JP5557680B2 - Spacer, motion guide device incorporating the spacer, and screw device - Google Patents

Spacer, motion guide device incorporating the spacer, and screw device Download PDF

Info

Publication number
JP5557680B2
JP5557680B2 JP2010225125A JP2010225125A JP5557680B2 JP 5557680 B2 JP5557680 B2 JP 5557680B2 JP 2010225125 A JP2010225125 A JP 2010225125A JP 2010225125 A JP2010225125 A JP 2010225125A JP 5557680 B2 JP5557680 B2 JP 5557680B2
Authority
JP
Japan
Prior art keywords
spacer
rolling
rolling elements
pair
adjacent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010225125A
Other languages
Japanese (ja)
Other versions
JP2012077873A (en
Inventor
徹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THK Co Ltd
Original Assignee
THK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THK Co Ltd filed Critical THK Co Ltd
Priority to JP2010225125A priority Critical patent/JP5557680B2/en
Publication of JP2012077873A publication Critical patent/JP2012077873A/en
Application granted granted Critical
Publication of JP5557680B2 publication Critical patent/JP5557680B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/37Loose spacing bodies
    • F16C33/374Loose spacing bodies resilient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/0633Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides
    • F16C29/0635Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end
    • F16C29/0638Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with balls
    • F16C29/0642Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with balls with four rows of balls
    • F16C29/0647Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with balls with four rows of balls with load directions in X-arrangement

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Transmission Devices (AREA)
  • Bearings For Parts Moving Linearly (AREA)

Description

本発明は、テーブル等の可動体がベッド等の固定体に対して運動するのを案内する運動案内装置、及びねじ軸を回転させてナットの直線運動を得るねじ装置に関する。   The present invention relates to a motion guide device that guides movement of a movable body such as a table relative to a fixed body such as a bed, and a screw device that rotates a screw shaft to obtain a linear motion of a nut.

運動案内装置は、ベッド等の固定体に取り付けられる軌道部材と、テーブル等の可動体に取り付けられる移動部材と、を備える。移動部材は軌道部材に沿って直線運動又は曲線運動する。軌道部材には、長手方向に伸びる転動体転走部が形成される。軌道部材には、移動部材の転動体転走部に対向する負荷転動体転走部、負荷転動体転走部と平行な無負荷戻し路、負荷転動体転走部の端部と無負荷戻し路の端部とを接続するU字状の方向転換路を含む無限循環路が形成される。無限循環路には複数の転動体が配列される。軌道部材に対して移動部材が相対的に移動するとき、複数の転動体が軌道部材の転動体転走部と移動部材の負荷転動体転走部との間を転がり運動する。転動体の転がり運動により最小の摩擦抵抗で移動部材が軌道部材に沿って直線又は曲線運動する。   The motion guide device includes a track member attached to a fixed body such as a bed and a moving member attached to a movable body such as a table. The moving member moves linearly or curvedly along the track member. A rolling member rolling part extending in the longitudinal direction is formed on the race member. The track member includes a loaded rolling element rolling part facing the rolling element rolling part of the moving member, an unloaded return path parallel to the loaded rolling element rolling part, an end of the loaded rolling element rolling part, and an unloaded return. An infinite circulation path including a U-shaped direction change path that connects the ends of the path is formed. A plurality of rolling elements are arranged in the infinite circulation path. When the moving member moves relative to the track member, the plurality of rolling elements roll and move between the rolling element rolling portion of the track member and the load rolling element rolling portion of the moving member. Due to the rolling motion of the rolling elements, the moving member moves linearly or curvilinearly along the track member with minimum frictional resistance.

ねじ装置は、ねじ軸の外周面の螺旋状の転動体転走溝とナットの内周面の負荷転動体転走溝とを対向させ、これらの間に複数の転動体を介在させたものである。ナットに対してねじ軸を相対的に回転させると、ナットがねじ軸の軸線方向に直線運動する。ナットに対してねじ軸を相対的に回転させるとき、複数の転動体はねじ軸の転動体転走溝とナットの負荷転動体転走溝との間を転がり運動する。転動体の転がり運動により最小の摩擦抵抗でねじ軸を回転させることができる。   The screw device has a spiral rolling element rolling groove on the outer peripheral surface of the screw shaft and a loaded rolling element rolling groove on the inner peripheral surface of the nut, and a plurality of rolling elements are interposed therebetween. is there. When the screw shaft is rotated relative to the nut, the nut linearly moves in the axial direction of the screw shaft. When the screw shaft is rotated relative to the nut, the plurality of rolling elements roll and move between the rolling element rolling groove of the screw shaft and the load rolling element rolling groove of the nut. The screw shaft can be rotated with the minimum frictional resistance by the rolling motion of the rolling elements.

ところで、上記運動案内装置及び上記ねじ装置において、進行方向の前後の転動体同士が接触していると、転動体が転がり運動するとき、転動体同士の接触部分にすべりが発生し、転動体の早期磨耗を招く。転動体同士の接触を防止するため、転動体間にスペーサが介在される。複数のスペーサは、バンドにて一連に連結されることもあるし(バンドタイプのリテーナ)や、互いに分離されることもある(セパレートタイプのスペーサ)。   By the way, in the motion guide device and the screw device, when the rolling elements before and after the traveling direction are in contact with each other, when the rolling elements roll, a slip occurs at a contact portion between the rolling elements, and the rolling elements Incurs premature wear. In order to prevent contact between the rolling elements, a spacer is interposed between the rolling elements. The plurality of spacers may be connected in series by a band (band type retainer) or may be separated from each other (separate type spacer).

特にセパレートタイプのスペーサを無限循環路内に組み込んだ場合、無限循環路内のどこかで円周方向すきま(転動体の進行方向のすきま)が生ずる。円周方向すきまが生ずるのを防止するために、伸縮可能な弾性スペーサをボール間に介在させることが行われている(特許文献1参照)。この弾性スペーサは、スペーサの外形を構成する円筒状の外枠部、外枠部からその中心に向かって舌片状に伸びて転動体に接触して弾性変形可能な複数の爪部を備えている。無限循環路内では、スペーサが弾性力を持ってボール同士を引き離そうとしている。無限循環路内でその力が全体としてバランスするので、円周方向すきまをなくすことができる。   In particular, when a separate type spacer is incorporated in the endless circulation path, a circumferential clearance (a clearance in the traveling direction of the rolling elements) occurs somewhere in the endless circulation path. In order to prevent circumferential clearance, elastic elastic spacers are interposed between the balls (see Patent Document 1). This elastic spacer includes a cylindrical outer frame portion that forms the outer shape of the spacer, and a plurality of claw portions that extend from the outer frame portion toward the center thereof in a tongue-like shape and come into contact with the rolling elements and can be elastically deformed. Yes. In the infinite circulation path, the spacer has an elastic force to try to pull the balls apart. Since the force balances as a whole in the infinite circulation path, the circumferential clearance can be eliminated.

特開2006−283838号公報Japanese Unexamined Patent Publication No. 2006-282838

しかし、上記特許文献1に記載の発明にあっては、スペーサの、撓んだ爪部の根元に応力が集中し易く、爪部の根元が疲労するという問題がある。爪部の根元の疲労はスペーサの耐久性を悪くし、ひいてはスペーサの信頼性を低下させる。   However, the invention described in Patent Document 1 has a problem that stress tends to concentrate on the base of the bent nail part of the spacer, and the base of the nail part is fatigued. Fatigue at the base of the nail portion deteriorates the durability of the spacer, and consequently reduces the reliability of the spacer.

そこで本発明は、スペーサの耐久性や信頼性を向上させることができるスペーサ、このスペーサを組み込んだ運動案内装置及びねじ装置を提供することを目的とする。   Then, an object of this invention is to provide the spacer which can improve the durability and reliability of a spacer, the movement guide apparatus incorporating this spacer, and a screw apparatus.

本発明の第一の態様は、軌道部材と軌道部材に沿って移動する移動部材との間に転がり運動可能に複数の転動体を介在させた運動案内装置、又はねじ軸とナットとの間に転がり運動可能に複数の転動体を介在させたねじ装置に組み込まれ、転動体同士の接触を防止するように転動体間に配置されるスペーサであって、前記スペーサは、円盤を基礎形状とし、周方向に交互に山部及び谷部を有するような連続する波形状に形成される本体部と、前記本体部の周囲を縁取るように形成される周縁部と、を備え、前記スペーサの前記山部は、前記スペーサの外周側に行くにしたがって、隣り合う一対の転動体の一方に近づくように湾曲し、前記スペーサの前記谷部は、前記スペーサの外周側に行くにしたがって、隣り合う一対の転動体の他方に近づくように湾曲し、前記スペーサの前記周縁部の前記山部が隣り合う一対の転動体の一方に接触し、前記スペーサの前記周縁部の前記谷部が隣り合う一対の転動体の他方に接触するスペーサである。 A first aspect of the present invention is a motion guide device in which a plurality of rolling elements are interposed between a raceway member and a moving member that moves along the raceway member, or between a screw shaft and a nut. It is a spacer that is incorporated in a screw device that interposes a plurality of rolling elements so as to be capable of rolling motion, and is arranged between the rolling elements so as to prevent contact between the rolling elements, the spacer having a disk as a basic shape, A main body formed in a continuous wave shape having crests and troughs alternately in the circumferential direction, and a peripheral edge formed so as to border the periphery of the main body, and the spacer The peak portion is curved so as to approach one of a pair of adjacent rolling elements as it goes to the outer peripheral side of the spacer, and the valley portion of the spacer is adjacent to the pair of adjacent rolling elements as it goes to the outer peripheral side of the spacer. Approaching the other of the rolling elements Curved to make contact with the one of the pair of rolling elements the mountain portion adjacent the periphery of the spacer in contact with the other of the pair of rolling elements the valleys of the peripheral edge of the spacer adjacent It is a spacer.

