JP5556090B2 - Quantitative analysis limit determination method in iron concentration analysis in boron-doped p-type silicon - Google Patents

Quantitative analysis limit determination method in iron concentration analysis in boron-doped p-type silicon Download PDF

Info

Publication number
JP5556090B2
JP5556090B2 JP2009202765A JP2009202765A JP5556090B2 JP 5556090 B2 JP5556090 B2 JP 5556090B2 JP 2009202765 A JP2009202765 A JP 2009202765A JP 2009202765 A JP2009202765 A JP 2009202765A JP 5556090 B2 JP5556090 B2 JP 5556090B2
Authority
JP
Japan
Prior art keywords
concentration
quantitative analysis
pair
boron
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009202765A
Other languages
Japanese (ja)
Other versions
JP2011054784A (en
Inventor
和宏 府瀬川
剛志 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2009202765A priority Critical patent/JP5556090B2/en
Publication of JP2011054784A publication Critical patent/JP2011054784A/en
Application granted granted Critical
Publication of JP5556090B2 publication Critical patent/JP5556090B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

本発明は、ボロンドープp型シリコン中の鉄濃度分析における定量分析限界決定方法に関するものであり、詳しくは、上記定量分析限界を高い信頼性を持って決定することができる定量分析限界決定方法に関するものである。   The present invention relates to a quantitative analysis limit determination method in iron concentration analysis in boron-doped p-type silicon, and more particularly to a quantitative analysis limit determination method capable of determining the quantitative analysis limit with high reliability. It is.

シリコンウェーハの重金属汚染は、製品のデバイス特性に悪影響を及ぼす。特に、ウェーハ内のFeは、その汚染量は微量であっても再結合中心として働き、デバイスにおいてpn接合の逆方向のリーク量の増加の原因やメモリー素子のリフレッシュ不良等の原因となる。そこで工程管理のためにウェーハ内のFe汚染を正確に把握することが求められている。   Heavy metal contamination of silicon wafers adversely affects product device characteristics. In particular, Fe in the wafer acts as a recombination center even if the amount of contamination is very small, causing an increase in the amount of leakage in the reverse direction of the pn junction in the device and a refresh failure of the memory element. Therefore, it is required to accurately grasp Fe contamination in the wafer for process control.

Feは、ボロンドープp型シリコン中では、ボロンと静電力によって結合しFe−Bペアを形成する。ボロンドープp型シリコンのFe濃度の定量方法としては、このFe−Bペアの乖離前後の少数キャリア拡散長の測定値の変化を利用する表面光電圧法(Surface Photo-Voltage;SPV法)、Fe−Bペアの乖離前後のライフタイムの測定値の変化を利用する光導電減衰法が広く用いられている(例えば特許文献1および2参照)。   In boron-doped p-type silicon, Fe combines with boron by an electrostatic force to form an Fe-B pair. As a method for determining the Fe concentration of boron-doped p-type silicon, a surface photovoltage method (Surface Photo-Voltage; SPV method) using a change in measured values of minority carrier diffusion length before and after the dissociation of this Fe-B pair, Fe-B A photoconductive decay method that utilizes changes in measured values of lifetime before and after pair divergence is widely used (see, for example, Patent Documents 1 and 2).

上記Fe濃度測定のような定量分析において、測定装置の検出限界は装置の検出能力を示す指標としてきわめて重要である。例えば非特許文献1には、上記SPV法に用いる装置の定量分析限界(検出限界)を、以下の方法により算出することが提案されている。
拡散長Lの変化、δL/Lはシリコン中の再結合中心濃度の測定値ばらつきに相当し、対応する再結合中心の変化は、δN=(2D/(σνL2))・(δL/L)と表すことができる。再結合中心をp型シリコン中のFeとすると、σν=6×10-7cm3/s、少数キャリア(電子)の拡散定数D=40cm2/sとなり、非特許文献1では、少数キャリアの拡散長の測定値LとそのばらつきδL/Lを調べることにより、FeのばらつきδNを算出し、これをシリコン中のFeの検出限界としている。
In quantitative analysis such as the above-described Fe concentration measurement, the detection limit of the measurement device is extremely important as an index indicating the detection capability of the device. For example, Non-Patent Document 1 proposes to calculate the quantitative analysis limit (detection limit) of the apparatus used in the SPV method by the following method.
The change in diffusion length L, δL / L, corresponds to the variation in the measured recombination center concentration in silicon, and the corresponding change in recombination center is δN = (2D / (σνL 2 )) · (δL / L) It can be expressed as. When the recombination center is Fe in p-type silicon, σν = 6 × 10 −7 cm 3 / s, and the diffusion constant of minority carriers (electrons) is D = 40 cm 2 / s. By examining the measured value L of the diffusion length and its variation ΔL / L, the variation ΔN of Fe is calculated, and this is used as the detection limit of Fe in silicon.

上記のように非特許文献1に記載の方法では、少数キャリアの拡散長の測定ばらつきから換算されるFe濃度のばらつきをFe濃度の検出限界としている。しかしながら、実際には少数キャリア拡散長の測定ばらつきの他にも、Fe濃度の測定値のばらつきに影響を与えるファクターが多数存在する。例えば、SPV法では、Fe−Bペア乖離操作前後の少数キャリアの拡散長測定結果からFe濃度を算出する。少数キャリアの拡散長測定時には、その都度ウェーハは位置および角度を合わせた後、測定ステージにセットされる。その後、測定プローブとウェーハ間の距離調整、測定光の光量調整が行われ、更に温度補正が必要となる装置では温度計測が行われる。これらの調整時の操作誤差等もFe濃度の測定結果のばらつき因子となり得る。しかし上記非特許文献1に記載の方法では、これら測定時の操作誤差に起因するばらつき因子は考慮されていない。したがって、バルクFe濃度測定値のばらつきを過小評価することとなり、算出される検出限界の信頼性が低いという課題がある。そこで、非特許文献1に記載の方法で拡散長測定のばらつきに起因するFe濃度の測定限界を求めたうえで、上記の操作誤差に起因するばらつき量を別途測定して補正を加えることも考えられるが、煩雑であり実用性に乏しい。   As described above, in the method described in Non-Patent Document 1, the variation in Fe concentration converted from the variation in measurement of the minority carrier diffusion length is used as the Fe concentration detection limit. However, in practice, there are many factors that affect the variation in the measured value of the Fe concentration in addition to the variation in the measurement of the minority carrier diffusion length. For example, in the SPV method, the Fe concentration is calculated from the minority carrier diffusion length measurement result before and after the Fe-B pair separation operation. When measuring the diffusion length of minority carriers, the wafer is set on the measurement stage after aligning the position and angle each time. Thereafter, the distance between the measurement probe and the wafer is adjusted, the light amount of the measurement light is adjusted, and the temperature is measured in an apparatus that requires temperature correction. Operation errors during these adjustments can also be a variation factor in the Fe concentration measurement results. However, the method described in Non-Patent Document 1 does not take into account the variation factors resulting from the operation error during the measurement. Therefore, the variation in the measured value of the bulk Fe concentration is underestimated, and there is a problem that the reliability of the calculated detection limit is low. Therefore, after obtaining the measurement limit of the Fe concentration due to the variation in the diffusion length measurement by the method described in Non-Patent Document 1, it is also possible to separately measure the amount of variation due to the operation error and add a correction. However, it is cumbersome and not practical.

