as an intermediate connecting member to reduce aerodynamic loss (see, for example, Patent Document 4). Furthermore, in a moving blade of a steam turbine, a technique is disclosed in which an intermediate connecting member is streamlined to reduce aerodynamic loss (see, for example, Patent Document 5).

ここで、図21Aは、従来の蒸気タービンの動翼300の腹面側を示す平面図である。また、図21Bは、図21Aに示された動翼300から構成されたタービン動翼翼列を半径方向外側から見たときの平面図である。図21Cは、図21BのV1−V1断面を示す図である。なお、ここで示された従来のタービン動翼翼列は、特許文献5に示された、中間連結部材を流線形状として、空気力学的な損失の低減を図ったものである。   Here, FIG. 21A is a plan view showing a ventral surface side of a moving blade 300 of a conventional steam turbine. FIG. 21B is a plan view of the turbine rotor blade cascade composed of the rotor blades 300 shown in FIG. 21A when viewed from the outside in the radial direction. FIG. 21C is a diagram illustrating a V1-V1 cross section of FIG. 21B. The conventional turbine blade cascade shown here is one in which the intermediate coupling member shown in Patent Document 5 has a streamline shape to reduce aerodynamic loss.

図22Aは、円柱形状の中間連結部材310を備えた従来のタービン動翼翼列における中間連結部材310の周囲の流れを説明するための図である。図22Bは、図22AのV2−V2断面における損失領域を説明するための図である。図23Aは、流線形状の中間連結部材301を備えた従来のタービン動翼翼列における中間連結部材301の周囲の流れを説明するための図である。図23Bは、図23AのV3−V3断面における損失領域を説明するための図である。なお、図22Bおよび図23Bは、それぞれの断面において流れを下流側から観察したときの損失領域が示されている。また、図22Bおよび図23Bに示された、上下方向に延びる2本の直線は、動翼の後縁300aを示している。   FIG. 22A is a view for explaining the flow around the intermediate coupling member 310 in a conventional turbine rotor blade cascade including the cylindrical intermediate coupling member 310. 22B is a diagram for explaining a loss region in a V2-V2 cross section in FIG. 22A. FIG. 23A is a view for explaining the flow around the intermediate coupling member 301 in a conventional turbine rotor blade cascade including the streamlined intermediate coupling member 301. FIG. 23B is a diagram for explaining a loss region in a V3-V3 cross section in FIG. 23A. FIG. 22B and FIG. 23B show loss regions when the flow is observed from the downstream side in each cross section. Further, the two straight lines extending in the vertical direction shown in FIGS. 22B and 23B indicate the trailing edge 300a of the moving blade.

図21Aに示す動翼300には、図21Bに示すように、動翼300の背側および腹側に中間連結部材301が設けられている。この中間連結部材301の断面は、図21Cに示すように、流線形状となっている。   In the moving blade 300 shown in FIG. 21A, as shown in FIG. 21B, intermediate connecting members 301 are provided on the back side and the ventral side of the moving blade 300. The cross section of the intermediate connecting member 301 has a streamline shape as shown in FIG. 21C.

ここで、図22Bおよび図23Bを比較すると、円柱形状の中間連結部材301の後流には、その上下に発生する双子渦による高損失域320が大きく広がっている。これに対して、流線形状の中間連結部材301の後流では、円柱形状の中間連結部材301の場合よりも高損失域320が縮小し、低損失域321は、動翼300間に広範囲に存在している。このことより、流線形状の中間連結部材301は、空気力学的な損失の低減に寄与していることがわかる。しかしながら、高損失域320は、完全に消滅しておらず、依然として損失改善の余地があることを示している。   Here, when FIG. 22B and FIG. 23B are compared, a high loss region 320 due to twin vortices generated above and below the wake of the cylindrical intermediate coupling member 301 is greatly expanded. On the other hand, in the wake of the streamlined intermediate connecting member 301, the high loss region 320 is reduced compared to the case of the cylindrical intermediate connecting member 301, and the low loss region 321 is widened between the rotor blades 300. Existing. From this, it can be seen that the streamlined intermediate coupling member 301 contributes to aerodynamic loss reduction. However, the high loss region 320 has not completely disappeared, indicating that there is still room for improvement in loss.

ここで損失発生域を詳細に観察すると、流線形状の中間連結部材301を備えた動翼300において、流線形状の中間連結部材301が接続される、動翼300の背側300b側に偏っていることがわかる。これは、動翼300の背側300bにおいて発達する境界層が中間連結部材301の前縁部を横切る際、低エネルギ領域が巻き上がることに起因するものと考えられる。これはタービン動翼翼列間に発生する馬蹄渦と類似したものと理解され、流れに対して凸面が続く背側面での境界層の発達と融合して渦が発達することで、高損失域が拡大するものと考えられる。数値解析などの試算により、こうした損失は、段落効率を数%低下させる場合もあることがわかっている。例えば、蒸気タービンにおける、長翼の動翼を備えるタービン段落において、蒸気タービン全体に対する出力分担割合が10%以上となることを考慮すれば、このような段落性能の低下は、無視できるものではない。   Here, when the loss generation area is observed in detail, in the moving blade 300 provided with the streamlined intermediate coupling member 301, it is biased toward the back side 300 b side of the moving blade 300 to which the streamlined intermediate coupling member 301 is connected. You can see that This is considered to be caused by the low energy region rolling up when the boundary layer developed on the back side 300b of the rotor blade 300 crosses the front edge of the intermediate connecting member 301. This is understood to be similar to the horseshoe vortex generated between the turbine blade cascades, and the vortex develops in conjunction with the development of the boundary layer on the back side where the convex surface continues to flow. It is expected to expand. Through calculations such as numerical analysis, it has been found that such losses can reduce paragraph efficiency by several percent. For example, in a turbine stage having long blades in a steam turbine, considering that the power sharing ratio with respect to the entire steam turbine is 10% or more, such a drop in performance is not negligible. .

特許第4058906号Patent No. 4058906 特開2002−295201号公報JP 2002-295201 A 特開2004−340131号公報JP 2004-340131 A 特開2003−269104号公報JP 2003-269104 A 特開2009−7981号公報JP 2009-7981 A

上記したように、例えば、長翼となる動翼の振動特性を改善するために、中間連結部材を備えることは、動翼間を流れる蒸気の流路抵抗となり、空力性能の低下をもたらす。   As described above, for example, in order to improve the vibration characteristics of a moving blade that is a long blade, provision of an intermediate connecting member results in a flow path resistance of steam flowing between the moving blades, resulting in a decrease in aerodynamic performance.

これを抑制するために、例えば、中間連結部材の立体的寸法を縮小することは、翼ねじれ戻り力に対する断面係数の不足により、中間連結部材もしくは中間連結部材と動翼との接続部において座屈変形や折損のリスクが高まる。また、中間連結部材の形状を流線形に構成する場合、部材強度を確保しつつ流線形としたときでも、高損失域の消滅には至らない状況にある。   In order to suppress this, for example, reducing the three-dimensional dimension of the intermediate connecting member is a buckling at the intermediate connecting member or the connecting portion between the intermediate connecting member and the moving blade due to a lack of section modulus with respect to the blade torsion return force. Increased risk of deformation and breakage. Further, when the shape of the intermediate connecting member is configured to be a streamline, even if the member is made streamlined while ensuring the strength of the member, the high loss region does not disappear.

そこで、本発明は、上記課題を解決するためになされたものであり、中間連結部材の動翼間における配置位置や中間連結部材の断面形状を適正化することで、動翼間における空気力学的な損失を低減することができるタービン動翼翼列および蒸気タービンを提供することを目的とする。   Therefore, the present invention has been made to solve the above problems, and by optimizing the arrangement position of the intermediate connecting member between the moving blades and the cross-sectional shape of the intermediate connecting member, the aerodynamics between the moving blades is improved. It is an object of the present invention to provide a turbine rotor cascade and a steam turbine capable of reducing a significant loss.

上記目的を達成するために、本発明の一態様によれば、翼背面に突設された背側連結部材と翼腹面に突設された腹側連結部材を備える複数の動翼がタービンロータの周方向に植設され、前記動翼が回転する際、隣接する動翼の前記背側連結部材と前記腹側連結部材とによって中間連結部材を構成するタービン動翼翼列において、前記中間連結部材の下流側端縁が、前記動翼間に形成される流路のスロート部よりも上流側に位置し、前記背側連結部材が、前記動翼の前縁から後縁に向けて、前記動翼の翼背面に沿って形成されていることを特徴とするタービン動翼翼列が提供される。 In order to achieve the above object, according to one aspect of the present invention, a plurality of rotor blades including a back side connecting member projecting on the back surface of a blade and an abdominal side connecting member projecting on the blade abdominal surface of the turbine rotor are provided. In the turbine rotor blade cascade that forms an intermediate connecting member by the back side connecting member and the ventral side connecting member of the adjacent moving blades when planted in the circumferential direction and the rotating blades rotate, A downstream end edge is located upstream of a throat portion of a flow path formed between the moving blades , and the back-side connecting member faces the leading edge from the moving blade toward the trailing edge. A turbine blade cascade that is formed along the back surface of the blade is provided.

また、本発明の一態様によれば、上記したタービン動翼翼列を備えたことを特徴とする蒸気タービンが提供される。   According to another aspect of the present invention, there is provided a steam turbine including the above-described turbine rotor blade cascade.

