JP5557692B2 - Negative electrode active material for non-aqueous secondary battery and non-aqueous secondary battery - Google Patents

Negative electrode active material for non-aqueous secondary battery and non-aqueous secondary battery Download PDF

Info

Publication number
JP5557692B2
JP5557692B2 JP2010240249A JP2010240249A JP5557692B2 JP 5557692 B2 JP5557692 B2 JP 5557692B2 JP 2010240249 A JP2010240249 A JP 2010240249A JP 2010240249 A JP2010240249 A JP 2010240249A JP 5557692 B2 JP5557692 B2 JP 5557692B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
secondary battery
aqueous secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010240249A
Other languages
Japanese (ja)
Other versions
JP2012094364A (en
Inventor
崇 中林
玲緒 小林
登志雄 阿部
心 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010240249A priority Critical patent/JP5557692B2/en
Publication of JP2012094364A publication Critical patent/JP2012094364A/en
Application granted granted Critical
Publication of JP5557692B2 publication Critical patent/JP5557692B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は非水系二次電池用負極活物質、および、非水系二次電池に関するものである。   The present invention relates to a negative electrode active material for a non-aqueous secondary battery and a non-aqueous secondary battery.

非水系二次電池として、非水系電解液を用い、リチウムイオンを充放電反応に用いるリチウムイオン二次電池が実用化されている。リチウムイオン二次電池はニッケル水素電池などと比べエネルギー密度が大きく、携帯電子機器電源用二次電池として用いられている。しかし、近年の携帯電子機器の高性能化,小型化に伴い、電源であるリチウムイオン二次電池のさらなる高容量化,小型化が求められている。これを実現するためには、負極に用いる負極活物質の高容量化が不可欠である。   As a non-aqueous secondary battery, a lithium-ion secondary battery using a non-aqueous electrolyte and using lithium ions for a charge / discharge reaction has been put into practical use. Lithium ion secondary batteries have a higher energy density than nickel metal hydride batteries and the like, and are used as secondary batteries for power sources of portable electronic devices. However, with the recent high performance and miniaturization of portable electronic devices, there is a demand for further increase in capacity and miniaturization of lithium ion secondary batteries as power sources. In order to realize this, it is essential to increase the capacity of the negative electrode active material used for the negative electrode.

現在、負極活物質には炭素系材料が用いられており、リチウムイオンをグラフェン層間にインターカレーション/デインターカレーションすることによりリチウムイオンを吸蔵/放出し、その理論容量は372Ah/kgである。しかし、炭素系材料は理論容量に近い実容量が実現されており飛躍的な高容量化は期待できない。そのため、炭素系材料の代替材料の探索が盛んに行われており、高容量が期待できる、xLi++M+xe-⇔LixM(Mは金属)の式に示されるような合金化/脱合金化反応により充放電反応を行う合金負極(あるいは金属負極)に高い関心が寄せられている。例えばシリコンの理論容量は4200Ah/kg、スズの理論容量は990Ah/kgと炭素系材料の理論容量の数倍〜10倍の理論容量を有している。 Currently, a carbon-based material is used for the negative electrode active material, and lithium ions are occluded / released by intercalating / deintercalating lithium ions between graphene layers, and the theoretical capacity is 372 Ah / kg. . However, the actual capacity of carbon-based materials is close to the theoretical capacity, and a dramatic increase in capacity cannot be expected. Therefore, the search for alternative materials for carbon-based materials has been actively conducted, and high capacity can be expected by the alloying / dealloying reaction as shown by the formula of xLi + + M + xe ⇔LixM (M is a metal). There is a great interest in alloy negative electrodes (or metal negative electrodes) that perform charge and discharge reactions. For example, the theoretical capacity of silicon is 4200 Ah / kg, and the theoretical capacity of tin is 990 Ah / kg, which is several times to 10 times the theoretical capacity of carbon-based materials.

しかし、この合金負極は充放電に伴う体積変化が炭素材料よりも大きく、リチウムイオン挿入時にシリコンでは420%、スズでは360%に膨張することが知られており、このような充放電に伴う大きな体積変化により生じる応力により電極構造を維持することができず、炭素系材料に比べサイクル特性が悪く、改善する必要がある。   However, it is known that this alloy negative electrode has a larger volume change due to charging / discharging than the carbon material, and expands to 420% for silicon and 360% for tin when lithium ions are inserted. The electrode structure cannot be maintained due to the stress caused by the volume change, and the cycle characteristics are poor as compared with the carbon-based material, and it is necessary to improve it.

そこで、特許文献1などにリチウムイオンと反応しないマトリックス成分との合金化により構造を維持しサイクル特性を向上させることが提案されているが、サイクル特性が悪く実用に供することができなかった。   Therefore, Patent Document 1 and the like propose to maintain the structure and improve the cycle characteristics by alloying with a matrix component that does not react with lithium ions, but the cycle characteristics are poor and cannot be put to practical use.

特許文献2では導電性粒子の周囲に空隙が生じるように導電性粒子間が結合してなる導電性層を集電体上に備え、前記空隙に活物質を存在させることで活物質を効率よく分散させる方法が提案されている。また、特許文献3では活物質粒子と金属酸化物層を備え、粒子表面を金属材料で被覆し、被覆された粒子同士の間に空隙を有することにより体積変化を緩和し、構造崩壊を抑制する方法が提案されている。しかし、いずれの方法においても負極活物質1次粒子自体の体積膨張を抑制することができず充放電により微粉化しサイクル特性が悪化する恐れがある。   In Patent Document 2, a conductive layer formed by bonding conductive particles so that voids are generated around the conductive particles is provided on the current collector, and the active material is efficiently obtained by allowing the active material to exist in the voids. A method of dispersing has been proposed. In Patent Document 3, active material particles and a metal oxide layer are provided, the surface of the particles is coated with a metal material, and the volume change is mitigated by having voids between the coated particles, thereby suppressing structural collapse. A method has been proposed. However, in any of the methods, the volume expansion of the negative electrode active material primary particles themselves cannot be suppressed, and the powder may be pulverized by charge / discharge to deteriorate the cycle characteristics.

さらに、特許文献4では活物質層と集電体間に気孔を有する導電性物質を備えることにより集電体と活物質層の密着性の悪化を防ぐ方法が提案されているが、活物質層の体積膨張を抑制することができず電極構造を維持することができない恐れがある。   Furthermore, Patent Document 4 proposes a method for preventing deterioration of the adhesion between the current collector and the active material layer by providing a conductive material having pores between the active material layer and the current collector. The volume expansion of the electrode cannot be suppressed, and the electrode structure may not be maintained.

特開2009−32644号公報JP 2009-32644 A 特開2007−194024号公報JP 2007-194024 A 特開2009−277509号公報JP 2009-277509 A 特開2008−77993号公報JP 2008-77993 A

本発明が解決しようとする課題は、非水系二次電池用負極活物質、および、非水系二次電池において、負極活物質1次粒子自体の体積変化を抑制し、体積変化により生じる応力により発生する負極活物質1次粒子の亀裂の伸展を阻止し、かつ、体積変化により負極活物質1次粒子構造の一部が崩壊しても導電性ネットワークを維持し、これによってサイクル特性の向上を図るという点である。   The problem to be solved by the present invention is caused by the stress generated by the volume change in the negative electrode active material for non-aqueous secondary battery and the non-aqueous secondary battery by suppressing the volume change of the negative electrode active material primary particles themselves. The primary particle of the negative electrode active material to be prevented from spreading cracks, and the conductive network is maintained even if a part of the negative electrode active material primary particle structure collapses due to the volume change, thereby improving the cycle characteristics. That is the point.