本発明の他の態様は、転動体転走部を有する軌道部材と、前記転動体転走部に対向する負荷転動体転走部を有する移動部材と、前記軌道部材の前記転動体転走部と前記移動部材の前記負荷転動体転走部との間に転がり運動可能に配列される複数の転動体と、転動体同士の接触を防止するように転動体間に配置される複数のスペーサと、を備える運動案内装置において、前記スペーサは、円盤を基礎形状とし、周方向に交互に山部及び谷部を有するような連続する波形状に形成される本体部と、前記本体部の周囲を縁取るように形成される周縁部と、を備え、前記スペーサの前記山部は、前記スペーサの外周側に行くにしたがって、隣り合う一対の転動体の一方に近づくように湾曲し、前記スペーサの前記谷部は、前記スペーサの外周側に行くにしたがって、隣り合う一対の転動体の他方に近づくように湾曲し、前記スペーサの前記周縁部の前記山部が隣り合う一対の転動体の一方に接触し、前記スペーサの前記周縁部の前記谷部が隣り合う一対の転動体の他方に接触する運動案内装置である。 Another aspect of the present invention includes a raceway member having a rolling element rolling part, a moving member having a load rolling element rolling part facing the rolling element rolling part, and the rolling element rolling part of the raceway member. And a plurality of rolling elements arranged so as to be capable of rolling motion, and a plurality of spacers arranged between the rolling elements so as to prevent contact between the rolling elements, and The spacer has a disk-shaped basic shape, and a main body formed in a continuous wave shape having a crest and a valley alternately in the circumferential direction, and the periphery of the main body. A peripheral edge formed so as to be edged, and the peak portion of the spacer is curved so as to approach one of a pair of adjacent rolling elements as it goes to the outer peripheral side of the spacer. The trough goes to the outer peripheral side of the spacer Therefore, curved so as to approach the other of the pair of rolling elements adjacent contact with one of the pair of rolling elements the mountain portion adjacent the periphery of the spacer, the valley of the periphery of the spacer Is a motion guide device that contacts the other of a pair of adjacent rolling elements.

本発明のさらに他の態様は、螺旋状の転動体転走溝を有するねじ軸と、前記転動体転走溝に対向する負荷転動体転走溝を有するナットと、前記ねじ軸の前記転動体転走溝と前記ナットの前記負荷転動体転走溝との間に転がり運動可能に配列される複数の転動体と、転動体同士の接触を防止するように転動体間に配置される複数のスペーサと、を備えるねじ装置において、前記スペーサは、円盤を基礎形状とし、周方向に交互に山部及び谷部を有するような連続する波形状に形成される本体部と、前記本体部の周囲を縁取るように形成される周縁部と、を備え、前記スペーサの前記山部は、前記スペーサの外周側に行くにしたがって、隣り合う一対の転動体の一方に近づくように湾曲し、前記スペーサの前記谷部は、前記スペーサの外周側に行くにしたがって、隣り合う一対の転動体の他方に近づくように湾曲し、前記スペーサの前記周縁部の前記山部が隣り合う一対の転動体の一方に接触し、前記スペーサの前記周縁部の前記谷部が隣り合う一対の転動体の他方に接触するねじ装置である。 Still another aspect of the present invention is a screw shaft having a spiral rolling element rolling groove, a nut having a load rolling element rolling groove facing the rolling element rolling groove, and the rolling element of the screw shaft. A plurality of rolling elements arranged so as to be capable of rolling motion between a rolling groove and the loaded rolling element rolling groove of the nut, and a plurality of rolling elements arranged between the rolling elements so as to prevent contact between the rolling elements. A spacer including a main body formed in a continuous wave shape having a disk as a basic shape and alternately having crests and troughs in the circumferential direction, and the periphery of the main body A peripheral portion formed so as to border the spacer, and the crest portion of the spacer is curved so as to approach one of a pair of adjacent rolling elements as it goes to the outer peripheral side of the spacer. The valley portion of the According, curved so as to approach the other of the pair of rolling elements adjacent contact with one of the pair of rolling elements the crests of the peripheral edge of the spacer adjacent said valleys of said peripheral portion of said spacer The screw device is in contact with the other of a pair of adjacent rolling elements.

スペーサの周縁部の山部及び谷部が弾性変形することによって、スペーサを挟んで隣り合う一対の転動体を引き離そうとする弾性力が発生するので、転動体を均一に整列させることができ、安定した案内を行うことができる。ここで、スペーサの山部及び谷部が弾性変形するとき、スペーサの全体に応力が分布する。局所的な応力の集中が緩和されるので、スペーサの耐久性や信頼性を高めることができる。   The crests and troughs at the peripheral edge of the spacer are elastically deformed, and an elastic force is generated to separate the pair of adjacent rolling elements across the spacer, so that the rolling elements can be evenly aligned and stable. You can give guidance. Here, when the peaks and valleys of the spacer are elastically deformed, the stress is distributed throughout the spacer. Since the concentration of local stress is alleviated, the durability and reliability of the spacer can be improved.

本発明の第一の実施形態における運動案内装置(リニアガイド)の斜視図(一部断面を含む)The perspective view (partial cross section is included) of the motion guide apparatus (linear guide) in 1st embodiment of this invention 上記リニアガイドの、軌道部材の長手方向に直交する断面図Sectional view perpendicular to the longitudinal direction of the track member of the linear guide リニアガイドの、無限循環路の断面図Cross section of the linear guide endless circuit ボール間に挟まれたスペーサを示す図(図中(a)は平面図を示し、図中(b)は正面図を示し、図中(c)は側面図を示し、図中(d)は背面図を示す)The figure which shows the spacer pinched | interposed between balls ((a) in the figure shows a plan view, (b) in the figure shows a front view, (c) in the figure shows a side view, (d) in the figure) (Shows rear view) スペーサの斜視図Perspective view of spacer スペーサの詳細図(図中(a)は正面図を示し、図中(b)及び(c)は断面図を示す)Detailed view of spacer ((a) in the figure shows a front view, and (b) and (c) in the figure show sectional views) スペーサの他の例を示す図(図中(a)は正面図を示し、図中(b)は側面図を示し、図中(c)は断面図を示す)The figure which shows the other example of a spacer ((a) in a figure shows a front view, (b) in a figure shows a side view, (c) in a figure shows sectional drawing)) 本発明の第二の実施形態のねじ装置の斜視図(一部断面を含む)The perspective view (including a partial cross section) of the screw device of the second embodiment of the present invention FEMの解析条件を示す図(図中(a)はFEMモデル図を示し、図中(b)は境界条件の与え方を示す)The figure which shows the analysis conditions of FEM ((a) in a figure shows a FEM model figure, (b) in the figure shows how to give a boundary condition) FEM解析の結果を示す図(図中(a)はスペーサの変形量を示し、図中(b)はスペーサに発生する相当応力を示す)The figure which shows the result of FEM analysis ((a) in the figure shows the amount of deformation of the spacer, (b) shows the equivalent stress generated in the spacer) 押し込み量と最大相当応力との関係を示すグラフGraph showing the relationship between indentation and maximum equivalent stress

図1及び図2は、本発明の第一の実施形態における運動案内装置としてのリニアガイドを示す。図1はリニアガイドの斜視図(一部断面図を含む)を示し、図2はリニアガイドの軌道部材の長手方向と直交する断面図を示す。   FIG.1 and FIG.2 shows the linear guide as a motion guide apparatus in 1st embodiment of this invention. FIG. 1 shows a perspective view (including a partial cross-sectional view) of the linear guide, and FIG. 2 shows a cross-sectional view orthogonal to the longitudinal direction of the track member of the linear guide.

リニアガイドは、直線的又は曲線的に伸びる軌道部材としての軌道レール1と、この軌道レール1に転動体としての複数のボール3を介して移動自在に設けられた移動部材としての移動ブロック2とを備えている。   The linear guide includes a track rail 1 as a track member extending linearly or curvedly, and a moving block 2 as a moving member provided on the track rail 1 through a plurality of balls 3 as rolling elements. It has.