本発明のタービン動翼翼列および蒸気タービンによれば、中間連結部材の動翼間における配置位置や中間連結部材の断面形状を適正化することで、動翼間における空気力学的な損失を低減することができる。   According to the turbine rotor blade cascade and the steam turbine of the present invention, the aerodynamic loss between the rotor blades is reduced by optimizing the arrangement position of the intermediate connecting member between the rotor blades and the cross-sectional shape of the intermediate connecting member. be able to.

本発明に係る一実施の形態のタービン動翼翼列を構成する動翼の斜視図である。It is a perspective view of the moving blade which comprises the turbine moving blade cascade of one Embodiment which concerns on this invention. 本発明に係る一実施の形態のタービン動翼翼列を図1に示されたW1−W1断面で示した図である。It is the figure which showed the turbine rotor blade cascade of one Embodiment which concerns on this invention in the W1-W1 cross section shown by FIG. 中間連結部材を備えたタービン動翼翼列を上流側から見たときの動翼間の流れを示す図である。It is a figure which shows the flow between moving blades when the turbine rotor blade cascade provided with the intermediate connection member is seen from the upstream side. 動翼の一般的な翼面速度分布を示す図である。It is a figure which shows the general blade surface velocity distribution of a moving blade. 一般的な中間連結部材の下流における高損失領域を説明するための図である。It is a figure for demonstrating the high loss area | region in the downstream of a common intermediate | middle connection member. コード長BDがコード長ACよりも長くなるように、背側連結部材および腹側連結部材を形成した場合における、動翼面との境界面における断面形状の一例を示す図である。It is a figure which shows an example of the cross-sectional shape in the boundary surface with a moving blade surface at the time of forming a back side connection member and an abdominal side connection member so that cord length BD may become longer than cord length AC. コード長BDがコード長ACよりも長くなるように、背側連結部材および腹側連結部材を形成した場合における、動翼面との境界面における断面形状の一例を示す図である。It is a figure which shows an example of the cross-sectional shape in the boundary surface with a moving blade surface at the time of forming a back side connection member and an abdominal side connection member so that cord length BD may become longer than cord length AC. タービン動翼翼列を構成する長翼からなる動翼間の、比較的半径方向外側の位置における典型的な等流速線を示す図である。It is a figure which shows the typical iso-velocity line in the position of a relatively radial outer side between the moving blades which consist of the long blades which comprise a turbine rotor blade cascade. 異なる中間連結部材の形状を、図1に示されたW1−W1断面に対応する断面で示した図である。It is the figure which showed the shape of a different intermediate | middle connection member in the cross section corresponding to the W1-W1 cross section shown by FIG. 異なる中間連結部材の形状を、図1に示されたW1−W1断面に対応する断面で示した図である。It is the figure which showed the shape of a different intermediate | middle connection member in the cross section corresponding to the W1-W1 cross section shown by FIG. 図2のW2−W2断面において、中間連結部材の最大厚さ(Tmax)の位置を示す図である。It is a figure which shows the position of the maximum thickness (Tmax) of an intermediate | middle connection member in the W2-W2 cross section of FIG. 中間連結部材の最大厚さ(Tmax)の位置とプロファイル損失の関係を示す図である。It is a figure which shows the relationship between the position of the maximum thickness (Tmax) of an intermediate connection member, and profile loss. タービンロータの中心軸に沿った断面である子午面における、所定のタービン段落を構成するタービン静翼翼列およびタービン動翼翼列を示す図である。It is a figure which shows the turbine stationary blade cascade and turbine rotor cascade which comprise a predetermined turbine stage in the meridian surface which is a cross section along the central axis of a turbine rotor. 中間連結部材の前縁におけるキャンバー線Qの接線Mと、タービンロータの中心軸方向に平行な直線Nとのなす角度δを説明するための、上流側端縁から下流側端縁に亘る中間連結部材の断面を示す図である。Intermediate connection from the upstream edge to the downstream edge in order to explain an angle δ between the tangent line M of the camber line Q at the front edge of the intermediate connection member and a straight line N parallel to the central axis direction of the turbine rotor It is a figure which shows the cross section of a member. 中間連結部材の前縁におけるキャンバー線Qの接線Mと、タービンロータの中心軸方向に平行な直線Nとのなす角度δを説明するための、上流側端縁から下流側端縁に亘る中間連結部材の断面を示す図である。Intermediate connection from the upstream edge to the downstream edge in order to explain an angle δ between the tangent line M of the camber line Q at the front edge of the intermediate connection member and a straight line N parallel to the central axis direction of the turbine rotor It is a figure which shows the cross section of a member. 中間連結部材への作動流体の入射角αとインシデンス損失の関係を示す図である。It is a figure which shows the relationship between the incident angle (alpha) of the working fluid to an intermediate | middle connection member, and incident loss. 背側連結部材および腹側連結部材が、動翼の翼背面または翼腹面の異なる半径位置から形成される場合の、タービン動翼翼列を上流側から見たときの平面図である。It is a top view when a turbine rotor blade cascade is seen from the upstream side in the case where the back side connecting member and the abdominal side connecting member are formed from different radial positions on the blade back surface or the blade belly surface of the blade. 図17に示された中間連結部材を半径方向の外側から見たときの平面図である。It is a top view when the intermediate | middle connection member shown by FIG. 17 is seen from the outer side of radial direction. 他の構造の中間連結部材を備えるタービン動翼翼列を半径方向の外側から見たときの平面図である。It is a top view when a turbine rotor blade cascade provided with the intermediate connection member of another structure is seen from the radial direction outer side. 図19のW3−W3断面を示す図である。It is a figure which shows the W3-W3 cross section of FIG. 従来の蒸気タービンの動翼の腹面側を示す平面図である。It is a top view which shows the ventral surface side of the moving blade of the conventional steam turbine. 図21Aに示された、動翼から構成されたタービン動翼翼列を半径方向外側から見たときの平面図である。It is a top view when the turbine rotor blade cascade comprised from the rotor blade shown by FIG. 21A is seen from the radial direction outer side. 図21BのV1−V1断面を示す図である。It is a figure which shows the V1-V1 cross section of FIG. 21B. 円柱形状の中間連結部材を備えた従来のタービン動翼翼列における中間連結部材の周囲の流れを説明するための図である。It is a figure for demonstrating the flow around the intermediate connection member in the conventional turbine rotor blade cascade provided with the cylindrical intermediate connection member. 図22AのV2−V2断面における損失領域を説明するための図である。It is a figure for demonstrating the loss area | region in the V2-V2 cross section of FIG. 22A. 流線形状の中間連結部材を備えた従来のタービン動翼翼列における中間連結部材の周囲の流れを説明するための図である。It is a figure for demonstrating the flow around the intermediate connection member in the conventional turbine rotor blade cascade provided with the streamline-shaped intermediate connection member. 図23AのV3−V3断面における損失領域を説明するための図である。It is a figure for demonstrating the loss area | region in the V3-V3 cross section of FIG. 23A.

以下、本発明の一実施の形態について図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明に係る一実施の形態のタービン動翼翼列10を構成する動翼20の斜視図である。図2は、本発明に係る一実施の形態のタービン動翼翼列10を図1に示されたW1−W1断面で示した図である。   FIG. 1 is a perspective view of a moving blade 20 constituting a turbine moving blade cascade 10 according to an embodiment of the present invention. FIG. 2 is a view showing a turbine rotor blade cascade 10 according to an embodiment of the present invention in the W1-W1 cross section shown in FIG.

図1および図2に示すように、タービン動翼翼列10は、翼背面21に突設された背側連結部材22と翼腹面23に突設された腹側連結部材24とを備える複数の動翼20が、タービンロータ(図示しない)の周方向に植設されて構成されている。   As shown in FIGS. 1 and 2, the turbine rotor blade cascade 10 includes a plurality of moving blades including a back side connecting member 22 projecting from the blade back surface 21 and a ventral side connecting member 24 projecting from the blade abdominal surface 23. Blades 20 are configured to be implanted in the circumferential direction of a turbine rotor (not shown).

また、図2に示すように、動翼20が回転する際、隣接する動翼20の背側連結部材22と腹側連結部材24とが当接して中間連結部材30を構成する。なお、背側連結部材22および腹側連結部材24の当接面の形状は、同じ形状に構成される。   Further, as shown in FIG. 2, when the moving blade 20 rotates, the back side connecting member 22 and the abdominal side connecting member 24 of the adjacent moving blade 20 come into contact with each other to form the intermediate connecting member 30. In addition, the shape of the contact surface of the back side connection member 22 and the abdominal side connection member 24 is comprised in the same shape.

また、中間連結部材30は、空力損失を抑制するために、翼型形状などの流線形状に構成することが好ましい。また、この構成を備えるタービン動翼翼列10は、例えば、振動特性の改善が要求されるタービン動翼における長翼部に適用することが好適である。   In addition, the intermediate connecting member 30 is preferably configured in a streamline shape such as an airfoil shape in order to suppress aerodynamic loss. Further, the turbine rotor blade cascade 10 having this configuration is preferably applied to, for example, a long blade portion in a turbine rotor blade that requires improvement in vibration characteristics.

ここで、中間連結部材30を備えたタービン動翼翼列10における一般的な作動流体の流れについて説明する。   Here, a general flow of the working fluid in the turbine blade cascade 10 provided with the intermediate connecting member 30 will be described.