化学分析の分野では、検出限界は測定対象物質を実質的に含まないブランク試料を測定することにより算出される(非特許文献2参照)。この化学分析的手法であれば、実シーケンスと同じく測定を行い、そのばらつきから検出限界を評価することができるため、測定に関わるすべてのばらつき因子を考慮したうえで検出限界を算出することができる。   In the field of chemical analysis, the detection limit is calculated by measuring a blank sample that substantially does not contain the measurement target substance (see Non-Patent Document 2). With this chemical analysis method, measurement can be performed in the same way as the actual sequence, and the detection limit can be evaluated from the variation. Therefore, the detection limit can be calculated in consideration of all the variation factors related to the measurement. .

そこでこの化学分析的手法を採用し、バルクFe濃度が十分に低く、Fe汚染が実質0とみなせるボロンドープp型シリコンをブランク試料として検出限界を算出することができれば、算出される検出限界の信頼性は更に高まると期待される。しかしバルクFe濃度を実質0とみなすことができるシリコンウェーハは現在の製造技術で得ることは困難であり、また現時点で得られるFe汚染が無視できると考えられるシリコンも測定器の能力が向上するにつれFe濃度が無視できなくなるという堂々巡りの状況となり、根本的な解決策が必要であることが判明した。   Therefore, if this chemical analysis method is adopted and the detection limit can be calculated using a boron-doped p-type silicon in which the bulk Fe concentration is sufficiently low and Fe contamination can be regarded as substantially zero, the reliability of the calculated detection limit can be calculated. Is expected to increase further. However, silicon wafers whose bulk Fe concentration can be regarded as substantially zero are difficult to obtain with the current manufacturing technology, and silicon that is considered to have negligible Fe contamination obtained at the present time is also improved as the measuring instrument performance is improved. It turned out that the Fe concentration could not be ignored, and it became clear that a fundamental solution was necessary.

特開平6−69301号公報JP-A-6-69301 特開2005−64054号公報JP 2005-64054 A

"Non-contact mapping of heavy metal contamination for silicon IC fabrication", Semicond. Sci. Technol. 7, pA185-A192 (1992)"Non-contact mapping of heavy metal contamination for silicon IC fabrication", Semicond. Sci. Technol. 7, pA185-A192 (1992) 小特集 検出限界", ぶんせき p924-933 (1995)Special issue "Detection limit", Bunkeki p924-933 (1995)

そこで本発明の目的は、ボロンドープp型シリコン中の鉄濃度の分析方法における定量分析限界を、高い信頼性をもって決定するための手段を提供することにある。   Therefore, an object of the present invention is to provide means for determining the quantitative analysis limit in the method for analyzing the iron concentration in boron-doped p-type silicon with high reliability.

本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、以下の新たな知見を得るに至った。
先に説明したように、現在の技術では、実際の測定シーケンスを繰り返し実施し、得られたFeブランク試料のFe濃度測定値データのばらつき情報を評価し、シリコン中のFe濃度の検出限界を決定することは困難である。
ところでボロンドープp型シリコン中のFeは、前述のようにボロン(B)と結合してペア(Fe−Bペア)を形成しており、強い光を照射することや200℃程度の熱処理により、格子間Feと格子位置のBに乖離し、その後時間経過と共に、ペアが再形成されていくことが判っている。この現象は、例えば"Formation rates of iron-acceptor pairs in crystalline silicon", JAP 98, 083509 (2005)に詳しく解説されている。非特許文献1、特許文献2に記載されているSPV法では、このFe−Bペアの乖離現象を利用し、ボロンドープp型シリコンを対象とし、Fe−B乖離前後の少数キャリアの拡散長の測定値から、以下の式(1)によりFe濃度を算出する。
Fe濃度=C・{(1/L1 2)−(1/L2 2)} …(1)
ここでL1はFe−Bペア乖離後の少数キャリアの拡散長測定値、L2はFe−Bペア乖離前の少数キャリアの拡散長測定値、Cは換算係数であり他の測定手法により定量されたものとの比較により求められる。
また、特許文献1に記載されている光導電減衰法では、Fe−Bペア乖離前後のライフタイムの測定値から、以下の式(2)によりFe濃度を算出する。
Fe濃度=α・{(1/τ0)−(1/τ1)} …(2)
ここでτ0はFe−Bペア乖離前のライフタイムの測定値、τ1はFe−B乖離後のライフタイムの測定値、αは換算係数であり他の測定手法により定量されたものとの比較により求められる。
ここで本願発明者らは、Fe−Bペア乖離中、即ちFe−Bペア乖離操作後であってFe−Bペアがリペアリングを起こす迄の間、ボロンドープp型シリコンにはFe−Bペアは存在せず(または無視可能な程の量しか存在せず)、実質的にFe濃度を0とみなすことができる状態となることに着目した。即ち、Fe−Bペア乖離操作により、Fe濃度が実質的に0のボロンドープp型シリコンを擬似的に作り出すことができる。そこでFe−Bペア乖離中に、上記式(1)または(2)に従った、バルクFe濃度測定を行うことにより得られる測定値は、実際のバルクFe濃度測定時のシーケンスのばらつき因子の影響を受けたFe濃度の測定値(ブランク)のばらつき情報を含み、この結果に基づき決定されるFe濃度の定量分析限界は、分析方法の検出感度をより正確に表すものと考えられる。
本願発明者らは、以上の知見に基づき更に検討を重ね、本発明を完成するに至った。
As a result of intensive studies to achieve the above object, the present inventors have obtained the following new knowledge.
As explained earlier, the current technology repeats the actual measurement sequence, evaluates the variation information of the Fe concentration measurement value data of the obtained Fe blank sample, and determines the detection limit of Fe concentration in silicon It is difficult to do.
By the way, Fe in boron-doped p-type silicon is combined with boron (B) to form a pair (Fe—B pair) as described above, and is latticed by irradiation with intense light or heat treatment at about 200 ° C. It is known that the pair is formed again with the passage of time after deviating between the interstitial Fe and the lattice position B. This phenomenon is described in detail in, for example, “Formation rates of iron-acceptor pairs in crystalline silicon”, JAP 98, 083509 (2005). In the SPV method described in Non-Patent Document 1 and Patent Document 2, measurement of the diffusion length of minority carriers before and after the Fe-B divergence is made using boron-doped p-type silicon by utilizing the detachment phenomenon of Fe-B pairs. From the value, the Fe concentration is calculated by the following equation (1).
Fe concentration = C · {(1 / L 1 2 ) − (1 / L 2 2 )} (1)
Here, L 1 is a measured value of the diffusion length of minority carriers after the separation of the Fe—B pair, L 2 is a measured value of diffusion length of the minority carriers before the separation of the Fe—B pair, and C is a conversion factor, which is determined by other measurement methods. It is calculated by comparing with the ones made.
In the photoconductive decay method described in Patent Document 1, the Fe concentration is calculated by the following equation (2) from the measured lifetime values before and after the Fe-B pair divergence.
Fe concentration = α · {(1 / τ0) − (1 / τ1)} (2)
Here, τ0 is a measured value of the lifetime before the Fe-B pair divergence, τ1 is a measured value of the lifetime after the Fe-B divergence, α is a conversion coefficient, and is compared with those measured by other measurement methods. Desired.
Here, the inventors of the present invention do not have Fe-B pairs in boron-doped p-type silicon during Fe-B pair detachment, that is, after Fe-B pair detachment operation and until Fe-B pair is repaired. Attention was paid to the fact that the Fe concentration was not present (or only a negligible amount was present) and the Fe concentration could be regarded as substantially zero. That is, boron-doped p-type silicon having a substantially zero Fe concentration can be created in a pseudo manner by the Fe-B pair separation operation. Therefore, during the Fe-B pair divergence, the measurement value obtained by performing the bulk Fe concentration measurement according to the above formula (1) or (2) is the influence of the variation factor of the sequence during the actual bulk Fe concentration measurement. It is considered that the quantitative analysis limit of the Fe concentration determined based on this result includes variation information of the measured value (blank) of the received Fe concentration and more accurately represents the detection sensitivity of the analysis method.
The inventors of the present application have further studied based on the above findings and have completed the present invention.

