JP3665232B2 - Method and apparatus for evaluating iron concentration in silicon semiconductor - Google Patents

Method and apparatus for evaluating iron concentration in silicon semiconductor Download PDF

Info

Publication number
JP3665232B2
JP3665232B2 JP16393499A JP16393499A JP3665232B2 JP 3665232 B2 JP3665232 B2 JP 3665232B2 JP 16393499 A JP16393499 A JP 16393499A JP 16393499 A JP16393499 A JP 16393499A JP 3665232 B2 JP3665232 B2 JP 3665232B2
Authority
JP
Japan
Prior art keywords
light
silicon semiconductor
recombination lifetime
irradiation
recombination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16393499A
Other languages
Japanese (ja)
Other versions
JP2000183123A (en
Inventor
弘行 高松
之博 楠見
伸吾 住江
邦夫 射場
太 尾嶋
英久 橋爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP16393499A priority Critical patent/JP3665232B2/en
Publication of JP2000183123A publication Critical patent/JP2000183123A/en
Application granted granted Critical
Publication of JP3665232B2 publication Critical patent/JP3665232B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,P型シリコン半導体の鉄濃度を評価する方法及びその装置に関するものである。
【0002】
【従来の技術】
P型シリコン半導体の鉄による汚染濃度の測定方法としては,例えば特開平9−21875号公報や特開平6−69301号公報に提案されているものが知られている。
上記特開平9−21875号公報に記載されている鉄汚染濃度評価方法(従来技術1とする)では,まずシリコン半導体試料にレーザ光を所定時間照射してその照射時間に対する半導体試料の再結合ライフタイムの変化率を測定し,その変化率と所定の閾値との大小関係によって鉄汚染の有無が判断される。半導体試料がB(ボロン)をドーパントとするP型シリコン半導体である場合,試料中にFe(ドナーとなり正に帯電)が存在すると,格子位置のB(アクセプタとなり負に帯電)と静電力で結合し,Fe−B対が形成される。この状態でレーザ光を照射すると,これによって生成された過剰キャリアによって上記Fe−B対が解離する。Feが解離して格子間位置にある状態と,Bと結合してFe−B対を形成している状態とでは電子状態が異なるため,それら2つの状態では測定される再結合ライフタイムが変化する。鉄に汚染されていない半導体試料ではレーザ光の照射の有無によって上記2つの異なる状態は発生しないため,レーザ光を照射しても測定される再結合ライフタイムは変化しない。従って,レーザ光を照射したときの再結合ライフタイムの変化率によって鉄による汚染の有無が判断できる。上記再結合ライフタイムの変化率に基づいて鉄による汚染が判明した半導体試料に対しては,測定された再結合ライフタイム(上記レーザ光の連続的な照射の前に,同じレーザ光を瞬間的に照射して光導電減衰法により測定する)を検量線(再結合ライフタイムと鉄汚染濃度との関係)に照合することにより上記半導体試料の鉄汚染濃度が評価される。
また,上記特開平6−69301号公報に記載されている鉄汚染濃度評価方法(従来技術2とする)では,シリコン半導体試料に熱処理を施すことにより試料中のFe−B対を解離させ,その前後の再結合ライフタイムτa ,τb に基づいて次式により鉄汚染濃度〔Fe〕が評価される。
〔Fe〕=α((1/τa )−(1/τb ))
但し,α:比例定数
これは,鉄汚染濃度がFe−B解離前後の再結合ライフタイムと一定の関係を有することに基づく方法である。
【0003】
【発明が解決しようとする課題】
しかしながら,上記従来技術1及び2にはそれぞれ次のような問題点があった。
まず従来技術1では,レーザ光の照射時間に対する再結合ライフタイムの変化率に基づいて鉄汚染の有無を判断しているが,上記変化率は,鉄濃度だけでなく光照射により発生する過剰キャリアの濃度に依存する。即ち,照射光の強度や試料の表面状態の相違による光吸収量の違いによって過剰キャリアの濃度が異なる場合でも,上記再結合ライフタイムの変化率は変化する。従って,上記従来技術1による鉄汚染の有無の判断方法には安定的評価という面で問題がある。また,上記従来技術1では,鉄濃度をFe−B解離前の再結合ライフタイムに基づいて求めているが,鉄以外に再結合ライフタイムを低下させる汚染物等が混入している場合には正確に鉄汚染濃度を評価することはできない。更に,Fe−Bの解離に再結合ライフタイム測定用のレーザ光を用いているため,試料を多点測定する場合に測定時間が長くなってしまうという問題点もあった。
また,上記従来技術2では,Fe−Bの解離に熱処理を用いているため,測定に時間と手間がかかると共に,熱処理の工程で新たな汚染が導入される危険性が高いという問題点があった。
本発明は上記事情に鑑みてなされたものであり,半導体試料への新たな汚染の導入を防止しつつ,半導体試料中の鉄濃度を容易且つ高精度で測定することが可能なシリコン半導体の鉄濃度評価方法及びその装置を提供することを目的とする。
【0004】
【課題を解決するための手段】
鉄に汚染されたP型シリコン半導体試料に光を連続的に照射すると,格子位置のB(ボロン)とFe(鉄)との結合により形成されていたFe−Bが次第に解離され,それに伴って測定される再結合ライフタイムは次第に増加し,Fe−Bが完全に解離されたときに上記再結合ライフタイムは飽和する。上記Fe−Bの解離前の再結合ライフタイムτ1と解離後の再結合ライフタイム(飽和値)τ2とにより求められる評価値DFeを
DFe=(1/τ1)−(1/τ2) …(1)
とすると,上記DFeは図4に示すように鉄濃度と相関がある。そこで,図4に示す評価値DFeと鉄濃度との関係を検量線として予め求めておき,光照射によるFe−Bの解離前の再結合ライフタイムτ1と解離後の再結合ライフタイム(飽和値)τ2とを測定し,これらτ1,τ2を上記(1)式に代入して求められる評価値DFeを上記検量線に照合することで鉄濃度を評価することが可能である。尚,測定時には,必ずしも実際に上記Fe−Bを完全に解離させて再結合ライフタイムの飽和値を直接求める必要はない。例えば再結合ライフタイムの変化を部分的に得られればカーブフィッティング等により飽和値を推定することは可能であり,また,光の強度や照射時間を厳密に管理できれば上記飽和値τ2の代わりに所定の中間的な値を用いて同様の方法で鉄濃度を評価することも可能である。
また,以上の方法を用いれば,鉄以外に再結合ライフタイムを低下させる汚染物等が混入していたとしてもその影響を排除することが可能である。即ち,鉄の汚染のみによる再結合ライフタイムをτFe,他の汚染物のみによる再結合ライフタイムをτD とすると,測定される再結合ライフタイムτは次式で表される。
1/τ=1/τFe + 1/τD …(2)
ここで,光照射によるFe−Bの解離前のτFeをτFe1 ,解離後のτFeをτFe2 とすると,
1/τ1=1/τFe1 + 1/τD …(3)
1/τ2=1/τFe2 + 1/τD …(4)
となるから,上記(1)式は,