この実施形態の軌道レール1は、断面略四角形状で細長く伸びる。軌道レール1には、軌道レール1の下面をベッド等の固定部に取り付けるためのボルト用の通し孔1bが上面から下面に貫通して形成される。軌道レール1の左右側面及び上面には、長手方向に沿って伸びる転動体転走部としてのボール転走溝1aが形成される。この実施形態では、軌道レール1の上面の幅方向の端部には突部11が形成され、突部11の上側及び下側に合計四条のボール転走溝1aが形成される。ボール転走溝1aの断面形状は単一の円弧からなるサーキュラーアーク溝形状又は二つの円弧からなるゴシックアーチ溝形状に形成される。ボール3はボール転走溝1aに一点又は二点で接触する。   The track rail 1 of this embodiment has a substantially square cross section and extends elongated. In the track rail 1, bolt through holes 1 b for attaching the lower surface of the track rail 1 to a fixed part such as a bed are formed penetrating from the upper surface to the lower surface. Ball rolling grooves 1 a as rolling element rolling portions extending along the longitudinal direction are formed on the left and right side surfaces and the upper surface of the track rail 1. In this embodiment, a protrusion 11 is formed at the end of the upper surface of the track rail 1 in the width direction, and a total of four ball rolling grooves 1 a are formed above and below the protrusion 11. The cross-sectional shape of the ball rolling groove 1a is formed into a circular arc groove shape made up of a single arc or a Gothic arch groove shape made up of two arcs. The ball 3 contacts the ball rolling groove 1a at one point or two points.

移動ブロック2は、軌道レール1のボール転走溝1aに対向する負荷転動体転走部としての負荷ボール転走溝2aを有すると共に、負荷ボール転走溝を含む無限循環路を有する、無限循環路は、負荷ボール転走溝、負荷ボール転走溝と平行に伸びる無負荷戻し路、及び負荷ボール転走溝の端部と無負荷戻し路の端部とに接続される方向転換路を備える。   The moving block 2 has an infinite circulation including a load ball rolling groove 2a as a load rolling element rolling portion facing the ball rolling groove 1a of the track rail 1 and an infinite circulation path including the load ball rolling groove. The road includes a loaded ball rolling groove, a no-load return path extending parallel to the loaded ball rolling groove, and a direction changing path connected to the end of the loaded ball rolling groove and the end of the unloaded return path. .

移動ブロック2は、負荷ボール転走溝が形成される移動ブロック本体4と、移動ブロック本体4の移動方向の両端部に取り付けられる一対の蓋部材としてのエンドプレート5、から構成される。図2に示すように、移動ブロック本体4は、軌道レール1の上面に対向する中央部4aと、中央部4aの左右両側から下方に伸び、軌道レール1の左右側面に対向する側壁部4bと、を備える。移動ブロック本体4の中央部4aの下面及び側壁部4bの内側面には、軌道レール1のボール転走溝1aに対向する四条の負荷ボール転走溝2aが形成される。負荷ボール転走溝2aの断面形状は単一の円弧からなるサーキュラーアーク溝形状又は二つの円弧からなるゴシックアーチ溝形状に形成される。ボール3は負荷ボール転走溝2aに一点又は二点で接触する。   The moving block 2 includes a moving block main body 4 in which a load ball rolling groove is formed, and a pair of end plates 5 as lid members attached to both ends of the moving block main body 4 in the moving direction. As shown in FIG. 2, the moving block body 4 includes a central portion 4 a that faces the upper surface of the track rail 1, and a side wall portion 4 b that extends downward from the left and right sides of the central portion 4 a and faces the left and right side surfaces of the track rail 1. . Four load ball rolling grooves 2a facing the ball rolling groove 1a of the track rail 1 are formed on the lower surface of the central portion 4a of the moving block body 4 and the inner surface of the side wall portion 4b. The cross-sectional shape of the loaded ball rolling groove 2a is formed into a circular arc groove shape made up of a single arc or a Gothic arch groove shape made up of two arcs. The ball 3 contacts the load ball rolling groove 2a at one point or two points.

図1に示すように、移動ブロック2の上面には、移動ブロックをテーブル等の相手部品に取り付けるための取付けねじ2bが加工される。移動ブロック2の移動方向の端面には、移動ブロック2内に塵芥等の異物が侵入するのを防止する端面シール6が取り付けられる。移動ブロック2の側壁部4bの下面には、下側からの異物の侵入を防ぐ、サイドシール12が取り付けられる。移動ブロック2の中央部4aの下面及び側壁部4bの下面には、移動ブロック2を軌道レール1から取り外したときにボール3が脱落するのを防止するボール保持プレート13,12が取り付けられる。さらに、移動ブロック2には、無限循環路にグリース、潤滑油等の潤滑剤を供給するためのニップル9が取り付けられる。   As shown in FIG. 1, on the upper surface of the moving block 2, a mounting screw 2b for processing the moving block to a mating part such as a table is processed. An end face seal 6 that prevents foreign substances such as dust from entering the moving block 2 is attached to the end face of the moving block 2 in the moving direction. A side seal 12 is attached to the lower surface of the side wall portion 4b of the moving block 2 to prevent foreign substances from entering from the lower side. Ball holding plates 13 and 12 that prevent the balls 3 from falling off when the moving block 2 is removed from the track rail 1 are attached to the lower surface of the central portion 4a and the lower surface of the side wall portion 4b of the moving block 2. Further, a nipple 9 for supplying a lubricant such as grease or lubricating oil to the endless circulation path is attached to the moving block 2.

図2に示すように、軌道レール1のボール転走溝1a及び移動ブロック2の負荷ボール転走溝2aとの間に、軌道レール1の長手方向に伸びる負荷ボール転走路P1が形成される。移動ブロック2には、無負荷戻し路P2も形成されていて、この無負荷戻し路P2は負荷ボール転走路P1と平行に伸びる。   As shown in FIG. 2, a load ball rolling path P <b> 1 extending in the longitudinal direction of the track rail 1 is formed between the ball rolling groove 1 a of the track rail 1 and the load ball rolling groove 2 a of the moving block 2. An unloaded return path P2 is also formed in the moving block 2, and the unloaded return path P2 extends in parallel with the loaded ball rolling path P1.

図3に示すように、移動ブロック本体4には、例えば移動ブロック本体4のインサート成形、又は樹脂成形された部品の組み込み等により、無負荷戻し路構成部7及び内周案内部8が形成される。無負荷戻し路構成部7に、負荷ボール転走溝2aと平行に伸びる無負荷戻し路P2が形成される。内周案内部8には方向転換路P3の内周側が形成される。方向転換路P3の外周側である外周案内部はエンドプレート5に形成される。エンドプレート5を移動ブロック本体4に取り付けることで、U字状の方向転換路P3が形成される。方向転換路P3は、負荷ボール転走路P1と無負荷戻し路P2とを接続する。これら負荷ボール転走路P1、無負荷戻し路P2及び方向転換路P3によってサーキット状の無限循環路が形成される。   As shown in FIG. 3, the no-load return path constituting portion 7 and the inner peripheral guide portion 8 are formed in the moving block main body 4 by, for example, insert molding of the moving block main body 4 or incorporation of resin-molded parts. The An unloaded return path P2 extending in parallel with the loaded ball rolling groove 2a is formed in the unloaded return path configuration unit 7. The inner peripheral guide portion 8 is formed with the inner peripheral side of the direction change path P3. An outer peripheral guide portion that is the outer peripheral side of the direction change path P <b> 3 is formed in the end plate 5. By attaching the end plate 5 to the moving block body 4, a U-shaped direction change path P3 is formed. The direction change path P3 connects the loaded ball rolling path P1 and the no-load return path P2. A circuit-like infinite circulation path is formed by the loaded ball rolling path P1, the no-load return path P2, and the direction changing path P3.

サーキット状の無限循環路には、複数のボール3が配列される。複数のボール3は、負荷ボール転走路P1を荷重を受けながら転がり運動する。負荷ボール転走路P1の一端まで転がったボール3は、U字状の方向転換路P3を経由した後、無負荷戻し路P2に入る。無負荷戻し路P2を通過したボールは、反対側の方向転換路P3を経由した後、再び負荷ボール転走路P1に入る。   A plurality of balls 3 are arranged in a circuit-like infinite circulation path. The plurality of balls 3 roll while moving on the load ball rolling path P1. The ball 3 rolled to one end of the loaded ball rolling path P1 passes through the U-shaped direction changing path P3 and then enters the unloaded return path P2. The ball that has passed through the unloaded return path P2 passes through the opposite direction changing path P3 and then enters the loaded ball rolling path P1 again.

