JP5552626B2 - Lead-acid battery regeneration device, lead-acid battery regeneration method, and lead-acid battery - Google Patents

Lead-acid battery regeneration device, lead-acid battery regeneration method, and lead-acid battery Download PDF

Info

Publication number
JP5552626B2
JP5552626B2 JP2010273085A JP2010273085A JP5552626B2 JP 5552626 B2 JP5552626 B2 JP 5552626B2 JP 2010273085 A JP2010273085 A JP 2010273085A JP 2010273085 A JP2010273085 A JP 2010273085A JP 5552626 B2 JP5552626 B2 JP 5552626B2
Authority
JP
Japan
Prior art keywords
lead
storage battery
temperature
lead storage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010273085A
Other languages
Japanese (ja)
Other versions
JP2012123993A (en
Inventor
正明 河野
Original Assignee
有限会社かのう
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社かのう filed Critical 有限会社かのう
Priority to JP2010273085A priority Critical patent/JP5552626B2/en
Publication of JP2012123993A publication Critical patent/JP2012123993A/en
Application granted granted Critical
Publication of JP5552626B2 publication Critical patent/JP5552626B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

本発明は、性能が低下した鉛蓄電池を再生して利用可能とする鉛蓄電池再生装置と、鉛蓄電池再生方法およびこの方法によって再生された鉛蓄電池に関する。   The present invention relates to a lead-acid battery regeneration device that regenerates and uses a lead-acid battery whose performance has been reduced, a lead-acid battery regeneration method, and a lead-acid battery regenerated by this method.

二次電池の一つである鉛蓄電池は、車輌用電気機器の電力源等として広く利用されている。この鉛蓄電池は、充放電が所定の回数繰り返されることや、あるいは経年劣化により容量が大幅に低下することが知られている。容量が低下した鉛蓄電池は、寿命を迎えたものと判断されて廃棄されるのが通常である。   A lead storage battery, which is one of secondary batteries, is widely used as a power source for electric devices for vehicles. It is known that the capacity of this lead-acid battery is greatly reduced due to repeated charging and discharging or aged deterioration. A lead-acid battery having a reduced capacity is usually discarded because it has been determined that it has reached the end of its life.

鉛蓄電池の容量低下の原因の一つとして、サルフェーションが挙げられる。サルフェーションは、放電の際に電極の表面に生成した硫酸鉛(PbSO)が、時間の経過に伴って結晶化して電極に蓄積し固着して形成されるものである。サルフェーションは、大結晶化することで表面積が減少した硬い皮膜を有する物質であるため、電子伝導性やイオン伝導性を殆ど有しておらず、蓄電池の性能劣化をもたらす一因となっている。 Sulfation can be cited as one of the causes of the capacity reduction of the lead storage battery. The sulfation is formed by lead sulfate (PbSO 4 ) generated on the surface of the electrode during discharge crystallizing and accumulating on the electrode as time passes. Since sulfation is a substance having a hard film with a reduced surface area due to large crystallization, it hardly has electron conductivity or ion conductivity, which is a cause of deterioration of the performance of the storage battery.

サルフェーションの除去を目的として、性能が劣化した蓄電池にパルス電流を通電することで、結晶化した硫酸鉛の除去を行う技術の一例が、特許文献1、特許文献2に記載されている。   For the purpose of removing sulfation, Patent Documents 1 and 2 describe examples of techniques for removing crystallized lead sulfate by supplying a pulsed current to a storage battery with degraded performance.

特許第4427089号公報Japanese Patent No. 4427089 特願2006−164540号公報Japanese Patent Application No. 2006-164540

特許文献1に記載された技術は、再生処理中の蓄電池の電圧と温度を検出し、蓄電池の電圧と温度がそれぞれ一定値に収束するように、蓄電池に通電するパルス電流の電流値を、検出された蓄電池の電圧と温度に基づいて制御するものである。   The technique described in Patent Document 1 detects the voltage and temperature of the storage battery during the regeneration process, and detects the current value of the pulse current that energizes the storage battery so that the voltage and temperature of the storage battery converge to a certain value, respectively. Control is performed based on the voltage and temperature of the storage battery.

また、特許文献2に記載された技術は、鉛蓄電池に直流パルス電流を流して電極表面の硫酸鉛層を除去するパルス電流発生手段を有する鉛蓄電池再生装置において、計測された鉛蓄電池の温度と設定温度との差に応じて、直流パルス電流の波形を変化させ、鉛蓄電池の温度を設定温度に収束させるものである。   Moreover, the technique described in Patent Document 2 is a lead storage battery regeneration device having a pulse current generation means for removing a lead sulfate layer on the electrode surface by passing a direct current pulse current through the lead storage battery. The waveform of the direct current pulse current is changed according to the difference from the set temperature, and the temperature of the lead storage battery is converged to the set temperature.

特許文献1、特許文献2に記載されたものはいずれも、鉛蓄電池に対して直流パルス電流を流す点において共通であり、特許文献1においては、パルス電流の電流値を変化させているのに対して、特許文献2においては、パルス電流の波形、すなわち電流ピーク値、パルス幅、繰返し周波数または間歇周期を変化させるものである点で相違している。しかし、パルス電流を流す限りにおいて、鉛蓄電池に対して電流が流れない時間(以下、「無通電時間」という)が必ず存在する。   Both of Patent Document 1 and Patent Document 2 are common in that a direct current pulse current flows to a lead storage battery. In Patent Document 1, the current value of the pulse current is changed. On the other hand, Patent Document 2 is different in that the waveform of the pulse current, that is, the current peak value, the pulse width, the repetition frequency, or the intermittent period is changed. However, as long as the pulse current flows, there is always a time during which no current flows to the lead storage battery (hereinafter referred to as “non-energization time”).