本発明の非水系二次電池用負極は、負極活物質がシリコンないしスズのいずれかと、リチウムと反応しない元素から選ばれた少なくとも1種の元素とからなり、かつ、1次粒子内部の内核部と外周部のいずれにも空孔を有し、かつ、前記空孔内部に導電性材料が導入されていることを特徴とする。図1に示すように、内核部と外周部のいずれもが、シリコンないしスズのいずれかと、リチウムと反応しない元素から選ばれた少なくとも1種の元素とからなり、リチウムと反応しない元素が構造維持を担う成分とし機能し構造崩壊を防止しできる。また、1次粒子内部の内核部と外周部のいずれにも空孔を有することにより、充放電反応による体積変化を空孔が吸収して1次粒子全体で緩和することができ、かつ、空孔が亀裂伸展を阻止し構造崩壊を防止する。さらに、空孔内部に導電性材料が導入されていることにより、構造の一部が崩壊しても、導電性材料が崩壊により分離された部分同士を繋ぐことにより導電性ネットワークを維持することができ、抵抗の上昇を抑制できる。これらによりサイクル特性が向上する。   The negative electrode for a non-aqueous secondary battery according to the present invention includes an inner core portion in a primary particle, wherein the negative electrode active material is composed of either silicon or tin and at least one element selected from elements that do not react with lithium. And the outer peripheral portion has holes, and a conductive material is introduced into the holes. As shown in FIG. 1, each of the inner core portion and the outer peripheral portion is composed of either silicon or tin and at least one element selected from elements that do not react with lithium, and the element that does not react with lithium maintains the structure. It functions as a component that bears and prevents structural collapse. In addition, by having vacancies in both the inner core portion and the outer peripheral portion inside the primary particles, the vacancies absorb the volume change due to the charge / discharge reaction, and the entire primary particles can be relaxed. The holes prevent crack extension and prevent structural collapse. Furthermore, by introducing a conductive material inside the pores, even if a part of the structure collapses, the conductive material can maintain the conductive network by connecting the parts separated by the collapse. And increase in resistance can be suppressed. These improve the cycle characteristics.

また、本発明は、前記導電性材料が遷移金属であることを特徴とする。導電性材料が遷移金属であることにより、良電性となり好ましい。   Further, the present invention is characterized in that the conductive material is a transition metal. Since the conductive material is a transition metal, it is preferable because it has good electric properties.

また、本発明は、前記導電性材料が銅,ニッケル,銀のいずれかであることを特徴とする。導電性材料を銅,ニッケル,銀とすることでより良電性となりより好ましい。   Further, the present invention is characterized in that the conductive material is any one of copper, nickel, and silver. It is more preferable that the conductive material is copper, nickel, or silver because it has better electric conductivity.

また、本発明は、前記導電性材料をメッキ法により導入したことを特徴とする。メッキ法を用いることにより空孔内部に導電性材料を導入できる。また、導電性材料と1次粒子表面の熱拡散による合金化を抑制でき、導電性の悪化を防げ、好ましい。   Further, the present invention is characterized in that the conductive material is introduced by a plating method. By using a plating method, a conductive material can be introduced into the pores. In addition, alloying due to thermal diffusion between the conductive material and the surface of the primary particles can be suppressed, and deterioration of conductivity can be prevented, which is preferable.

また、本発明は、前記導電性材料が20重量%以上導入されていることを特徴とする。導電性材料が20重量%以上導入されることにより、充放電後においても負極の直流抵抗値の上昇を防げる。また、50重量%を超えると活物質の量が相対的に少なくなり、容量が低下する。   Further, the present invention is characterized in that the conductive material is introduced by 20% by weight or more. By introducing 20% by weight or more of the conductive material, the DC resistance value of the negative electrode can be prevented from increasing even after charge / discharge. On the other hand, if it exceeds 50% by weight, the amount of the active material is relatively reduced, and the capacity is lowered.

また、本発明は、前記空孔の重心間距離の標準偏差を前記空孔の重心間距離の平均で割った値である分散度が1以下であることを特徴とする。亀裂伸展を阻止する空孔が負極活物質内に均一に配置されるため、構造崩壊を抑制できる。また、空孔の分布が均一であることにより応力の偏在を回避できる。   Further, the present invention is characterized in that the degree of dispersion, which is a value obtained by dividing the standard deviation of the distance between the centers of gravity of the holes by the average of the distance between the centers of gravity of the holes, is 1 or less. Since voids that prevent crack extension are uniformly arranged in the negative electrode active material, structural collapse can be suppressed. Moreover, uneven distribution of stress can be avoided by the uniform distribution of holes.

また、本発明は、前記負極活物質1次粒子の平均粒子径が50μm以下であることを特徴とする。平均粒子径を50μm以下とすることにより、体積変化の絶対量を抑制することができる。また、1μm以上であると非表面積が過大になり過ぎず、電解液との反応を抑制できるので好ましい。   In addition, the present invention is characterized in that an average particle diameter of the primary particles of the negative electrode active material is 50 μm or less. By setting the average particle diameter to 50 μm or less, the absolute amount of volume change can be suppressed. Moreover, when it is 1 micrometer or more, since a non-surface area does not become excessive too much and reaction with electrolyte solution can be suppressed, it is preferable.

また、本発明は、前記空孔の平均空孔径が1μm以下であることを特徴とする。平均空孔径を1μm以下とすることにより亀裂伸展を阻止する空孔数を増やすことができる。また、0.1μm以上ないと導電性材料の導入が困難になり好ましくない。   Further, the present invention is characterized in that an average pore diameter of the pores is 1 μm or less. By setting the average pore diameter to 1 μm or less, it is possible to increase the number of pores that prevent crack extension. On the other hand, when the thickness is 0.1 μm or more, it is difficult to introduce the conductive material, which is not preferable.

また、本発明は、前記空孔の空孔率が5%以上であることを特徴とする。空孔率が5%より小さいと体積変化を抑制することができない。また、80%を超えると体積変化以上となり、効果が変わらず、逆に容量が低下する。   Further, the present invention is characterized in that the porosity of the holes is 5% or more. If the porosity is less than 5%, the volume change cannot be suppressed. Moreover, when it exceeds 80%, it becomes more than a volume change, an effect does not change, and a capacity | capacitance falls conversely.

また、本発明は、負極活物質のシリコンおよびスズの平均結晶子径が5μm以下であることを特徴とする。空孔径と同等の結晶子径とすることにより、結晶子の膨張を空孔で吸収することができ、体積膨張をより抑制でき好ましい。   In addition, the present invention is characterized in that the average crystallite diameter of silicon and tin of the negative electrode active material is 5 μm or less. By setting the crystallite diameter to be equal to the pore diameter, it is preferable that the expansion of the crystallite can be absorbed by the pores and the volume expansion can be further suppressed.