即ち、上記目的は、下記手段により達成された。
[1] ボロンドープp型シリコン中の鉄濃度の定量に用いられる測定装置の鉄濃度定量分析限界決定方法であって、
前記定量は、前記測定装置により求められるFe−Bペア乖離中の少数キャリア拡散長測定値とFe−Bペア形成中の少数キャリア拡散長測定値を、下記(1):
Fe濃度=C・{(1/L 1 2 )−(1/L 2 2 )} …(1)
(式(1)中、L 1 はFe−Bペア乖離中の少数キャリア拡散長測定値であり、L 2 はFe−Bペア形成中の少数キャリア拡散長測定値であり、Cは換算係数である。)
に代入することによりボロンドープp型シリコン中の鉄濃度を求めることにより行われるものであり、
前記定量分析限界を、ボロンドープp型シリコン中のFe−Bペア乖離中に2回の測定を行い得られた2つの少数キャリア拡散長測定値を、下記式(1)’:
Fe濃度=C・{(1/L 1 2 )−(1/L 2 2 )} …(1)’:
(式(1)中、L 1 ’は前記2回の測定で得られた少数キャリア拡散長測定値の一方であり、L 2 ’は他方であり、Cは式(1)と同義である。)
に代入することにより鉄濃度を算出することを複数回行い、得られた複数の鉄濃度の平均値および標準偏差に基づき決定することを特徴とする、前記定量分析限界決定方法
[2]ボロンドープp型シリコン中の鉄濃度の定量に用いられる測定装置の鉄濃度定量分析限界決定方法であって、
前記定量は、前記測定装置により求められるFe−Bペア乖離中の再結合ライフタイム測定値とFe−Bペア形成中の再結合ライフタイム測定値を下記式(2):
Fe濃度=α・{(1/τ0)−(1/τ1)} …(2)
(式(2)中、τ0はFe−Bペア形成中の再結合ライフタイム測定値であり、τ1はFe−B乖離中の再結合ライフタイム測定値であり、αは換算係数である。)
に代入することによりボロンドープp型シリコン中の鉄濃度を求めることにより行われるものであり、
前記定量分析限界を、ボロンドープp型シリコン中のFe−Bペア乖離中に2回の測定を行い得られた2つの再結合ライフタイム測定値を、下記式(2)’:
Fe濃度=α・{(1/τ0’)−(1/τ1’)} …(2)’
(式(2)中、τ0’は前記2回の測定で得られた再結合ライフタイム測定値の一方であり、τ1’は他方であり、αは式(2)と同義である。)
に代入することにより鉄濃度を算出することを複数回行い、得られた複数の鉄濃度の平均値および標準偏差に基づき決定することを特徴とする、前記定量分析限界決定方法。
[3]前記平均値および標準偏差を、下記式(3):
定量分析限界 = 前記平均値+ 2・t(m;α)・前記標準偏差 …(3)
(式(3)中、t(m;α)は自由度mのスチューデントのt分布のαパーセント点である。)
に代入することにより、前記定量分析限界を決定する[1]または[2]に記載の定量分析限界決定方法。
That is, the above object was achieved by the following means.
[1] A method for determining an iron concentration quantitative analysis limit of a measuring device used for quantifying iron concentration in boron-doped p-type silicon,
The quantification of the minority carrier diffusion length measurement of minority carrier diffusion length measurements and Fe-B pair during the formation of the Fe-B pair of deviation obtained by said measuring device, the following formula (1):
Fe concentration = C · {(1 / L 1 2 ) − (1 / L 2 2 )} (1)
(In Formula (1), L 1 is a measured value of the minority carrier diffusion length during Fe-B pair separation, L 2 is a measured value of the minority carrier diffusion length during Fe-B pair formation, and C is a conversion factor. is there.)
Is obtained by determining the iron concentration in boron-doped p-type silicon by substituting
Two minority carrier diffusion length measurements obtained by measuring the quantitative analysis limit twice during Fe-B pair detachment in boron-doped p-type silicon are represented by the following formula (1) ′:
Fe concentration = C · {(1 / L 1 2 ) − (1 / L 2 2 )} (1) ′:
(In the formula (1), L 1 ′ is one of the minority carrier diffusion length measurements obtained by the two measurements, L 2 ′ is the other, and C has the same meaning as in the formula (1). )
The quantitative analysis limit determination method according to claim 1, wherein the calculation of the iron concentration is performed a plurality of times by substituting into and determined based on an average value and a standard deviation of the obtained plurality of iron concentrations .
[2] A method for determining an iron concentration quantitative analysis limit of a measuring device used for quantifying iron concentration in boron-doped p-type silicon,
In the quantification, the recombination lifetime measurement value during Fe-B pair detachment and the recombination lifetime measurement value during Fe-B pair formation determined by the measuring device are expressed by the following formula (2):
Fe concentration = α · {(1 / τ0) − (1 / τ1)} (2)
(In formula (2), τ0 is a recombination lifetime measurement value during Fe-B pair formation, τ1 is a recombination lifetime measurement value during Fe-B detachment, and α is a conversion factor.)
Is obtained by determining the iron concentration in boron-doped p-type silicon by substituting
Two recombination lifetime measurement values obtained by measuring the quantitative analysis limit two times during Fe-B pair dissociation in boron-doped p-type silicon are expressed by the following formula (2) ′:
Fe concentration = α · {(1 / τ0 ′) − (1 / τ1 ′)} (2) ′
(In Formula (2), τ0 ′ is one of the recombination lifetime measurement values obtained by the two measurements, τ1 ′ is the other, and α has the same meaning as in Formula (2).)
The quantitative analysis limit determination method according to claim 1, wherein the calculation of the iron concentration is performed a plurality of times by substituting into and determined based on an average value and a standard deviation of the obtained plurality of iron concentrations.
[3] The average value and standard deviation are expressed by the following formula (3):
Quantitative analysis limit = the average value + 2 · t (m; α) · the standard deviation (3)
(In formula (3), t (m; α) is the α percent point of the Student's t distribution with m degrees of freedom.)
The quantitative analysis limit determination method according to [1] or [2], wherein the quantitative analysis limit is determined by substituting into.