本発明は、この無通電時間に着目して、鉛蓄電池の電極が熱破壊を起こすことなく、短時間で鉛蓄電池を再生することが可能な鉛蓄電池再生装置と、鉛蓄電池再生方法およびこの方法によって再生された鉛蓄電池を提供することを目的とする。   The present invention pays attention to this non-energization time, a lead storage battery regeneration device capable of regenerating the lead storage battery in a short time without causing thermal destruction of the electrode of the lead storage battery, a lead storage battery regeneration method, and this method An object of the present invention is to provide a lead-acid battery regenerated by the above.

以上の課題を解決するために、本発明の鉛蓄電池再生装置は、鉛蓄電池に電流を流して電極表面の硫酸鉛層を還元して除去する鉛蓄電池再生装置であって、鉛蓄電池を過充電状態に維持して、鉛蓄電池に対して電流を供給する電源と、鉛蓄電池の温度と外気温度とを検知する温度検知部とを備え、鉛蓄電池の温度が、鉛蓄電池の電極の熱破壊温度以下の温度となるように維持しつつ、前記電源から常に鉛蓄電池に対して電流が供給されるように、前記温度検知部から送信される温度情報に基づいて、前記電源から鉛蓄電池に対して供給される電流値を制御する制御部を有することを特徴とする。   In order to solve the above problems, a lead storage battery regeneration device according to the present invention is a lead storage battery regeneration device that reduces and removes the lead sulfate layer on the electrode surface by passing a current through the lead storage battery, and overcharges the lead storage battery. A power supply for supplying current to the lead storage battery and a temperature detection unit for detecting the temperature of the lead storage battery and the outside air temperature, the temperature of the lead storage battery being the thermal breakdown temperature of the electrode of the lead storage battery Based on the temperature information transmitted from the temperature detection unit, the lead from the power supply to the lead storage battery so that the current is always supplied from the power supply to the lead storage battery while maintaining the following temperature. It has a control part which controls the current value supplied.

本発明は、サルフェーションは非伝導性の抵抗体であり、鉛蓄電池を過充電状態にして鉛蓄電池に自己発熱させて、電気分解の反応速度を高めることにより、サルフェーションを溶解させることを前提としており、この状態を維持するために、電源から常に鉛蓄電池に対して電流が供給されるように制御している。パルス電流のように、鉛蓄電池に対して電流が供給されない無通電時間が存在すると、この無通電時間の時間帯は、サルフェーションの除去が促進されない時間帯となって、サルフェーションの除去の効率が低下し、再生に要する時間が長期化する。これに対し、本発明の鉛蓄電池再生装置では、電源から常に鉛蓄電池に対して電流が供給されるように制御しているため、全ての時間帯においてサルフェーションの除去が促進され、再生に要する時間を短縮することができる。
また、鉛蓄電池に対して供給される電流の大きさは、鉛蓄電池の温度が、鉛蓄電池の電極の熱破壊温度以下の温度となるように制御されるため、鉛蓄電池が熱破壊を起こすことがない。
The present invention is based on the premise that the sulfation is a non-conductive resistor, and the sulfation is dissolved by increasing the reaction rate of the electrolysis by causing the lead storage battery to overcharge and causing the lead storage battery to self-heat. In order to maintain this state, control is performed such that current is always supplied from the power source to the lead storage battery. If there is a non-energization time during which no current is supplied to the lead-acid battery, such as a pulse current, this non-energization time period becomes a time zone during which sulfation removal is not promoted, and the efficiency of sulfation removal decreases. However, the time required for reproduction is prolonged. On the other hand, in the lead storage battery regeneration device of the present invention, since the current is always supplied from the power source to the lead storage battery, the removal of sulfation is promoted in all time zones, and the time required for regeneration Can be shortened.
In addition, the magnitude of the current supplied to the lead storage battery is controlled so that the temperature of the lead storage battery is equal to or lower than the thermal breakdown temperature of the lead storage battery electrode. There is no.

本発明の鉛蓄電池再生装置においては、前記制御部は、前記温度検知部から送信された鉛蓄電池の温度情報を記憶する記憶部と、前記記憶部から送出される前記温度情報に基づいて鉛蓄電池の温度変化勾配と鉛蓄電池に供給する電流値を算出する演算部と、前記演算部によって算出された電流値に基づいて鉛蓄電池に供給する電流を調整する電流調整部とを備えた構成とすることができる。   In the lead storage battery regeneration device of the present invention, the control unit stores the temperature information of the lead storage battery transmitted from the temperature detection unit, and the lead storage battery based on the temperature information sent from the storage unit. And a current adjustment unit that adjusts the current supplied to the lead storage battery based on the current value calculated by the calculation unit. be able to.

制御部をこのような構成とすることにより、鉛蓄電池の温度が、鉛蓄電池の電極の熱破壊温度以下の温度となるように維持しつつ、電源から常に鉛蓄電池に対して電流が供給されるための適正な電流値を決定することができる。   With such a configuration of the control unit, current is always supplied from the power source to the lead storage battery while maintaining the temperature of the lead storage battery to be equal to or lower than the thermal breakdown temperature of the electrode of the lead storage battery. An appropriate current value can be determined.

本発明の鉛蓄電池再生装置においては、前記電源から鉛蓄電池に対して電流が供給されている状態において、前記鉛蓄電池の温度が一定であり、前記電源から鉛蓄電池に対して供給される電流値が一定となるように、前記制御部は、前記電源から鉛蓄電池に対して供給される電流値を制御することが好ましい。   In the lead storage battery regeneration device of the present invention, in the state where current is supplied from the power source to the lead storage battery, the temperature of the lead storage battery is constant, and the current value supplied from the power source to the lead storage battery It is preferable that the control unit controls a current value supplied from the power source to the lead storage battery so that the voltage is constant.

鉛蓄電池の温度が一定であるとは、電源から鉛蓄電池に対して供給される電流による発熱と、鉛蓄電池から空気中への放熱とが熱平衡状態を維持していることを意味し、この状態が維持されるように、電源から鉛蓄電池に対して一定の電流が供給されることによって、最も安定的にサルフェーションの除去を行うことが可能となる。   The constant temperature of the lead acid battery means that the heat generated by the current supplied from the power source to the lead acid battery and the heat dissipation from the lead acid battery to the air maintain a thermal equilibrium state. Thus, sulfation can be removed most stably by supplying a constant current from the power source to the lead storage battery.