複数のボール3間には、複数のスペーサ16,26が挟まれる。スペーサ16,26の個数はボール3の個数と等しい。複数のスペーサ16,26は、バンドで連結されておらず、互いに分離している。   A plurality of spacers 16 and 26 are sandwiched between the plurality of balls 3. The number of spacers 16 and 26 is equal to the number of balls 3. The plurality of spacers 16 and 26 are not connected by a band and are separated from each other.

図4ないし図6は、本発明の第一の実施形態のスペーサ16を示す。図4は、隣り合う一対のボール3間に挟まれるスペーサ16を示し、図5は、単独のスペーサ16の斜視図を示し、図6は、単独のスペーサの正面図及び断面図を示す。図5及び図6に示すように、スペーサ16は円盤を基礎形状とし、その周縁部17が交互に山部17a及び谷部17bを有するように波形状に折り曲げられている。この実施形態では、三つの山部17aが周方向に均等間隔をあけて(120度の間隔をあけて)形成され、三つの谷部17bが周方向に均等間隔をあけて(120度の間隔をあけて)形成される。山部17a及び谷部17bの個数は三つ以上あればよく、その個数は限定されない。例えば、周縁部17をスペーサ16の本体部18の周囲を縁取るように形成し、本体部18よりも厚くして周縁部17の先端を断面円弧状にすることもできる。これによれば、周縁部17がボール3に接触する位置が変化しても、周縁部17とボール3とを点接触させることができる。ただし、周縁部17の厚みは本体部18と同じ厚さでもよい。周縁部17は周方向に連続する波形状に形成されていて、スリット等で分断されていない。スペーサ16は、樹脂の射出成型により製造される。   4 to 6 show the spacer 16 according to the first embodiment of the present invention. 4 shows a spacer 16 sandwiched between a pair of adjacent balls 3, FIG. 5 shows a perspective view of the single spacer 16, and FIG. 6 shows a front view and a cross-sectional view of the single spacer. As shown in FIGS. 5 and 6, the spacer 16 has a disk as a basic shape, and is bent into a wave shape so that the peripheral edge portion 17 alternately has a crest portion 17 a and a trough portion 17 b. In this embodiment, three ridges 17a are formed at equal intervals in the circumferential direction (with an interval of 120 degrees), and three valley portions 17b are spaced at equal intervals in the circumferential direction (at intervals of 120 degrees). Formed). The number of peaks 17a and valleys 17b may be three or more, and the number is not limited. For example, the peripheral edge portion 17 may be formed so as to border the periphery of the main body portion 18 of the spacer 16 and may be thicker than the main body portion 18 so that the tip of the peripheral edge portion 17 has a circular arc shape. According to this, even if the position where the peripheral part 17 contacts the ball 3 changes, the peripheral part 17 and the ball 3 can be brought into point contact. However, the peripheral portion 17 may have the same thickness as the main body portion 18. The peripheral edge portion 17 is formed in a wave shape continuous in the circumferential direction and is not divided by a slit or the like. The spacer 16 is manufactured by resin injection molding.

周縁部17の内側には、周縁部17よりも厚みが薄く、かつ厚みが略一定の本体部18が形成される。本体部18は、周縁部17と同様に、周方向に周縁部と同一の位相の山部18a及び谷部18bが形成されるように波形状に折り曲げられる。本体部18及び周縁部17の山部18a,17aは、スペーサ16の外周側に行くにしたがって隣り合う一対のボール3の一方3−1(図4(c)参照)に近づくように湾曲する。本体部18及び周縁部17の谷部18b,17bは、スペーサ16の外周側に行くにしたがって他方のボール3−2(図4(c)参照)に近づくように湾曲する。本体部18及び周縁部17の山部18a,17a及び谷部18b,17bを含む断面において(図6(c)参照)、本体部18及び周縁部17はS字状に湾曲する。本体部18及び周縁部17の、山部18a,17aの稜線19a(図4(b)参照)は、スペーサ16の中央の貫通孔21から放射状に伸びる。同様に、谷部18b,17bの稜線19bは、スペーサ16の中央の貫通孔21から放射状に伸びる。   On the inner side of the peripheral portion 17, a main body portion 18 is formed that is thinner than the peripheral portion 17 and has a substantially constant thickness. Similar to the peripheral portion 17, the main body portion 18 is bent into a wave shape so that a crest portion 18 a and a trough portion 18 b having the same phase as the peripheral portion are formed in the circumferential direction. The peaks 18a and 17a of the main body 18 and the peripheral edge 17 are curved so as to approach one 3-1 (see FIG. 4C) of a pair of adjacent balls 3 as going to the outer peripheral side of the spacer 16. The valley portions 18b and 17b of the main body portion 18 and the peripheral edge portion 17 are curved so as to approach the other ball 3-2 (see FIG. 4C) as going to the outer peripheral side of the spacer 16. In the cross section including the main body 18 and the crests 18a and 17a and the troughs 18b and 17b of the peripheral part 17 (see FIG. 6C), the main body part 18 and the peripheral part 17 are curved in an S shape. The ridge lines 19a (see FIG. 4B) of the peak portions 18a and 17a of the main body portion 18 and the peripheral edge portion 17 extend radially from the central through hole 21 of the spacer 16. Similarly, the ridge line 19b of the valley portions 18b and 17b extends radially from the central through hole 21 of the spacer 16.

図4(b)に示すように、ボール3及びスペーサ16の進行方向からみて、スペーサ16の外形は円形状に形成される。スペーサ16の外形は、ボール3の直径と同等以下であればよい。すなわち、スペーサ16がボール3間に挟まれたときに、スペーサ16が周方向に拡がった状態で、スペーサ16の外形がボール3の直径よりも小さければよい。本体部18の中央には、本体部を厚み方向に貫通する貫通孔21があけられる。貫通孔21の中心線は、隣り合う一対のボール3−1,3−2(図4(c)参照)の中心を結んだ線上に位置する。貫通孔21の周囲の、本体部18の内周側には、平らなリング形状の円環部22が形成される(図6参照)。円環部22は、中心に向かって厚さが薄くなるテーパ形状に形成されている。円環部22は平らには限定されず、ボール3の曲率に沿って湾曲していてもよい。本体部18は円環部22の外側において波形状に折り曲げられている。スペーサ16を貫通孔21の中心線を含む断面で切断すると、本体部18は円環部22から周縁部17に向かって曲線的に伸びる(図6(c)参照)。   As shown in FIG. 4B, the outer shape of the spacer 16 is formed in a circular shape when viewed from the traveling direction of the ball 3 and the spacer 16. The outer shape of the spacer 16 may be equal to or smaller than the diameter of the ball 3. In other words, when the spacer 16 is sandwiched between the balls 3, the outer shape of the spacer 16 may be smaller than the diameter of the ball 3 in a state where the spacer 16 expands in the circumferential direction. A through-hole 21 that penetrates the main body portion in the thickness direction is formed in the center of the main body portion 18. The center line of the through hole 21 is located on a line connecting the centers of a pair of adjacent balls 3-1 and 3-2 (see FIG. 4C). A flat ring-shaped annular portion 22 is formed on the inner peripheral side of the main body portion 18 around the through hole 21 (see FIG. 6). The annular portion 22 is formed in a tapered shape whose thickness decreases toward the center. The annular portion 22 is not limited to be flat, and may be curved along the curvature of the ball 3. The main body 18 is bent into a wave shape outside the annular portion 22. When the spacer 16 is cut along a cross section including the center line of the through hole 21, the main body 18 extends in a curved manner from the annular portion 22 toward the peripheral portion 17 (see FIG. 6C).