また、本発明は、負極活物質の平均空孔間距離が3μm以下であることを特徴とする。平均空孔間距離を3μm以下とすることで亀裂伸展を阻止でき好ましい。また、0.01μm以下となると、シリコンないしスズのいずれかと、リチウムと反応しない元素から選ばれた少なくとも1種の元素とからなる部分が空孔と比較し細くなり過ぎ、負極活物質1次粒子の強度が低下し好ましくない。   Further, the present invention is characterized in that the average distance between pores of the negative electrode active material is 3 μm or less. It is preferable that the average distance between pores is 3 μm or less because crack extension can be prevented. Further, when the thickness is 0.01 μm or less, the portion composed of either silicon or tin and at least one element selected from elements that do not react with lithium becomes too thin compared to the vacancies, and the negative electrode active material primary particles This is not preferable because the strength of the resin is lowered.

また、本発明は、負極活物質に含まれるシリコンまたはスズが10重量%以上含まれることを特徴とする。シリコンまたはスズの含有量が10重量%より少なくなると容量が低くなり好ましくない。また、95重量%以上となると、構造維持に寄与する成分が低下する。   Further, the present invention is characterized in that 10% by weight or more of silicon or tin contained in the negative electrode active material is contained. When the content of silicon or tin is less than 10% by weight, the capacity is lowered, which is not preferable. Moreover, when it becomes 95 weight% or more, the component which contributes to a structure maintenance will fall.

また、本発明は、前記リチウムと反応しない元素がバナジウム,クロム,マンガン,鉄,コバルト,ニッケル,銅,亜鉛,銀,金,インジウム,チタン,ジルコニウムのいずれかの元素であることを特徴とする。バナジウム,クロム,マンガン,鉄,コバルト,ニッケル,銅,亜鉛,銀,金,インジウム,チタン,ジルコニウムを用いることにより負極活物質が良導電性となり好ましい。   Further, the present invention is characterized in that the element that does not react with lithium is any one of vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, silver, gold, indium, titanium, and zirconium. . By using vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, silver, gold, indium, titanium, or zirconium, the negative electrode active material is preferable because it has good conductivity.

また、本発明は、1次粒子内部の内核部と外周部のいずれにも空孔を有する粒子を溶湯急冷法により作製し、前記1次粒子の空孔に導電性材料を導入することにより作製したことを特徴とする。溶湯急冷法を用い作製することにより空孔が形成される。また、結晶子径が微細化し好ましい。   In addition, the present invention is prepared by preparing particles having vacancies in both the inner core portion and the outer peripheral portion inside the primary particles by a molten metal quenching method and introducing a conductive material into the vacancies of the primary particles. It is characterized by that. Holes are formed by manufacturing using a molten metal quenching method. In addition, the crystallite diameter is preferably reduced.

また、本発明は、前記1次粒子内部の内核部と外周部のいずれにも空孔を有する粒子を単ロール法で作製したことを特徴とする。単ロール法を用いることにより超急冷することができ、結晶子径および空孔径が微細化し好ましい。   Further, the present invention is characterized in that particles having pores in both the inner core portion and the outer peripheral portion inside the primary particles are produced by a single roll method. By using a single roll method, it is possible to carry out ultra-rapid cooling, which is preferable because the crystallite diameter and pore diameter are reduced.

また、本発明は、前記の負極活物質を用い作製した負極の10サイクル後の直流抵抗値の上昇率が初期状態における直流抵抗値に対し20%以下であることを特徴とする。直流抵抗値の上昇率を20%以下とすることで長寿命化する。   In addition, the present invention is characterized in that the negative electrode manufactured using the negative electrode active material has an increase rate of the DC resistance value after 10 cycles of 20% or less with respect to the DC resistance value in the initial state. Longer life is achieved by setting the rate of increase in DC resistance to 20% or less.

また、本発明の非水系二次電池は、前記の非水系二次電池用負極活物質を用いることを特徴とする。本発明の非水系二次電池用負極活物質を用いることにより、高容量かつ長寿命な二次電池が提供できる。   The non-aqueous secondary battery of the present invention is characterized by using the above-described negative electrode active material for non-aqueous secondary batteries. By using the negative electrode active material for a non-aqueous secondary battery of the present invention, a secondary battery having a high capacity and a long life can be provided.

本発明の非水系二次電池用負極は、負極活物質1次粒子内部に空孔を有するので、充放電によりシリコンないしスズの体積が大きく変化しても、空孔により体積変化を吸収でき、かつ、内核部と外周部のいずれにも空孔を有するため、体積変化が局在化することを回避でき構造崩壊を抑制できる。また、空孔が亀裂伸展を阻止することにより構造崩壊を抑制できる。さらに、空孔内部に導電性材料が導入されていることにより、構造の一部が崩壊しても導電性ネットワークを維持することができ、抵抗の上昇を抑制でき、サイクル特性を向上する効果が得られる。   Since the negative electrode for a non-aqueous secondary battery of the present invention has pores in the primary particles of the negative electrode active material, even if the volume of silicon or tin changes greatly due to charge / discharge, the volume change can be absorbed by the pores, And since it has a void | hole in both an inner core part and an outer peripheral part, it can avoid that a volume change localizes and can suppress structural collapse. In addition, the structural collapse can be suppressed by the pores preventing crack extension. Furthermore, the introduction of a conductive material inside the pores allows the conductive network to be maintained even if a part of the structure collapses, thereby preventing an increase in resistance and improving cycle characteristics. can get.

本発明の負極活物質の概念図である。It is a conceptual diagram of the negative electrode active material of this invention. 本発明の実施例1の断面走査型電子顕微鏡写真である。It is a cross-sectional scanning electron micrograph of Example 1 of the present invention. 本発明の実施例2の断面走査型電子顕微鏡写真である。It is a cross-sectional scanning electron micrograph of Example 2 of the present invention. 本発明の比較例1の断面走査型電子顕微鏡写真である。It is a cross-sectional scanning electron micrograph of the comparative example 1 of this invention. 本発明の実施例1の断面のニッケル元素のマッピング図である。It is a mapping figure of the nickel element of the cross section of Example 1 of this invention. 本発明の実施例2の断面のニッケル元素のマッピング図である。It is a mapping figure of the nickel element of the cross section of Example 2 of this invention. 本発明の比較例1の断面のニッケル元素のマッピング図である。It is a mapping figure of the nickel element of the cross section of the comparative example 1 of this invention. 本発明の非水系二次電池の模式図である。It is a schematic diagram of the non-aqueous secondary battery of this invention.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(負極活物質)
負極活物質はシリコンまたはスズのいずれかと、リチウムと反応しない元素から選ばれた少なくとも1種の元素とからなる。シリコンとスズの両方を含んでいても構わない。シリコンまたはスズを含んでいれば構わないが、高容量が得られるためシリコンであれば10重量%以上、スズであれば50重量%以上含まれることが好ましい。シリコンとスズの両方を含んでいる時は、シリコンとスズの合計の重量が10重量%以上であることが好ましい。また、95重量%以上となると、構造維持に寄与する成分が低下し好ましくない。さらに、リチウムイオンの拡散速度が速く、導電性も高いスズを用いることが好ましい。
(Negative electrode active material)
The negative electrode active material is composed of either silicon or tin and at least one element selected from elements that do not react with lithium. It may contain both silicon and tin. It does not matter as long as it contains silicon or tin, but it is preferable that silicon is contained in an amount of 10% by weight or more, and tin is contained in an amount of 50% by weight or more because a high capacity can be obtained. When both silicon and tin are included, the total weight of silicon and tin is preferably 10% by weight or more. On the other hand, if it is 95% by weight or more, the component contributing to the structure maintenance is undesirably lowered. Furthermore, it is preferable to use tin having a high diffusion rate of lithium ions and high conductivity.