本発明の鉛蓄電池再生方法は、鉛蓄電池に電流を流して電極表面の硫酸鉛層を還元して除去する鉛蓄電池再生方法であって、鉛蓄電池を過充電状態に維持して、鉛蓄電池に対して電流を供給するとともに、鉛蓄電池の温度と外気温度とを検知し、鉛蓄電池の温度が、鉛蓄電池の電極の熱破壊温度以下の温度となるように維持しつつ、鉛蓄電池に対して常に電流が供給されるように、鉛蓄電池の温度情報に基づいて、鉛蓄電池に対して供給される電流値を制御することを特徴とする。   The lead storage battery regeneration method of the present invention is a lead storage battery regeneration method in which a lead sulfate battery is reduced by removing the lead sulfate layer on the electrode surface by passing a current through the lead storage battery, and the lead storage battery is maintained in an overcharged state. In addition to supplying current to the lead storage battery, the temperature of the lead storage battery and the outside air temperature are detected, and the lead storage battery is maintained at a temperature equal to or lower than the thermal destruction temperature of the lead storage battery electrode. The current value supplied to the lead storage battery is controlled based on the temperature information of the lead storage battery so that the current is always supplied.

この鉛蓄電池再生方法は、鉛蓄電池に対して常に電流が供給されるようにしているため、全ての時間帯においてサルフェーションの除去が促進され、再生に要する時間を短縮することができるとともに、鉛蓄電池に対して供給される電流の大きさは、鉛蓄電池の温度が、鉛蓄電池の電極の熱破壊温度以下の温度となるように制御されるため、鉛蓄電池が熱破壊を起こすことなく、鉛蓄電池を再生することができる。   In this lead storage battery regeneration method, since current is always supplied to the lead storage battery, removal of sulfation is promoted in all time zones, and the time required for regeneration can be shortened. The magnitude of the current supplied to the lead storage battery is controlled so that the temperature of the lead storage battery is equal to or lower than the thermal breakdown temperature of the electrode of the lead storage battery. Can be played.

本発明の鉛蓄電池再生方法においては、鉛蓄電池に対して電流が供給されている状態において、前記鉛蓄電池の温度が一定であり、鉛蓄電池に対して供給される電流値が一定となるように、鉛蓄電池に対して供給される電流値を制御することが好ましい。
電源から鉛蓄電池に対して一定の電流が供給されることによって、最も安定的にサルフェーションの除去を行うことができる。
In the lead storage battery regeneration method of the present invention, in a state where current is supplied to the lead storage battery, the temperature of the lead storage battery is constant and the current value supplied to the lead storage battery is constant. It is preferable to control the current value supplied to the lead storage battery.
By supplying a constant current from the power source to the lead storage battery, sulfation can be removed most stably.

本発明の鉛蓄電池は、上述した鉛蓄電池再生方法によって再生されたものであり、この鉛蓄電池再生方法によって再生されることにより、安全に長期間に亘って使用することが可能となる。
そのため、同じ機能を有する鉛蓄電池を新たに生産する場合と比較して、エネルギー消費量と二酸化炭素発生量を大きく抑制することができるとともに、廃棄される鉛蓄電池の量が減少するため、廃棄物処理の観点からも大きな効果がある。
The lead storage battery of the present invention is regenerated by the above-described lead storage battery regeneration method, and can be used safely over a long period of time by being regenerated by this lead storage battery regeneration method.
Therefore, compared with the case of newly producing a lead storage battery having the same function, energy consumption and carbon dioxide generation can be greatly suppressed, and the amount of lead storage battery to be discarded is reduced. There is also a great effect from the viewpoint of processing.

本発明によると、鉛蓄電池の電極が熱破壊を起こすことなく、短時間で鉛蓄電池を再生することが可能な鉛蓄電池再生装置と、鉛蓄電池再生方法およびこの方法によって再生された鉛蓄電池を提供することができる。これにより、エネルギー消費量の削減、二酸化炭素発生量の抑制、廃棄物処理の観点から大きな効果がある。   According to the present invention, there is provided a lead-acid battery regeneration device capable of regenerating a lead-acid battery in a short time without causing thermal destruction of the electrode of the lead-acid battery, a lead-acid battery regeneration method, and a lead-acid battery regenerated by this method can do. Thereby, there is a great effect from the viewpoint of reduction of energy consumption, suppression of carbon dioxide generation, and waste disposal.

本発明の実施形態に係る鉛蓄電池再生装置の構成図である。It is a lineblock diagram of a lead storage battery reproducing device concerning an embodiment of the present invention. 本発明の実施形態に係る鉛蓄電池再生装置に用いられる制御部の一例を示す図である。It is a figure which shows an example of the control part used for the lead storage battery reproducing | regenerating apparatus which concerns on embodiment of this invention. 本発明の鉛蓄電池再生装置および鉛蓄電池再生方法における、鉛蓄電池に供給される電流と鉛蓄電池の温度の制御について説明するための図である。It is a figure for demonstrating control of the electric current supplied to lead acid battery, and the temperature of lead acid battery in the lead acid battery reproducing | regenerating apparatus and lead acid battery reproducing | regenerating method of this invention. 本発明の鉛蓄電池再生装置および鉛蓄電池再生方法における、鉛蓄電池に供給される電流と鉛蓄電池の温度の制御について説明するための図である。It is a figure for demonstrating control of the electric current supplied to lead acid battery, and the temperature of lead acid battery in the lead acid battery reproducing | regenerating apparatus and lead acid battery reproducing | regenerating method of this invention. 本発明の鉛蓄電池再生装置および鉛蓄電池再生方法における、鉛蓄電池に供給される電流と鉛蓄電池の温度の制御について説明するための図である。It is a figure for demonstrating control of the electric current supplied to lead acid battery, and the temperature of lead acid battery in the lead acid battery reproducing | regenerating apparatus and lead acid battery reproducing | regenerating method of this invention. 本発明の鉛蓄電池再生装置および鉛蓄電池再生方法における、鉛蓄電池に供給される電流と鉛蓄電池の温度の制御について説明するための図である。It is a figure for demonstrating control of the electric current supplied to lead acid battery, and the temperature of lead acid battery in the lead acid battery reproducing | regenerating apparatus and lead acid battery reproducing | regenerating method of this invention.