図4(c)に示すように、隣り合う一対のボール3でスペーサ16を挟んだとき、スペーサ16の周縁部17の三つの山部17aが一対のボールの一方3−1に接触し、スペーサ16の周縁部17の三つの谷部17bが一対のボールの他方3−2に接触する。スペーサ16の周縁部17の断面形状は円弧形状に形成されているので、周縁部17とボール3との接触は、折れ曲がった細長い筒と球との接触になる。スペーサ16の周縁部17及びボール3の弾性変形を考慮しないとき、スペーサ16の周縁部17とボール3とは点接触する。スペーサ16の周縁部17の山部17aと一方のボール3−1とは合計三点で点接触する。三つの接触点CP1(図4(b)参照)は、スペーサ16及びボール3の進行方向からみて、スペーサ16の周方向に120度の均等間隔をあけて配列される。同様に、スペーサ16の周縁部17の谷部17bと他方のボール3−2とは合計三点で点接触し、三つの接触点CP2(図4(d)参照)は、スペーサ16及びボール3の進行方向からみて、スペーサ16の周方向に120度の均等間隔をあけて配列される。スペーサ16及びボール3の進行方向からみて、スペーサ16の山部17aとボール3−1との接触点CP1、及びスペーサ16の谷部17bとボール3−2との接触点CP2は、スペーサ16の周方向に60度毎に交互に現れる。スペーサ16の本体部18とボール3とは接触することなく、これらの間にはすきまがあく。   As shown in FIG. 4C, when the spacer 16 is sandwiched between a pair of adjacent balls 3, the three crests 17a of the peripheral edge 17 of the spacer 16 come into contact with one of the pair of balls 3-1, and the spacer Three valley portions 17b of 16 peripheral edge portions 17 are in contact with the other 3-2 of the pair of balls. Since the cross-sectional shape of the peripheral edge portion 17 of the spacer 16 is formed in an arc shape, the contact between the peripheral edge portion 17 and the ball 3 is the contact between the bent elongated cylinder and the sphere. When the elastic deformation of the peripheral edge 17 of the spacer 16 and the ball 3 is not taken into consideration, the peripheral edge 17 of the spacer 16 and the ball 3 are in point contact. The peak portion 17a of the peripheral edge portion 17 of the spacer 16 and the one ball 3-1 are in point contact at a total of three points. The three contact points CP1 (see FIG. 4B) are arranged at equal intervals of 120 degrees in the circumferential direction of the spacer 16 when viewed from the traveling direction of the spacer 16 and the ball 3. Similarly, the valley portion 17b of the peripheral edge portion 17 of the spacer 16 and the other ball 3-2 are in point contact at three points in total, and the three contact points CP2 (see FIG. 4D) are the spacer 16 and the ball 3 As seen from the direction of travel of the spacers, the spacers 16 are arranged at equal intervals of 120 degrees in the circumferential direction. The contact point CP1 between the peak portion 17a of the spacer 16 and the ball 3-1 and the contact point CP2 between the valley portion 17b of the spacer 16 and the ball 3-2 as viewed from the traveling direction of the spacer 16 and the ball 3 are It appears alternately every 60 degrees in the circumferential direction. The main body 18 of the spacer 16 and the ball 3 are not in contact with each other, and there is a gap between them.

一対のボール3でスペーサ16を挟んだとき、スペーサ16はその進行方向に僅かに縮んだ状態にある。スペーサ16が縮んだ状態では、周方向に交互に形成される山部17a及び谷部17bは、平板形状に近付くように弾性変形している。スペーサ16は樹脂等の弾性体からなるので、撓んだ山部17a及び谷部17bが元の波形状に復元しようとすることによって、スペーサ16には、隣り合うボール3同士を引き離そうとする弾性力が発生する。これにより、複数のボール3が均一に整列され、安定した案内を行うことができる。このとき、スペーサ16の内部には応力が発生する。本実施形態によれば、スペーサ16に発生する応力はその全体に分布する。スペーサ16の局所的な応力集中が緩和されるので、スペーサ16の耐久性や信頼性を高めることができる。スペーサ16に発生する応力は、後述の実施例において解析されている。   When the spacer 16 is sandwiched between the pair of balls 3, the spacer 16 is slightly contracted in the traveling direction. When the spacer 16 is contracted, the crests 17a and the troughs 17b that are alternately formed in the circumferential direction are elastically deformed so as to approach a flat plate shape. Since the spacer 16 is made of an elastic body such as resin, the spacer 16 is elastic to try to separate the adjacent balls 3 from each other by trying to restore the bent crests 17a and troughs 17b to the original wave shape. Force is generated. Thereby, the some ball | bowl 3 is aligned uniformly and can perform stable guidance. At this time, stress is generated inside the spacer 16. According to the present embodiment, the stress generated in the spacer 16 is distributed throughout. Since the local stress concentration of the spacer 16 is relieved, the durability and reliability of the spacer 16 can be improved. The stress generated in the spacer 16 is analyzed in examples described later.

上述のように、スペーサ16は、無限循環路内では、ある弾性力を持ってボール3同士を引き離そうとしている。無限循環路内でスペーサ16のこの弾性力が全体としてバランスし、ボール3の不整列を生じさせる円周方向すきまが生ずるのを防止している。もちろん、スペーサ16が膨潤しても山部17a及び谷部17bの弾性変形によってスペーサ16の膨潤を吸収する。さらに、種々の加工誤差、成形誤差、組み付け誤差、使用条件によるモーメントの作用等による負荷分布の乱れ、等々による各ボール3の位置ずれ等も山部17a及び谷部17bの弾性変形によって吸収される。その結果、常に安定したボール3間の距離が保たれ、運動案内装置としての機能を常に高い水準で安定して発揮できる。   As described above, the spacer 16 attempts to pull the balls 3 apart from each other with a certain elastic force in the endless circulation path. This elastic force of the spacer 16 is balanced as a whole in the endless circulation path, thereby preventing a circumferential clearance that causes the balls 3 to be misaligned. Of course, even if the spacer 16 swells, the swelling of the spacer 16 is absorbed by the elastic deformation of the peaks 17a and valleys 17b. Further, various processing errors, molding errors, assembly errors, disturbance of load distribution due to the action of moments depending on use conditions, misalignment of each ball 3 due to, and the like are absorbed by elastic deformation of the peak portions 17a and valley portions 17b. . As a result, a stable distance between the balls 3 is always maintained, and the function as the motion guide device can be constantly exerted stably at a high level.

また、スペーサ16はボール3と非常に少ない面積で接触しているため、安定した低い転がり抵抗が得られ、スペーサ16の磨耗も非常に少なくなる。仮に予期せぬ力がボール3に作用し、ボール3間が接近するような場合でも、山部17a及び谷部17bの弾性変形がボール3間の接近を吸収し、スペーサ16の本体部の厚みでボールの力を受けるので、スペーサ16の破損等の問題を避けることができる。   Further, since the spacer 16 is in contact with the ball 3 in a very small area, a stable and low rolling resistance is obtained, and the wear of the spacer 16 is also extremely reduced. Even if an unexpected force acts on the balls 3 and the balls 3 approach each other, the elastic deformation of the peaks 17a and the valleys 17b absorbs the approach between the balls 3, and the thickness of the main body of the spacer 16 is increased. Therefore, problems such as breakage of the spacer 16 can be avoided.

スペーサ16の、実際のボール3と接触している部分は、転がり抵抗、磨耗、発熱等々の転がり運動の基礎的な機能面から考えると少ないほどよい。ボール3は三点で支持すれば位置は安定する。よって、山部17a及び谷部17bはそれぞれボールと三点で点接触するのが望ましい。ただし、悪環境条件下で磨耗がより心配される場合には、山部17a及び谷部17bを余分に4,5,6…個としておくのもよい。その場合、最初は三箇所で接触し、磨耗の進行等により残りの山部17a及び谷部17bが働き出すようにし、最終的に全ての山部17a及び谷部17bで支持するようにしてもよい。   The portion of the spacer 16 that is in contact with the actual ball 3 is preferably as small as possible in view of the basic functional aspects of the rolling motion such as rolling resistance, wear, and heat generation. If the ball 3 is supported at three points, the position is stabilized. Therefore, it is desirable that the peak portion 17a and the valley portion 17b are in point contact with the ball at three points. However, if wear is more worrisome under adverse environmental conditions, the number of peaks 17a and valleys 17b may be extra 4, 5, 6. In that case, contact is made at three places at first, and the remaining peak portions 17a and valley portions 17b start to work due to the progress of wear and the like, and finally, it is supported by all peak portions 17a and valley portions 17b. Good.

スペーサ16及びボール3の進行方向からみて、スペーサ16の外形は円形状に形成され、またスペーサ16は周方向に連続な連続体であるので、スペーサ16が無限循環路を循環するとき、スペーサ16が無限循環路の継ぎ目等に引っ掛かることなく、スペーサ16が円滑に無限循環路を循環する。   When viewed from the traveling direction of the spacer 16 and the ball 3, the outer shape of the spacer 16 is formed in a circular shape, and the spacer 16 is a continuous body in the circumferential direction. Therefore, when the spacer 16 circulates in the infinite circuit, the spacer 16 The spacer 16 smoothly circulates through the infinite circuit without being caught by the joint of the infinite circuit.

スペーサ16には、スペーサ16の進行方向に貫通する貫通孔21があけられる。潤滑剤が貫通孔21を通ることによって、スペーサ16の進行方向の両側の潤滑剤の行き来が可能になる。スペーサ16の周縁部17及び本体部18は、周方向に波形状に折り曲げられているので、スペーサ16とボール3との間には、潤滑剤を保持できるスペースがあく。スペーサ16の山部17a及び谷部17bとボールとは点接触するので、潤滑剤のかき取りが少なくなる。   A through hole 21 is formed in the spacer 16 so as to penetrate in the traveling direction of the spacer 16. When the lubricant passes through the through-hole 21, the lubricant on both sides in the traveling direction of the spacer 16 can be moved back and forth. Since the peripheral edge portion 17 and the main body portion 18 of the spacer 16 are bent in a wave shape in the circumferential direction, there is a space between the spacer 16 and the ball 3 that can hold the lubricant. Since the peaks 17a and valleys 17b of the spacer 16 and the balls are in point contact, the scraping of the lubricant is reduced.