リチウムと反応しない元素とは、全くリチウムと反応しない元素を用いることができるのは勿論のこと、シリコンおよびスズと比較しリチウムとの反応性が劣る元素であれば構わない。リチウムと反応しない元素は良電性であることが好ましく、遷移金属元素であることが好ましい。例えば、バナジウム,クロム,マンガン,鉄,コバルト,ニッケル,銅,亜鉛,銀,金,インジウム,チタン,ジルコニウムが挙げられる。特に、鉄,ニッケル,銅,コバルト,マンガン,銀,金は、導電性が高く好ましい。   As an element that does not react with lithium, an element that does not react with lithium at all can be used, as long as it is an element that is less reactive with lithium than silicon and tin. The element that does not react with lithium is preferably good-electricity, and is preferably a transition metal element. Examples include vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, silver, gold, indium, titanium, and zirconium. In particular, iron, nickel, copper, cobalt, manganese, silver, and gold are preferable because of their high conductivity.

負極活物質1次粒子の平均粒子径は50μm以下であることが好ましい。50μmより大きいと充放電による体積変化の絶対量が大きくなり好ましくない。また、1μm以上であると非表面積が過大になり過ぎず、電解液との反応を抑制できるので好ましい。ここで1次粒子とは連続する固体であり、例えば、金属結合により結合している多結晶体であり、単に粉末粒子がファンデルワース力によって凝集したものは2次粒子として定義する。なお、平均粒子径は、超音波を印加することにより凝集解いた状態でレーザ回折型粒子径分布測定器により測定したメジアン径D50値である。   The average particle diameter of the negative electrode active material primary particles is preferably 50 μm or less. If it is larger than 50 μm, the absolute amount of volume change due to charge / discharge increases, which is not preferable. Moreover, when it is 1 micrometer or more, since a non-surface area does not become excessive too much and reaction with electrolyte solution can be suppressed, it is preferable. Here, the primary particle is a continuous solid, for example, a polycrystalline body bonded by a metal bond, and a powder particle simply aggregated by van der Waals force is defined as a secondary particle. The average particle diameter is a median diameter D50 value measured by a laser diffraction type particle size distribution measuring instrument in a state where aggregation is solved by applying ultrasonic waves.

シリコンおよびスズの結晶子径は5μm以下であることが好ましい。5μm以下であることにより充放電時の体積変化により生じる応力の局在化を回避でき好ましい。さらに応力が均一化し、最大応力を抑制できることから1μm以下であることがさらに好ましい。結晶子径は走査型電子顕微鏡や、透過型電子顕微鏡で観察して平均結晶子径を測定する。試料の電子顕微鏡写真を撮影し、写真内で任意の面積内に観察された結晶子の粒子径を測定し、その平均値を結晶子径として求める。測定結晶子の数が少なくとも20個以上になるようにして、平均値を得ることが望ましい。また、断面が円形でない場合には最大長さと最小長さの平均値をその結晶子の粒子径と見なす。   The crystallite diameter of silicon and tin is preferably 5 μm or less. When the thickness is 5 μm or less, it is preferable because localization of stress caused by a volume change during charge / discharge can be avoided. Further, the thickness is more preferably 1 μm or less because the stress can be made uniform and the maximum stress can be suppressed. The crystallite diameter is observed with a scanning electron microscope or a transmission electron microscope, and the average crystallite diameter is measured. An electron micrograph of the sample is taken, the particle diameter of the crystallites observed in an arbitrary area in the photograph is measured, and the average value is obtained as the crystallite diameter. It is desirable to obtain an average value so that the number of measurement crystallites is at least 20 or more. When the cross section is not circular, the average value of the maximum length and the minimum length is regarded as the particle diameter of the crystallite.

負極活物質1次粒子内部の内核部と外周部のいずれにも空孔を有する。空孔の形状は特に限定しないが、球状、円柱状,円錐状,立方体状,長方体状などの形状が挙げられる。なお、内核部とは1次粒子の重心を中心とし、1次粒子の粒子径の50%の長さの直径を有する球の内部であり、外周部とはその外側である。1次粒子内部の内核部と外周部のいずれにも空孔を有することにより、負極活物質の体積変化を均一に抑制できる。また、空孔の重心間距離の標準偏差を空孔の重心間距離の平均で割った値である分散度が1以下であることが好ましい。空孔が1次粒子内部で均一に分散していることにより、亀裂伸展を抑制できる。空孔の重心間距離の平均値および空孔の重心間距離の標準偏差は例えば負極活物質断面の電子顕微鏡写真を撮影し、画像解析により求めることができる。   Both the inner core portion and the outer peripheral portion inside the primary particles of the negative electrode active material have pores. The shape of the hole is not particularly limited, and examples thereof include a spherical shape, a cylindrical shape, a conical shape, a cubic shape, and a rectangular shape. The inner core portion is the inside of a sphere having a diameter that is 50% of the particle diameter of the primary particles centered on the center of gravity of the primary particles, and the outer peripheral portion is the outside thereof. By having pores in both the inner core portion and the outer peripheral portion inside the primary particles, the volume change of the negative electrode active material can be suppressed uniformly. Moreover, it is preferable that the degree of dispersion, which is a value obtained by dividing the standard deviation of the distance between the center of gravity of the holes by the average of the distance between the center of gravity of the holes, is 1 or less. Since the pores are uniformly dispersed inside the primary particles, crack extension can be suppressed. The average value of the distance between the centroids of the holes and the standard deviation of the distance between the centroids of the holes can be obtained, for example, by taking an electron micrograph of the cross section of the negative electrode active material and analyzing the image.

空孔径の平均値は1μm以下であると、空孔の数が増え空孔が粒子内に偏りなく存在することができる。また、亀裂伸展を阻止する空孔の数が増え構造崩壊を抑制でき好ましい。0.5μm以下であると空孔の数がさらに増え空孔の偏りがさらになくなり、また、亀裂伸展を阻止する空孔の数がさらに増え、サイクル特性が向上しより好ましい。一方、0.1μm以上ないと導電性材料の導入が困難になり好ましくない。空孔径の平均値は負極活物質の断面の電子顕微鏡写真を撮影し画像解析により求めた平均円相当径の値である。   When the average value of the pore diameter is 1 μm or less, the number of pores increases and the pores can exist in the particles without unevenness. Moreover, the number of vacancies preventing crack extension is increased, and structural collapse can be suppressed, which is preferable. When the thickness is 0.5 μm or less, the number of vacancies is further increased, and the unevenness of the vacancies is further eliminated. Further, the number of vacancies preventing crack extension is further increased, and the cycle characteristics are improved. On the other hand, when the thickness is 0.1 μm or more, it is difficult to introduce the conductive material, which is not preferable. The average value of the pore diameter is a value of an average equivalent circle diameter obtained by taking an electron micrograph of a cross section of the negative electrode active material and obtaining an image analysis.