本発明によれば、実シーケンスにしたがったばらつき因子の影響を含む分析方法の評価が可能となり、得られる測定値の信頼性を高めることができる。   According to the present invention, it is possible to evaluate an analysis method including the influence of a variation factor according to an actual sequence, and it is possible to improve the reliability of the obtained measurement value.

ウェーハ面内9点の各測定点における実施例1で得られた定量分析限界と比較例1で得られた定量分析限界を示すグラフである。6 is a graph showing the quantitative analysis limit obtained in Example 1 and the quantitative analysis limit obtained in Comparative Example 1 at each of nine measurement points in the wafer surface.

本発明は、Fe−Bペア乖離前後の測定値の変化を利用してボロンドープp型シリコン中の鉄濃度を求める分析方法の定量分析限界決定方法(以下、「本発明の決定方法」ともいう)に関する。本発明の決定方法では、ボロンドープp型シリコン中のFe−Bペア乖離中に、上記分析方法により該シリコン中の鉄濃度を求めることによって得られた定量値に基づき、上記定量分析限界を決定する。
先に説明したように、ボロンドープp型シリコン中のFe−Bペアを乖離させている間、該シリコンはFeを含まないブランク試料とみなし得る状態となる。したがって、この状態で実シーケンスと同じく測定を行いFe濃度の分析を行うことにより、少数キャリア拡散長やライフタイムの測定値ばらつきとともに、前記した各種操作誤差に起因するばらつき因子の影響も含むFe濃度の定量値のばらつき情報を得ることができ、この結果、より高い信頼性をもって定量分析限界を決定することができる。
以下、本発明の決定方法について、更に詳細に説明する。
The present invention is a quantitative analysis limit determination method (hereinafter also referred to as “determination method of the present invention”) of an analysis method for obtaining an iron concentration in boron-doped p-type silicon by using a change in measured values before and after the Fe—B pair divergence. About. In the determination method of the present invention, the quantitative analysis limit is determined based on the quantitative value obtained by obtaining the iron concentration in the silicon by the analytical method during the Fe-B pair detachment in the boron-doped p-type silicon. .
As described above, while the Fe-B pair in the boron-doped p-type silicon is dissociated, the silicon can be regarded as a blank sample not containing Fe. Therefore, in this state, the Fe concentration is analyzed by performing the same measurement as in the actual sequence and analyzing the Fe concentration, thereby including the influence of the above-described variation factors due to various operational errors as well as the variation in measured values of minority carrier diffusion length and lifetime. As a result, it is possible to determine the limit of quantitative analysis with higher reliability.
Hereinafter, the determination method of the present invention will be described in more detail.

本発明の決定方法の対象となる分析方法は、Fe−Bペア乖離前後の測定値の変化を利用してボロンドープp型シリコン中の鉄濃度を求めるものである。上記分析方法としては、表面光電圧法および光導電減衰法を挙げることができる。光導電減衰法としては、パルス状の励起光を試料に照射し、キャリアを発生させた後、それらの減衰過程をマイクロ波の反射強度を観測することで、導電率の減衰カーブを求め、ライフタイムを算出するμ−PCD(μ−wave Photo Conductivity Decay)法が好適である。これら方法はいずれも、Fe−Bペア乖離前後の測定値の変化がFe濃度に依存することを利用して、シリコン中の鉄濃度を求める。ここでFe−Bペア乖離中、即ちFe−Bペア乖離処理後、リペアリングが起こる前にバルクFe濃度測定を行うことで、Fe濃度を0とみなし得る状態で実際の測定シーケンスを実施することができるため、前記した化学分析的手法に準じて定量分析限界を決定することができる。   The analysis method that is the object of the determination method of the present invention is to obtain the iron concentration in boron-doped p-type silicon by using the change in measured values before and after the separation of the Fe—B pair. Examples of the analysis method include a surface photovoltage method and a photoconductive decay method. In the photoconductive decay method, the sample is irradiated with pulsed excitation light to generate carriers, and then the attenuation process is observed by observing the reflection intensity of the microwaves. A μ-PCD (μ-wave Photoductive Decay) method for calculating time is suitable. In any of these methods, the iron concentration in silicon is obtained by utilizing the fact that the change in the measured value before and after the separation of the Fe-B pair depends on the Fe concentration. Here, during the Fe-B pair divergence, that is, after the Fe-B pair divergence processing, the bulk Fe concentration measurement is performed before the repairing occurs, so that the actual measurement sequence is performed in a state where the Fe concentration can be regarded as zero. Therefore, the limit of quantitative analysis can be determined according to the chemical analysis method described above.