以下に、本発明をその実施形態に基づいて説明する。
図1に、本発明の実施形態に係る鉛蓄電池再生装置の構成図を示す。
鉛蓄電池再生装置1は、制御部2と、温度検知部3と、電源4とを備えている。鉛蓄電池5の外部に接して外部温度センサ6が取り付けられ、鉛蓄電池5の内部には内部温度センサ7が取り付けられている。また、鉛蓄電池5の電極に接して端子温度センサ8が取り付けられ、鉛蓄電池5の環境温度を計測するための環境温度センサ9が配置されている。
外部温度センサ6、内部温度センサ7、端子温度センサ8、環境温度センサ9は、温度検知部3に電気的に接続されており、鉛蓄電池5の内部温度、外部温度、端子温度、環境温度が、温度検知部3に送信される。なお、鉛蓄電池5の内部温度の検知は、熱伝導率の高い電極端子金属部の温度を検出する端子温度センサ8の検知温度と、内部温度センサ7の検知温度の高い方の温度を、鉛蓄電池5の内部温度として採用することによって行われる。
鉛蓄電池5の電極と電源4とは電気的に接続され、電源4から鉛蓄電池5に対して電流が供給される。
Below, this invention is demonstrated based on the embodiment.
In FIG. 1, the block diagram of the lead acid battery reproducing | regenerating apparatus which concerns on embodiment of this invention is shown.
The lead storage battery regeneration device 1 includes a control unit 2, a temperature detection unit 3, and a power source 4. An external temperature sensor 6 is attached in contact with the outside of the lead storage battery 5, and an internal temperature sensor 7 is attached inside the lead storage battery 5. A terminal temperature sensor 8 is attached in contact with the electrode of the lead storage battery 5, and an environmental temperature sensor 9 for measuring the environmental temperature of the lead storage battery 5 is disposed.
The external temperature sensor 6, the internal temperature sensor 7, the terminal temperature sensor 8, and the environmental temperature sensor 9 are electrically connected to the temperature detection unit 3, and the internal temperature, external temperature, terminal temperature, and environmental temperature of the lead storage battery 5 are Is transmitted to the temperature detection unit 3. In addition, the detection of the internal temperature of the lead storage battery 5 is performed by using the detection temperature of the terminal temperature sensor 8 for detecting the temperature of the electrode terminal metal part having a high thermal conductivity and the higher one of the detection temperatures of the internal temperature sensor 7 as lead. This is performed by adopting the internal temperature of the storage battery 5.
The electrode of the lead storage battery 5 and the power supply 4 are electrically connected, and current is supplied from the power supply 4 to the lead storage battery 5.

図2に、本発明の実施形態に係る鉛蓄電池再生装置に用いられる制御部の一例を示す。
制御部2は、記憶部11と、演算部12と、電流調整部13とを備えている。温度検知部3から送信される鉛蓄電池5の温度情報は、記憶部11に記憶され、記憶部11で記憶された鉛蓄電池5の温度情報は、演算部12に送出されて、後述する鉛蓄電池5の温度変化勾配や、適正な電流値が算出される。この電流値に基づいて、電流調整部13は、電源4から鉛蓄電池5に対して供給される電流を調整する。
この制御部2の機能については、後に詳述する。
In FIG. 2, an example of the control part used for the lead acid battery reproducing | regenerating apparatus which concerns on embodiment of this invention is shown.
The control unit 2 includes a storage unit 11, a calculation unit 12, and a current adjustment unit 13. The temperature information of the lead storage battery 5 transmitted from the temperature detection unit 3 is stored in the storage unit 11, and the temperature information of the lead storage battery 5 stored in the storage unit 11 is sent to the calculation unit 12 to be described later. 5 or a suitable current value is calculated. Based on this current value, the current adjustment unit 13 adjusts the current supplied from the power source 4 to the lead storage battery 5.
The function of the control unit 2 will be described in detail later.

図3、図4、図5、図6に基づいて、本発明の鉛蓄電池再生装置および鉛蓄電池再生方法における、鉛蓄電池に供給される電流と鉛蓄電池の温度の制御について説明する。
図3、図4、図5、図6はいずれも、電源から鉛蓄電池に供給される電流と、鉛蓄電池の温度との関係を示しており、横軸を時間とし、左側縦軸を温度とし、右側縦軸を電流としている。鉛蓄電池の温度は、内部温度と外部温度の両方を表示している。
Based on FIG. 3, FIG. 4, FIG. 5, FIG. 6, control of the current supplied to the lead storage battery and the temperature of the lead storage battery in the lead storage battery regeneration device and the lead storage battery regeneration method of the present invention will be described.
3, 4, 5, and 6 show the relationship between the current supplied from the power source to the lead storage battery and the temperature of the lead storage battery, with the horizontal axis representing time and the left vertical axis representing temperature. The right vertical axis represents current. The temperature of the lead acid battery indicates both the internal temperature and the external temperature.