図3は、中間連結部材30を備えたタービン動翼翼列10を上流側から見たときの動翼20間の流れを示す図である。図4は、動翼20の一般的な翼面速度分布を示す図である。図5は、一般的な中間連結部材の下流における高損失領域を説明するための図である。   FIG. 3 is a view showing the flow between the moving blades 20 when the turbine moving blade cascade 10 provided with the intermediate connecting member 30 is viewed from the upstream side. FIG. 4 is a diagram showing a general blade surface velocity distribution of the moving blade 20. FIG. 5 is a view for explaining a high loss region downstream of a general intermediate connecting member.

図3に示すように、タービン動翼翼列10に流入する作動流体が、中間連結部材30を回り込んで通過する際に、後流渦40を形成する。また、動翼面における境界層では、動翼面上で速度が0となり、境界層の上層部で主流速度となり、大きな渦度を有する翼腹側境界層41、翼背側境界層42が中間連結部材30を取り巻いて通過する。これによって、中間連結部材30の下流に馬蹄渦43を形成する。   As shown in FIG. 3, when the working fluid flowing into the turbine blade cascade 10 wraps around and passes through the intermediate connecting member 30, a wake vortex 40 is formed. In the boundary layer on the blade surface, the velocity is zero on the blade surface, the mainstream velocity is in the upper layer of the boundary layer, and the blade ventral boundary layer 41 and the blade back side boundary layer 42 having large vorticity are intermediate. It passes through the connecting member 30. As a result, a horseshoe vortex 43 is formed downstream of the intermediate connecting member 30.

後流渦40と馬蹄渦43は、融合して発達するが、翼背側と翼腹側では発達度が異なる。タービン動翼翼列10において、図2に示すように、動翼20の翼背面21の曲率は、翼腹面23の曲率に比べて大きい。そのため、動翼20の翼背面21では、境界層が発達しやすく、流れの剥離が生じやすい。   The wake vortex 40 and the horseshoe vortex 43 develop in a fused manner, but the degree of development differs between the wing spine side and the wing ventral side. In the turbine blade cascade 10, as shown in FIG. 2, the curvature of the blade back surface 21 of the blade 20 is larger than the curvature of the blade belly surface 23. Therefore, on the blade back surface 21 of the moving blade 20, a boundary layer is likely to develop, and flow separation is likely to occur.

次に、動翼20における翼面速度分布を図4を参照して説明する。なお、図4に示されたVA、VBについては、後に説明する。図4に示すように、動翼20の前縁25から後縁26にかけての流速変化は、翼背側では、スロートSの下流まで加速した後、減速している。一方、翼腹側では、後縁26がスロートSとなるため、単調に加速を続ける。そのため、後流渦40と馬蹄渦43は、翼背側では減速域を通過することで発達が助長されるのに対し、翼腹側では常に加速域にあることで発達が抑制される。   Next, the blade surface speed distribution in the moving blade 20 will be described with reference to FIG. Note that VA and VB shown in FIG. 4 will be described later. As shown in FIG. 4, the change in flow velocity from the leading edge 25 to the trailing edge 26 of the moving blade 20 accelerates to the downstream of the throat S and then decelerates on the blade back side. On the other hand, since the trailing edge 26 becomes the throat S on the flank side, the acceleration continues monotonously. Therefore, the development of the wake vortex 40 and the horseshoe vortex 43 is promoted by passing through the deceleration region on the back side of the wing, whereas the development is suppressed by always being in the acceleration region on the flank side.

ここで、スロートSは、動翼20間において、作動流体が流れる流路面積が最小となる流路断面を意味する。例えば、図2に示した断面において、スロートSは、動翼20の後縁26から、隣接する動翼20の翼背面21までの距離が最短となる幅を有している。このスロート幅は、断面位置によっても異なる。図2において、スロートSを説明の便宜上矢印で示している(以下において同じ)。   Here, the throat S means a channel cross section where the channel area through which the working fluid flows is minimized between the rotor blades 20. For example, in the cross section shown in FIG. 2, the throat S has a width that makes the distance from the trailing edge 26 of the moving blade 20 to the blade back surface 21 of the adjacent moving blade 20 the shortest. The throat width varies depending on the cross-sectional position. In FIG. 2, the throat S is indicated by an arrow for convenience of explanation (the same applies hereinafter).

このような翼背側と翼腹側における流れ場の相違によって、一般的な中間連結部材30aにおいては、図5に示すように、中間連結部材30aの下流に発達する渦領域は偏り、翼背側に発達した高損失領域44を形成する。   Due to the difference in the flow field between the blade back side and the blade belly side, as shown in FIG. 5, the vortex region developed downstream of the intermediate connection member 30a is biased in the general intermediate connection member 30a. A high loss region 44 developed on the side is formed.

そこで、本発明に係る一実施の形態のタービン動翼翼列10では、図2に示すように、中間連結部材30の下流側端縁32が、スロートSよりも上流側、すなわち、動翼20の前縁側に位置するように中間連結部材30を構成している。図2において、中間連結部材30の下流側端縁32が動翼20の翼背面21と交わる点をA、中間連結部材30の下流側端縁32が動翼20の翼腹面23と交わる点をB、中間連結部材30の上流側端縁31が動翼20の翼背面21と交わる点をC、中間連結部材30の上流側端縁31が動翼20の翼腹面23と交わる点をDで示している。   Therefore, in the turbine rotor blade cascade 10 according to the embodiment of the present invention, as shown in FIG. 2, the downstream end edge 32 of the intermediate coupling member 30 is upstream of the throat S, that is, the rotor blade 20. The intermediate connecting member 30 is configured to be positioned on the front edge side. In FIG. 2, a point where the downstream end edge 32 of the intermediate connecting member 30 intersects the blade back surface 21 of the moving blade 20, and a point where the downstream end edge 32 of the intermediate connecting member 30 intersects the blade abdominal surface 23 of the moving blade 20. B, point C where the upstream edge 31 of the intermediate connecting member 30 intersects with the blade back surface 21 of the moving blade 20, and point D where the upstream edge 31 of the intermediate connecting member 30 intersects with the blade abdominal surface 23 of the moving blade 20. Show.

なお、中間連結部材30を翼型形状で構成する場合、下流側端縁32は、後縁に相当し、上流側端縁31は、前縁に相当する。また、ここでは、スロートSは、図2に示すように、動翼20の後縁26から隣接する動翼20の翼背面21に亘る領域に形成されている。   When the intermediate connecting member 30 is configured in an airfoil shape, the downstream side edge 32 corresponds to the rear edge, and the upstream side edge 31 corresponds to the front edge. Here, the throat S is formed in a region extending from the trailing edge 26 of the moving blade 20 to the blade back surface 21 of the adjacent moving blade 20, as shown in FIG.

ここで、図4には、一実施の形態のタービン動翼翼列10における、中間連結部材30の下流側端縁32が動翼20の翼背面21と交わる点Aでの流速VA、および中間連結部材30の下流側端縁32が動翼20の翼腹面23と交わる点Bでの流速VBを示している。図4に示すように、点A、点Bの位置は、加速域内に存在する。   Here, in FIG. 4, in the turbine rotor blade cascade 10 according to the embodiment, the flow velocity VA at the point A where the downstream end edge 32 of the intermediate connecting member 30 intersects the blade back surface 21 of the rotor blade 20, and the intermediate connection A flow velocity VB at a point B where the downstream edge 32 of the member 30 intersects the blade surface 23 of the moving blade 20 is shown. As shown in FIG. 4, the positions of the points A and B exist in the acceleration region.

このように、中間連結部材30の下流側端縁32が、スロートSよりも上流側に位置することで、動翼20の翼背側においても、中間連結部材30の下流側端縁32を加速域に存在させることができる。これによって、中間連結部材30の下流に発達する渦の発達を抑制することができる。さらに、図5に示すような、一般的な中間連結部材30aの下流の翼背側に形成される高損失領域44を抑制することができる。   As described above, the downstream end edge 32 of the intermediate connecting member 30 is positioned upstream of the throat S, so that the downstream end edge 32 of the intermediate connecting member 30 is also accelerated on the blade back side of the moving blade 20. Can exist in the area. Thereby, the development of vortices that develop downstream of the intermediate connecting member 30 can be suppressed. Furthermore, as shown in FIG. 5, the high loss region 44 formed on the blade back side downstream of the general intermediate connecting member 30a can be suppressed.

また、図2に示すように、動翼20の背側連結部材22は、動翼20の前縁25から後縁に向けて、動翼20の翼背面に沿って形成されることが好ましい。ここで、中間連結部材30の上流側端縁31が動翼20の翼背面21と交わる点Cは、動翼20の前縁25である。   As shown in FIG. 2, the back side connecting member 22 of the moving blade 20 is preferably formed along the back surface of the moving blade 20 from the front edge 25 to the rear edge of the moving blade 20. Here, the point C where the upstream end edge 31 of the intermediate connecting member 30 intersects the blade back surface 21 of the moving blade 20 is the leading edge 25 of the moving blade 20.