上記のFe−Bペア乖離処理は、高強度の白色光等の高エネルギーの光を照射する方法、200℃以上の熱処理を行った後急冷する方法、等により行うことができる。より詳しくは、分析対象のシリコン表面にシリコンの禁制帯エネルギー1.1eV以上のエネルギーを有する単色光を断続的に照射するか、または分析対象のシリコンを200℃以上に5〜15分間程度保持した後、0.1〜3.0℃/℃程度の降温速度で急冷することにより行うことができる。   The Fe—B pair dissociation treatment can be performed by a method of irradiating high energy light such as high intensity white light, a method of rapid cooling after performing a heat treatment at 200 ° C. or higher, and the like. More specifically, the surface of the silicon to be analyzed is intermittently irradiated with monochromatic light having a silicon forbidden band energy of 1.1 eV or higher, or the silicon to be analyzed is held at 200 ° C. or higher for about 5 to 15 minutes. Then, it can carry out by quenching with the temperature-fall rate of about 0.1-3.0 degreeC / degreeC.

上記乖離処理後、Fe−Bペアがリペアリング(再結合)するまでに要する時間は、シリコン中のボロン濃度依存性があるため、ボロン濃度に依存するFe−Bペアリング速度を考慮して格子間Feがボロンとリペアリングする前に、Fe濃度の測定を行うことが好ましい。例えば、"Formation rates of iron-acceptor pairs in crystalline silicon", JAP 98, 083509 (2005)より、ボロン濃度が1E15atoms/cm3程度のp型シリコンは、室温にて、Fe−Bペアの乖離処理から1%リペアリングするまでに要する時間は、2分程度である。この場合、乖離処理から2分以内にFe濃度測定を行うことより、Fe濃度を実汚染量の1%以下と見なし得る状態で実際の測定シーケンスを実施することが出来る。したがって、ボロン濃度が1E15atoms/cm3程度でありFeの実汚染濃度が1E10atoms/cm3以下のp型シリコンを試料として用いると、乖離処理から2分以内であればリペアリングは1%以下であるため1E8atoms/cm3以下のFe濃度となる。この値は、現行の測定器におけるFe濃度の検出限界とされている値を大きく下回る値であるため、ほぼFe濃度を0と見なすことが出来る。表面光電圧法によるおよび光導電減衰法によるFe濃度測定は、いずれも公知の方法で実施することができる。
以上の測定方法および算出方法の詳細については、例えば特開平6−69301号公報、特開2005−64054号公報等を参照することができる。
Since the time required for the Fe—B pair to be repaired (recombined) after the dissociation process is dependent on the boron concentration in silicon, the lattice takes into account the Fe—B pairing rate depending on the boron concentration. It is preferable to measure the Fe concentration before the inter-Fe is repaired with boron. For example, according to “Formation rates of iron-acceptor pairs in crystalline silicon”, JAP 98, 083509 (2005), p-type silicon having a boron concentration of about 1E15 atoms / cm 3 can be obtained from the dissociation treatment of Fe-B pairs at room temperature. The time required for 1% repairing is about 2 minutes. In this case, the actual measurement sequence can be performed in a state where the Fe concentration can be regarded as 1% or less of the actual contamination amount by performing the Fe concentration measurement within 2 minutes from the divergence processing. Therefore, when p-type silicon having a boron concentration of about 1E15 atoms / cm 3 and an actual contamination concentration of Fe of 1E10 atoms / cm 3 or less is used as a sample, the repairing is 1% or less within 2 minutes from the separation process. Therefore, the Fe concentration is 1E8 atoms / cm 3 or less. Since this value is much lower than the value that is the detection limit of the Fe concentration in the current measuring instrument, the Fe concentration can be regarded as almost zero. Both the Fe concentration measurement by the surface photovoltage method and the photoconductive decay method can be performed by a known method.
For details of the above measurement method and calculation method, reference can be made to, for example, JP-A-6-69301 and JP-A-2005-64054.

以上の工程により、Fe濃度を0とみなし得るブランク試料におけるFe濃度測定を行うことができる。一般に、定量分析限界はブランクの平均と標準偏差から求められる。したがって本発明においても、上記Fe濃度を0とみなし得るブランク試料におけるFe濃度測定を複数回繰り返し、得られた定量値の平均値および標準偏差に基づき、定量分析下限を求めることが好ましい。一般に定量分析限界(検出下限)は、下記式(3)により定義されるため、本発明においても得られた定量値の平均値と標準偏差を下記式(3)に適用し、定量分析限界を決定することが好ましい。
定量分析限界 = ブランクの平均 + 2・t(m;α)・ブランクの標準偏差 …(3)
ここで、t(m;α)は自由度mのスチューデントのt分布のαパーセント点である。
上記平均値および標準偏差を求めるための測定回数は、2回以上であり、好ましくは3回以上、精度を高めるうえでは5回以上行うことが好ましい。測定回数の上限は特に限定されるものではないが、例えば20回程度である。
Through the above steps, it is possible to measure the Fe concentration in a blank sample in which the Fe concentration can be regarded as zero. In general, the quantitative analysis limit is determined from the average and standard deviation of the blank. Therefore, also in the present invention, it is preferable to repeat the Fe concentration measurement in a blank sample in which the Fe concentration can be regarded as 0, and obtain the lower limit of quantitative analysis based on the average value and standard deviation of the obtained quantitative values. Generally, since the quantitative analysis limit (detection lower limit) is defined by the following formula (3), the average value and standard deviation of the quantitative values obtained also in the present invention are applied to the following formula (3) to determine the quantitative analysis limit. It is preferable to determine.
Quantitative analysis limit = average of blank + 2 · t (m; α) · standard deviation of blank (3)
Here, t (m; α) is the α percentage point of the Student's t distribution with m degrees of freedom.
The number of measurements for obtaining the average value and the standard deviation is 2 times or more, preferably 3 times or more, and preferably 5 times or more for improving accuracy. The upper limit of the number of times of measurement is not particularly limited, but is about 20 times, for example.