図3は、比較的大きな電流値であるg(A)の電流を鉛蓄電池に供給したときの温度パターンを示している。鉛蓄電池の内部温度は、電流供給の時間経過に伴って上昇し、鉛蓄電池の外部温度が設定温度の上限値であるa(℃)に達すると、スイッチが切れて電流の供給が停止される。その後、鉛蓄電池の温度は、ある程度温度上昇を続けた後下降に転じ、外部温度が設定温度の下限値であるb(℃)に達すると、スイッチが閉じられて電流の供給が開始される。その後、鉛蓄電池の温度は、ある程度温度下降を続けた後上昇に転じ、外部温度が設定温度の上限値であるa(℃)に達すると、電流の供給が再び停止される。
このような温度と電流のパターンであると、鉛蓄電池に対して電流が流れない時間である無通電時間が存在し、この間は電流供給によるサルフェーションの除去が促進されない時間帯となって、サルフェーションの除去の効率が低下し、再生に要する時間が長期化する。
FIG. 3 shows a temperature pattern when a current of g (A), which is a relatively large current value, is supplied to the lead storage battery. The internal temperature of the lead acid battery rises with the lapse of time of current supply, and when the external temperature of the lead acid battery reaches a (° C.) which is the upper limit value of the set temperature, the switch is turned off and the current supply is stopped. . Thereafter, the temperature of the lead storage battery continues to rise to some extent and then falls, and when the external temperature reaches b (° C.) which is the lower limit value of the set temperature, the switch is closed and supply of current is started. Thereafter, the temperature of the lead storage battery continues to decrease to some extent and then increases. When the external temperature reaches a (° C.) which is the upper limit value of the set temperature, the supply of current is stopped again.
With such a temperature and current pattern, there is a non-energization time during which no current flows to the lead-acid battery. During this time, removal of sulfation due to current supply is not promoted, and sulfation The efficiency of removal decreases and the time required for regeneration increases.

図4は、図3に示した電流値よりも小さい電流であるh(A)の電流を鉛蓄電池に供給したときの温度パターンを示している。
電流値が図3の場合よりも小さくなっているため、電流供給の時間経過に伴う鉛蓄電池の温度上昇勾配は緩やかになる。そのため、外部温度が設定温度の上限値であるa(℃)に達するまでに要する時間は長くなり、鉛蓄電池への通電時間は長くなる。その一方、電流の供給が停止された後の温度降下に要する時間は、外部環境温度が一定である限り同一である。その結果、再生過程に要する全時間に占める無通電時間の割合は短くなる。
FIG. 4 shows a temperature pattern when a current of h (A) which is a current smaller than the current value shown in FIG. 3 is supplied to the lead storage battery.
Since the current value is smaller than that in the case of FIG. 3, the temperature rise gradient of the lead storage battery with the lapse of time of current supply becomes gentle. Therefore, the time required for the external temperature to reach a (° C.), which is the upper limit value of the set temperature, becomes longer, and the energization time for the lead storage battery becomes longer. On the other hand, the time required for the temperature drop after the supply of current is stopped is the same as long as the external environment temperature is constant. As a result, the ratio of the non-energization time to the total time required for the regeneration process is shortened.

図5は、図4に示した電流値よりも小さい電流であるi(A)を電流の上限値とし、j(A)を電流の下限値として、電流を段階的に変化させて鉛蓄電池に供給したときの温度パターンを示している。
鉛蓄電池に対してi(A)の電流を供給することによって、鉛蓄電池の外部温度は緩やかに上昇し、外部温度が設定温度の上限値であるa(℃)よりも低いc(℃)に達したときに、鉛蓄電池に供給される電流値を、i(A)よりも小さいj(A)に低下させる。その結果、鉛蓄電池の温度は、ある程度温度上昇を続けた後、a(℃)に達することなく下降に転じ、外部温度が設定温度の下限値であるb(℃)よりも高いd(℃)に達したときに、鉛蓄電池に供給される電流値を、i(A)に上昇させる。その後、鉛蓄電池の温度は、ある程度温度下降を続けた後、b(℃)に達することなく上昇に転ずる。
FIG. 5 shows a lead-acid battery in which i (A), which is smaller than the current value shown in FIG. 4, is an upper limit value of current, j (A) is a lower limit value of current, and the current is changed stepwise. The temperature pattern when supplied is shown.
By supplying the current of i (A) to the lead storage battery, the external temperature of the lead storage battery rises gradually, and the external temperature is set to c (° C.) lower than a (° C.) which is the upper limit value of the set temperature. When reached, the current value supplied to the lead-acid battery is reduced to j (A) smaller than i (A). As a result, after the temperature of the lead storage battery continues to rise to some extent, it turns down without reaching a (° C.), and the external temperature is higher than b (° C.), which is the lower limit of the set temperature, d (° C.). Is reached, the current value supplied to the lead storage battery is increased to i (A). Thereafter, the temperature of the lead storage battery continues to fall to some extent, and then rises without reaching b (° C.).

鉛蓄電池に供給される電流値をi(A)からj(A)に低下させる転換温度であるc(℃)と、鉛蓄電池に供給される電流値をj(A)からi(A)に上昇させる転換温度であるd(℃)は、i(A)の電流を供給しているときの温度上昇勾配と、j(A)の電流を供給しているときの温度下降勾配から算出して定めることができる。また、鉛蓄電池の内部温度も、設定温度の上限値であるa(℃)よりも低く、かつ設定温度の下限値であるb(℃)よりも高い範囲内となるように、鉛蓄電池の内部温度と外部温度との差を考慮して、転換温度であるc(℃)とd(℃)とが定められる。
このようにして鉛蓄電池に供給される電流値を制御すると、鉛蓄電池の温度が鉛蓄電池の電極の熱破壊温度以下の温度となるように維持しつつ、電源から常に鉛蓄電池に対して電流が供給される状態を実現することができ、無通電時間をなくすことができる。
C (° C.) which is a conversion temperature for reducing the current value supplied to the lead storage battery from i (A) to j (A), and the current value supplied to the lead storage battery from j (A) to i (A). The conversion temperature d (° C.) to be increased is calculated from the temperature increase gradient when the i (A) current is supplied and the temperature decrease gradient when the j (A) current is supplied. Can be determined. Also, the internal temperature of the lead storage battery is set so that the internal temperature of the lead storage battery is lower than a (° C.) that is the upper limit value of the set temperature and higher than b (° C.) that is the lower limit value of the set temperature. The conversion temperatures c (° C.) and d (° C.) are determined in consideration of the difference between the temperature and the external temperature.
When the current value supplied to the lead storage battery is controlled in this way, the current is always supplied from the power source to the lead storage battery while maintaining the temperature of the lead storage battery to be equal to or lower than the thermal breakdown temperature of the lead storage battery electrode. The supplied state can be realized, and the non-energization time can be eliminated.