ここで、動翼20が回転する際、中間連結部材30には、圧縮応力や曲げ応力がかかり、これらの応力に耐え得るために、例えば、動翼20の翼背面21と背側連結部材22との境界面における背側連結部材22の断面積は大きい方が好ましい。また、この断面積を大きくする際、点Aから点Cまでの距離(以下、コード長ACという)を最大として、流れに沿った方向の背側連結部材22の長さに対する背側連結部材22の厚さを最小化することが、空力損失を低減する観点から好ましい。一方、動翼20の翼背面21にける点Aは、スロートSよりも上流側に位置するように構成される。そこで、上記したように、点Cを動翼20の前縁25とすることで、コード長ACの最大化を図ることができる。   Here, when the moving blade 20 rotates, the intermediate connecting member 30 is subjected to compressive stress and bending stress. In order to withstand these stresses, for example, the blade back surface 21 of the moving blade 20 and the back connecting member 22 are used. The cross-sectional area of the back side connecting member 22 at the boundary surface is preferably larger. Further, when the cross-sectional area is increased, the distance from the point A to the point C (hereinafter referred to as the cord length AC) is maximized, and the back side connecting member 22 with respect to the length of the back side connecting member 22 in the direction along the flow. From the viewpoint of reducing aerodynamic loss, it is preferable to minimize the thickness of the steel. On the other hand, the point A on the blade back surface 21 of the moving blade 20 is configured to be located upstream of the throat S. Therefore, as described above, the cord length AC can be maximized by setting the point C as the leading edge 25 of the moving blade 20.

ここで、中間連結部材30の、翼背面21から翼腹面23までの断面形状は、一定である必要はない。例えば、腹側連結部材24が形成される、点Bから点Dまでの距離(以下、コード長BDという)をコード長ACと等しくすることで、強度不足となるような場合には、コード長BDがコード長ACよりも長くなるように、腹側連結部材24を形成してもよい。なお、この場合においても、前述したように、背側連結部材22および腹側連結部材24の当接面の形状は、同じ形状に構成される。   Here, the cross-sectional shape of the intermediate connecting member 30 from the blade back surface 21 to the blade belly surface 23 does not have to be constant. For example, when the distance from point B to point D (hereinafter referred to as cord length BD) where the ventral connecting member 24 is formed becomes equal to the cord length AC, the cord length is insufficient. The ventral connection member 24 may be formed so that the BD is longer than the cord length AC. Even in this case, as described above, the contact surfaces of the back-side connecting member 22 and the abdominal-side connecting member 24 have the same shape.

ここで、図6および図7には、コード長BDがコード長ACよりも長くなるように、背側連結部材22および腹側連結部材24を形成した場合における、動翼面との境界面における断面形状の一例を示している。なお、ここでは、中間連結部材30の形状を翼形形状としている。また、これらの連結部材において、背側連結部材22は、腹側連結部材24に向かって、腹側連結部材24は、背側連結部材22に向かって、それぞれの断面形状が連続的に変化するように形成されている。   Here, in FIG. 6 and FIG. 7, at the boundary surface with the moving blade surface when the back side connecting member 22 and the ventral side connecting member 24 are formed so that the cord length BD is longer than the cord length AC. An example of a cross-sectional shape is shown. Here, the shape of the intermediate connecting member 30 is an airfoil shape. In these connecting members, the cross-sectional shape of the back-side connecting member 22 continuously changes toward the ventral-side connecting member 24, and the cross-sectional shape of the ventral-side connecting member 24 changes toward the back-side connecting member 22. It is formed as follows.

図6は、背側連結部材22および腹側連結部材24の動翼面との境界面における断面積を等しくした場合の一例である。この構成の場合には、翼腹面23との境界面における腹側連結部材24の厚さを薄くすることができるため、翼腹側における空力損失の低減を図ることができる。   FIG. 6 shows an example in which the cross-sectional areas of the boundary surfaces of the back side connecting member 22 and the ventral side connecting member 24 with the moving blade surface are equal. In the case of this configuration, since the thickness of the abdominal side connecting member 24 at the boundary surface with the blade abdominal surface 23 can be reduced, it is possible to reduce the aerodynamic loss on the blade abdominal side.

図7は、背側連結部材22および腹側連結部材24の動翼面との境界面における最大厚さを等しくした場合の一例である。この構成の場合において、前縁から後縁までの距離(コード長)に対する、最大厚さを示す前縁からの距離の比を小さくすることができるため、中間連結部材30の翼形状に起因するプロファイル損失の低減を図ることができる。なお、この理由については後述する。   FIG. 7 shows an example in which the maximum thicknesses at the boundary surfaces of the back side connecting member 22 and the ventral side connecting member 24 with the moving blade surface are equal. In the case of this configuration, the ratio of the distance from the front edge indicating the maximum thickness to the distance (code length) from the front edge to the rear edge can be reduced, resulting in the blade shape of the intermediate connecting member 30. The profile loss can be reduced. This reason will be described later.

(中間連結部材30の他の形状)
ここで、中間連結部材30の形状は、図2に示された形状に限られるものではなく、他の形状としてもよい。
(Other shapes of the intermediate connecting member 30)
Here, the shape of the intermediate connecting member 30 is not limited to the shape shown in FIG. 2 and may be other shapes.

図8は、タービン動翼翼列を構成する長翼からなる動翼間の、比較的半径方向外側の位置における典型的な等流速線を示す図である。図9および図10は、異なる中間連結部材30の形状を、図1に示されたW1−W1断面に対応する断面で示した図である。   FIG. 8 is a diagram showing typical isovelocity lines at positions relatively outside in the radial direction between rotor blades composed of long blades constituting the turbine rotor blade cascade. 9 and 10 are views showing the shapes of different intermediate connecting members 30 in cross sections corresponding to the W1-W1 cross section shown in FIG.

図8に示すように、翼腹側では上流から下流へ等流速線の間隔が疎であり、加速が穏やかであるのに対し、翼背側では等流速線の間隔が密であり、加速が急である。そのため、等流速線は、翼腹側から翼背側にかけて湾曲している。   As shown in FIG. 8, the isovelocity lines are sparse from upstream to downstream on the flank side and the acceleration is moderate, whereas the isovelocity lines are close on the wing back side, and the acceleration is It is steep. Therefore, the equivelocity line is curved from the blade belly side to the blade back side.

図9に示した中間連結部材30は、中間連結部材30の下流側端縁32の形状を等流速線に沿った形状とし、翼背側において上流側に湾曲した形状としている。この場合、点Aと点Bを結んだ直線よりも下流側に、中間連結部材30の下流側端縁32が突出している。なお、この場合においても、中間連結部材30の下流側端縁32は、スロートSよりも上流側に位置している。   The intermediate connecting member 30 shown in FIG. 9 has a shape of a downstream end edge 32 of the intermediate connecting member 30 along a constant flow velocity line and a shape curved upstream on the blade back side. In this case, the downstream end edge 32 of the intermediate connecting member 30 protrudes further downstream than the straight line connecting the points A and B. Even in this case, the downstream end edge 32 of the intermediate connecting member 30 is located upstream of the throat S.

このように、中間連結部材30を構成することで、中間連結部材30の表面における、翼腹側から翼背側への2次流れを抑制することができ、中間連結部材30の下流に形成される後流渦40や馬蹄渦43などの発達を抑制することができる。   In this way, by configuring the intermediate connecting member 30, the secondary flow from the blade belly side to the blade back side on the surface of the intermediate connecting member 30 can be suppressed, and the intermediate connecting member 30 is formed downstream of the intermediate connecting member 30. The development of the wake vortex 40 and the horseshoe vortex 43 can be suppressed.

図10に示した中間連結部材30は、図9に示した中間連結部材30と同様に、中間連結部材30の下流側端縁32の形状を等流速線に沿った形状とするとともに、中間連結部材30の上流側端縁31の形状を等流速線に沿った形状としている。この場合、点Cと点Dを結んだ直線よりも上流側に、中間連結部材30の上流側端縁31が突出している。   The intermediate connecting member 30 shown in FIG. 10 has the shape of the downstream end edge 32 of the intermediate connecting member 30 along the iso-velocity line, as in the case of the intermediate connecting member 30 shown in FIG. The shape of the upstream side edge 31 of the member 30 is a shape along the equal velocity line. In this case, the upstream end edge 31 of the intermediate connecting member 30 protrudes upstream of the straight line connecting the points C and D.

このような中間連結部材30の構造は、例えば、背側連結部材22と腹側連結部材24とを当接させる際の強度確保のために、当接面の面積の拡大が必要な場合に好適な構造である。また、中間連結部材30の上流側端縁31が本来の翼列間の円滑な流体加速に与える擾乱を最小限に抑えることができるため、空力損失などによる性能の悪化を抑制することができる。   Such a structure of the intermediate connecting member 30 is suitable when, for example, it is necessary to increase the area of the contact surface in order to ensure strength when the back side connecting member 22 and the abdominal side connecting member 24 are in contact with each other. Structure. Moreover, since the disturbance which the upstream edge 31 of the intermediate connection member 30 gives to the smooth fluid acceleration between the original cascades can be minimized, the deterioration of performance due to aerodynamic loss or the like can be suppressed.

(中間連結部材30の断面形状)
ここでは、中間連結部材30の断面形状について説明する。
(Cross-sectional shape of the intermediate connecting member 30)
Here, the cross-sectional shape of the intermediate connecting member 30 will be described.

図11は、図2のW2−W2断面において、中間連結部材30の最大厚さ(Tmax)の位置を示す図である。図11の横軸は、中間連結部材30の上流側端縁31(前縁)から下流側端縁32(後縁)までの距離(コード長)Cに対する、中間連結部材30の厚さが最大となる前縁からの距離Lの比(L/C)を示している。   FIG. 11 is a diagram illustrating the position of the maximum thickness (Tmax) of the intermediate coupling member 30 in the W2-W2 cross section of FIG. The horizontal axis in FIG. 11 indicates that the thickness of the intermediate connecting member 30 is the maximum with respect to the distance (code length) C from the upstream end edge 31 (front edge) to the downstream end edge 32 (rear edge) of the intermediate connecting member 30. The ratio (L / C) of the distance L from the leading edge is shown.