以上説明した本発明の決定方法により決定される定量分析限界は、実シーケンスと同じく測定を行いFe濃度の分析を行うことにより得られたものである。したがって、少数キャリア拡散長や再結合ライフタイムの測定値ばらつきとともに、前記した各種操作誤差に起因するばらつき因子の影響も含むFe濃度の定量値のばらつき情報を含むものであるため、分析方法の検出感度をより正確に表すものと考えられる。したがって本発明により、分析の信頼性をよりいっそう高めることができる。   The quantitative analysis limit determined by the determination method of the present invention described above is obtained by performing the same measurement as the actual sequence and analyzing the Fe concentration. Therefore, it includes the variation information of the Fe concentration quantitative value including the influence of the above-mentioned variation factors due to various operational errors as well as the measured value variation of the minority carrier diffusion length and recombination lifetime. It is considered to represent it more accurately. Therefore, according to the present invention, the reliability of analysis can be further increased.

本発明の決定方法においてFe濃度が実質0の状態を擬似的に作り出す試料シリコンは、デバイス向け製品の形状であるウェーハ状のものが好ましい。また、測定側の表面に研削などの機械的なダメージを含まない、研磨上がり、または酸もしくはアルカリによるエッチング面が好ましい。その厚みは、100μm〜3mm程度が好適である。また、ボロンドープ量は、1×1013〜1×1016atoms/cm3が好ましく、1×1013〜2×1015atoms/cm3がより好ましい。Fe汚染濃度は、例えば1×1010atoms/cm3以下であり、低いほど好ましい。なお、少数キャリア拡散長および再結合ライフタイムは、Feに加えてFe以外の再結合中心の濃度に依存するため、分析対象となるシリコンと同等ないしは近似した特性値を有するサンプルを用いて定量分析限界を決定することが好ましい。 In the determination method of the present invention, the sample silicon that artificially creates a state in which the Fe concentration is substantially zero is preferably a wafer-like one that is a shape of a product for devices. Further, the surface on the measurement side preferably does not include mechanical damage such as grinding, is polished up, or is etched with acid or alkali. The thickness is preferably about 100 μm to 3 mm. The boron doping amount is preferably 1 × 10 13 to 1 × 10 16 atoms / cm 3, more preferably 1 × 10 13 to 2 × 10 15 atoms / cm 3 . The Fe contamination concentration is, for example, 1 × 10 10 atoms / cm 3 or less, and the lower the better. Since minority carrier diffusion length and recombination lifetime depend on the concentration of recombination centers other than Fe in addition to Fe, quantitative analysis is performed using a sample having a characteristic value similar to or close to that of silicon to be analyzed. It is preferred to determine the limit.

以下に、本発明を実施例に基づき更に説明するが、本発明は実施例に示す態様に限定されるものではない。   Hereinafter, the present invention will be further described based on examples, but the present invention is not limited to the embodiments shown in the examples.

[実施例1]
ボロンドープp型、直径300mm、厚み775μmの半導体デバイス作製用の単結晶シリコンウェーハ(ボロンドープ量:1.3E15atoms/cm3)を用意した。
少数キャリア拡散長測定装置として、表面光電圧測定装置(SDI社製FAaST330−SPV)を用いた。測定前に、5質量%のHF溶液にシリコンウェーハを5分間浸漬し自然酸化膜を除去し、その後10分間の超純水リンスを行い、乾燥後、クリーンルーム内雰囲気に24時間放置し、測定の前処理とした。以下において、Fe−Bペアの乖離処理には、装置組み込みの光照射機構を使用し、少数キャリア拡散長の測定は、SEMI準拠のスタンダードモードで実施した。
上記前処理後、Fe−Bペア乖離前後の少数キャリア拡散長の測定値の差分から前記式(1)により面内9点のFe濃度を算出したところ、1×109atoms/cm3〜4×109/cm3の範囲であった。
別途、上記前処理後にFe−Bペア乖離処理後 2分以内に上記と同様の方法で面内9点においてFe濃度測定を開始し、各測定における乖離までの時間間隔をFe−Bペア乖離処理後2分以内にして10回繰り返した。上記時間内であれば、Fe−Bペアのリペアリングは生じないため、得られた結果はブランク試料の結果とみなすことができる。各点の平均値(ブランクの平均)および標準偏差(ブランクの標準偏差)は、それぞれ−7×107atoms/cm3〜1×109atoms/cm3、7×108atoms/cm3〜1.2×109atoms/cm3となった。得られた平均値および標準偏差を前記式(3)に適用し、各点について定量分析限界を算出した。
[Example 1]
A single crystal silicon wafer (boron doping amount: 1.3E15 atoms / cm 3 ) for preparing a semiconductor device having a boron-doped p-type, a diameter of 300 mm, and a thickness of 775 μm was prepared.
As a minority carrier diffusion length measuring device, a surface photovoltage measuring device (FAaST330-SPV manufactured by SDI) was used. Before measurement, immerse the silicon wafer in 5% by mass HF solution for 5 minutes to remove the natural oxide film, then rinse with ultrapure water for 10 minutes, and after drying, leave it in a clean room atmosphere for 24 hours. Pre-processing was performed. In the following, the light irradiation mechanism built in the apparatus was used for the dissociation processing of the Fe—B pair, and the minority carrier diffusion length was measured in a standard mode conforming to SEMI.
After the above pretreatment, it was calculated Fe concentration in the in-plane nine points by the formula from the difference between the measured value of minority carrier diffusion length of the front and rear Fe-B pair dissociation (1), 1 × 10 9 atoms / cm 3 ~4 The range was × 10 9 / cm 3 .
Separately, the Fe concentration measurement is started at nine points in the plane in the same manner as described above within 2 minutes after the Fe-B pair separation process after the pre-treatment, and the time interval until the deviation in each measurement is determined as the Fe-B pair separation process. Repeated 10 times within 2 minutes. If it is within the above-mentioned time, repair of the Fe—B pair does not occur, and thus the obtained result can be regarded as the result of the blank sample. The average value of each point (average of blank) and standard deviation (standard deviation of blank) are -7 × 10 7 atoms / cm 3 to 1 × 10 9 atoms / cm 3 , 7 × 10 8 atoms / cm 3 to It became 1.2 × 10 9 atoms / cm 3 . The obtained average value and standard deviation were applied to the formula (3), and the quantitative analysis limit was calculated for each point.

[比較例1]
実施例1と同様のシリコンウェーハについて、実施例1と同様の装置を使用し面内9点で少数キャリア拡散長の測定を10回行った。得られた測定値を、前述の非特許文献1で提案されている下記式に適用し、定量分析限界を算出した。
定量分析限界=δN=(2D/(σνL2))・(δL/L)
上記において、σν=6×10-7cm3/s、D=40cm2/sとし、Lには少数キャリアの拡散長の平均値、δLには少数キャリア拡散長測定値の標準偏差に2・t(9;0.05)をかけたものを適用した。
[Comparative Example 1]
For the same silicon wafer as in Example 1, minority carrier diffusion length was measured 10 times at 9 points in the plane using the same apparatus as in Example 1. The obtained measurement value was applied to the following formula proposed in Non-Patent Document 1 to calculate the quantitative analysis limit.
Quantitative analysis limit = δN = (2D / (σνL 2 )) · (δL / L)
In the above, σν = 6 × 10 −7 cm 3 / s, D = 40 cm 2 / s, L is the average value of the diffusion length of minority carriers, δL is 2 · The one multiplied by t (9; 0.05) was applied.