Figure 0003665232
となり,上記評価値DFeからは鉄以外の汚染物による再結合ライフタイム(τD )の影響が排除される。
【0005】
従って,上記目的を達成するために本発明の方法は,瞬間光を連続的に複数回発光させることによってP型シリコン半導体試料にシリコンの禁制帯以上で且つ上記P型シリコン半導体試料における再結合ライフタイムを飽和させ得る上記P型シリコン半導体試料上で総エネルギー10J/cm 2 以上となる所定の光を照射した直後の再結合ライフタイムと,上記所定の光の照射の影響がないときの再結合ライフタイムとに基づいて,上記半導体試料の鉄汚染濃度を評価するシリコン半導体の鉄濃度評価方法として構成されている。このようにFe−Bの解離に光を用いることにより新たな汚染の導入が防止できると共に,光照射前後の再結合ライフタイムに基づいて鉄濃度を評価しているため,鉄以外の汚染物による影響を排除することができる。
また,上記所定の光として,上記半導体試料における再結合ライフタイムを飽和させるだけのエネルギーを有する光を用いれば,照射光の強度や試料の表面状態の相違による光吸収量の違いによる影響を受けることがなく,評価の安定性が向上する。ここで,上記半導体試料上に10J/cm2 以上のエネルギーの光を照射すれば,上記再結合ライフタイムを飽和させることができることがわかった。
また,上記所定の光の照射直後の再結合ライフタイムを直接測定できない場合でも,上記所定の光の照射後における再結合ライフタイムの変化履歴を部分的に測定し,該部分的な変化履歴に基づいて上記所定の光の照射直後の再結合ライフタイム及び/若しくは上記所定の光の照射の影響がないときの再結合ライフタイムを推定することが可能である。
また,上記所定の光として,広範囲を同時に照射可能な可視光を用いれば,測定時間が短縮できる。
尚,上記再結合ライフタイムの測定には例えば光導電減衰法を用いることができる。この時のキャリア注入量は1E16/cm3 以上とすることが望ましい。
また,上記光導電減衰法による再結合ライフタイムの測定を,キャリア注入直後から所定時間(拡散/再結合による注入キャリア濃度の減少の少ない時間)経過後までの光導電減衰波形の変化に基づいて行うようにすれば,過剰キャリアの高注入状態を維持した状態での高精度測定が可能である。
更に,紫外光カットフィルタを用いるなどして,紫外光を含まない波長帯の光を上記所定の光として用いれば,紫外光成分の影響による表面状態の変化を排除でき,高精度での再結合ライフタイムの測定が可能となる。
【0006】
また,上記目的を達成するために本発明の装置は,瞬間光を連続的に複数回発光させることによってP型シリコン半導体試料にシリコンの禁制帯以上で且つ上記P型シリコン半導体試料における再結合ライフタイムを飽和させ得るエネルギーをもつ所定の光を照射する光照射手段と,上記光照射手段によって光を照射した直後の再結合ライフタイムを測定する第1のライフタイム測定手段と,上記光照射手段による光の照射の影響がないときの再結合ライフタイムを測定する第2のライフタイム測定手段と,上記第1,第2のライフタイム測定手段によって測定されたそれぞれの再結合ライフタイムに基づいて上記半導体試料の鉄汚染濃度を評価する評価手段とを具備してなるシリコン半導体の鉄濃度評価装置として構成されている。
ここで,上記所定の光が,上記P型シリコン半導体試料上で総エネルギー10J/cm 2 以上となるものが望ましい。
【0007】
【発明の実施の形態】
以下添付図面を参照して,本発明の実施の形態及び実施例につき説明し,本発明の理解に供する。尚,以下の実施の形態及び実施例は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の実施の形態に係る鉄濃度評価方法における処理手順を示すフローチャート,図2は本発明の実施の形態に係る鉄濃度評価装置A1の概略構成を示す模式図,図3は解離用照射光(1ショット2.5mJ/cm2 (●),及び1ショット1.1mJ/cm2 (○))の照射回数と再結合ライフタイムとの関係を示すグラフ,図4は鉄濃度評価値DFeと鉄濃度との関係の一例を示すグラフ,図5は解離用照射光の照射後の再結合ライフタイムの履歴の一例を示すグラフである。
【0008】
本実施の形態に係る鉄濃度評価装置A1は,図2に示す如く構成されている。ガンダイオードよりなるマイクロ波発振器1から発せられたマイクロ波は,導波管3,サーキュレータ2,導波管3を経て導波管アンテナ3aに導かれ,その開口端から上記半導体試料Wの表面に照射される。また,パルスレーザ9から発せられたパルス光もまた上記半導体試料Wの表面に照射される。上記試料Wからの反射マイクロ波は,上記導波管アンテナ3aに戻り,導波管3,サーキュレータ3を経て検出器4で検出される。 上記検出器4で検出された反射マイクロ波の強度信号はコンピュータ8に入力され,ここで再結合ライフタイムが求められる。以上が第1,第2のライフタイム測定手段の一例である。
また,上記導波管アンテナ3aの近傍にはストロボ光源10(光照射手段の一例)が設置されており,上記半導体試料Wは図示しない移動ステージによって上記導波管アンテナ3a直下と上記ストロボ光源10直下との間を移動可能に構成されている。上記ストロボ光源10は上記移動ステージによって移動されてきた半導体試料Wの表面に連続的に光を照射する。
【0009】
ここで,上記ストロボ光源10による照射回数を変えてそのときの再結合ライフタイムの変化状態を測定すると,次のような結果が得られた。まず上記ストロボ光源10による半導体試料W上での光強度を1ショットあたり2.5mJ/cm2 に設定した場合,その照射回数に対する再結合ライフタイムの変化は図3の●で示すような結果となった。また,同様に1ショットあたり1.1mJ/cm2 に設定した場合には図3の○で示すような結果となった。図3より,1ショット2.5mJ/cm2 では約4000回以上,1ショット1.1mJ/cm2 では約10000回以上の照射回数で再結合ライフタイムは飽和域(飽和値61μsの90%=55μs以上となる領域)に達していることがわかる。この結果より,約10J/cm2 の光エネルギー(2.5×4000,或いは1.1×10000)を与えることにより,半導体試料中のFe−Bはほぼ完全に解離し,再結合ライフタイムは飽和するといえる。
【0010】
続いて,上記鉄濃度評価装置A1による処理手順を図1に示すフローチャートに従って説明する。
まず実際の測定を行う前に,図4に示すような評価値DFeと鉄濃度との関係を検量線として予め求め,コンピュータ8(評価手段の一例)内に格納しておく。
実際の測定時には,まず初めに,半導体試料Wが上記導波管アンテナ3aに対向する位置にセットされ,再結合ライフタイムτ1が測定される(ステップS1)。即ち,パルスレーザ9からのパルス光の照射による試料Wからの反射マイクロ波の反射強度の変化が上記検出器4で検出され,これに基づいてコンピュータ8において再結合ライフタイムτ1が算出される。得られた再結合ライフタイムτ1は上記コンピュータ8内に記憶される。
続いて,半導体試料Wが上記ストロボ光源10に対向する位置にセットされ,上記ストロボ光源10から上記半導体試料Wに対して総エネルギーが10J/cm2 以上となるような光(解離用照射光)が照射される(ステップS2)。これによって半導体試料W内のFe−Bは完全に解離される。
上記解離用照射光の照射が完了した時点で,上記半導体試料Wは再び上記導波管アンテナ3aに対向する位置にセットされ,上記ステップS1と同様の方法で再結合ライフタイムτ2が測定される(ステップS3)。
上記コンピュータ8では,上記2回の測定で求められた再結合ライフタイムτ1,τ2を上記(1)式に代入することにより評価値DFeが求められ(ステップS4),更に予め求められている上記検量線(評価値DFeと鉄濃度との関係)に上記評価値DFeを照合することにより鉄濃度が求められる。
【0011】
以上説明したように,本実施の形態に係る鉄濃度評価方法では,Fe−Bの解離に光を用いることにより,新たな汚染の導入が防止できる。また,解離用照射光として,上記半導体試料Wにおける再結合ライフタイムを飽和させるだけのエネルギー(約10J/cm2 以上)を有する光を用いているため,照射光の強度や試料の表面状態の相違による光吸収量の違いによる影響を受けることがなく,評価の安定性が向上する。更に,光照射前後の再結合ライフタイムに基づいて鉄濃度を評価しているため,鉄以外の汚染物による影響を排除することができる。
【0012】
【実施例】
上記ストロボ光源10には,紫外光カットフィルタ(不図示)などを装着することにより,紫外光成分を含まない解離用照射光を照射するように構成することが望ましい。これは,次のような理由による。
即ち,解離用照射光における紫外光成分は,シリコンの極表層(1μm以下)で吸収されることから,紫外光成分を有する解離用照射光をシリコンに照射すると,シリコン表層に局所的に多大な電子−正孔対が生成される。この時,シリコン表面に酸化膜が存在すると,生成された電子は酸化膜中に流れ,界面に電界を生成する。この界面電界により,シリコンの表面状態は変化する。
一方,光導電減衰法は,パルス光照射等によって過剰キャリアをシリコン半導体試料に注入し,この過剰キャリアの減少を,マイクロ波等の反射或いは透過率の変化として測定し,この測定値に基づいて再結合ライフタイムを求める手法である。この過剰キャリアの減少は,シリコンの再結合ライフタイム以外に,その表面状態にも依存するため,上述したように紫外光の照射によって表面状態が変化すると,測定される過剰キャリアの減少過程も変化してしまい,正確な再結合ライフタイムを求めることができない。
従って,再結合ライフタイムを正確に求めるためには,解離用照射光に紫外光を含まないようにすることが望ましい。
【0013】
また,光導電減衰法による再結合ライフタイムの測定においては,過剰キャリア注入の直後から,拡散/再結合による過剰キャリア濃度の減少が少ないと考えられる極短時間経過後までの光導電減衰の測定値に基づいて行うことが望ましい。これは,次のような理由による。
光導電減衰法によって測定される再結合ライフタイムは,半導体試料に注入される過剰キャリア濃度に依存するが,過剰キャリア濃度が試料のキャリア濃度よりも10倍程度以上の場合(高光注入レベル域),或いは1/10程度以下の場合(低注入レベル域)には,試料キャリア濃度,注入過剰キャリア濃度依存が小さくなる。従って,上記のような高光注入レベル域,若しくは低注入レベル域における再結合ライフタイムを求めることが望ましいが,低注入レベル域の測定では感度(S/N)が悪いことから,高注入レベル域での測定が実用的である。
ところで,この高注入レベル域での測定において,半導体試料に注入された過剰キャリアは,キャリアの拡散/再結合によってその濃度は時間とともに小さくなる。従って,時間の経過とともにその測定値は必ずしも高注入状態での測定とは言えなくなってくる。そこで,高注入状態を維持した状態での高精度測定を行うためには,過剰キャリア注入の直後から,拡散/再結合による過剰キャリア濃度の減少が少ないと考えられる極短時間経過後までの光導電減衰の測定値に基づいてライフタイムを算出することが望ましい。
【0014】
更に,上記光照射後の再結合ライフタイムτ2の測定に際しては,もちろんストロボ光源10による光照射が完了した直後に測定することが望ましい。しかしながら,実際の測定においては光照射直後の測定が困難,或いは不可能である場合が想定される(例えば上記装置A1のように半導体試料Wを移動ステージによって移動させる必要がある場合など)。ここで,ストロボ光源10による光照射が完了した後の再結合ライフタイムは図5に示すような履歴を示す。従って,上記光照射直後の再結合ライフタイムτ2を直接測定できなくても,所定時間経過以降の複数の時点で再結合ライフタイムを測定できれば,カーブフィッティングによって上記τ2の値を推定することが可能である。また,光照射前の再結合ライフタイムτ1は光照射後の定常値と等しいから,光照射前に測定する代わりに同様の方法で上記τ1を推定することも可能である。
尚,半導体試料Wを移動ステージで移動させるのではなく,所定位置に固定したままで再結合ライフタイムの測定とストロボ光源10による光照射を行えるようにすることが望ましいことはいうまでもない。
また,必ずしも再結合ライフタイムの飽和値τ2に基づいて上記評価値DFeや最終的に得られる鉄濃度を求める必要はない。例えば光の強度や照射時間を厳密に管理できれば,上記飽和値τ2の代わりに所定の中間的な値を用いて同様の方法で鉄濃度を評価することも可能である。
また,解離用照射光(ストロボ光源10)としては,シリコンに過剰キャリアを生成させる光(エネルギーが禁制帯以上)を照射可能なものであればよい。
更に,上記実施の形態では再結合ライフタイムの測定にマイクロ波光導電減衰法を用いたが,マイクロ波の代わりに赤外光を用いたり,或いは導電率を触針により直接測定することも可能である。また表面光起電圧測定法の適用も可能である。
【0015】
【発明の効果】
本発明は,瞬間光を連続的に複数回発光させることによってP型シリコン半導体試料にシリコンの禁制帯以上で且つ上記P型シリコン半導体試料における再結合ライフタイムを飽和させ得る上記P型シリコン半導体試料上で総エネルギー10J/cm 2 以上となる所定の光を照射した直後の再結合ライフタイムと,上記所定の光の照射の影響がないときの再結合ライフタイムとに基づいて,上記半導体試料の鉄汚染濃度を評価するシリコン半導体の鉄濃度評価方法として構成されている。このようにFe−Bの解離に光を用いることにより,新たな汚染の導入が防止できる。また,上記所定の光として,上記半導体試料における再結合ライフタイムを飽和させるだけのエネルギーを有する光を用いれば,照射光の強度や試料の表面状態の相違による光吸収量の違いによる影響を受けることがなく,評価の安定性が向上する。また,光照射前後の再結合ライフタイムに基づいて鉄濃度を評価しているため,鉄以外の汚染物による影響を排除することができる。
ここで,上記半導体試料上に10J/cm2 以上のエネルギーの光を照射すれば,上記再結合ライフタイムを飽和させることができることがわかった。これにより,再結合ライフタイムの飽和を容易且つ確実に実現することが可能となる。
また,上記所定の光の照射直後の再結合ライフタイムを直接測定できない場合でも,上記所定の光の照射後における再結合ライフタイムの変化履歴を部分的に測定し,該部分的な変化履歴に基づいて上記所定の光の照射直後の再結合ライフタイム及び/若しくは上記所定の光の照射の影響がないときの再結合ライフタイムを推定することが可能である。
また,上記所定の光として,広範囲を同時に照射可能な可視光を用いれば,測定時間が短縮できる。
尚,上記再結合ライフタイムの測定には例えば光導電減衰法を用いることができる。この時のキャリア注入量は1E16/cm3 以上とすることが望ましい。
また,上記光導電減衰法による再結合ライフタイムの測定を,キャリア注入直後から所定時間(拡散/再結合による注入キャリア濃度の減少の少ない時間)経過後までの光導電減衰波形の変化に基づいて行うようにすれば,過剰キャリアの高注入状態を維持した状態での高精度測定が可能である。
更に,紫外光カットフィルタを用いるなどして,紫外光を含まない波長帯の光を上記所定の光として用いれば,紫外光成分の影響による表面状態の変化を排除でき,高精度での再結合ライフタイムの測定が可能となる。
【図面の簡単な説明】
【図1】 本発明の実施の形態に係る鉄濃度評価方法における処理手順を示すフローチャート。
【図2】 本発明の実施の形態に係る鉄濃度評価装置A1の概略構成を示す模式図。
【図3】 解離用照射光(1ショット2.5mJ/cm2 (●),及び1ショット1.1mJ/cm2 (○))の照射回数と再結合ライフタイムとの関係を示すグラフ。
【図4】 鉄濃度評価値DFeと鉄濃度との関係の一例を示すグラフ。
【図5】 解離用照射光の照射後の再結合ライフタイムの履歴の一例を示すグラフ。
【符号の説明】
1…マイクロ波発振器
2…サーキュレータ
3…導波管
4…検出器
8…コンピュータ(評価手段の一例)
9…パルスレーザ
10…ストロボ光源(光照射手段の一例)