平均空孔間距離は、3μm以下であると、亀裂伸展をさらに阻止でき構造崩壊を抑制でき好ましい。また、0.01μm以下となると、シリコンないしスズのいずれかと、リチウムと反応しない元素から選ばれた少なくとも1種の元素とからなる部分が空孔と比較し細くなり過ぎ、負極活物質1次粒子の強度が低下し好ましくない。平均空孔間距離は、空孔の平均重心間距離から平均空孔径を引いた値である。   The average inter-hole distance is preferably 3 μm or less because crack extension can be further prevented and structural collapse can be suppressed. Further, when the thickness is 0.01 μm or less, the portion composed of either silicon or tin and at least one element selected from elements that do not react with lithium becomes too thin compared to the vacancies, and the negative electrode active material primary particles This is not preferable because the strength of the resin is lowered. The average distance between holes is a value obtained by subtracting the average hole diameter from the average distance between the centers of gravity of the holes.

空孔率は5%以上であることが好ましい。空孔率を5%以上とすることにより充放電に伴う体積変化を緩和することができる。また、80%を超えると体積変化以上となり、効果が変わらず、逆に容量が低下する。空孔率は負極活物質の電子顕微鏡写真を撮影し、写真内の空孔が占める面積の割合である。   The porosity is preferably 5% or more. The volume change accompanying charging / discharging can be relieved by setting the porosity to 5% or more. Moreover, when it exceeds 80%, it becomes more than a volume change, an effect does not change, and a capacity | capacitance falls conversely. The porosity is the ratio of the area occupied by the vacancies in the photograph obtained by taking an electron micrograph of the negative electrode active material.

負極活物質1次粒子内部の空孔の内部に導電性材料が導入されている。1次粒子内部の空孔の内部に導電性材料を導入することにより、体積膨張により活物質構造の一部が崩壊しても導電性ネットワークが維持できる。導入とは、空孔内部に導電性材料が存在すればどのような形体でも構わない。また、空孔全てに導電性材料が導入されていても構わないし、空孔の一部に導電性材料が導入されていても構わない。なお、空孔表面が導電性材料で被覆されていても構わないのは言うまでもない。また、導電性材料は粒子表面に被覆されていても構わない。被覆は、表面全てを被覆していても構わないし、一部分を被覆していても構わない。   A conductive material is introduced into the pores inside the primary particles of the negative electrode active material. By introducing a conductive material into the vacancies inside the primary particles, a conductive network can be maintained even if a part of the active material structure collapses due to volume expansion. The introduction may be in any form as long as a conductive material exists inside the pores. Further, a conductive material may be introduced into all the holes, or a conductive material may be introduced into a part of the holes. Needless to say, the pore surface may be covered with a conductive material. The conductive material may be coated on the particle surface. The coating may cover the entire surface or may cover a part.

導電性材料は負極活物質1次粒子に用いている合金より導電性が高いことが好ましい。より導電性ネットワークを維持できる。導電性材料としては、導電性が良好である遷移金属が好ましい。また、銅,ニッケル,銀は導電性が良好でありより好ましい。   The conductive material preferably has higher conductivity than the alloy used for the primary particles of the negative electrode active material. A more conductive network can be maintained. As the conductive material, a transition metal having good conductivity is preferable. Copper, nickel, and silver are more preferable because they have good conductivity.

導電性材料は負極活物質の20重量%以上導入されていることが好ましい。導電性材料が20重量%以上導入されていることにより充放電による負極の抵抗上昇を抑制でき好ましい。導電性材料を30重量%以上導入されていることがより好ましい。導電性材料が30重量%以上導入されていることにより充放電による負極の抵抗上昇をより抑制できより好ましい。さらに、50重量%を超えると活物質の量が相対的に少なくなり、容量が低下し好ましくない。   The conductive material is preferably introduced in an amount of 20% by weight or more of the negative electrode active material. It is preferable that 20% by weight or more of the conductive material is introduced because an increase in resistance of the negative electrode due to charge / discharge can be suppressed. More preferably, 30% by weight or more of the conductive material is introduced. It is more preferable that the conductive material is introduced in an amount of 30% by weight or more because the resistance increase of the negative electrode due to charge / discharge can be further suppressed. Furthermore, if it exceeds 50% by weight, the amount of the active material is relatively small, which is not preferable because the capacity is lowered.

1次粒子の製造方法には、溶湯急冷法を用いることができる。溶湯急冷法を用いることにより結晶子径を微細化できる。溶湯急冷法として、例えば、単ロール法,双ロール法,遠心法(縦型),遠心法(横型),遊星ロール付単ロール法,ガン法,ピストン・アンビル法,トーション・カタパルト法,水流中紡糸法,回転液中紡糸法,ガラス被覆紡糸法,ガスアトマイズ法,水アトマイズ法がある。また、急冷速度が速い単ロール法を用いると結晶子径が微細化しより好ましく、冷却基板と接触する面と、接触しない面とで急冷速度が異なり、冷却中に温度勾配が発生するため空孔が形成するという観点でも好ましい。   As a method for producing primary particles, a molten metal quenching method can be used. The crystallite diameter can be made finer by using the molten metal quenching method. For example, single roll method, twin roll method, centrifuge method (vertical type), centrifuge method (horizontal type), single roll method with planetary roll, gun method, piston anvil method, torsion catapult method, in water flow There are spinning method, spinning in spinning solution, glass-coated spinning method, gas atomizing method, and water atomizing method. In addition, it is more preferable to use a single roll method with a rapid quenching rate, which makes the crystallite size finer, and the quenching rate differs between the surface that contacts the cooling substrate and the surface that does not contact, and a temperature gradient occurs during cooling. It is also preferable from the viewpoint of forming.

1次粒子への導電性材料の導入方法は、メッキ法を用いることができる。メッキ法を用いることにより空孔内に導電性材料を導入できる。また、過度な加熱を必要としないため導電性材料と1次粒子表面との合金化を防げ、導電性材料の合金化による電導性低下を防げる。また、電解メッキ法,無電解メッキ法のいずれも用いることができるが、粉体に簡便に導電性材料を導入できるため無電解メッキ法が好ましい。   As a method for introducing the conductive material into the primary particles, a plating method can be used. By using a plating method, a conductive material can be introduced into the pores. In addition, since excessive heating is not required, alloying between the conductive material and the primary particle surface can be prevented, and a decrease in conductivity due to alloying of the conductive material can be prevented. Either an electrolytic plating method or an electroless plating method can be used, but the electroless plating method is preferable because a conductive material can be easily introduced into the powder.

(負極)
本発明の非水系二次電池用負極活物質を用いることにより、長寿命の非水系二次電池用負極を作製することができる。前記負極は10サイクル後の直流抵抗値の上昇率が、初期状態における直流抵抗値に対し20%以下であることが好ましい。直流抵抗値の上昇率を20%以下とすることでサイクル特性が向上する。
(Negative electrode)
By using the negative electrode active material for a non-aqueous secondary battery of the present invention, a long-life negative electrode for a non-aqueous secondary battery can be produced. The negative electrode preferably has an increase rate of the DC resistance value after 10 cycles of 20% or less with respect to the DC resistance value in the initial state. The cycle characteristics are improved by setting the rate of increase in the DC resistance value to 20% or less.