図11に示すように、中間連結部材30は、前縁から後縁にかけての所定の範囲の位置に、最大厚さ(Tmax)を有し、流体抵抗を抑制する流線形状に形成されている。また、中間連結部材30が最大厚さ(Tmax)を有する所定の範囲は、L/Cが0.4以下となる位置とすることが好ましい。   As shown in FIG. 11, the intermediate connecting member 30 has a maximum thickness (Tmax) at a position in a predetermined range from the front edge to the rear edge, and is formed in a streamline shape that suppresses fluid resistance. . Further, the predetermined range in which the intermediate connecting member 30 has the maximum thickness (Tmax) is preferably a position where L / C is 0.4 or less.

次に、L/Cが0.4以下となる位置に中間連結部材30の最大厚さ(Tmax)が存在するように中間連結部材30を構成することが好適な理由を説明する。   Next, the reason why it is preferable to configure the intermediate coupling member 30 so that the maximum thickness (Tmax) of the intermediate coupling member 30 exists at a position where L / C is 0.4 or less will be described.

図12は、中間連結部材30の最大厚さ(Tmax)の位置とプロファイル損失の関係を示す図である。図12の横軸は、図11の横軸と同様に、中間連結部材30の上流側端縁31から下流側端縁32までの距離(コード長)Cに対する、中間連結部材30の厚さが最大となる前縁からの距離Lの比(L/C)を示している。なお、図12に示したプロファイル損失は、数値流体解析によって得られた結果である。また、図12において、L/Cが0.2となる場合のプロファイル損失を基準としている。   FIG. 12 is a diagram showing the relationship between the position of the maximum thickness (Tmax) of the intermediate connecting member 30 and the profile loss. The horizontal axis of FIG. 12 is similar to the horizontal axis of FIG. 11 in that the thickness of the intermediate connecting member 30 with respect to the distance (code length) C from the upstream end edge 31 to the downstream end edge 32 of the intermediate connecting member 30 is The ratio (L / C) of the distance L from the front edge that is the maximum is shown. The profile loss shown in FIG. 12 is a result obtained by numerical fluid analysis. In FIG. 12, the profile loss when L / C is 0.2 is used as a reference.

図12に示すように、プロファイル損失は、L/Cが0.4を超えると急激に増加する。ここで、L/Cが大きくなると、図11に示す、後縁における中間連結部材30の一方の表面と他方の表面間の角度ε(以下、楔角度εという)が増加する。   As shown in FIG. 12, the profile loss increases rapidly when L / C exceeds 0.4. Here, when L / C increases, an angle ε (hereinafter referred to as a wedge angle ε) between one surface and the other surface of the intermediate connecting member 30 at the trailing edge shown in FIG. 11 increases.

この結果から、L/Cが0.4を超える位置に中間連結部材30の最大厚さ(Tmax)が存在すると、L/Cが0.4よりも上流側(最大厚さ(Tmax)となる上流側)では、作動流体は、中間連結部材30の表面に沿って流れるが、その下流側では、楔角度εが増加するため、翼厚さの急激な減少と曲率の変化に流れが追従できなくなり、剥離が生じ、プロファイル損失が急激に増加するものと考えられる。   From this result, when the maximum thickness (Tmax) of the intermediate connecting member 30 is present at a position where L / C exceeds 0.4, L / C is upstream of 0.4 (maximum thickness (Tmax). On the upstream side, the working fluid flows along the surface of the intermediate connecting member 30, but on the downstream side, the wedge angle ε increases, so that the flow can follow a sudden decrease in blade thickness and a change in curvature. It is considered that peeling occurs and profile loss increases rapidly.

また、翼厚さの急激な減少を抑制するために、後縁の厚さを厚くして楔角度εを減少させることも考えられるが、後縁の後流のウェーク幅を拡大するため効果的ではない。   In order to suppress the sudden decrease in blade thickness, it is conceivable to increase the trailing edge thickness to reduce the wedge angle ε, but it is effective to increase the wake width of the trailing edge wake. is not.

そこで、中間連結部材30は、L/Cが0.4以下となる位置に中間連結部材30の最大厚さ(Tmax)が存在するように構成されている。   Therefore, the intermediate connecting member 30 is configured such that the maximum thickness (Tmax) of the intermediate connecting member 30 exists at a position where L / C is 0.4 or less.

(中間連結部材30の形成角度)
ここでは、動翼20の翼面に中間連結部材30を形成する際の形成角度について説明する。
(Formation angle of the intermediate connecting member 30)
Here, the formation angle when forming the intermediate coupling member 30 on the blade surface of the moving blade 20 will be described.

図13は、タービンロータの中心軸に沿った断面である子午面における、所定のタービン段落を構成するタービン静翼翼列およびタービン動翼翼列を示す図である。図14および図15は、中間連結部材30の上流側端縁31におけるキャンバー線Qの接線Mと、タービンロータの中心軸方向に平行な直線Nとのなす角度δを説明するための、上流側端縁31から下流側端縁32に亘る中間連結部材30の断面を示す図である。   FIG. 13 is a diagram illustrating a turbine stationary blade cascade and a turbine rotor cascade that constitute a predetermined turbine stage on a meridian plane that is a cross section along the central axis of the turbine rotor. 14 and 15 illustrate an upstream side for explaining an angle δ formed by a tangent line M of the camber line Q at the upstream end edge 31 of the intermediate connecting member 30 and a straight line N parallel to the central axis direction of the turbine rotor. It is a figure which shows the cross section of the intermediate connection member 30 ranging from the end edge 31 to the downstream end edge 32. FIG.

図13において、中間連結部材30の上流側端縁31におけるキャンバー線の接線Mと、タービンロータの中心軸方向に平行な直線Nとのなす角度をδとしている。なお、図14および図15に示すように、キャンバー線Qは、中間連結部材30の形状により異なるものとなる。   In FIG. 13, the angle formed by the tangent line M of the camber line at the upstream end edge 31 of the intermediate connecting member 30 and the straight line N parallel to the central axis direction of the turbine rotor is denoted by δ. As shown in FIGS. 14 and 15, the camber line Q varies depending on the shape of the intermediate connecting member 30.

また、図13に示すように、動翼20と同じタービン段落を構成する静翼50の前縁51とこの静翼50を固定するダイヤフラム内輪52との交点Eと、動翼20の前縁25とこの動翼20を植設するロータディスク60との交点Gとを通る直線を直線Oとし、この直線Oとタービンロータの中心軸方向に平行な直線Nとのなす角度をθ1としている。さらに、静翼50の前縁51とこの静翼50を固定するダイヤフラム外輪53との交点Fと、動翼20の先端における前縁Hとを通る直線を直線Pとし、この直線Pとタービンロータの中心軸方向に平行な直線Nとのなす角度をθ2としている。   As shown in FIG. 13, the intersection E between the leading edge 51 of the stationary blade 50 that forms the same turbine stage as the moving blade 20 and the diaphragm inner ring 52 that fixes the stationary blade 50, and the leading edge 25 of the moving blade 20. The straight line passing through the intersection G with the rotor disk 60 on which the rotor blade 20 is implanted is defined as a straight line O, and the angle between the straight line O and a straight line N parallel to the central axis direction of the turbine rotor is defined as θ1. Further, a straight line passing through the intersection F of the leading edge 51 of the stationary blade 50 and the diaphragm outer ring 53 that fixes the stationary blade 50 and the leading edge H at the tip of the moving blade 20 is defined as a straight line P. This straight line P and the turbine rotor An angle formed with a straight line N parallel to the central axis direction is θ2.

このとき、次の式(1)の関係を満たすように、中間連結部材30が動翼20の翼面に形成されている。
(θ1+θ2)/2−30 ≦ δ ≦ (θ1+θ2)/2+30 …式(1)
At this time, the intermediate coupling member 30 is formed on the blade surface of the moving blade 20 so as to satisfy the relationship of the following expression (1).
(Θ1 + θ2) / 2-30 ≦ δ ≦ (θ1 + θ2) / 2 + 30 (1)

次に、式(1)の関係を満たすように、中間連結部材30が動翼20の翼面に形成されることが好適な理由を説明する。図16は、中間連結部材30への作動流体の入射角αとインシデンス損失の関係を示す図である。なお、作動流体の入射角αとインシデンス損失の関係は、数値流体解析により得られたものである。   Next, the reason why the intermediate connecting member 30 is preferably formed on the blade surface of the moving blade 20 so as to satisfy the relationship of the expression (1) will be described. FIG. 16 is a diagram showing the relationship between the incident angle α of the working fluid to the intermediate connecting member 30 and the incidence loss. The relationship between the incident angle α of the working fluid and the incidence loss is obtained by numerical fluid analysis.

蒸気タービンにおいて、長翼となる動翼を備えるタービン段落では、作動流体の膨張割合に応じて流路環状面積の拡大率を増加し、図13に示すように、流路を構成する内外周壁を傾斜を有する形状とすることが多い。この場合、適切な空力設計がなされていれば、流れは、内外周壁面に沿って流れる。一方、流路の拡大率が増加するに伴い、形状に追従しない流れとなることもある。   In a turbine stage having a moving blade that is a long blade in a steam turbine, the expansion ratio of the annular area of the flow path is increased in accordance with the expansion ratio of the working fluid, and as shown in FIG. In many cases, the shape is inclined. In this case, if an appropriate aerodynamic design is made, the flow flows along the inner and outer peripheral wall surfaces. On the other hand, as the flow rate enlargement rate increases, the flow may not follow the shape.