W…半導体試料[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for evaluating the iron concentration of a P-type silicon semiconductor.
[0002]
[Prior art]
As a method for measuring the contamination concentration of P-type silicon semiconductor with iron, for example, those proposed in Japanese Patent Laid-Open Nos. 9-21875 and 6-69301 are known.
In the iron contamination concentration evaluation method described in Japanese Patent Laid-Open No. 9-21875 (referred to as Prior Art 1), first, a silicon semiconductor sample is irradiated with a laser beam for a predetermined time, and the recombination life of the semiconductor sample with respect to the irradiation time. The rate of change in time is measured, and the presence or absence of iron contamination is determined based on the magnitude relationship between the rate of change and a predetermined threshold. When the semiconductor sample is a P-type silicon semiconductor with B (boron) as a dopant, if Fe (donor and positively charged) is present in the sample, it binds to B (later and acceptor negatively charged) at the lattice position by electrostatic force As a result, Fe-B pairs are formed. When laser light is irradiated in this state, the Fe-B pair is dissociated by excess carriers generated thereby. Since the electronic state is different between the state where Fe is dissociated and in the interstitial position and the state where it is combined with B to form an Fe-B pair, the recombination lifetime measured in these two states changes. To do. In a semiconductor sample that is not contaminated with iron, the above two different states do not occur depending on the presence or absence of laser light irradiation, so that the recombination lifetime measured does not change even when laser light is irradiated. Therefore, the presence or absence of iron contamination can be determined from the rate of change of the recombination lifetime when the laser beam is irradiated. For semiconductor samples that have been found to be contaminated with iron based on the rate of change of the recombination lifetime, the measured recombination lifetime (the same laser beam is applied momentarily prior to the continuous irradiation of the laser beam). The semiconductor sample is evaluated for iron contamination concentration by comparing it with a calibration curve (relationship between recombination lifetime and iron contamination concentration).
In addition, in the iron contamination concentration evaluation method described in JP-A-6-69301 (referred to as Prior Art 2), heat treatment is performed on a silicon semiconductor sample to dissociate Fe-B pairs in the sample, Based on the preceding and following recombination lifetimes τ a and τ b , the iron contamination concentration [Fe] is evaluated by the following equation.
[Fe] = α ((1 / τ a ) − (1 / τ b ))
However, α: proportional constant This is a method based on the fact that the iron contamination concentration has a certain relationship with the recombination lifetime before and after the Fe-B dissociation.
[0003]
[Problems to be solved by the invention]
However, the prior arts 1 and 2 have the following problems.
First, in Prior Art 1, the presence or absence of iron contamination is determined based on the rate of change of the recombination lifetime with respect to the irradiation time of the laser beam, but the rate of change is not limited to the iron concentration but the excess carriers generated by light irradiation. Depends on the concentration of That is, the rate of change in the recombination lifetime varies even when the concentration of excess carriers varies due to the difference in light absorption due to the intensity of irradiation light or the surface state of the sample. Therefore, the method for determining the presence or absence of iron contamination according to the prior art 1 has a problem in terms of stable evaluation. Moreover, in the said prior art 1, although the iron concentration is calculated | required based on the recombination lifetime before Fe-B dissociation, when the contaminant etc. which reduce recombination lifetime other than iron are mixed. It is not possible to accurately estimate the iron contamination concentration. Furthermore, since the laser beam for recombination lifetime measurement is used for dissociation of Fe—B, there is a problem that the measurement time becomes long when the sample is measured at multiple points.
Further, in the above-mentioned conventional technique 2, since heat treatment is used for dissociation of Fe-B, there are problems that it takes time and labor for measurement and there is a high risk of introducing new contamination in the heat treatment process. It was.
The present invention has been made in view of the above circumstances, and it is possible to easily and accurately measure the iron concentration in a semiconductor sample while preventing the introduction of new contamination into the semiconductor sample. It is an object of the present invention to provide a concentration evaluation method and apparatus.
[0004]
[Means for Solving the Problems]
When a P-type silicon semiconductor sample contaminated with iron is continuously irradiated with light, Fe-B formed by the bond between B (boron) and Fe (iron) at the lattice position is gradually dissociated, and accordingly The measured recombination lifetime increases gradually, and the recombination lifetime is saturated when Fe-B is completely dissociated. The evaluation value DFe obtained from the recombination lifetime τ1 before the dissociation of Fe—B and the recombination lifetime (saturation value) τ2 after the dissociation is expressed as DFe = (1 / τ1) − (1 / τ2) (1 )
Then, the DFe has a correlation with the iron concentration as shown in FIG. Therefore, the relationship between the evaluation value DFe and the iron concentration shown in FIG. 4 is obtained in advance as a calibration curve, and the recombination lifetime τ1 before the dissociation of Fe—B by light irradiation and the recombination lifetime (saturation value) after dissociation. ) Τ2 is measured, and the iron concentration can be evaluated by checking the evaluation value DFe obtained by substituting these τ1 and τ2 into the above equation (1) with the calibration curve. In the measurement, it is not always necessary to directly obtain the saturation value of the recombination lifetime by completely dissociating the Fe-B. For example, if a change in recombination lifetime can be partially obtained, it is possible to estimate a saturation value by curve fitting or the like, and if light intensity and irradiation time can be strictly controlled, a predetermined value can be used instead of the saturation value τ2. It is also possible to evaluate the iron concentration by a similar method using an intermediate value.
Moreover, if the above method is used, even if contaminants or the like that lower the recombination lifetime are mixed in addition to iron, the influence can be eliminated. In other words, when the recombination lifetime due to iron contamination alone is τ Fe and the recombination lifetime due to other contaminants only is τ D , the measured recombination lifetime τ is expressed by the following equation.