評価結果
図1に、各測定点における実施例1で得られた定量分析限界と比較例1で得られた定量分析限界を示す。図1に示すように、実施例1で得られた定量分析限界は2.7×109atoms/cm3〜6.1×109atoms/cm3の範囲であったのに対し、比較例1で得られた定量分析限界は5×108atoms/cm3〜1.2××109atoms/cm3となった。以上の結果から、非特許文献1に記載の方法によると、本発明の決定方法と比べ定量分析限界を1/2から1/3ほど低く見積もることが判明した。非特許文献1に記載の方法は、少数キャリアの拡散長の測定ばらつき情報は含むが、各種操作誤差に起因するばらつきは考慮されていない。これに対し本発明の決定方法は、実シーケンス同じく測定を行い、そのばらつきから定量分析限界を求めるものであるため、得られる定量分析限界は、より信頼性が高いものである。
Evaluation Results FIG. 1 shows the quantitative analysis limit obtained in Example 1 and the quantitative analysis limit obtained in Comparative Example 1 at each measurement point. As shown in FIG. 1, the quantitative analysis limit obtained in Example 1 was in the range of 2.7 × 10 9 atoms / cm 3 to 6.1 × 10 9 atoms / cm 3. The quantitative analysis limit obtained in 1 was 5 × 10 8 atoms / cm 3 to 1.2 × 10 9 atoms / cm 3 . From the above results, it was found that according to the method described in Non-Patent Document 1, the quantitative analysis limit is estimated to be lower by 1/2 to 1/3 than the determination method of the present invention. The method described in Non-Patent Document 1 includes measurement variation information on the diffusion length of minority carriers, but does not consider variations due to various operation errors. On the other hand, since the determination method of the present invention measures the same as the actual sequence and obtains the quantitative analysis limit from the variation, the obtained quantitative analysis limit is more reliable.

本発明の決定方法は、シリコンウェーハ製造分野においてFe汚染量の定量に使用される測定装置の検出能力を評価する方法として有用である。   The determination method of the present invention is useful as a method for evaluating the detection capability of a measuring apparatus used for quantifying the amount of Fe contamination in the field of silicon wafer production.

Claims (3)

ボロンドープp型シリコン中の鉄濃度の定量に用いられる測定装置の鉄濃度定量分析限界決定方法であって、
前記定量は、前記測定装置により求められるFe−Bペア乖離中の少数キャリア拡散長測定値とFe−Bペア形成中の少数キャリア拡散長測定値を、下記(1):
Fe濃度=C・{(1/L 1 2 )−(1/L 2 2 )} …(1)
(式(1)中、L 1 はFe−Bペア乖離中の少数キャリア拡散長測定値であり、L 2 はFe−Bペア形成中の少数キャリア拡散長測定値であり、Cは換算係数である。)
に代入することによりボロンドープp型シリコン中の鉄濃度を求めることにより行われるものであり、
前記定量分析限界を、ボロンドープp型シリコン中のFe−Bペア乖離中に2回の測定を行い得られた2つの少数キャリア拡散長測定値を、下記式(1)’:
Fe濃度=C・{(1/L 1 2 )−(1/L 2 2 )} …(1)’:
(式(1)中、L 1 ’は前記2回の測定で得られた少数キャリア拡散長測定値の一方であり、L 2 ’は他方であり、Cは式(1)と同義である。)
に代入することにより鉄濃度を算出することを複数回行い、得られた複数の鉄濃度の平均値および標準偏差に基づき決定することを特徴とする、前記定量分析限界決定方法。
An iron concentration quantitative analysis limit determination method of a measuring device used for quantifying iron concentration in boron-doped p-type silicon,
The quantification of the minority carrier diffusion length measurement of minority carrier diffusion length measurements and Fe-B pair during the formation of the Fe-B pair of deviation obtained by said measuring device, the following formula (1):
Fe concentration = C · {(1 / L 1 2 ) − (1 / L 2 2 )} (1)
(In Formula (1), L 1 is a measured value of the minority carrier diffusion length during Fe-B pair separation, L 2 is a measured value of the minority carrier diffusion length during Fe-B pair formation, and C is a conversion factor. is there.)
Is obtained by determining the iron concentration in boron-doped p-type silicon by substituting
Two minority carrier diffusion length measurements obtained by measuring the quantitative analysis limit twice during Fe-B pair detachment in boron-doped p-type silicon are represented by the following formula (1) ′:
Fe concentration = C · {(1 / L 1 2 ) − (1 / L 2 2 )} (1) ′:
(In the formula (1), L 1 ′ is one of the minority carrier diffusion length measurements obtained by the two measurements, L 2 ′ is the other, and C has the same meaning as in the formula (1). )
The quantitative analysis limit determination method according to claim 1, wherein the calculation of the iron concentration is performed a plurality of times by substituting into and determined based on an average value and a standard deviation of the obtained plurality of iron concentrations .
ボロンドープp型シリコン中の鉄濃度の定量に用いられる測定装置の鉄濃度定量分析限界決定方法であって、An iron concentration quantitative analysis limit determination method of a measuring device used for quantifying iron concentration in boron-doped p-type silicon,
前記定量は、前記測定装置により求められるFe−Bペア乖離中の再結合ライフタイム測定値とFe−Bペア形成中の再結合ライフタイム測定値を下記式(2):In the quantification, the recombination lifetime measurement value during Fe-B pair detachment and the recombination lifetime measurement value during Fe-B pair formation determined by the measuring device are expressed by the following formula (2):
Fe濃度=α・{(1/τ0)−(1/τ1)} …(2)Fe concentration = α · {(1 / τ0) − (1 / τ1)} (2)
(式(2)中、τ0はFe−Bペア形成中の再結合ライフタイム測定値であり、τ1はFe−B乖離中の再結合ライフタイム測定値であり、αは換算係数である。)(In formula (2), τ0 is a recombination lifetime measurement value during Fe-B pair formation, τ1 is a recombination lifetime measurement value during Fe-B detachment, and α is a conversion factor.)
に代入することによりボロンドープp型シリコン中の鉄濃度を求めることにより行われるものであり、Is obtained by determining the iron concentration in boron-doped p-type silicon by substituting
前記定量分析限界を、ボロンドープp型シリコン中のFe−Bペア乖離中に2回の測定を行い得られた2つの再結合ライフタイム測定値を、下記式(2)’:Two recombination lifetime measurement values obtained by measuring the quantitative analysis limit twice during the Fe-B pair dissociation in boron-doped p-type silicon are expressed by the following formula (2) ':
Fe濃度=α・{(1/τ0’)−(1/τ1’)} …(2)’Fe concentration = α · {(1 / τ0 ′) − (1 / τ1 ′)} (2) ′
(式(2)中、τ0’は前記2回の測定で得られた再結合ライフタイム測定値の一方であり、τ1’は他方であり、αは式(2)と同義である。)(In the formula (2), τ0 ′ is one of the recombination lifetime measurement values obtained by the two measurements, τ1 ′ is the other, and α is synonymous with the formula (2).)
に代入することにより鉄濃度を算出することを複数回行い、得られた複数の鉄濃度の平均値および標準偏差に基づき決定することを特徴とする、前記定量分析限界決定方法。The quantitative analysis limit determination method according to claim 1, wherein the calculation of the iron concentration is performed a plurality of times by substituting into and determined based on an average value and a standard deviation of the obtained plurality of iron concentrations.
前記平均値および標準偏差を、下記式(3):The average value and standard deviation are expressed by the following formula (3):
定量分析限界 = 前記平均値+ 2・t(m;α)・前記標準偏差 …(3)Quantitative analysis limit = the average value + 2 · t (m; α) · the standard deviation (3)
(式(3)中、t(m;α)は自由度mのスチューデントのt分布のαパーセント点である。)(In formula (3), t (m; α) is the α percent point of the Student's t distribution with m degrees of freedom.)
に代入することにより、前記定量分析限界を決定する請求項1または2に記載の定量分析限界決定方法。The quantitative analysis limit determination method according to claim 1, wherein the quantitative analysis limit is determined by substituting into.
JP2009202765A 2009-09-02 2009-09-02 Quantitative analysis limit determination method in iron concentration analysis in boron-doped p-type silicon Active JP5556090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009202765A JP5556090B2 (en) 2009-09-02 2009-09-02 Quantitative analysis limit determination method in iron concentration analysis in boron-doped p-type silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009202765A JP5556090B2 (en) 2009-09-02 2009-09-02 Quantitative analysis limit determination method in iron concentration analysis in boron-doped p-type silicon