図7は、スペーサの他の例を示す。図中(a)は正面図を、図中(b)は側面図を、図中(c)は断面図を示す。この例のスペーサ26も、その周縁部が周方向に交互に山部27a及び谷部27bを有する波形状に形成される。スペーサ26は、隣接する一対のボール3のうちの一方のボール3−1に接触する三つの山部27aを有すると共に、他方のボール3−2に接触する少なくとも三つの谷部27bを有する。スペーサ26と一方のボール3−1とは合計三つの点CP1で点接触し、スペーサ26と他方のボール3−1とも合計三つの点CP2で点接触する。スペーサ26の中央には、スペーサ26及びボール3の進行方向に貫通する貫通孔29が開けられる。   FIG. 7 shows another example of the spacer. In the figure, (a) is a front view, (b) is a side view, and (c) is a cross-sectional view. The spacer 26 in this example is also formed in a wave shape having a peripheral portion alternately having a crest portion 27a and a trough portion 27b in the circumferential direction. The spacer 26 has three peak portions 27a that contact one ball 3-1 of a pair of adjacent balls 3, and at least three valley portions 27b that contact the other ball 3-2. The spacer 26 and one ball 3-1 are in point contact at a total of three points CP1, and the spacer 26 and the other ball 3-1 are also in point contact at a total of three points CP2. A through hole 29 is formed in the center of the spacer 26 so as to penetrate the spacer 26 and the ball 3 in the traveling direction.

この例のスペーサ26は上記実施形態のスペーサ16と以下の点が相違する。図7(a)に示すように、スペーサ26は円板を波形状に折り曲げた形状をなし、スペーサ26の正面形状は円形状よりも六角形に近くなる。図7(c)に示すように、スペーサ26はその全体に亘って厚みが一定に形成される(スペーサ16のように、周縁部17が本体部18よりも厚みが厚く形成されたり、円環部22が本体部よりも厚みが薄く形成されることはない)。貫通孔29の中心を含んだ断面において、スペーサ26はS字状に湾曲している(スペーサ16のように、平らな円環部22は形成されない)。この例に示すように、スペーサ16,26には本発明の要旨を変更しない範囲で各種の変形を施してもよい。   The spacer 26 of this example is different from the spacer 16 of the above embodiment in the following points. As shown in FIG. 7A, the spacer 26 is formed by bending a disk into a wave shape, and the front shape of the spacer 26 is closer to a hexagonal shape than the circular shape. As shown in FIG. 7C, the spacer 26 is formed to have a constant thickness throughout (the peripheral portion 17 is formed to be thicker than the main body portion 18 as in the spacer 16, or The portion 22 is not formed thinner than the main body portion). In the cross section including the center of the through hole 29, the spacer 26 is curved in an S shape (the flat annular portion 22 is not formed like the spacer 16). As shown in this example, the spacers 16 and 26 may be variously modified without changing the gist of the present invention.

図8は、本発明のスペーサ16,26が組み込まれるねじ装置を示す。ねじ装置は、外周面に螺旋状のボール転走溝31aが形成されるねじ軸31と、内周面にボール転走溝31aに対向する螺旋状の負荷ボール転走溝32aが形成されるナット32を備える。   FIG. 8 shows a screw device in which the spacers 16 and 26 of the present invention are incorporated. The screw device includes a screw shaft 31 in which a spiral ball rolling groove 31a is formed on the outer peripheral surface, and a nut in which a spiral load ball rolling groove 32a facing the ball rolling groove 31a is formed on the inner peripheral surface. 32.

ねじ軸31は、炭素鋼、クロム鋼、又はステンレス鋼などの棒鋼の外周面に、所定のリードを有する螺旋状のボール転走溝31aを切削及び研削加工又は転造加工によって形成したものである。ボール転走溝31aの条数は一条、二条、三条等様々に設定される。ボール転走溝31aの断面は単一の円弧からなるサーキュラーアーク溝形状、又は二つの円弧を組み合わせたゴシックアーチ溝形状である。   The screw shaft 31 is formed by cutting and grinding or rolling a spiral ball rolling groove 31a having a predetermined lead on the outer peripheral surface of a steel bar such as carbon steel, chrome steel, or stainless steel. . The number of strips of the ball rolling groove 31a is variously set such as one strip, two strips, and three strips. The cross section of the ball rolling groove 31a has a circular arc groove shape composed of a single arc or a Gothic arch groove shape formed by combining two arcs.

ナット32は、炭素鋼、クロム鋼、又はステンレス鋼などの円筒の内周面に、所定のリードを有する螺旋状の負荷ボール転走溝32aを切削及び研削加工又は転造加工によって形成したものである。ナット32は、内周面に負荷ボール転走溝32aが加工されるナット本体35と、ナット本体35の両端に設けられる蓋部材としての一対のエンドキャップ38と、から構成される。ナット本体35の外周の軸線方向の端部には、ナット32を相手部品に取り付けるためのフランジ34が形成される。ナット本体35の負荷ボール転走溝32aは、ねじ軸31のボール転走溝31aに対向する。ナット本体35には、ボール33を循環させるためにナット本体35の軸線方向に貫通するボール戻し路32bが開けられる。エンドキャップ38には、ねじ軸31のボール転走溝31aを転がるボール33を掬い上げ、ボール戻し路32bに導く方向転換路が開けられる。ねじ軸31のボール転走溝31aと、ナット本体35の負荷ボール転走溝32aとの間の負荷ボール転走路、方向転換路、及びボール戻し路32bから構成される無限循環路には、複数のボール33が配列・収容される。   The nut 32 is formed by forming a spiral load ball rolling groove 32a having a predetermined lead on a cylindrical inner peripheral surface of carbon steel, chrome steel, stainless steel or the like by cutting and grinding or rolling. is there. The nut 32 includes a nut body 35 in which a load ball rolling groove 32 a is processed on an inner peripheral surface, and a pair of end caps 38 as lid members provided at both ends of the nut body 35. A flange 34 for attaching the nut 32 to the mating part is formed at the end of the outer periphery of the nut body 35 in the axial direction. The load ball rolling groove 32 a of the nut body 35 faces the ball rolling groove 31 a of the screw shaft 31. In the nut body 35, a ball return path 32b penetrating in the axial direction of the nut body 35 is opened to circulate the ball 33. The end cap 38 is opened with a direction changing path for picking up the ball 33 rolling on the ball rolling groove 31a of the screw shaft 31 and guiding it to the ball return path 32b. There are a plurality of infinite circulation paths composed of a load ball rolling path, a direction switching path, and a ball return path 32b between the ball rolling groove 31a of the screw shaft 31 and the load ball rolling groove 32a of the nut body 35. Balls 33 are arranged and accommodated.

ねじ軸31を回転させると、ボール33を介してねじ軸31に嵌まるナット32が軸線方向に移動する。それと同時に、ボール33が無限循環路を循環する。負荷ボール転走路を転がるボール33は、負荷ボール転走路の一端まで転がった後、エンドキャップ38の方向転換路内に掬い上げられ、ボール戻し路32bを経由した後、反対側のエンドキャップ38から元の負荷ボール転走路の他端に戻される。   When the screw shaft 31 is rotated, the nut 32 fitted to the screw shaft 31 via the ball 33 moves in the axial direction. At the same time, the ball 33 circulates through the infinite circuit. The ball 33 rolling on the load ball rolling path rolls up to one end of the load ball rolling path, and then scoops up into the direction changing path of the end cap 38, passes through the ball return path 32b, and then from the opposite end cap 38. It is returned to the other end of the original load ball rolling path.

ボール33間には、ボール33同士の接触を防止するスペーサ16,26が介在される。スペーサ16,26には、上記実施形態のスペーサ16,26が使用される。   Spacers 16 and 26 for preventing contact between the balls 33 are interposed between the balls 33. As the spacers 16 and 26, the spacers 16 and 26 of the above embodiment are used.

なお、本発明は上記実施形態に限られることはなく、本発明の要旨を変更しない範囲で種々変更可能である。例えば、上記の実施形態では、移動ブロックが直線的に運動するリニアガイドについて説明したが、本発明は移動ブロックが曲線的に運動する曲線運動案内装置にも適用することもできる。さらに、軌道部材としての軌道軸と、移動部材としての軌道軸を囲む外筒から構成されるボールスプラインにも適用することができる。さらに、本発明は、軌道部材としての外輪と、移動部材としての内輪とから構成される回転ベアリングにも適用することができる。   In addition, this invention is not limited to the said embodiment, A various change is possible in the range which does not change the summary of this invention. For example, in the above embodiment, the linear guide in which the moving block moves linearly has been described. However, the present invention can also be applied to a curved motion guide device in which the moving block moves in a curved manner. Furthermore, the present invention can also be applied to a ball spline composed of a track shaft as a track member and an outer cylinder surrounding the track shaft as a moving member. Furthermore, the present invention can also be applied to a rotary bearing composed of an outer ring as a race member and an inner ring as a moving member.