1 / τ = 1 / τ Fe + 1 / τ D (2)
Here, the tau Fe before dissociation of Fe-B by light irradiation tau Fe1, when the tau Fe after dissociation and tau Fe @ 2,
1 / τ1 = 1 / τ Fe1 + 1 / τ D (3)
1 / τ2 = 1 / τ Fe2 + 1 / τ D (4)
Therefore, the above equation (1) is
Figure 0003665232
Thus, the evaluation value DFe eliminates the influence of the recombination lifetime (τ D ) due to contaminants other than iron.
[0005]
Therefore, in order to achieve the above object, the method of the present invention allows the P-type silicon semiconductor sample to emit light at a plurality of times continuously, so that the recombination life in the P-type silicon semiconductor sample exceeds the bandgap of silicon. Recombination lifetime immediately after irradiation of predetermined light having a total energy of 10 J / cm 2 or more on the P-type silicon semiconductor sample capable of saturating the time, and recombination when there is no influence of the predetermined light irradiation It is configured as an iron concentration evaluation method for a silicon semiconductor that evaluates the iron contamination concentration of the semiconductor sample based on the lifetime. In this way, the introduction of new contamination can be prevented by using light for the dissociation of Fe-B, and the iron concentration is evaluated based on the recombination lifetime before and after light irradiation. The influence can be eliminated.
Moreover, if light having an energy sufficient to saturate the recombination lifetime in the semiconductor sample is used as the predetermined light, it is affected by the difference in the amount of light absorbed due to the difference in the intensity of irradiation light and the surface state of the sample. This improves the stability of evaluation. Here, it was found that the recombination lifetime can be saturated by irradiating the semiconductor sample with light having an energy of 10 J / cm 2 or more.
Even if the recombination lifetime immediately after the predetermined light irradiation cannot be directly measured, a change history of the recombination lifetime after the predetermined light irradiation is partially measured and the partial change history is obtained. Based on this, it is possible to estimate the recombination lifetime immediately after irradiation of the predetermined light and / or the recombination lifetime when there is no influence of the predetermined light irradiation.
Moreover, if visible light capable of irradiating a wide area simultaneously is used as the predetermined light, the measurement time can be shortened.
For example, a photoconductive decay method can be used for the measurement of the recombination lifetime. The carrier injection amount at this time is preferably 1E16 / cm 3 or more.
The recombination lifetime measurement by the photoconductive decay method is based on the change in the photoconductive decay waveform from the time immediately after the carrier injection until the elapse of a predetermined time (the time when the injected carrier concentration decreases due to diffusion / recombination is small). By doing so, it is possible to perform high-accuracy measurement while maintaining a high injection state of excess carriers.
Furthermore, if light in a wavelength band that does not contain ultraviolet light is used as the specified light, such as by using an ultraviolet light cut filter, changes in the surface state due to the influence of ultraviolet light components can be eliminated, and recombination with high accuracy is possible. Lifetime can be measured.
[0006]
In order to achieve the above object, the apparatus of the present invention causes the P-type silicon semiconductor sample to emit light at a plurality of times continuously, so that the recombination life in the P-type silicon semiconductor sample exceeds the bandgap of silicon. Light irradiation means for irradiating predetermined light having energy capable of saturating time, first lifetime measurement means for measuring a recombination lifetime immediately after light irradiation by the light irradiation means, and the light irradiation means A second lifetime measuring means for measuring the recombination lifetime when there is no influence of light irradiation by the light source, and based on the respective recombination lifetimes measured by the first and second lifetime measuring means. The apparatus is configured as an iron concentration evaluation apparatus for a silicon semiconductor comprising an evaluation means for evaluating the iron contamination concentration of the semiconductor sample.
Here, it is desirable that the predetermined light has a total energy of 10 J / cm 2 or more on the P-type silicon semiconductor sample .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments and examples of the present invention will be described below with reference to the accompanying drawings for understanding of the present invention. It should be noted that the following embodiments and examples are examples embodying the present invention, and do not limit the technical scope of the present invention.
FIG. 1 is a flowchart showing a processing procedure in the iron concentration evaluation method according to the embodiment of the present invention. FIG. 2 is a schematic diagram showing the schematic configuration of the iron concentration evaluation apparatus A1 according to the embodiment of the present invention. 3 is a graph showing the relationship between the number of times of irradiation with dissociation irradiation light (one shot 2.5 mJ / cm 2 (●) and one shot 1.1 mJ / cm 2 (◯)) and the recombination lifetime, and FIG. FIG. 5 is a graph showing an example of the relationship between the iron concentration evaluation value DFe and the iron concentration, and FIG. 5 is a graph showing an example of the recombination lifetime history after irradiation with the dissociation irradiation light.
[0008]
The iron concentration evaluation apparatus A1 according to the present embodiment is configured as shown in FIG. Microwaves emitted from a microwave oscillator 1 made of a Gunn diode are guided to a waveguide antenna 3a through a waveguide 3, a circulator 2, and a waveguide 3, and from the open end to the surface of the semiconductor sample W. Irradiated. Further, the surface of the semiconductor sample W is also irradiated with pulsed light emitted from the pulse laser 9. The reflected microwave from the sample W returns to the waveguide antenna 3 a and is detected by the detector 4 through the waveguide 3 and the circulator 3. The reflected microwave intensity signal detected by the detector 4 is input to the computer 8 where the recombination lifetime is determined. The above is one example of the first and second lifetime measuring means.