(二次電池)
本発明の非水系二次電池用負極を用いることにより、長寿命の非水系二次電池を作製することができる。
(Secondary battery)
By using the negative electrode for a non-aqueous secondary battery of the present invention, a long-life non-aqueous secondary battery can be produced.

以下、本発明に係る実施例を詳細に説明する。ただし、これら実施例によって必ずしも本発明が限定されるわけではない。   Hereinafter, embodiments according to the present invention will be described in detail. However, the present invention is not necessarily limited by these examples.

〔実施例〕
(実施例1)
スズを80重量部とコバルトを20重量部混合し、アルゴン雰囲気下でアーク溶解法により溶解し冷却することにより合金を得た。
〔Example〕
Example 1
80 parts by weight of tin and 20 parts by weight of cobalt were mixed, melted by an arc melting method in an argon atmosphere, and cooled to obtain an alloy.

得た合金を5mm〜10mm角の大きさに粉砕し、アルゴン雰囲気下で高周波加熱法により溶解し、単ロール法により急冷することにより、リボン状の急冷合金を得た。このリボン状の急冷合金を乳鉢により粉砕し、目開き45μmの篩いを通過させることにより分級し1次粒子を得た。   The obtained alloy was pulverized to a size of 5 mm to 10 mm square, melted by a high-frequency heating method in an argon atmosphere, and quenched by a single roll method to obtain a ribbon-like quenched alloy. The ribbon-like quenched alloy was pulverized with a mortar and classified by passing through a sieve having an opening of 45 μm to obtain primary particles.

1次粒子断面の平均結晶子径を走査型電子顕微鏡写真より測定し0.5μmであった。また、1次粒子断面の走査型電子顕微鏡写真を画像解析ソフト(A像くん、旭化成エンジニアリング株式会社製)により解析し空孔率,平均空孔径,分散度および平均重心間距離を求めた。その結果、空孔率が23.7%、平均空孔径(円相当径)は0.38μm、分散度は0.42、平均重心間距離は2.9μmであった。   The average crystallite size of the primary particle cross section was measured by scanning electron micrograph and found to be 0.5 μm. Further, a scanning electron micrograph of the cross section of the primary particle was analyzed by image analysis software (A image-kun, manufactured by Asahi Kasei Engineering Co., Ltd.), and the porosity, average pore diameter, degree of dispersion, and average center-to-center distance were determined. As a result, the porosity was 23.7%, the average pore diameter (equivalent circle diameter) was 0.38 μm, the degree of dispersion was 0.42, and the average distance between the centers of gravity was 2.9 μm.

得た1次粒子を60℃に加熱したニッケルメッキ液(トップケミアロイ66,奥野製薬社製)に加え30分間撹拌することによりメッキを行い、負極活物質を得た。得られた負極活物質の高周波誘導結合プラズマ発光分光分析法(ICP−AES)での元素分析の結果を表1に示す。   The obtained primary particles were added to a nickel plating solution heated to 60 ° C. (Top Chemialloy 66, manufactured by Okuno Pharmaceutical Co., Ltd.) and stirred for 30 minutes to obtain a negative electrode active material. Table 1 shows the results of elemental analysis of the obtained negative electrode active material by high frequency inductively coupled plasma optical emission spectrometry (ICP-AES).

(実施例2)
撹拌時間を60分とした以外は実施例1と同様の方法で作製した。得られた負極活物質の高周波誘導結合プラズマ発光分光分析法(ICP−AES)での元素分析の結果を表1に示す。
(Example 2)
It was prepared in the same manner as in Example 1 except that the stirring time was 60 minutes. Table 1 shows the results of elemental analysis of the obtained negative electrode active material by high frequency inductively coupled plasma optical emission spectrometry (ICP-AES).

Figure 0005557692
Figure 0005557692

(比較例1)
ニッケルメッキを行っていない以外は実施例1と同様の方法で作製した。
(Comparative Example 1)
It was produced by the same method as in Example 1 except that nickel plating was not performed.

(組織観察)
実施例1,2および比較例1の負極活物質の断面を走査型電子顕微鏡による観察を行った。その結果を図2〜図4に示す。また、エネルギー分散型X線分析によりニッケル元素マッピングを行った。その結果を図5〜図7に示す。
(Tissue observation)
The cross sections of the negative electrode active materials of Examples 1 and 2 and Comparative Example 1 were observed with a scanning electron microscope. The results are shown in FIGS. In addition, nickel element mapping was performed by energy dispersive X-ray analysis. The results are shown in FIGS.

図2〜図4に示すように、実施例1,2および比較例1の負極活物質は、1次粒子内部の内核部および外周部のいずれにも空孔を有していることがわかる。また、図5,図6に示すように実施例1および2の負極活物質の空孔内および1次粒子表面にニッケル(導電性材料)が導入されていることがわかる。一方、図7のように、比較例1の負極活物質は導電性材料が導入されていないことがわかる。   As shown in FIGS. 2 to 4, it can be seen that the negative electrode active materials of Examples 1 and 2 and Comparative Example 1 have voids in both the inner core portion and the outer peripheral portion inside the primary particles. 5 and 6, it can be seen that nickel (conductive material) is introduced into the pores of the negative electrode active materials of Examples 1 and 2 and the primary particle surfaces. On the other hand, as shown in FIG. 7, it can be seen that the negative electrode active material of Comparative Example 1 has no conductive material introduced therein.

(電極特性評価方法)
実施例1,2および比較例1の負極活物質をそれぞれ、導電剤としてアセチレンブラックと、結着剤としてポリフッ化ビニリデンをN−メチルピロリドンに溶解した溶液を混錬しスラリーを作製した。得られたスラリーを銅箔上に塗布機を用いて均一に塗布した。大気中にて乾燥後、加圧した。その後、真空中にて乾燥させた。電解液にはエチレンカーボネート,ジメチルカーボネート,エチルメチルカーボネートの混合溶媒にビニレンカーボネートを添加した溶媒に、1MLiPF6を添加した溶液を用いた。対極にはリチウム金属を用いた。
(Electrode property evaluation method)
The negative electrode active materials of Examples 1 and 2 and Comparative Example 1 were each kneaded with acetylene black as a conductive agent and a solution of polyvinylidene fluoride dissolved in N-methylpyrrolidone as a binder to prepare slurry. The obtained slurry was uniformly coated on the copper foil using a coating machine. Pressurized after drying in air. Then, it was dried in vacuum. As the electrolytic solution, a solution obtained by adding 1M LiPF 6 to a solvent obtained by adding vinylene carbonate to a mixed solvent of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate was used. Lithium metal was used for the counter electrode.

充放電試験は、0.01V(vs.Li/Li+)となるまで定電流定電圧充電とし、放電は2V(vs.Li/Li+)となるまで定電流放電とした。初期クーロン効率と容量維持率を表2に示す。 The charge and discharge test, a constant-current constant-voltage charge until the 0.01V (vs.Li/Li +), discharge was constant current discharge until the 2V (vs.Li/Li +). Table 2 shows the initial coulomb efficiency and capacity retention rate.