複数のスペーサはバンドで一連に連結されてもよい。スペーサの周縁部の山部及び谷部とボールとの接触位置は、スペーサの外周近傍に限られることはなく、スペーサの半径の1/2以上の位置で接触してもよい。スペーサの外側に潤滑剤が通過できる空間があれば、スペーサの中央には貫通孔をあけなくてもよい。スペーサの本体部が平板状に形成され、スペーサの周縁部のみが波形状に形成されてもよい。   The plurality of spacers may be connected in series by a band. The contact positions of the ridges and valleys on the peripheral edge of the spacer and the ball are not limited to the vicinity of the outer periphery of the spacer, and they may contact at a position that is 1/2 or more of the spacer radius. If there is a space through which the lubricant can pass outside the spacer, it is not necessary to make a through hole in the center of the spacer. The main body portion of the spacer may be formed in a flat plate shape, and only the peripheral portion of the spacer may be formed in a wave shape.

本実施形態のスペーサ16を一対のボール3で挟み、一対のボール3を近づけてスペーサ16を弾性変形させたとき、スペーサ16に発生する応力分布をFEM解析した。   When the spacer 16 of this embodiment is sandwiched between the pair of balls 3 and the spacer 16 is elastically deformed by bringing the pair of balls 3 close to each other, the stress distribution generated in the spacer 16 is analyzed by FEM.

図9に解析条件を示す。図9(a)に示すように、一対のボール3で本実施形態のスペーサ16を挟んだFEMモデルを使用した。図9(b)に示すように、境界条件として、下側のボール3−2のxyz方向の変位を拘束し、上側のボール3−1のxy方向の変位を拘束した。そして、上側のボール3−1のz方向の位置を玉押し込み量δzだけ変化させた。この境界条件のもと、スペーサ16に発生する相当応力の分布を解析した。表1にFEM解析に使用したスペーサ16及びボール3の材料物性値を示す。
FIG. 9 shows the analysis conditions. As shown in FIG. 9A, an FEM model in which the spacer 16 of this embodiment is sandwiched between a pair of balls 3 is used. As shown in FIG. 9B, as boundary conditions, the displacement of the lower ball 3-2 in the xyz direction was constrained, and the displacement of the upper ball 3-1 in the xy direction was constrained. Then, the position of the upper ball 3-1 in the z direction was changed by a ball pressing amount δz. Under this boundary condition, the distribution of the equivalent stress generated in the spacer 16 was analyzed. Table 1 shows the material property values of the spacer 16 and the ball 3 used in the FEM analysis.

図10(a)は、押し込み量を0.05mm、0.10mm、0.20mm、0.30mmと順次変化させたときの、スペーサ16の各部位の変位量を示す。押し込み量が0.10mm、0.20mmと大きくなるにしたがって、スペーサ16の各部位の変位量も大きくなった。しかし、スペーサ16の一部の変位量が局所的に大きくなることはなく、スペーサ16の山部17a及び谷部17bの全体にわたってほぼ均等に変位量が大きくなった。押し込み量を0.30mmにしても、この傾向は変わらないが、スペーサ16の山部17a及び谷部17bの頂点付近での変位量の増大が目立った。   FIG. 10A shows the amount of displacement of each part of the spacer 16 when the push-in amount is sequentially changed to 0.05 mm, 0.10 mm, 0.20 mm, and 0.30 mm. As the push-in amount increased to 0.10 mm and 0.20 mm, the displacement amount of each part of the spacer 16 also increased. However, the amount of displacement of a part of the spacer 16 did not increase locally, and the amount of displacement increased substantially uniformly over the entire peak portion 17a and valley portion 17b of the spacer 16. Even if the pushing amount is 0.30 mm, this tendency is not changed, but the increase in the displacement amount in the vicinity of the peaks 17a and valleys 17b of the spacer 16 is conspicuous.

図10(b)は、押し込み量を0.05mm、0.10mm、0.20mm、0.30mmと順次変化させたときの、スペーサ16の各部位の相当応力を示す。押し込み量が0.10mm、0.20mmと大きくなるにしたがって、スペーサ16の各部位の相当応力も大きくなった。しかし、スペーサ16の一部の相当応力が部分的に大きくなることはなく、スペーサ16の山部17a及び谷部17bの全体にわたってほぼ均等に相当応力が大きくなった。押し込み量を0.30mmにしても、この傾向は変わらなかった。スペーサ16の山部17a及び谷部17bの頂点付近での相当応力が部分的に大きくなることもなかった。相当応力の解析の結果、スペーサ16の全体に応力が分布し、局所的な応力の集中が緩和されることがわかった。   FIG. 10B shows the equivalent stress of each part of the spacer 16 when the pressing amount is sequentially changed to 0.05 mm, 0.10 mm, 0.20 mm, and 0.30 mm. As the push-in amount increased to 0.10 mm and 0.20 mm, the equivalent stress at each part of the spacer 16 also increased. However, the equivalent stress of a part of the spacer 16 did not partially increase, and the equivalent stress increased substantially uniformly over the entire peak portion 17a and valley portion 17b of the spacer 16. Even when the push-in amount was 0.30 mm, this tendency was not changed. The equivalent stress in the vicinity of the peaks 17a and troughs 17b of the spacer 16 did not partially increase. As a result of the analysis of the equivalent stress, it was found that the stress is distributed throughout the spacer 16 and the local stress concentration is alleviated.

図11は、押し込み量とスペーサ16に発生する最大相当応力との関係を示すグラフである。押し込み量が0.0mmから0.20mmに大きくなるにしたがって、最大相当応力も0MPaから400MPa程度まで除々に大きくなる。押し込み量が0.20mmを超えると、最大相当応力は大きくなることはなく、400MPaのまま略一定の値を保った。   FIG. 11 is a graph showing the relationship between the indentation amount and the maximum equivalent stress generated in the spacer 16. As the push-in amount increases from 0.0 mm to 0.20 mm, the maximum equivalent stress gradually increases from 0 MPa to about 400 MPa. When the indentation amount exceeded 0.20 mm, the maximum equivalent stress did not increase and maintained a substantially constant value at 400 MPa.

1…軌道レール(軌道部材),1a…ボール転走溝(転動体転走部),2…移動ブロック(移動部材),2a…負荷ボール転走溝(負荷転動体転走部),3…ボール(転動体),16,26…スペーサ,17…周縁部,17a,27a…山部,17b,27b…谷部,18…本体部,18a…本体部の山部,18b…本体部の谷部,21,29…貫通孔,31…ねじ軸,31a…ボール転走溝(転動体転走溝),32…ナット,32a…負荷ボール転走溝(負荷転動体転走溝),33…ボール(転動体) DESCRIPTION OF SYMBOLS 1 ... Track rail (track member), 1a ... Ball rolling groove (rolling element rolling part), 2 ... Moving block (moving member), 2a ... Loaded ball rolling groove (load rolling element rolling part), 3 ... Ball (rolling element), 16, 26 spacer, 17 peripheral edge, 17a, 27a ... mountain, 17b, 27b ... valley, 18 ... main body, 18a ... main body, 18b ... main body valley Part, 21, 29 ... through hole, 31 ... screw shaft, 31a ... ball rolling groove (rolling element rolling groove), 32 ... nut, 32a ... loaded ball rolling groove (load rolling element rolling groove), 33 ... Ball (rolling element)

Claims (5)