Further, a strobe light source 10 (an example of a light irradiating means) is installed in the vicinity of the waveguide antenna 3a, and the semiconductor sample W is placed immediately below the waveguide antenna 3a and the strobe light source 10 by a moving stage (not shown). It is configured to be movable between directly below. The strobe light source 10 continuously irradiates the surface of the semiconductor sample W that has been moved by the moving stage.
[0009]
Here, when the number of times of irradiation by the strobe light source 10 was changed and the change state of the recombination lifetime at that time was measured, the following results were obtained. First, when the light intensity on the semiconductor sample W by the stroboscopic light source 10 is set to 2.5 mJ / cm 2 per shot, the change in the recombination lifetime with respect to the number of irradiations is the result shown by ● in FIG. became. Similarly, when 1.1 mJ / cm 2 per shot was set, the result indicated by ○ in FIG. 3 was obtained. Than 3, one shot 2.5 mJ / cm 2 in about 4000 times or more, the recombination lifetime is saturated region at irradiation frequency of more than one shot 1.1 mJ / cm 2 at about 10,000 (90% of the saturation value 61Myuesu = It can be seen that the region has reached 55 μs or more. From this result, by applying optical energy of about 10 J / cm 2 (2.5 × 4000, or 1.1 × 10000), Fe—B in the semiconductor sample is almost completely dissociated, and the recombination lifetime is It can be said that it is saturated.
[0010]
Next, the processing procedure by the iron concentration evaluation apparatus A1 will be described according to the flowchart shown in FIG.
First, before performing actual measurement, the relationship between the evaluation value DFe and the iron concentration as shown in FIG. 4 is obtained in advance as a calibration curve and stored in the computer 8 (an example of evaluation means).
In actual measurement, first, the semiconductor sample W is set at a position facing the waveguide antenna 3a, and the recombination lifetime τ1 is measured (step S1). That is, the change in the reflection intensity of the reflected microwave from the sample W due to the irradiation of the pulsed light from the pulse laser 9 is detected by the detector 4, and the recombination lifetime τ 1 is calculated by the computer 8 based on this change. The obtained recombination lifetime τ 1 is stored in the computer 8.
Subsequently, the semiconductor sample W is set at a position facing the strobe light source 10, and light (dissociation irradiation light) from the strobe light source 10 to the semiconductor sample W has a total energy of 10 J / cm 2 or more. Is irradiated (step S2). Thereby, Fe-B in the semiconductor sample W is completely dissociated.
When the irradiation of the dissociating irradiation light is completed, the semiconductor sample W is set again at a position facing the waveguide antenna 3a, and the recombination lifetime τ2 is measured by the same method as in step S1. (Step S3).
In the computer 8, the evaluation value DFe is obtained by substituting the recombination lifetimes τ 1 and τ 2 obtained in the two measurements into the equation (1) (step S 4), and further obtained in advance. The iron concentration is obtained by collating the evaluation value DFe with a calibration curve (relationship between the evaluation value DFe and the iron concentration).
[0011]
As described above, in the iron concentration evaluation method according to the present embodiment, the introduction of new contamination can be prevented by using light for the dissociation of Fe-B. Further, as the irradiation light for dissociation, light having an energy sufficient to saturate the recombination lifetime in the semiconductor sample W (about 10 J / cm 2 or more) is used. It is not affected by the difference in light absorption due to the difference, and the stability of the evaluation is improved. Furthermore, since the iron concentration is evaluated based on the recombination lifetime before and after light irradiation, it is possible to eliminate the influence of contaminants other than iron.
[0012]
【Example】
The strobe light source 10 is preferably configured to irradiate dissociation irradiation light that does not contain an ultraviolet light component by attaching an ultraviolet light cut filter (not shown) or the like. This is due to the following reasons.
That is, since the ultraviolet light component in the dissociation irradiation light is absorbed by the extreme surface layer (1 μm or less) of silicon, when silicon is irradiated with the dissociation irradiation light having the ultraviolet light component, the silicon surface layer has a large amount locally. Electron-hole pairs are generated. At this time, if an oxide film exists on the silicon surface, the generated electrons flow in the oxide film and generate an electric field at the interface. This surface electric field changes the surface state of silicon.
On the other hand, the photoconductivity decay method injects excess carriers into a silicon semiconductor sample by pulsed light irradiation, etc., and measures the decrease in excess carriers as a change in the reflection or transmittance of microwaves, etc. This is a method for obtaining the recombination lifetime. This decrease in excess carriers depends not only on the recombination lifetime of silicon but also on the surface state. Therefore, when the surface state changes due to irradiation with ultraviolet light as described above, the process of reducing excess carriers also changes. As a result, an accurate recombination lifetime cannot be obtained.
Therefore, in order to accurately obtain the recombination lifetime, it is desirable that the dissociation irradiation light does not contain ultraviolet light.
[0013]
In the measurement of the recombination lifetime by the photoconductivity decay method, the photoconductivity decay is measured from immediately after the excess carrier injection to after a very short time after which the decrease in excess carrier concentration due to diffusion / recombination is considered to be small. It is desirable to do this based on the value. This is due to the following reasons.
The recombination lifetime measured by the photoconductive decay method depends on the excess carrier concentration injected into the semiconductor sample, but when the excess carrier concentration is about 10 times or more than the sample carrier concentration (high light injection level region). In the case of 1/10 or less (low injection level region), the dependence on the sample carrier concentration and the excess carrier concentration becomes small. Accordingly, it is desirable to obtain the recombination lifetime in the high light injection level region or the low injection level region as described above. However, since the sensitivity (S / N) is poor in the measurement of the low injection level region, Measurement at is practical.