Publications (2)

Publication Number Publication Date
JP2011054784A JP2011054784A (en) 2011-03-17
JP5556090B2 true JP5556090B2 (en) 2014-07-23

Family

ID=43943499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009202765A Active JP5556090B2 (en) 2009-09-02 2009-09-02 Quantitative analysis limit determination method in iron concentration analysis in boron-doped p-type silicon

Country Status (1)

Country Link
JP (1) JP5556090B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6458874B2 (en) 2015-10-07 2019-01-30 株式会社Sumco Method for measuring Fe concentration in p-type silicon wafer
KR20180013276A (en) * 2016-07-29 2018-02-07 에스케이실트론 주식회사 Evaluating method for precleaning condition of semiconductor substrate wafer and measuring methid for life time of semiconductor substrate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07249666A (en) * 1994-03-11 1995-09-26 Komatsu Electron Metals Co Ltd Iron concentration measurement method of silicon wafer
JP3665232B2 (en) * 1998-10-09 2005-06-29 株式会社神戸製鋼所 Method and apparatus for evaluating iron concentration in silicon semiconductor
JP2005064054A (en) * 2003-08-18 2005-03-10 Sumitomo Mitsubishi Silicon Corp Method of measuring iron concentration in silicon wafer
JP2007053123A (en) * 2005-08-15 2007-03-01 Sumco Corp Method of determining stabilization of surface of silicon wafer and method of manufacturing silicon wafer

Also Published As

Publication number Publication date
JP2011054784A (en) 2011-03-17

Similar Documents

Publication Publication Date Title
JP4940737B2 (en) Minority carrier diffusion length measuring method and silicon wafer manufacturing method
JP5847824B2 (en) How to map oxygen concentration
JP5659632B2 (en) Boron-doped p-type silicon wafer iron concentration analysis method and analyzer, silicon wafer, and silicon wafer manufacturing method
WO2017103935A1 (en) Hybrid metrology method and system
JP6696729B2 (en) Semiconductor substrate evaluation method and semiconductor substrate manufacturing method
JP5556090B2 (en) Quantitative analysis limit determination method in iron concentration analysis in boron-doped p-type silicon
US7751035B2 (en) Method and device to quantify active carrier profiles in ultra-shallow semiconductor structures
JP6605386B2 (en) Metal contamination concentration analysis method
JP5545131B2 (en) Quantitative analysis limit determination method in iron concentration analysis in boron-doped p-type silicon
JP5471780B2 (en) Method for measuring iron concentration in boron-doped p-type silicon and method for producing boron-doped p-type silicon wafer
CN111830007B (en) Method and system for measuring gallium vacancy concentration of gallium nitride material
CN108089109B (en) Method for testing minority carrier lifetime in semiconductor silicon material
JP2007053123A (en) Method of determining stabilization of surface of silicon wafer and method of manufacturing silicon wafer
Kristensen Temperature coefficients and crystal defects in multicrystalline silicon solar cells
JP6382747B2 (en) Method for measuring effective lifetime of excess minority carrier and apparatus for measuring effective lifetime of excess minority carrier
KR20070065732A (en) Method for evaluation of damage distribution on whole wafer
JP5577842B2 (en) Method and apparatus for measuring iron concentration of boron-doped p-type silicon wafer, silicon wafer, and method for manufacturing silicon wafer
KR101302587B1 (en) Evaluation method for minority carrier lifetime in silicon wafer
JP4938960B2 (en) Method for manufacturing photoelectric conversion device and photoelectric conversion device
JP5590000B2 (en) Method for evaluating film thickness of polysilicon film
CN102539357A (en) Method for testing aluminum element content in aluminum gallium and nitrogen wafer epitaxial layer
JP2007266258A (en) Bmd density evaluation method of silicon wafer
Gruber Characterization of ingots and wafers for photovoltaic applications
JP5846899B2 (en) Semiconductor substrate analysis method
Bonzi et al. Inverse doping profile extraction for predictive SPAD modeling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140520

R150 Certificate of patent or registration of utility model

Ref document number: 5556090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250