また、初期状態および10サイクル後の充電状態(SOC)50%、0.1CAにおける電流印加5秒後の直流抵抗値を測定し、10サイクル後の直流抵抗値の初期状態の直流抵抗値に対する上昇率を求め、その結果を表2に示す。なお、10サイクル後の直流抵抗値が初期状態の直流抵抗値より減少している場合は直流抵抗値上昇率0%とみなす。   In addition, the DC resistance value after 5 seconds of current application in the initial state and the state of charge (SOC) 50% after 10 cycles and 0.1 CA was measured, and the DC resistance value after 10 cycles increased relative to the DC resistance value in the initial state. The rate was determined and the results are shown in Table 2. If the DC resistance value after 10 cycles is less than the initial DC resistance value, the DC resistance value increase rate is regarded as 0%.

Figure 0005557692
Figure 0005557692

表2に示すように実施例1および2の負極活物質は比較例1の負極活物質と比較し、クーロン効率,容量維持率ともに高い。つまり、1次粒子内に導電性材料を導入することにより初期クーロン効率,サイクル特性が向上し、本発明の非水系二次電池用負極活物質は長寿命であることが示された。   As shown in Table 2, the negative electrode active materials of Examples 1 and 2 have higher coulomb efficiency and capacity retention than the negative electrode active material of Comparative Example 1. That is, by introducing a conductive material into the primary particles, the initial Coulomb efficiency and cycle characteristics were improved, and it was shown that the negative electrode active material for a non-aqueous secondary battery of the present invention has a long life.

また、表2に示すように実施例1および2の負極活物質を用い作製した負極は比較例1の負極活物質を用い作製した負極と比較し、直流抵抗上昇率が顕著に抑制されていることがわかる。つまり、1次粒子内に導電性材料を導入した本発明の負極活物質を用い負極を作成することにより充放電後も導電ネットワークが維持されることが示された。   In addition, as shown in Table 2, the negative electrode produced using the negative electrode active materials of Examples 1 and 2 has a significantly reduced direct current resistance increase rate as compared with the negative electrode produced using the negative electrode active material of Comparative Example 1. I understand that. That is, it was shown that a conductive network is maintained even after charge and discharge by creating a negative electrode using the negative electrode active material of the present invention in which a conductive material is introduced into primary particles.

本発明で得られた非水系二次電池用負極活物質は、容量に優れた大型リチウムイオン二次電池を必要とされる移動体や定置型電力貯蔵の電源への適用が期待できる。   The negative electrode active material for a non-aqueous secondary battery obtained in the present invention can be expected to be applied to a mobile body that requires a large-sized lithium ion secondary battery having excellent capacity and a power source for stationary power storage.

1 負極活物質
2 導電剤
3 結着剤
4 集電体
5 空孔
6 導電性材料
7 内核部
8 外周部
9 内核部の空孔
10 外周部の空孔
11 正極板
12 負極板
13 セパレータ
14 正極リード
15 負極リード
16 電池缶
17 パッキン
18 絶縁板
19 密閉蓋部
DESCRIPTION OF SYMBOLS 1 Negative electrode active material 2 Conductive agent 3 Binder 4 Current collector 5 Hole 6 Conductive material 7 Inner core part 8 Outer part 9 Inner core hole 10 Outer part hole 11 Positive electrode plate 12 Negative electrode plate 13 Separator 14 Positive electrode Lead 15 Negative electrode lead 16 Battery can 17 Packing 18 Insulating plate 19 Sealing lid

Claims (17)