By the way, in the measurement in this high injection level region, the concentration of excess carriers injected into the semiconductor sample decreases with time due to carrier diffusion / recombination. Therefore, the measured value is not necessarily a measurement in a high injection state with the passage of time. Therefore, in order to perform high-accuracy measurement while maintaining a high injection state, the light from immediately after the excess carrier injection to after the elapse of an extremely short time, which is thought to be a decrease in excess carrier concentration due to diffusion / recombination, is considered to be small. It is desirable to calculate the lifetime based on the measured value of the conductive decay.
[0014]
Furthermore, when measuring the recombination lifetime τ2 after the light irradiation, it is desirable to measure immediately after the light irradiation by the strobe light source 10 is completed. However, in actual measurement, it is assumed that measurement immediately after light irradiation is difficult or impossible (for example, when the semiconductor sample W needs to be moved by a moving stage as in the apparatus A1). Here, the recombination lifetime after the light irradiation by the strobe light source 10 is completed shows a history as shown in FIG. Therefore, even if it is not possible to directly measure the recombination lifetime τ2 immediately after the light irradiation, it is possible to estimate the value of τ2 by curve fitting if the recombination lifetime can be measured at a plurality of times after a predetermined time has elapsed. It is. Further, since the recombination lifetime τ1 before the light irradiation is equal to the steady value after the light irradiation, it is possible to estimate the τ1 by a similar method instead of measuring before the light irradiation.
Needless to say, it is desirable that the recombination lifetime measurement and light irradiation by the stroboscopic light source 10 be performed while the semiconductor sample W is not moved on the moving stage but is fixed at a predetermined position.
Further, it is not always necessary to obtain the evaluation value DFe or the finally obtained iron concentration based on the saturation value τ2 of the recombination lifetime. For example, if the intensity of light and the irradiation time can be strictly controlled, the iron concentration can be evaluated by the same method using a predetermined intermediate value instead of the saturation value τ2.
Further, the dissociation irradiation light (strobe light source 10) may be any light as long as it can irradiate light (energy is higher than the forbidden band) for generating excess carriers in silicon.
Furthermore, in the above embodiment, the microwave photoconductive decay method is used for the measurement of the recombination lifetime, but it is also possible to use infrared light instead of the microwave or to directly measure the conductivity with a stylus. is there. The surface photovoltage measurement method can also be applied.
[0015]
【The invention's effect】
The present invention provides the P-type silicon semiconductor sample which can saturate the recombination lifetime in the P-type silicon semiconductor sample above the forbidden band of the silicon by causing the P-type silicon semiconductor sample to emit light several times continuously. Based on the recombination lifetime immediately after irradiation with the predetermined light having a total energy of 10 J / cm 2 or more and the recombination lifetime when there is no influence of the predetermined light irradiation, It is configured as an iron concentration evaluation method for silicon semiconductors for evaluating iron contamination concentration. Thus, by using light for the dissociation of Fe—B, introduction of new contamination can be prevented. Moreover, if light having an energy sufficient to saturate the recombination lifetime in the semiconductor sample is used as the predetermined light, it is affected by the difference in the amount of light absorbed due to the difference in the intensity of irradiation light and the surface state of the sample. This improves the stability of evaluation. Moreover, since the iron concentration is evaluated based on the recombination lifetime before and after the light irradiation, it is possible to eliminate the influence of contaminants other than iron.
Here, it was found that the recombination lifetime can be saturated by irradiating the semiconductor sample with light having an energy of 10 J / cm 2 or more. This makes it possible to easily and reliably realize recombination lifetime saturation.
Even if the recombination lifetime immediately after the predetermined light irradiation cannot be directly measured, a change history of the recombination lifetime after the predetermined light irradiation is partially measured and the partial change history is obtained. Based on this, it is possible to estimate the recombination lifetime immediately after irradiation of the predetermined light and / or the recombination lifetime when there is no influence of the predetermined light irradiation.
Moreover, if visible light capable of irradiating a wide area simultaneously is used as the predetermined light, the measurement time can be shortened.
For example, a photoconductive decay method can be used for the measurement of the recombination lifetime. The carrier injection amount at this time is preferably 1E16 / cm 3 or more.
The recombination lifetime measurement by the photoconductive decay method is based on the change in the photoconductive decay waveform from the time immediately after the carrier injection until the elapse of a predetermined time (the time when the injected carrier concentration decreases due to diffusion / recombination is small). By doing so, it is possible to perform high-accuracy measurement while maintaining a high injection state of excess carriers.
Furthermore, if light in a wavelength band that does not contain ultraviolet light is used as the specified light, such as by using an ultraviolet light cut filter, changes in the surface state due to the influence of ultraviolet light components can be eliminated, and recombination with high accuracy is possible. Lifetime can be measured.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a processing procedure in an iron concentration evaluation method according to an embodiment of the present invention.
FIG. 2 is a schematic diagram showing a schematic configuration of an iron concentration evaluation apparatus A1 according to an embodiment of the present invention.
FIG. 3 is a graph showing the relationship between the number of irradiations of dissociation irradiation light (one shot 2.5 mJ / cm 2 (●) and one shot 1.1 mJ / cm 2 (◯)) and the recombination lifetime.
FIG. 4 is a graph showing an example of a relationship between an iron concentration evaluation value DFe and an iron concentration.
FIG. 5 is a graph showing an example of a history of recombination lifetime after irradiation with dissociation irradiation light.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Microwave oscillator 2 ... Circulator 3 ... Waveguide 4 ... Detector 8 ... Computer (an example of evaluation means)
9 ... Pulse laser 10 ... Strobe light source (an example of light irradiation means)
W ... Semiconductor sample