また、入射角αとインシデンス損失の関係においては、図16に示すように、入射角αが30°を超えると、インシデンス損失は、急激に増加する。そのため、設計流入角からのずれが±30°の範囲となるように、中間連結部材30が動翼20の翼面に形成されていることが好ましい。すなわち、設計流入角である、流路を構成する内外周壁の平均傾斜((θ1+θ2)/2)からのずれが±30°の範囲となるように、角度δを定めることが好ましい。   Further, in the relationship between the incident angle α and the incident loss, as shown in FIG. 16, when the incident angle α exceeds 30 °, the incident loss increases rapidly. Therefore, it is preferable that the intermediate coupling member 30 is formed on the blade surface of the moving blade 20 so that the deviation from the design inflow angle is within a range of ± 30 °. That is, it is preferable to determine the angle δ so that the deviation from the average inclination ((θ1 + θ2) / 2) of the inner and outer peripheral walls constituting the flow path, which is the design inflow angle, is in a range of ± 30 °.

(中間連結部材30の配置)
上記において、例えば図1に示すように、中間連結部材30を構成する背側連結部材22および腹側連結部材24は、動翼20の翼背面21または翼腹面23の、タービンロータの中心軸からの半径方向の距離(以下、半径位置という)が同じ位置から形成される一例を示したが、この構成に限られるものではない。ここでは、背側連結部材22および腹側連結部材24が、動翼20の翼背面21または翼腹面23の異なる半径位置から形成される一例を示す。
(Arrangement of the intermediate connecting member 30)
In the above, for example, as shown in FIG. 1, the back side connection member 22 and the abdominal side connection member 24 constituting the intermediate connection member 30 are separated from the center axis of the turbine rotor on the blade back surface 21 or the blade surface 23 of the blade 20. Although an example in which the distance in the radial direction (hereinafter referred to as a radial position) is formed from the same position is shown, the present invention is not limited to this configuration. Here, an example is shown in which the back side connecting member 22 and the ventral side connecting member 24 are formed from different radial positions of the blade back surface 21 or the blade belly surface 23 of the moving blade 20.

図17は、背側連結部材22および腹側連結部材24が、動翼20の翼背面21または翼腹面23の異なる半径位置から形成される場合の、タービン動翼翼列10を上流側から見たときの平面図である。図18は、図17に示された中間連結部材30を半径方向の外側から見たときの平面図である。   FIG. 17 shows the turbine rotor blade cascade 10 viewed from the upstream side when the back side connecting member 22 and the ventral side connecting member 24 are formed from different radial positions of the blade back surface 21 or the blade belly surface 23 of the blade 20. It is a top view at the time. FIG. 18 is a plan view of the intermediate connecting member 30 shown in FIG. 17 as viewed from the outside in the radial direction.

なお、図18には、中間連結部材30の形成位置を明確にするため、背側連結部材22および腹側連結部材24が形成されるそれぞれの半径位置における動翼20a、20bの断面を重ね合わせた図を付加している。また、図18において、背側連結部材22の下流側端縁が動翼20の翼背面21と交わる点をA2、腹側連結部材24の下流側端縁が動翼20の翼腹面23と交わる点をB1、背側連結部材22の上流側端縁が動翼20の翼背面21と交わる点をC2、腹側連結部材24の上流側端縁が動翼20の翼腹面23と交わる点をD1で示している。また、スロートS1は、動翼20aにおけるスロートであり、スロートS2は、動翼20bにおけるスロートである。   In FIG. 18, in order to clarify the formation position of the intermediate connection member 30, the sections of the moving blades 20 a and 20 b at the respective radial positions where the back side connection member 22 and the abdominal side connection member 24 are formed are overlapped. The figure is added. In FIG. 18, the point where the downstream end edge of the back side connecting member 22 intersects the blade back surface 21 of the moving blade 20 is A2, and the downstream end edge of the abdominal side connecting member 24 intersects with the blade abdominal surface 23 of the moving blade 20. Point B1, a point where the upstream edge of the back side connecting member 22 intersects with the blade back surface 21 of the moving blade 20, C2 and a point where the upstream side edge of the belly side connecting member 24 intersects with the blade abdominal surface 23 of the moving blade 20. This is indicated by D1. The throat S1 is a throat in the moving blade 20a, and the throat S2 is a throat in the moving blade 20b.

図17に示すように、腹側連結部材24は、腹側連結部材24の前縁が半径位置Rpに形成され、腹側連結部材24は、背側連結部材22の方向に所定の傾きを有して形成されている。一方、背側連結部材22の前縁が半径位置Rsに形成され、背側連結部材22は、腹側連結部材24の方向に所定の傾きを有して形成されている。そして、動翼20が回転した際、背側連結部材22および腹側連結部材24の当接面がそれぞれ当接するように構成されている。   As shown in FIG. 17, the ventral connecting member 24 has a front edge of the ventral connecting member 24 formed at the radial position Rp, and the ventral connecting member 24 has a predetermined inclination in the direction of the dorsal connecting member 22. Is formed. On the other hand, the front edge of the back side connecting member 22 is formed at the radial position Rs, and the back side connecting member 22 is formed with a predetermined inclination in the direction of the ventral side connecting member 24. And when the moving blade 20 rotates, the contact surface of the back side connection member 22 and the abdominal side connection member 24 is comprised, respectively.

また、図18に示すように、中間連結部材30は、点A2、点B1、点D1および点C2を結ぶ形状に構成されている。   Moreover, as shown in FIG. 18, the intermediate | middle connection member 30 is comprised by the shape which connects the point A2, the point B1, the point D1, and the point C2.

ここで、半径位置Rpにおける動翼20aの形状では、半径位置Rpより小さい半径位置Rsにおける動翼20bの形状に比べて、前縁(点C1)からスロートS1(動翼20aにおけるスロート)までの距離が短くなることが多い。そのため、例えば、動翼20a間で中間連結部材30を、点A1(この場合において、背側連結部材22の下流側端縁が動翼20の翼背面21と交わる点)、点B1、点D1および点C1を結ぶ形状(図18において破線で示した形状)に構成すると、点A1はスロートS1より下流側に位置するため、中間連結部材30の下流側端縁32の一部がスロートS1より下流側に位置することになる。そのため、前述した、中間連結部材30の下流に発達する渦の発達を抑制する効果が低減することもある。   Here, in the shape of the moving blade 20a at the radial position Rp, compared to the shape of the moving blade 20b at the radial position Rs smaller than the radial position Rp, the distance from the leading edge (point C1) to the throat S1 (throat at the moving blade 20a). Often the distance becomes shorter. Therefore, for example, the intermediate connecting member 30 between the moving blades 20a is connected to the point A1 (in this case, the downstream end edge of the back connecting member 22 intersects the blade back surface 21 of the moving blade 20), point B1, and point D1. And the shape connecting the points C1 (the shape indicated by the broken line in FIG. 18), the point A1 is located downstream of the throat S1, and therefore a part of the downstream edge 32 of the intermediate connecting member 30 is from the throat S1. It will be located downstream. Therefore, the effect of suppressing the development of the vortex that develops downstream of the intermediate connecting member 30 described above may be reduced.

そこで、上述した、図17に示す中間連結部材30のように、中間連結部材30を、点A2、点B1、点D1および点C2を結ぶ形状に構成することで、中間連結部材30の下流側端縁32をスロートS1、S2よりも上流側に位置させることができる。そのため、前述した、中間連結部材30の下流に発達する渦の発達を抑制する効果が得られる。   Therefore, like the intermediate connecting member 30 shown in FIG. 17 described above, the intermediate connecting member 30 is configured to connect the point A2, the point B1, the point D1, and the point C2, so that the downstream side of the intermediate connecting member 30 is provided. The end edge 32 can be positioned upstream of the throats S1 and S2. Therefore, the effect which suppresses development of the vortex which develops downstream of the intermediate | middle connection member 30 mentioned above is acquired.

(中間連結部材30の他の構造)
上記した中間連結部材30においては、動翼20が回転した際、背側連結部材22および腹側連結部材24の当接面が、翼ねじれ戻りによりそれぞれ当接するように構成された中間連結部材30の一例を示したが、この構成に限られるものではない。
(Other structures of the intermediate connecting member 30)
In the above-described intermediate connecting member 30, the intermediate connecting member 30 is configured such that when the moving blade 20 rotates, the contact surfaces of the back side connecting member 22 and the abdominal side connecting member 24 are in contact with each other by twisting back of the blade. However, the present invention is not limited to this configuration.

図19は、他の構造の中間連結部材30を備えるタービン動翼翼列10を半径方向の外側から見たときの平面図である。図20は、図19のW3−W3断面を示す図である。なお、図19では、動翼20の先端構造の一部を省略して示している。   FIG. 19 is a plan view of the turbine rotor blade cascade 10 including the intermediate coupling member 30 having another structure as viewed from the outside in the radial direction. 20 is a view showing a cross section taken along line W3-W3 of FIG. In FIG. 19, a part of the tip structure of the moving blade 20 is omitted.

図19および図20に示すように、中間連結部材30を、座部70、71およびスリーブ72からなる連結構造で構成してもよい。   As shown in FIGS. 19 and 20, the intermediate coupling member 30 may be configured with a coupling structure including seat portions 70 and 71 and a sleeve 72.