軌道部材と軌道部材に沿って移動する移動部材との間に転がり運動可能に複数の転動体を介在させた運動案内装置、又はねじ軸とナットとの間に転がり運動可能に複数の転動体を介在させたねじ装置に組み込まれ、転動体同士の接触を防止するように転動体間に配置されるスペーサであって、
前記スペーサは、円盤を基礎形状とし、周方向に交互に山部及び谷部を有するような連続する波形状に形成される本体部と、前記本体部の周囲を縁取るように形成される周縁部と、を備え、
前記スペーサの前記山部は、前記スペーサの外周側に行くにしたがって、隣り合う一対の転動体の一方に近づくように湾曲し、
前記スペーサの前記谷部は、前記スペーサの外周側に行くにしたがって、隣り合う一対の転動体の他方に近づくように湾曲し、
前記スペーサの前記周縁部の前記山部が隣り合う一対の転動体の一方に接触し、前記スペーサの前記周縁部の前記谷部が隣り合う一対の転動体の他方に接触するスペーサ。
A motion guide device in which a plurality of rolling elements are interposed between a raceway member and a moving member that moves along the raceway member, or a plurality of rolling elements that are capable of rolling motion between a screw shaft and a nut. A spacer that is incorporated in the interposed screw device and is arranged between the rolling elements so as to prevent contact between the rolling elements,
The spacer has a disk as a basic shape, and a main body portion formed in a continuous wave shape having alternately crests and troughs in the circumferential direction, and a peripheral edge formed so as to border the periphery of the main body portion And comprising
The peak portion of the spacer is curved so as to approach one of a pair of adjacent rolling elements as it goes to the outer peripheral side of the spacer,
The valley portion of the spacer is curved so as to approach the other of a pair of adjacent rolling elements as it goes to the outer peripheral side of the spacer,
The spacer in which the crest portion of the peripheral portion of the spacer contacts one of a pair of adjacent rolling elements, and the trough portion of the peripheral portion of the spacer contacts the other of the adjacent pair of rolling elements.
前記スペーサの前記山部が複数設けられると共に、各山部が前記一方の転動体に点接触し、
前記スペーサの前記谷部が複数設けられると共に、各谷部が前記他方の転動体に点接触することを特徴とする請求項1に記載のスペーサ。
A plurality of the peak portions of the spacer are provided, and each peak portion is in point contact with the one rolling element,
The spacer according to claim 1, wherein a plurality of the valley portions of the spacer are provided, and each valley portion makes point contact with the other rolling element.
前記スペーサの前記山部は、前記転動体及び前記スペーサの移動方向から見て、周方向に均等間隔を開けて三つ以上設けられ、
前記スペーサの前記谷部は、前記転動体及び前記スペーサの移動方向から見て、周方向に均等間隔を開けて三つ以上設けられることを特徴とする請求項1又は2に記載のスペーサ。
The crests of the spacer are provided with three or more at equal intervals in the circumferential direction when viewed from the moving direction of the rolling elements and the spacer,
3. The spacer according to claim 1, wherein three or more of the valley portions of the spacer are provided at equal intervals in the circumferential direction when viewed from the moving direction of the rolling elements and the spacer.
転動体転走部を有する軌道部材と、前記転動体転走部に対向する負荷転動体転走部を有する移動部材と、前記軌道部材の前記転動体転走部と前記移動部材の前記負荷転動体転走部との間に転がり運動可能に配列される複数の転動体と、転動体同士の接触を防止するように転動体間に配置される複数のスペーサと、を備える運動案内装置において、
前記スペーサは、円盤を基礎形状とし、周方向に交互に山部及び谷部を有するような連続する波形状に形成される本体部と、前記本体部の周囲を縁取るように形成される周縁部と、を備え、
前記スペーサの前記山部は、前記スペーサの外周側に行くにしたがって、隣り合う一対の転動体の一方に近づくように湾曲し、
前記スペーサの前記谷部は、前記スペーサの外周側に行くにしたがって、隣り合う一対の転動体の他方に近づくように湾曲し、
前記スペーサの前記周縁部の前記山部が隣り合う一対の転動体の一方に接触し、前記スペーサの前記周縁部の前記谷部が隣り合う一対の転動体の他方に接触する運動案内装置。
A track member having a rolling element rolling part, a moving member having a loaded rolling element rolling part facing the rolling element rolling part, the rolling element rolling part of the track member, and the load rolling of the moving member In a motion guide device comprising a plurality of rolling elements arranged so as to be capable of rolling motion with a moving body rolling part, and a plurality of spacers arranged between the rolling elements so as to prevent contact between the rolling elements,
The spacer has a disk as a basic shape, and a main body portion formed in a continuous wave shape having alternately crests and troughs in the circumferential direction, and a peripheral edge formed so as to border the periphery of the main body portion And comprising
The peak portion of the spacer is curved so as to approach one of a pair of adjacent rolling elements as it goes to the outer peripheral side of the spacer,
The valley portion of the spacer is curved so as to approach the other of a pair of adjacent rolling elements as it goes to the outer peripheral side of the spacer,
The motion guide device in which the crest portion of the peripheral portion of the spacer contacts one of a pair of adjacent rolling elements, and the trough portion of the peripheral portion of the spacer contacts the other of the adjacent pair of rolling elements.
螺旋状の転動体転走溝を有するねじ軸と、前記転動体転走溝に対向する負荷転動体転走溝を有するナットと、前記ねじ軸の前記転動体転走溝と前記ナットの前記負荷転動体転走溝との間に転がり運動可能に配列される複数の転動体と、転動体同士の接触を防止するように転動体間に配置される複数のスペーサと、を備えるねじ装置において、
前記スペーサは、円盤を基礎形状とし、周方向に交互に山部及び谷部を有するような連続する波形状に形成される本体部と、前記本体部の周囲を縁取るように形成される周縁部と、を備え、
前記スペーサの前記山部は、前記スペーサの外周側に行くにしたがって、隣り合う一対の転動体の一方に近づくように湾曲し、
前記スペーサの前記谷部は、前記スペーサの外周側に行くにしたがって、隣り合う一対の転動体の他方に近づくように湾曲し、
前記スペーサの前記周縁部の前記山部が隣り合う一対の転動体の一方に接触し、前記スペーサの前記周縁部の前記谷部が隣り合う一対の転動体の他方に接触するねじ装置。
A screw shaft having a spiral rolling element rolling groove, a nut having a load rolling element rolling groove facing the rolling element rolling groove, the rolling element rolling groove of the screw shaft, and the load of the nut In a screw device comprising: a plurality of rolling elements arranged so as to be capable of rolling between the rolling element rolling grooves; and a plurality of spacers arranged between the rolling elements so as to prevent contact between the rolling elements.
The spacer has a disk as a basic shape, and a main body portion formed in a continuous wave shape having alternately crests and troughs in the circumferential direction, and a peripheral edge formed so as to border the periphery of the main body portion And comprising
The peak portion of the spacer is curved so as to approach one of a pair of adjacent rolling elements as it goes to the outer peripheral side of the spacer,
The valley portion of the spacer is curved so as to approach the other of a pair of adjacent rolling elements as it goes to the outer peripheral side of the spacer,
The screw device in which the crest portion of the peripheral portion of the spacer contacts one of a pair of adjacent rolling elements, and the trough portion of the peripheral portion of the spacer contacts the other of the adjacent pair of rolling elements.
JP2010225125A 2010-10-04 2010-10-04 Spacer, motion guide device incorporating the spacer, and screw device Active JP5557680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010225125A JP5557680B2 (en) 2010-10-04 2010-10-04 Spacer, motion guide device incorporating the spacer, and screw device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010225125A JP5557680B2 (en) 2010-10-04 2010-10-04 Spacer, motion guide device incorporating the spacer, and screw device

Publications (2)

Publication Number Publication Date
JP2012077873A JP2012077873A (en) 2012-04-19
JP5557680B2 true JP5557680B2 (en) 2014-07-23

Family

ID=46238359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010225125A Active JP5557680B2 (en) 2010-10-04 2010-10-04 Spacer, motion guide device incorporating the spacer, and screw device

Country Status (1)

Country Link
JP (1) JP5557680B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014010504A1 (en) * 2014-07-17 2016-01-21 Thyssenkrupp Ag Ball screw with intermediate elements

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4280376B2 (en) * 1999-10-20 2009-06-17 日本トムソン株式会社 Linear motion rolling guide unit
JP2002195373A (en) * 2000-12-26 2002-07-10 Mori Seiki Co Ltd Ball screw
JP4422646B2 (en) * 2005-03-31 2010-02-24 日本トムソン株式会社 Rolling guide device in which a separator is disposed between rolling elements

Also Published As

Publication number Publication date
JP2012077873A (en) 2012-04-19

Similar Documents

Publication Publication Date Title
JP5192074B2 (en) Seal member and linear motion guide apparatus using the same
EP1186790B1 (en) Rolling element spacers for rolling guide units
US20050281496A1 (en) Linear motion device
JP5463687B2 (en) Rolling bearing
DE2756403C3 (en) poetry
EP2373897A1 (en) Radial roller bearing, in particular single track ball roller bearing
JP4294199B2 (en) Rolling element spacer of rolling guide device
JPH11315835A (en) Linear moving device
US7758245B2 (en) Rolling guide unit with separator interposed between any two adjacent rolling elements
JP5557680B2 (en) Spacer, motion guide device incorporating the spacer, and screw device
EP0489134B1 (en) Radial roller bearing
US20150219151A1 (en) Linear motion guide unit
JP2008202672A (en) Ball screw and its manufacturing method
JP6500983B2 (en) Rolling guide device
KR20070059976A (en) Bearing screw type transferring
DE102016205903A1 (en) Spherical roller bearing assembly
JP5628619B2 (en) Spacer, motion guide device incorporating spacer, and ball screw
JP4280376B2 (en) Linear motion rolling guide unit
JP4269797B2 (en) Rolling bearing
JP3542860B2 (en) Linear motion guide device
US7578620B2 (en) Linear guide device
WO2021187032A1 (en) Solid-lubricated rolling bearing
DE202008009124U1 (en) roller bearing
DE102021117291A1 (en) roller bearing arrangement
JP2013122296A (en) Ball holding member, ball connector, and linear guide or ball screw device using them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140603

R150 Certificate of patent or registration of utility model

Ref document number: 5557680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250