Claims (11)

瞬間光を連続的に複数回発光させることによってP型シリコン半導体試料にシリコンの禁制帯以上で且つ上記P型シリコン半導体試料における再結合ライフタイムを飽和させ得る上記P型シリコン半導体試料上で総エネルギー10J/cm 2 以上となる所定の光を照射した直後の再結合ライフタイムと,上記所定の光の照射の影響がないときの再結合ライフタイムとに基づいて,上記半導体試料の鉄汚染濃度を評価するシリコン半導体の鉄濃度評価方法。 The total energy on the P-type silicon semiconductor sample that can saturate the recombination lifetime in the P-type silicon semiconductor sample above the forbidden band of the silicon by causing the P-type silicon semiconductor sample to emit light several times continuously. Based on the recombination lifetime immediately after irradiation with the predetermined light of 10 J / cm 2 or more and the recombination lifetime when there is no influence of the predetermined light irradiation, the iron contamination concentration of the semiconductor sample is determined. A method for evaluating the iron concentration of a silicon semiconductor to be evaluated. 上記所定の光の照射後における再結合ライフタイムの変化履歴を部分的に測定し,該部分的な変化履歴に基づいて上記所定の光の照射直後の再結合ライフタイム及び/若しくは上記所定の光の照射の影響がないときの再結合ライフタイムを推定する請求項記載のシリコン半導体の鉄濃度評価方法。A change history of the recombination lifetime after the predetermined light irradiation is partially measured, and based on the partial change history, the recombination lifetime immediately after the predetermined light irradiation and / or the predetermined light The method for evaluating the iron concentration of a silicon semiconductor according to claim 1 , wherein the recombination lifetime when there is no influence of irradiation of silicon is estimated. 上記所定の光として,広範囲を同時に照射可能な可視光を用いる請求項1又は2のいずれかに記載のシリコン半導体の鉄濃度評価方法。 3. The method for evaluating an iron concentration of a silicon semiconductor according to claim 1, wherein visible light capable of simultaneously irradiating a wide range is used as the predetermined light. 上記再結合ライフタイムの測定に光導電減衰法を用いる請求項1〜のいずれかに記載のシリコン半導体の鉄濃度評価方法。Iron concentration evaluation method of a silicon semiconductor according to any one of claims 1 to 3 used a photoconductive decay method for the measurement of the recombination lifetime. 上記光導電減衰法におけるキャリア注入量が1E16/cm3 以上である請求項記載のシリコン半導体の鉄濃度評価方法。The method for evaluating the iron concentration of a silicon semiconductor according to claim 4 , wherein the carrier injection amount in the photoconductive decay method is 1E16 / cm 3 or more. 上記光導電減衰法による再結合ライフタイムの測定を,キャリア注入直後から所定時間経過後までの光導電減衰波形の変化に基づいて行う請求項又は5のいずれかに記載のシリコン半導体の鉄濃度評価方法。The measurement of recombination lifetime by the photoconductivity decay method, the iron concentration of the silicon semiconductor according to any of claims 4 or 5 carried out on the basis of the change of the photoconductive decay waveform immediately after carrier injection until after a predetermined time Evaluation methods. 上記所定時間が,拡散/再結合による注入キャリア濃度の減少の少ない時間に設定される請求項記載のシリコン半導体の鉄濃度評価方法。7. The method for evaluating an iron concentration in a silicon semiconductor according to claim 6 , wherein the predetermined time is set to a time during which a decrease in injected carrier concentration due to diffusion / recombination is small. 上記所定の光として,紫外光を含まない波長帯の光を用いる請求項1〜のいずれかに記載のシリコン半導体の鉄濃度評価方法。Above the predetermined light, according to claim 1-7 or iron concentration evaluation method of a silicon semiconductor according to the use of light in a wavelength band containing no ultraviolet light. 紫外光カットフィルタを用いて上記所定の光から紫外光をカットする請求項記載のシリコン半導体の鉄濃度評価方法。The method for evaluating an iron concentration of a silicon semiconductor according to claim 8 , wherein ultraviolet light is cut from the predetermined light using an ultraviolet light cut filter. 瞬間光を連続的に複数回発光させることによってP型シリコン半導体試料にシリコンの禁制帯以上で且つ上記P型シリコン半導体試料における再結合ライフタイムを飽和させ得るエネルギーをもつ所定の光を照射する光照射手段と,
上記光照射手段によって光を照射した直後の再結合ライフタイムを測定する第1のライフタイム測定手段と,
上記光照射手段による光の照射の影響がないときの再結合ライフタイムを測定する第2のライフタイム測定手段と,
上記第1,第2のライフタイム測定手段によって測定されたそれぞれの再結合ライフタイムに基づいて上記半導体試料の鉄汚染濃度を評価する評価手段とを具備してなるシリコン半導体の鉄濃度評価装置。
Light that irradiates the P-type silicon semiconductor sample with predetermined light having energy that is equal to or higher than the forbidden band of silicon and can saturate the recombination lifetime in the P-type silicon semiconductor sample by continuously emitting instantaneous light a plurality of times. Irradiation means;
First lifetime measuring means for measuring a recombination lifetime immediately after irradiation with light by the light irradiation means;
Second lifetime measuring means for measuring a recombination lifetime when there is no influence of light irradiation by the light irradiation means;
A silicon semiconductor iron concentration evaluation apparatus comprising: an evaluation means for evaluating the iron contamination concentration of the semiconductor sample based on the recombination lifetimes measured by the first and second lifetime measurement means.
上記所定の光が,上記P型シリコン半導体試料上で総エネルギー10J/cmThe predetermined light has a total energy of 10 J / cm on the P-type silicon semiconductor sample. 22 以上となるものである請求項10記載のシリコン半導体の鉄濃度評価装置。11. The silicon semiconductor iron concentration evaluation apparatus according to claim 10, which is as described above.
JP16393499A 1998-10-09 1999-06-10 Method and apparatus for evaluating iron concentration in silicon semiconductor Expired - Lifetime JP3665232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16393499A JP3665232B2 (en) 1998-10-09 1999-06-10 Method and apparatus for evaluating iron concentration in silicon semiconductor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-287428 1998-10-09
JP28742898 1998-10-09
JP16393499A JP3665232B2 (en) 1998-10-09 1999-06-10 Method and apparatus for evaluating iron concentration in silicon semiconductor