図6は、鉛蓄電池に供給される電流値をさらに制御することによって、鉛蓄電池の内部温度、外部温度のいずれもが、設定温度の上限値a(℃)と下限値b(℃)との間において、一定値となるようにした状態を示している。ここでは、鉛蓄電池の内部温度がe(℃)、外部温度がf(℃)となるようにしている。これは、電源から鉛蓄電池に対して供給される電流による発熱と、鉛蓄電池から空気中への放熱とが熱平衡状態を維持していることを意味している。電源から鉛蓄電池に供給される電流を、図5に示すi(A)より小さくj(A)より大きいk(A)とすることにより、無通電期間が存在せず、電源から鉛蓄電池に対して常に一定の電流が流れ続けることになる。そのため、電流供給によるサルフェーションの除去が最適な状態で促進され続けるため、短時間で最も効率よく鉛蓄電池を再生することが可能になる。   FIG. 6 shows that by further controlling the current value supplied to the lead acid battery, both the internal temperature and the external temperature of the lead acid battery are the upper limit value a (° C.) and lower limit value b (° C.) of the set temperature. A state in which a constant value is obtained is shown. Here, the internal temperature of the lead storage battery is set to e (° C.), and the external temperature is set to f (° C.). This means that heat generation by the current supplied from the power source to the lead storage battery and heat dissipation from the lead storage battery to the air maintain a thermal equilibrium state. The current supplied from the power source to the lead storage battery is k (A) smaller than i (A) and larger than j (A) shown in FIG. Therefore, a constant current always flows. Therefore, since removal of sulfation by supplying current is continuously promoted in an optimum state, it is possible to regenerate the lead storage battery most efficiently in a short time.

上述した、鉛蓄電池に供給される電流値の制御は、例えば、以下のようにして行うことができる。
図2に示す制御部2の記憶部11に対して温度検知部3から送信された、鉛蓄電池の電流供給開始からの時間経過と温度変化に関する温度情報が時系列的にサンプリングして記憶され、この記憶された温度情報が演算部12に送られて、演算部12が鉛蓄電池の温度変化勾配を算出するとともに、鉛蓄電池の温度が鉛蓄電池の電極の熱破壊温度以下の温度となるように維持しつつ、電源から常に鉛蓄電池に対して電流が供給される状態を実現するために、図5に示した転換温度であるc(℃)、d(℃)、電流値i(A)、j(A)を算出する。この算出値を電流調整部13に送出して、電流調整部13は電源が供給する電流のスイッチングを行う。
The above-described control of the current value supplied to the lead storage battery can be performed as follows, for example.
The temperature information related to the passage of time and the temperature change from the start of the current supply of the lead storage battery, which is transmitted from the temperature detection unit 3 to the storage unit 11 of the control unit 2 shown in FIG. The stored temperature information is sent to the calculation unit 12 so that the calculation unit 12 calculates the temperature change gradient of the lead storage battery, and the temperature of the lead storage battery is equal to or lower than the thermal breakdown temperature of the electrode of the lead storage battery. In order to realize a state in which current is always supplied from the power source to the lead storage battery while maintaining, c (° C.), d (° C.), current values i (A), which are the conversion temperatures shown in FIG. j (A) is calculated. The calculated value is sent to the current adjusting unit 13, and the current adjusting unit 13 performs switching of the current supplied by the power source.

この動作によって得られた鉛蓄電池の温度パターンについての温度情報が温度検知部3から記憶部11に送信されて、鉛蓄電池の温度情報は時系列的にサンプリングして記憶され、この記憶された温度情報が演算部12に送られて、演算部12は、鉛蓄電池の温度変化勾配がゼロとなる、すなわち鉛蓄電池が熱平衡状態を維持できるための一定電流k(A)を算出する。この算出値を電流調整部13に送出して、電流調整部13は電源が一定電流k(A)を鉛蓄電池に対して供給するように制御する。   The temperature information about the temperature pattern of the lead storage battery obtained by this operation is transmitted from the temperature detection unit 3 to the storage unit 11, and the temperature information of the lead storage battery is sampled and stored in time series, and the stored temperature Information is sent to the calculation unit 12, and the calculation unit 12 calculates a constant current k (A) for the temperature change gradient of the lead storage battery to be zero, that is, the lead storage battery can maintain a thermal equilibrium state. The calculated value is sent to the current adjusting unit 13, and the current adjusting unit 13 controls the power supply to supply a constant current k (A) to the lead storage battery.

すなわち、制御部2は、温度検知部3から送信された鉛蓄電池の温度情報を記憶する記憶部11と、記憶部11から送出される温度情報に基づいて鉛蓄電池の温度変化勾配と鉛蓄電池に供給する電流値を算出する演算部12と、演算部12によって算出された電流値に基づいて鉛蓄電池に供給する電流を調整する電流調整部13を備えた構成となっており、これらの機能によって、鉛蓄電池の温度が鉛蓄電池の電極の熱破壊温度以下の温度となるように維持しつつ、電源から常に鉛蓄電池に対して電流が供給される状態を実現して、電流供給によるサルフェーションの除去を最適な状態で促進することを可能としている。   That is, the control unit 2 stores the temperature information of the lead storage battery transmitted from the temperature detection unit 3 and the temperature change gradient of the lead storage battery and the lead storage battery based on the temperature information transmitted from the storage unit 11. The calculation unit 12 calculates the current value to be supplied, and the current adjustment unit 13 adjusts the current supplied to the lead storage battery based on the current value calculated by the calculation unit 12. While maintaining the temperature of the lead-acid battery to be equal to or lower than the thermal destruction temperature of the lead-acid battery electrode, it realizes a state in which current is always supplied from the power source to the lead-acid battery and eliminates sulfation by supplying current. Can be promoted in an optimal state.