図19および図20に示すように、背側連結部材22および腹側連結部材24が一対の座部70、71で構成されている。この座部70、71には、突起部70a、71aが形成されている。さらに、互いに隣接する一対の座部70、71の突起部70a、71aは、筒状のスリーブ72で連結されている。   As shown in FIGS. 19 and 20, the back side connecting member 22 and the abdominal side connecting member 24 are constituted by a pair of seat portions 70 and 71. The seat portions 70 and 71 are formed with projections 70a and 71a. Further, the projections 70 a and 71 a of the pair of seats 70 and 71 adjacent to each other are connected by a cylindrical sleeve 72.

なお、上記した連結構造以外の他の構成は、上記した中間連結部材30の構成と同様の構成を備える。   Other configurations other than the above-described connection structure have the same configuration as that of the above-described intermediate connection member 30.

この連結構造を備えたタービン動翼翼列10では、動翼20が回転して遠心力が発生すると、座部70、71の突起部70a、71aとスリーブ72との面接触に基づく摩擦力により動翼20の振動を抑制、減衰させることができる。また、連結構造以外の他の構成は、上記した中間連結部材30の構成と同様の構成を備えるため、上記した中間連結部材30の作用効果と同様の作用効果も得ることができる。   In the turbine rotor blade cascade 10 having this connection structure, when the rotor blade 20 rotates and centrifugal force is generated, the turbine rotor blade cascade 10 is moved by the frictional force based on the surface contact between the projections 70a and 71a of the seat portions 70 and 71 and the sleeve 72. The vibration of the blade 20 can be suppressed and attenuated. In addition, since the configuration other than the connection structure has the same configuration as the configuration of the intermediate connection member 30 described above, the same effect as the operation effect of the intermediate connection member 30 described above can be obtained.

以上、本発明を一実施の形態により具体的に説明したが、本発明はこれらの実施の形態にのみ限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。   Although the present invention has been specifically described above with reference to the embodiments, the present invention is not limited to these embodiments, and various modifications can be made without departing from the scope of the invention.

10…タービン動翼翼列、20,20a,20b…動翼、21…翼背面、22…背側連結部材、23…翼腹面、24…腹側連結部材、25、51…前縁、26…後縁、30…中間連結部材、31…上流側端縁、32…下流側端縁、40…後流渦、41…翼腹側境界層、42…翼背側境界層、43…馬蹄渦、44…高損失領域、50…静翼、52…ダイヤフラム内輪、53…ダイヤフラム外輪、60…ロータディスク、70,71…座部、70a,71a…突起部、72…スリーブ、S,S1,S2…スロート。   DESCRIPTION OF SYMBOLS 10 ... Turbine blade cascade, 20, 20a, 20b ... Rotor blade, 21 ... Back surface, 22 ... Back side connection member, 23 ... Blade side surface, 24 ... Vent side connection member, 25, 51 ... Front edge, 26 ... Rear Edges 30 ... Intermediate connecting member 31 ... Upstream side edge 32 ... Downstream side edge 40 ... Wake vortex 41 ... Wing ventral side boundary layer 42 ... Wing back side boundary layer 43 ... Horse and horse vortex 44 ... High loss region, 50 ... Static blade, 52 ... Diaphragm inner ring, 53 ... Diaphragm outer ring, 60 ... Rotor disk, 70, 71 ... Seat, 70a, 71a ... Protrusion, 72 ... Sleeve, S, S1, S2 ... Throat .

Claims (12)

翼背面に突設された背側連結部材と翼腹面に突設された腹側連結部材を備える複数の動翼がタービンロータの周方向に植設され、前記動翼が回転する際、隣接する動翼の前記背側連結部材と前記腹側連結部材とによって中間連結部材を構成するタービン動翼翼列において、
前記中間連結部材の下流側端縁が、前記動翼間に形成される流路のスロート部よりも上流側に位置し
前記背側連結部材が、前記動翼の前縁から後縁に向けて、前記動翼の翼背面に沿って形成されていることを特徴とするタービン動翼翼列。
A plurality of rotor blades including a back side connecting member protruding from the blade back surface and a ventral side connecting member protruding from the blade abdominal surface are implanted in the circumferential direction of the turbine rotor, and adjacent to each other when the blade rotates. In the turbine rotor blade cascade that constitutes the intermediate connecting member by the back side connecting member and the ventral side connecting member of the rotor blade,
A downstream edge of the intermediate connecting member is located upstream of a throat portion of a flow path formed between the rotor blades ;
The turbine rotor blade cascade according to claim 1, wherein the back side connecting member is formed along a rear surface of the rotor blade from a front edge to a rear edge of the rotor blade .
前記動翼の翼背面における、前記背側連結部材の上流側端部と下流側端部との距離が、前記動翼の翼腹面における、前記腹側連結部材の上流側端部と下流側端部との距離よりも短いことを特徴とする請求項1記載のタービン動翼翼列。 The distance between the upstream end and the downstream end of the back connecting member on the blade back surface of the moving blade is the upstream end and downstream end of the vent connecting member on the blade vent surface of the moving blade. The turbine blade cascade according to claim 1, wherein the turbine blade cascade is shorter than the distance to the section. 前記動翼の翼背面と前記背側連結部材との境界面における前記背側連結部材の断面積が、前記動翼の翼腹面と前記腹側連結部材との境界面における前記腹側連結部材の断面積よりも小さいことを特徴とする請求項1または2記載のタービン動翼翼列。 The cross-sectional area of the backside connecting member at the boundary surface between the blade back surface of the moving blade and the backside connecting member is such that the ventral side connecting member at the boundary surface between the blade backside surface of the moving blade and the ventral side connecting member. The turbine rotor cascade according to claim 1 or 2, wherein the turbine rotor cascade is smaller than a cross-sectional area . 前記動翼の翼背面における、前記背側連結部材の下流側端部と、前記動翼の翼腹面における、前記腹側連結部材の下流側端部とを結んだ線分よりも下流側に、前記中間連結部材の下流側端縁が突出していることを特徴とする請求項1乃至3のいずれか1項記載のタービン動翼翼列。 On the downstream side of the line segment connecting the downstream end portion of the back side connecting member on the blade back surface of the moving blade and the downstream end portion of the ventral side connecting member on the blade belly surface of the moving blade, The turbine blade cascade according to any one of claims 1 to 3, wherein a downstream end edge of the intermediate connecting member protrudes . 前記動翼の翼背面における、前記背側連結部材の上流側端部と、前記動翼の翼腹面における、前記腹側連結部材の上流側端部とを結んだ線分よりも上流側に、前記中間連結部材の上流側端縁が突出していることを特徴とする請求項1乃至4のいずれか1項記載のタービン動翼翼列。 On the upstream side of the line segment connecting the upstream end of the backside connecting member on the blade back surface of the moving blade and the upstream end of the ventral connecting member on the blade belly surface of the moving blade, The turbine rotor blade cascade according to any one of claims 1 to 4, wherein an upstream end edge of the intermediate connecting member protrudes . 前記背側連結部材が形成される、前記動翼の翼背面におけるタービンロータの中心軸からの半径方向の距離が、前記腹側連結部材が形成される、前記動翼の翼腹面におけるタービンロータの中心軸からの半径方向の距離よりも短いことを特徴とする請求項1乃至5のいずれか1項記載のタービン動翼翼列。 The distance in the radial direction from the central axis of the turbine rotor on the blade back surface of the rotor blade where the back side connection member is formed is the distance of the turbine rotor on the blade belly surface of the blade where the ventral side connection member is formed. The turbine blade cascade according to any one of claims 1 to 5, wherein the turbine blade cascade is shorter than a radial distance from the central axis . 前記中間連結部材が、流線形状であることを特徴とする請求項1乃至6のいずれか1項記載のタービン動翼翼列。 The turbine blade cascade according to any one of claims 1 to 6, wherein the intermediate connecting member has a streamline shape . 前記中間連結部材の前縁から後縁までの距離に対する、前記中間連結部材の前縁からの距離の比が0.4以下となる位置に、前記中間連結部材の厚さが最大となる位置が存在していることを特徴とする請求項7記載のタービン動翼翼列。 The position where the ratio of the distance from the front edge of the intermediate connecting member to the distance from the front edge to the rear edge of the intermediate connecting member is 0.4 or less is the position where the thickness of the intermediate connecting member is maximum. The turbine blade cascade according to claim 7 , wherein the turbine blade cascade is present. タービンロータの中心軸に沿った断面である子午面において、
前記中間連結部材の前縁におけるキャンバー線の接線と、タービンロータの中心軸方向に平行な直線とのなす角度をδ(度)、
前記動翼と同じタービン段落を構成する静翼の前縁と当該静翼を固定するダイヤフラム内輪との交点と前記動翼の前縁と当該動翼を植設するロータディスクとの交点とを通る直線と、前記タービンロータの中心軸方向に平行な直線とのなす角度をθ1(度)、および
前記静翼の前縁と前記静翼を固定するダイヤフラム外輪との交点と前記動翼の先端における前縁とを通る直線と、前記タービンロータの中心軸方向に平行な直線とのなす角度をθ2(度)としたとき、
(θ1+θ2)/2−30 ≦ δ ≦ (θ1+θ2)/2+30
の関係を満たすことを特徴とする請求項7または8記載のタービン動翼翼列。
In the meridian plane which is a cross section along the central axis of the turbine rotor,
An angle between a tangent line of the camber line at the front edge of the intermediate connecting member and a straight line parallel to the central axis direction of the turbine rotor is δ (degrees),
Passes through the intersection of the leading edge of the stationary blade that constitutes the same turbine stage as the moving blade and the inner ring of the diaphragm that fixes the stationary blade, and the intersection of the leading edge of the moving blade and the rotor disk in which the moving blade is implanted. An angle formed by a straight line and a straight line parallel to the central axis direction of the turbine rotor is θ1 (degrees), and
An angle formed by a straight line passing through the intersection of the leading edge of the stationary blade and the diaphragm outer ring that fixes the stationary blade and the leading edge at the tip of the moving blade and a straight line parallel to the central axis direction of the turbine rotor is θ2 (Degrees)
(Θ1 + θ2) / 2-30 ≦ δ ≦ (θ1 + θ2) / 2 + 30
The turbine blade cascade according to claim 7 or 8, wherein the following relationship is satisfied .
前記動翼の前記背側連結部材と当該動翼の背側に隣接する前記動翼の前記腹側連結部材とが、前記動翼の回転により当接することを特徴とする請求項1乃至9のいずれか1項記載のタービン動翼翼列。 The backside connecting member of the moving blade and the ventral side connecting member of the moving blade adjacent to the backside of the moving blade are brought into contact with each other by rotation of the moving blade. The turbine rotor cascade according to any one of the preceding claims. 前記背側連結部材および前記腹側連結部材が一対の座部で構成され、互いに隣接する前記一対の座部がスリーブで連結されていることを特徴とする請求項7乃至9のいずれか1項記載のタービン動翼翼列。 The backside connecting member and the ventral side connecting member are configured by a pair of seats, and the pair of seats adjacent to each other are connected by a sleeve. The turbine blade cascade described . 請求項1乃至11のいずれか1項記載のタービン動翼翼列を備えたことを特徴とする蒸気タービン。A steam turbine comprising the turbine rotor blade cascade according to any one of claims 1 to 11.
JP2009298957A 2009-12-28 2009-12-28 Turbine blade cascade and steam turbine Active JP5558095B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009298957A JP5558095B2 (en) 2009-12-28 2009-12-28 Turbine blade cascade and steam turbine
KR1020100126660A KR101279491B1 (en) 2009-12-28 2010-12-13 Turbine rotor blade cascade and steam turbine
EP10196772.7A EP2339115B1 (en) 2009-12-28 2010-12-23 Turbine rotor assembly and steam turbine
EP16200215.8A EP3173580A1 (en) 2009-12-28 2010-12-23 Turbine rotor assembly and steam turbine
US12/979,004 US8753087B2 (en) 2009-12-28 2010-12-27 Turbine rotor assembly and steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009298957A JP5558095B2 (en) 2009-12-28 2009-12-28 Turbine blade cascade and steam turbine

Publications (2)

Publication Number Publication Date
JP2011137424A JP2011137424A (en) 2011-07-14
JP5558095B2 true JP5558095B2 (en) 2014-07-23

Family

ID=43616982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009298957A Active JP5558095B2 (en) 2009-12-28 2009-12-28 Turbine blade cascade and steam turbine

Country Status (4)

Country Link
US (1) US8753087B2 (en)
EP (2) EP2339115B1 (en)
JP (1) JP5558095B2 (en)
KR (1) KR101279491B1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140154081A1 (en) * 2012-11-30 2014-06-05 General Electric Company Tear-drop shaped part-span shroud
US9546555B2 (en) * 2012-12-17 2017-01-17 General Electric Company Tapered part-span shroud
DE102013212880A1 (en) * 2013-07-02 2015-01-08 Siemens Aktiengesellschaft Aerodynamic coupling element of two blades
US9631500B2 (en) * 2013-10-30 2017-04-25 General Electric Company Bucket assembly for use in a turbine engine
US9719355B2 (en) 2013-12-20 2017-08-01 General Electric Company Rotary machine blade having an asymmetric part-span shroud and method of making same
DE112015003695T5 (en) 2014-11-06 2017-05-18 Mitsubishi Hitachi Power Systems, Ltd. A steam turbine rotor blade, a method of manufacturing a steam turbine rotor blade, and a steam turbine
EP3029269A1 (en) * 2014-12-04 2016-06-08 Siemens Aktiengesellschaft Turbine rotor blade, corresponding rotor and turbomachine
US9957818B2 (en) * 2015-08-28 2018-05-01 Siemens Energy, Inc. Removably attachable snubber assembly
WO2017184138A1 (en) * 2016-04-21 2017-10-26 Siemens Aktiengesellschaft Preloaded snubber assembly for turbine blades
EP3379033A1 (en) * 2017-03-20 2018-09-26 General Electric Company Systems and methods for minimizing an incidence angle between a number of streamlines in a not disturbed flow field by varying an inclination angle of a chord line of a snubber
WO2018175003A1 (en) * 2017-03-20 2018-09-27 General Electric Company Snubber with minimized incidence angle
US10662802B2 (en) * 2018-01-02 2020-05-26 General Electric Company Controlled flow guides for turbines
DE102018006175B4 (en) * 2018-08-01 2020-08-13 Friedrich Grimm Cascade turbine
JP7223570B2 (en) * 2018-12-06 2023-02-16 三菱重工業株式会社 Turbine rotor blade, turbine and tip clearance measurement method
JP7245215B2 (en) 2020-11-25 2023-03-23 三菱重工業株式会社 steam turbine rotor blade

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1033197A (en) * 1951-02-27 1953-07-08 Rateau Soc Vibration dampers for mobile turbo-machine blades
US3719432A (en) * 1971-04-23 1973-03-06 Gen Electric Articulated sleeve for turbine bucket lashing
JPS5395406A (en) * 1977-02-02 1978-08-21 Hitachi Ltd Connection structure for vane
CH667493A5 (en) * 1985-05-31 1988-10-14 Bbc Brown Boveri & Cie DAMPING ELEMENT FOR DETACHED TURBO MACHINE BLADES.
US5288209A (en) 1991-12-19 1994-02-22 General Electric Company Automatic adaptive sculptured machining
JP3107266B2 (en) * 1993-09-17 2000-11-06 株式会社日立製作所 Fluid machinery and wing devices for fluid machinery
US5695323A (en) * 1996-04-19 1997-12-09 Westinghouse Electric Corporation Aerodynamically optimized mid-span snubber for combustion turbine blade
JPH1150804A (en) * 1997-08-01 1999-02-23 Mitsubishi Heavy Ind Ltd Shroud vane of steam turbine
WO1999013200A1 (en) * 1997-09-05 1999-03-18 Hitachi, Ltd. Steam turbine
JP4357135B2 (en) * 2001-03-29 2009-11-04 株式会社東芝 Turbine blade coupling device
JP2003269104A (en) 2002-03-19 2003-09-25 Ishikawajima Harima Heavy Ind Co Ltd Fan moving vane having buffer supporting portion
EP1462610A1 (en) 2003-03-28 2004-09-29 Siemens Aktiengesellschaft Rotor blade row for turbomachines
JP4713509B2 (en) 2007-01-26 2011-06-29 株式会社日立製作所 Turbine blade
JP2009007981A (en) 2007-06-27 2009-01-15 Toshiba Corp Intermediate fixing and supporting structure for steam-turbine long moving blade train, and steam turbine
US20090214345A1 (en) * 2008-02-26 2009-08-27 General Electric Company Low pressure section steam turbine bucket
US8540488B2 (en) * 2009-12-14 2013-09-24 Siemens Energy, Inc. Turbine blade damping device with controlled loading

Also Published As

Publication number Publication date
KR101279491B1 (en) 2013-06-27
EP2339115A2 (en) 2011-06-29
EP3173580A1 (en) 2017-05-31
JP2011137424A (en) 2011-07-14
US20110158810A1 (en) 2011-06-30
US8753087B2 (en) 2014-06-17
KR20110076765A (en) 2011-07-06
EP2339115B1 (en) 2017-08-16
EP2339115A3 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
JP5558095B2 (en) Turbine blade cascade and steam turbine
JP5300874B2 (en) Blade with non-axisymmetric platform and depression and protrusion on outer ring
JP4923073B2 (en) Transonic wing
JP4537951B2 (en) Axial rotary fluid machine blades
JP5946707B2 (en) Axial turbine blade
US7753652B2 (en) Aero-mixing of rotating blade structures
JP7463360B2 (en) Profile structure for an aircraft or turbomachine - Patent application
JP3986798B2 (en) Turbine blade type, turbine blade and turbine cascade of axial flow turbine
JP2011513627A (en) Blade with non-axisymmetric platform
JP4484396B2 (en) Turbine blade
JP7104379B2 (en) Axial flow type fan, compressor and turbine blade design method, and blades obtained by the design
JP5474358B2 (en) Two-blade blade with spacer strip
JP2000345801A (en) Turbine device
CN102652207A (en) Guide vane with winglet for energy converting machine and machine for converting energy comprising the guide vane
CN115176070A (en) Turbomachine component or assembly of components
JP5135296B2 (en) Turbine cascade, turbine stage using the same, axial turbine
CA3166702A1 (en) Diffuser pipe with curved cross-sectional shapes
JP4869099B2 (en) Nozzle blades and axial turbine
JP2004263602A (en) Nozzle blade, moving blade, and turbine stage of axial-flow turbine
JPH11229805A (en) Turbine blade and steam turbine
JPH07332007A (en) Turbine stationary blade
JP6715941B2 (en) Compressor blades, compressors, and methods for contouring compressor blades
JP7260845B2 (en) turbine rotor blade
CN111699323B (en) Rotating blade and centrifugal compressor provided with same
RU2596914C1 (en) Impeller vane of turbojet engine low-pressure compressor rotor (versions)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140604

R151 Written notification of patent or utility model registration

Ref document number: 5558095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151