Publications (2)

Publication Number Publication Date
JP2000183123A JP2000183123A (en) 2000-06-30
JP3665232B2 true JP3665232B2 (en) 2005-06-29

Family

ID=26489232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16393499A Expired - Lifetime JP3665232B2 (en) 1998-10-09 1999-06-10 Method and apparatus for evaluating iron concentration in silicon semiconductor

Country Status (1)

Country Link
JP (1) JP3665232B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5556090B2 (en) * 2009-09-02 2014-07-23 株式会社Sumco Quantitative analysis limit determination method in iron concentration analysis in boron-doped p-type silicon
JP5471780B2 (en) * 2010-04-28 2014-04-16 株式会社Sumco Method for measuring iron concentration in boron-doped p-type silicon and method for producing boron-doped p-type silicon wafer
JP5577842B2 (en) * 2010-05-19 2014-08-27 株式会社Sumco Method and apparatus for measuring iron concentration of boron-doped p-type silicon wafer, silicon wafer, and method for manufacturing silicon wafer
JP6080101B2 (en) * 2013-02-15 2017-02-15 信越半導体株式会社 Method for measuring recombination lifetime of silicon substrate
JP6344168B2 (en) * 2014-09-11 2018-06-20 株式会社Sumco Method and apparatus for evaluating metal contamination of boron-doped p-type silicon wafer, and method for producing boron-doped p-type silicon wafer

Also Published As

Publication number Publication date
JP2000183123A (en) 2000-06-30

Similar Documents

Publication Publication Date Title
US4949034A (en) Method for contactless evaluation of characteristics of semiconductor wafers and devices
US20030043382A1 (en) Apparatus and method for determining the active dopant profile in a semiconductor wafer
Greben et al. Non-exponential decay kinetics: correct assessment and description illustrated by slow luminescence of Si nanostructures
KR101322591B1 (en) Apparatus and method for measuring semiconductor carrier lifetime
Buchner et al. Charge collection from focussed picosecond laser pulses
JP3665232B2 (en) Method and apparatus for evaluating iron concentration in silicon semiconductor
US5760597A (en) Method of and apparatus for measuring lifetime of carriers in semiconductor sample
Brodbeck et al. A new method of carrier trapping time measurement
US5430386A (en) Method and apparatus for evaluating semiconductor wafers by irradiation with microwave and excitation light
EP2538204B1 (en) Photoinduced carrier lifetime measuring method, light incidence efficiency measuring method, photoinduced carrier lifetime measuring device, and light incidence efficiency measuring device
US4755049A (en) Method and apparatus for measuring the ion implant dosage in a semiconductor crystal
Nikiforov et al. Dose rate laser simulation tests adequacy: Shadowing and high intensity effects analysis
JPH06132373A (en) Lifetime evaluation method and device of semiconductor material
JP2006128502A (en) Method and apparatus for measuring surface carrier recombination speed
JPS6253944B2 (en)
US20060237811A1 (en) Non-destructive, in-line characterization of semiconductor materials
Gaubas et al. Monitoring of carrier lifetime in GaAs substrate–epi-layer structures by space-resolved transient microwave absorption
JPH07240450A (en) Method for measuring carrier life
Muehlig et al. Measuring small absorption losses of laser pulses in fused silica by a pump and probe technique
Katayama et al. Dose dependence of carrier and heat dynamics at an ion-implanted silicon surface measured using lens-free heterodyne transient grating method
JP2000091393A (en) Semiconductor evaluation equipment
JPH04225150A (en) Method and apparatus for evaluating lifetime of semiconductor material
JPS59150443A (en) Semiconductor carrier life time measuring apparatus
Ivanov et al. Properties of p+-n structures with a buried layer of radiation-induced defects
RU2009575C1 (en) Method of contact-free determining of characteristics of silicon plates provided with internal getter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050331

R150 Certificate of patent or registration of utility model

Ref document number: 3665232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 9

EXPY Cancellation because of completion of term