なお、図5に示す転換温度c(℃)、d(℃)と、電流i(A)、j(A)の算出は、設定温度の上限値a(℃)と下限値b(℃)を記憶部11に予め記憶しておき、図3に示す電流g(A)を試験的に鉛蓄電池に供給して、鉛蓄電池の温度パターンをデータとして採取し、鉛蓄電池に供給する電流値を徐々に低下させ、図4に示す温度パターンを経て行うことができ、図5、図6に示す無通電時間の無い状態を実現することができる。
また、上記の説明においては、鉛蓄電池の外部温度に基づいて電流制御を行っているが、鉛蓄電池の内部温度に基づいても同様の電流制御を行うことができる。
Note that the conversion temperatures c (° C.) and d (° C.) and the currents i (A) and j (A) shown in FIG. 3 is stored in advance, the current g (A) shown in FIG. 3 is experimentally supplied to the lead storage battery, the temperature pattern of the lead storage battery is collected as data, and the current value supplied to the lead storage battery is gradually increased. 4 can be performed through the temperature pattern shown in FIG. 4, and the state without the non-energization time shown in FIGS. 5 and 6 can be realized.
Moreover, in said description, although current control is performed based on the external temperature of a lead storage battery, the same current control can be performed also based on the internal temperature of a lead storage battery.

また、上記の説明においては、初めに高めの電流を流しておき、徐々に電流値を下げる方式を採用しているが、一旦下げた電流値を上げる工程を含めることにより、昼夜の温度差に伴う環境温度の変化に対応することができる。夜から日中にかけては外気温が上昇するため、鉛蓄電池からの放熱量が減少するが、これに伴って、鉛蓄電池に流れる電流値を低下させる。その逆に、日中から夜間にかけては外気温が低下するため、鉛蓄電池からの放熱量が増大するが、これに伴って、鉛蓄電池に流れる電流値を上昇させる。
環境温度を検知して上記の操作を行うことによって、環境温度の変化があっても、図6に示す、一定電流の供給による熱平衡状態を実現することができる。
Further, in the above description, a method is adopted in which a higher current is first supplied and the current value is gradually reduced, but by including a step of increasing the current value once reduced, the temperature difference between day and night can be reduced. It is possible to cope with changes in environmental temperature. Since the outside air temperature rises from night to daytime, the amount of heat released from the lead storage battery decreases, but in accordance with this, the value of the current flowing through the lead storage battery is reduced. On the contrary, since the outside air temperature decreases from daytime to nighttime, the amount of heat released from the lead storage battery increases, and accordingly, the value of the current flowing through the lead storage battery is increased.
By detecting the environmental temperature and performing the above operation, the thermal equilibrium state by supplying a constant current shown in FIG. 6 can be realized even if the environmental temperature changes.

本発明は、鉛蓄電池の電極が熱破壊を起こすことなく、短時間で鉛蓄電を再生することが可能な鉛蓄電池再生装置と、鉛蓄電池再生方法として広く利用することができ、この方法によって再生された鉛蓄電池は、安全に長期間に亘って使用することが可能であるため、鉛蓄電池のリサイクル技術として有効に機能し、省エネルギーに大きく寄与するものである。   INDUSTRIAL APPLICABILITY The present invention can be widely used as a lead storage battery regeneration device and a lead storage battery regeneration method capable of regenerating lead storage in a short time without causing thermal destruction of the electrodes of the lead storage battery. Since the lead storage battery thus made can be used safely over a long period of time, it effectively functions as a lead storage battery recycling technology and greatly contributes to energy saving.

1 鉛蓄電池再生装置
2 制御部
3 温度検知部
4 電源
5 鉛蓄電池
6 外部温度センサ
7 内部温度センサ
8 端子温度センサ
9 環境温度センサ
11 記憶部
12 演算部
13 電流調整部
DESCRIPTION OF SYMBOLS 1 Lead storage battery reproduction apparatus 2 Control part 3 Temperature detection part 4 Power supply 5 Lead storage battery 6 External temperature sensor 7 Internal temperature sensor 8 Terminal temperature sensor 9 Environmental temperature sensor 11 Memory | storage part 12 Calculation part 13 Current adjustment part

Claims (3)