シリコンないしスズのいずれかと、リチウムと反応しない元素から選ばれた少なくとも1種の元素とからなり、かつ、1次粒子内部の内核部と外周部のいずれにも空孔を有し、かつ、前記空孔内表面が導電性材料層で被覆されている(空孔全てに導電性材料が導入されているものを除く)ことを特徴とする非水系二次電池用負極活物質。   Consisting of either silicon or tin and at least one element selected from elements that do not react with lithium, and having vacancies in both the inner core and outer periphery of the primary particles, and A negative electrode active material for a non-aqueous secondary battery, characterized in that the inner surfaces of the pores are covered with a conductive material layer (excluding those in which a conductive material is introduced into all the pores). 請求項1に記載の非水系二次電池用負極活物質において、前記導電性材料が遷移金属であることを特徴とする非水系二次電池用負極活物質。   The negative electrode active material for a non-aqueous secondary battery according to claim 1, wherein the conductive material is a transition metal. 請求項1または2に記載の非水系二次電池用負極活物質において、前記導電性材料が銅,ニッケル,銀のいずれかであることを特徴とする非水系二次電池用負極活物質。 The negative electrode active material for a non-aqueous secondary battery according to claim 1 or 2 , wherein the conductive material is any one of copper, nickel, and silver. 請求項1〜3のいずれかに記載の非水系二次電池用負極活物質において、前記導電性材料をメッキ法により導入したことを特徴とする非水系二次電池用負極活物質。 The negative electrode active material for nonaqueous secondary batteries according to any one of claims 1 to 3 , wherein the conductive material is introduced by a plating method. 請求項1〜4のいずれかに記載の非水系二次電池用負極活物質において、前記導電性材料が20重量%以上導入されていることを特徴とする非水系二次電池用負極活物質。 The negative electrode active material for a nonaqueous secondary battery according to any one of claims 1 to 4 , wherein the conductive material is introduced in an amount of 20% by weight or more. 請求項1〜5のいずれかに記載の非水系二次電池用活物質において、前記空孔の重心間距離の平均偏差を前記空孔の重心間距離の平均で割った値である分散度が1以下であることを特徴とする非水系二次電池用負極活物質。 In the active material for a non-aqueous secondary battery according to any one of claims 1 to 5 , a dispersity which is a value obtained by dividing an average deviation of the distance between the center of gravity of the hole by an average of the distance between the center of gravity of the hole. A negative electrode active material for a non-aqueous secondary battery, wherein the negative electrode active material is 1 or less. 請求項1〜6のいずれかに記載の非水系二次電池用負極活物質において、前記1次粒子の平均粒子径が50μm以下であることを特徴とする非水系二次電池用負極活物質。 The negative electrode active material for a nonaqueous secondary battery according to any one of claims 1 to 6 , wherein the primary particles have an average particle size of 50 µm or less. 請求項1〜7のいずれかに記載の非水系二次電池用負極活物質において、前記空孔の平均空孔径が1μm以下であることを特徴とする非水系二次電池用活物質。 The negative electrode active material for a non-aqueous secondary battery according to any one of claims 1 to 7 , wherein an average pore diameter of the pores is 1 µm or less. 請求項1〜8のいずれかに記載の非水系二次電池用負極活物質において、前記空孔の空孔率が5%以上であることを特徴とする非水系二次電池用活物質。 The negative electrode active material for a non-aqueous secondary battery according to any one of claims 1 to 8 , wherein the porosity of the pores is 5% or more. 請求項1〜9のいずれかに記載の非水系二次電池用負極活物質において、前記シリコンまたはスズの平均結晶子径が5μm以下であることを特徴とする非水系二次電池用活物質。 The negative electrode active material for a non-aqueous secondary battery according to any one of claims 1 to 9 , wherein the silicon or tin has an average crystallite diameter of 5 µm or less. 請求項1〜10のいずれかに記載の非水系二次電池用負極活物質において、前記空孔の平均空孔間距離が3μm以下であることを特徴とする非水系二次電池用活物質。 11. The negative electrode active material for a non-aqueous secondary battery according to claim 1 , wherein an average inter-hole distance between the holes is 3 μm or less. 請求項1〜11のいずれかに記載の非水系二次電池用負極活物質において、シリコンまたはスズが10重量%以上含まれることを特徴とする非水系二次電池用負極活物質。 The negative electrode active material for a non-aqueous secondary battery according to any one of claims 1 to 11 , wherein silicon or tin is contained in an amount of 10% by weight or more. 請求項1〜12のいずれかに記載の非水系二次電池用負極活物質において、前記リチウムと反応しない元素がバナジウム,クロム,マンガン,鉄,コバルト,ニッケル,銅,亜鉛,銀,金,インジウム,チタン,ジルコニウムから選ばれた少なくとも1種の元素であることを特徴とする非水系二次電池用負極活物質。 The negative electrode active material for a non-aqueous secondary battery according to any one of claims 1 to 12 , wherein the element that does not react with lithium is vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, silver, gold, or indium. A negative electrode active material for a non-aqueous secondary battery, wherein the negative electrode active material is at least one element selected from titanium, zirconium and zirconium. 請求項1〜13のいずれかに記載の非水系二次電池用負極活物質において、1次粒子内部の内核部と外周部のいずれにも空孔を有する粒子を溶湯急冷法により作製し、前記粒子の空孔に導電性物質を導入することにより作製したことを特徴とする非水系二次電池用負極物質。 The negative electrode active material for a non-aqueous secondary battery according to any one of claims 1 to 13 , wherein particles having pores in both the inner core portion and the outer peripheral portion inside the primary particles are prepared by a molten metal quenching method, A negative electrode material for a non-aqueous secondary battery, which is produced by introducing a conductive material into the pores of particles. 請求項1〜14のいずれかに記載の非水系二次電池用負極活物質において、前記1次粒子内部の内核部と外周部のいずれにも空孔を有する粒子を単ロール法で作製したことを特徴とする非水系二次電池用負極活物質。 The negative electrode active material for a non-aqueous secondary battery according to any one of claims 1 to 14 , wherein particles having pores in both the inner core portion and the outer peripheral portion inside the primary particles are produced by a single roll method. A negative electrode active material for a non-aqueous secondary battery. 請求項1〜15のいずれかに記載の非水系二次電池用活物質において、前記活物質を用い作製した負極の10サイクル後の直流抵抗値の上昇率が、初期状態における直流抵抗値に対し20%以下であることを特徴とする非水系二次電池用負極活物質。 The active material for a non-aqueous secondary battery according to any one of claims 1 to 15 , wherein an increase rate of a DC resistance value after 10 cycles of a negative electrode produced using the active material is higher than a DC resistance value in an initial state. A negative electrode active material for a non-aqueous secondary battery, characterized by being 20% or less. 正極と負極とセパレータと電解液を含み、前記負極の負極活物質として請求項1〜16のいずれかに記載の非水系二次電池用負極活物質を用いることを特徴とする非水系二次電池。 A nonaqueous secondary battery comprising: a positive electrode, a negative electrode, a separator, and an electrolyte, wherein the negative electrode active material for a nonaqueous secondary battery according to claim 1 is used as the negative electrode active material of the negative electrode. .
JP2010240249A 2010-10-27 2010-10-27 Negative electrode active material for non-aqueous secondary battery and non-aqueous secondary battery Expired - Fee Related JP5557692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010240249A JP5557692B2 (en) 2010-10-27 2010-10-27 Negative electrode active material for non-aqueous secondary battery and non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010240249A JP5557692B2 (en) 2010-10-27 2010-10-27 Negative electrode active material for non-aqueous secondary battery and non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2012094364A JP2012094364A (en) 2012-05-17
JP5557692B2 true JP5557692B2 (en) 2014-07-23

Family

ID=46387489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010240249A Expired - Fee Related JP5557692B2 (en) 2010-10-27 2010-10-27 Negative electrode active material for non-aqueous secondary battery and non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP5557692B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3562398B2 (en) * 1998-09-08 2004-09-08 松下電器産業株式会社 Method for producing negative electrode material for non-aqueous electrolyte secondary battery and secondary battery

Also Published As

Publication number Publication date
JP2012094364A (en) 2012-05-17

Similar Documents

Publication Publication Date Title
JP5271967B2 (en) Negative electrode for non-aqueous secondary battery and non-aqueous secondary battery
KR101448340B1 (en) Anode for nonaqueous secondary battery and nonaqueous secondary battery
JP5329898B2 (en) Negative electrode active material for lithium secondary battery and lithium secondary battery including the same
Lee et al. Si-based composite interconnected by multiple matrices for high-performance Li-ion battery anodes
Hu et al. Sn/SnO2@ C composite nanofibers as advanced anode for lithium-ion batteries
JP5448555B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the same, slurry for preparing negative electrode for lithium ion secondary battery, and method for producing negative electrode for lithium ion secondary battery
TW201824622A (en) Anode slurry for lithium ion battery
JP2013084549A (en) Negative electrode active material for lithium ion battery, and negative electrode for lithium ion battery using the same
JP2007173134A (en) Material for electrode of lithium ion battery, slurry for forming electrode of lithium ion battery, and lithium ion battery
CN108321438B (en) Full-graphite lithium-sulfur battery and preparation method thereof
JP2012014866A (en) Negative electrode active substance for lithium secondary battery, and method of manufacturing the same
JP2004186075A (en) Electrode for secondary battery and secondary battery using this
JP2016149340A (en) Composite active material for lithium secondary battery, manufacturing method for the same and lithium secondary battery
JP2011014262A (en) Manufacturing method of electrode for nonaqueous electrolyte secondary battery
JP5656562B2 (en) Negative electrode active material for non-aqueous secondary battery and non-aqueous secondary battery
JP5894760B2 (en) Anode material for non-aqueous secondary battery and non-aqueous secondary battery
JP7308847B2 (en) battery
KR102176590B1 (en) Method of preparing anode active material for rechargeable lithium battery and rechargeable lithium battery
JP5557692B2 (en) Negative electrode active material for non-aqueous secondary battery and non-aqueous secondary battery
JP7294904B2 (en) Active material powders for use in negative electrodes of batteries and batteries containing such active material powders
JP2019179731A (en) All solid-state battery negative electrode and all solid lithium secondary battery
Chen et al. Lithium-induced graphene layer containing Li3P alloy phase to achieve ultra-stable electrode interface for lithium metal anode
JP7117568B2 (en) Electrode mixture, battery and electrode manufacturing method
JP2018063755A (en) Stabilized lithium powder and lithium ion secondary battery using the same
JP2012099330A (en) Negative electrode active material for nonaqueous secondary battery and method of manufacturing the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120521

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140603

LAPS Cancellation because of no payment of annual fees