鉛蓄電池に電流を流して電極表面の硫酸鉛層を還元して除去する鉛蓄電池再生装置であって、鉛蓄電池を過充電状態に維持して、鉛蓄電池に対して電流を供給する電源と、鉛蓄電池の温度を検知する温度検知部とを備え、鉛蓄電池の温度が、鉛蓄電池の電極の熱破壊温度以下の温度となるように維持しつつ、前記電源から常に鉛蓄電池に対して電流が供給されるように、前記温度検知部から送信される温度情報に基づいて、前記電源から鉛蓄電池に対して供給される電流値を制御する制御部を有し、
前記電源から鉛蓄電池に対して電流が供給されている状態において、前記鉛蓄電池の温度が一定であり、前記電源から鉛蓄電池に対して供給される電流値が一定となるように、前記制御部は、前記電源から鉛蓄電池に対して供給される電流値を制御することを特徴とする鉛蓄電池再生装置。
A lead-acid battery regenerator that reduces and removes the lead sulfate layer on the electrode surface by passing a current through the lead-acid battery, maintaining the lead-acid battery in an overcharged state and supplying a current to the lead-acid battery; A temperature detection unit for detecting the temperature of the lead storage battery, and the current from the power source to the lead storage battery is always maintained while maintaining the temperature of the lead storage battery to be equal to or lower than the thermal breakdown temperature of the lead storage battery electrode. as supplied, based on the temperature information transmitted from the temperature detection section, have a control unit for controlling a current value supplied to the lead-acid battery from said power supply,
In a state in which current is supplied from the power source to the lead storage battery, the temperature of the lead storage battery is constant, and the current value supplied from the power source to the lead storage battery is constant. Controls the current value supplied to the lead storage battery from the power source .
鉛蓄電池に電流を流して電極表面の硫酸鉛層を還元して除去する鉛蓄電池再生方法であって、鉛蓄電池を過充電状態に維持して、鉛蓄電池に対して電流を供給するとともに、鉛蓄電池の温度を検知し、鉛蓄電池の温度が、鉛蓄電池の電極の熱破壊温度以下の温度となるように維持しつつ、鉛蓄電池に対して常に電流が供給されるように、鉛蓄電池の温度情報に基づいて、鉛蓄電池に対して供給される電流値を制御し、
鉛蓄電池に対して電流が供給されている状態において、前記鉛蓄電池の温度が一定であり、鉛蓄電池に対して供給される電流値が一定となるように、鉛蓄電池に対して供給される電流値を制御することを特徴とする鉛蓄電池再生方法。
A lead-acid battery regeneration method in which a current is passed through a lead-acid battery to reduce and remove the lead sulfate layer on the electrode surface, the lead-acid battery is maintained in an overcharged state, current is supplied to the lead-acid battery, and lead The temperature of the lead storage battery is detected so that the current is always supplied to the lead storage battery while detecting the temperature of the storage battery and maintaining the lead storage battery temperature to be equal to or lower than the thermal breakdown temperature of the lead storage battery electrode. Based on the information, control the current value supplied to the lead acid battery ,
In a state where current is supplied to the lead storage battery, the current supplied to the lead storage battery is such that the temperature of the lead storage battery is constant and the current value supplied to the lead storage battery is constant. A lead-acid battery regeneration method characterized by controlling a value .
請求項2の鉛蓄電池再生方法によって再生された鉛蓄電池。 A lead acid battery regenerated by the lead acid battery regeneration method of claim 2 .
JP2010273085A 2010-12-08 2010-12-08 Lead-acid battery regeneration device, lead-acid battery regeneration method, and lead-acid battery Expired - Fee Related JP5552626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010273085A JP5552626B2 (en) 2010-12-08 2010-12-08 Lead-acid battery regeneration device, lead-acid battery regeneration method, and lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010273085A JP5552626B2 (en) 2010-12-08 2010-12-08 Lead-acid battery regeneration device, lead-acid battery regeneration method, and lead-acid battery

Publications (2)

Publication Number Publication Date
JP2012123993A JP2012123993A (en) 2012-06-28
JP5552626B2 true JP5552626B2 (en) 2014-07-16

Family

ID=46505234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010273085A Expired - Fee Related JP5552626B2 (en) 2010-12-08 2010-12-08 Lead-acid battery regeneration device, lead-acid battery regeneration method, and lead-acid battery

Country Status (1)

Country Link
JP (1) JP5552626B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3678045B2 (en) * 1999-03-24 2005-08-03 松下電器産業株式会社 Battery charging method
JP2001338696A (en) * 2000-05-29 2001-12-07 Matsushita Electric Ind Co Ltd Charging method of lead storage battery
JP2004194481A (en) * 2002-12-13 2004-07-08 Matsushita Electric Ind Co Ltd Battery charging controlling device and battery charging device
JP2006164540A (en) * 2004-12-02 2006-06-22 Nittetsu Elex Co Ltd Device and method for reproducing lead battery
JP5233050B2 (en) * 2010-01-08 2013-07-10 株式会社小松製作所 Battery charger for industrial vehicles

Also Published As

Publication number Publication date
JP2012123993A (en) 2012-06-28

Similar Documents

Publication Publication Date Title
JP4565362B1 (en) Prevention and regeneration device for storage capacity deterioration due to electrical treatment of lead acid battery
JP5504126B2 (en) Control device for lithium-ion battery
JPWO2011135701A1 (en) Secondary battery charge control method and control device
CN102882221A (en) Supercapacitor and storage battery mixed energy-storing energy management circuit in photovoltaic grid-connected power generation
CA2500008A1 (en) Method for removing lead sulfate film formed in lead-acid battery
JP2018026209A (en) Charging method and charging system for nickel hydrogen battery
WO2011132300A1 (en) Method for restoring secondary battery, system for restoring secondary battery and vehicle equipped with same
JP2007234252A (en) Charger
JPWO2005083830A1 (en) Lead sulfate film removal method for lead battery electrode, lead sulfate film removal pulse generator
CN107634286B (en) A kind of battery DC/exchange heating device and method
JP2005327737A (en) Method for regenerating storage battery
JP2009016324A (en) Regenerating method for lead storage battery and its device
JP2006325331A (en) Discharging circuit for secondary battery and secondary battery pack equipped with the same, and electronic equipment
CN104160545B (en) The power reservoir capacity deterioration preventing of secondary cell and regeneration and electric power storage measuring device
JP5552626B2 (en) Lead-acid battery regeneration device, lead-acid battery regeneration method, and lead-acid battery
JP2004134139A (en) Recycling treatment method of storage battery
JP2787541B2 (en) Method and apparatus for regenerating primary battery
JP2006164540A (en) Device and method for reproducing lead battery
JP6774700B2 (en) Lead-acid battery regeneration device
JP5616043B2 (en) Lead acid battery regeneration method and lead acid battery regeneration device used in the method
JP2002190329A (en) Method and device for lead storage battery regeneration
JP2007097269A (en) Charging method of secondary battery
CN105406546A (en) Charging system, and charging device and charging method therefor
JP2010129538A (en) Method for reproducing lead storage battery and reproducing apparatus thereof
JP2003189498A (en) Charging method and charger of secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130904

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130904

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140417

R150 Certificate of patent or registration of utility model

Ref document number: 5552626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees