JP5548980B2 - Solid particle production equipment - Google Patents

Solid particle production equipment Download PDF

Info

Publication number
JP5548980B2
JP5548980B2 JP2009247172A JP2009247172A JP5548980B2 JP 5548980 B2 JP5548980 B2 JP 5548980B2 JP 2009247172 A JP2009247172 A JP 2009247172A JP 2009247172 A JP2009247172 A JP 2009247172A JP 5548980 B2 JP5548980 B2 JP 5548980B2
Authority
JP
Japan
Prior art keywords
receiving surface
raw material
chamber
temperature
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009247172A
Other languages
Japanese (ja)
Other versions
JP2011094837A (en
Inventor
和己 皆川
裕久 山田
堅志 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2009247172A priority Critical patent/JP5548980B2/en
Publication of JP2011094837A publication Critical patent/JP2011094837A/en
Application granted granted Critical
Publication of JP5548980B2 publication Critical patent/JP5548980B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、揮発性溶媒中に固形成分が溶解した原材料より、前記溶媒を乾燥除去して、固形粒子を製造するための装置及びその製造方法に関するものである。   The present invention relates to an apparatus for producing solid particles by drying and removing the solvent from a raw material in which a solid component is dissolved in a volatile solvent, and a production method thereof.

従来より、溶融した金属や合金、あるいは固形分を溶媒に溶解もしくは分散させた液状物から固形粒子を製造するための装置、方法としては、回転盤上の受け面からの煙化飛散によるスピニング法がよく知られ、既に実施されている。しかしながら、この従来のスピニング法により得られる固形粒子の大きさには限界があり、その粒径は、数ミクロン程度を下限とするものであった。
また、無機酸化物又は無機水酸化物を固形成分とする結晶化方法についても、特許文献1に示すように、本発明者らが既に提案しているところであるが、この方法においても、その粒子径はせいぜいミクロンレベルのものにとどまっている。
しかしながら、スピニング法は、その簡便さや生産性の高さ、粒子の均一性等の点において有用性が高いことから、固形粒子の機能発現性などの観点からも、ナノレベル、すなわち1ミクロン未満のナノメートルスケールでの粒子径の固形粒子の製造を可能とする方策の実現が望まれていた。
Conventionally, as an apparatus and method for producing solid particles from a molten metal or alloy, or a liquid material in which a solid content is dissolved or dispersed in a solvent, a spinning method based on smoke scattering from a receiving surface on a rotating disk is used. Is well known and already implemented. However, there is a limit to the size of solid particles obtained by this conventional spinning method, and the particle size has a lower limit of about several microns.
In addition, as shown in Patent Document 1, the present inventors have already proposed a crystallization method using an inorganic oxide or an inorganic hydroxide as a solid component. The diameter is at most micron level.
However, since the spinning method is highly useful in terms of its simplicity, high productivity, and uniformity of particles, the nano-level, that is, less than 1 micron from the viewpoint of the function manifestation of solid particles. It has been desired to realize a measure that enables the production of solid particles having a particle size on the nanometer scale.

特開2008−127248号公報JP 2008-127248 A

本願発明は、このような実情に鑑み、従来技術の問題点を解消し、ナノレベルの粒子径を持った固形粒子を容易に効率良く製造することのできる新しい製造装置と製造方法を提供することを課題としている。   In view of such circumstances, the present invention provides a new manufacturing apparatus and manufacturing method capable of solving the problems of the prior art and easily and efficiently manufacturing solid particles having a nano-level particle size. Is an issue.

本発明は、上記課題を解決するものとして、以下のことを特徴としている。   The present invention is characterized by the following in order to solve the above problems.


本発明の固形粒子の製造装置は、例えば図2に示すように、揮発性溶媒中に固形成分が溶解した原材料より前記溶媒を乾燥除去して固形粒子を製造するための装置であって、
外部空間と隔絶するチャンバー(10)と、
当該チャンバー内に配置した一軸回転盤(33)と、
この回転盤の一端にある受け面(34)と、
この受け面に前記原材料を供給する原料供給機構(20)と、
前記回転盤に遠心力を与えて、前記受け面に供給された原材料を薄膜化し、そして、その薄膜を前記受け面の外周縁から煙化飛散させる回転機構(30)とが具備されているとともに、
煙化飛散するまでの原材料の雰囲気温度を、前記揮発性溶媒の揮発温度未満とし、かつ、煙化飛散した原材料の雰囲気温度を、前記揮発性溶媒の揮発温度以上にするチャンバー内温度調整機構(40)が設けられていると共に、
前記受け面が水平面とされていて、
前記チャンバー内温度調整機構は、前記受け面より上部のチャンバー内空間を加熱制御する第一ヒータ(41)と、前記受け面より下部のチャンバー内空間を加熱制御する第二ヒータ(42、43)とにより構成されていている。

The solid particle production apparatus of the present invention is an apparatus for producing solid particles by drying and removing the solvent from a raw material in which a solid component is dissolved in a volatile solvent , for example, as shown in FIG.
A chamber (10) isolated from the external space;
A uniaxial rotating disk (33) disposed in the chamber;
A receiving surface (34) at one end of the turntable;
A raw material supply mechanism (20) for supplying the raw material to the receiving surface;
A rotating mechanism (30) for applying centrifugal force to the rotating disk to reduce the thickness of the raw material supplied to the receiving surface, and for causing the thin film to be smoked and scattered from the outer periphery of the receiving surface; ,
A temperature adjustment mechanism in the chamber in which the ambient temperature of the raw material until it is smoked and scattered is less than the volatilization temperature of the volatile solvent, and the atmospheric temperature of the raw material that has been smoked and scattered is equal to or higher than the volatilization temperature of the volatile solvent ( 40) , and
The receiving surface is a horizontal plane,
The chamber temperature adjusting mechanism includes a first heater (41) for controlling heating of the chamber space above the receiving surface and a second heater (42, 43) for controlling heating of the chamber space below the receiving surface. that it has been configured by the.


本発明の製造装置は、回転盤受け面により煙化飛散される前の雰囲気温度(T)と、煙化飛散された後の雰囲気温度(T)を、溶媒の揮発温度(T)との関係として、
<T≦T
に制御することを本質的特徴としている。
まずは、原材料が回転盤受け面の薄膜外周縁より煙化飛散するまでは、溶媒の蒸発を押さえることにより、煙化飛散する直前の薄膜の厚さを薄くし、煙化飛散した粒子の大きさを小さくすることができる。
そして、煙化飛散した後にチャンバー内に浮遊している状態での雰囲気温度(T)を前記のように高温とすることで、溶媒が蒸発され除去され、煙化飛散した粒子が何れかに貯まって大型化することがなくなり、飛散した粒子より溶媒成分を除去した分,小さい直径となる。 このため、実施例でも示すようにナノレベルの直径を有する固形粒子を生成することができるとともに、当該遠心噴霧の特徴を生かし、粒径の揃った状態で得ることが可能になる。

The manufacturing apparatus of the present invention uses the ambient temperature (T 1 ) before being smoked and scattered by the rotating disk receiving surface and the ambient temperature (T 2 ) after being smoked and scattered as the volatilization temperature (T 0 ) of the solvent. As a relationship
T 1 <T 0 ≦ T 2
It is an essential feature to control.
First, until the raw material is smoked and scattered from the outer peripheral edge of the thin film on the rotating disk receiving surface, by suppressing the evaporation of the solvent, the thickness of the thin film immediately before the smoked and scattered is reduced, and the size of the smoked and scattered particles Can be reduced.
Then, by raising the atmospheric temperature (T 2 ) in the state of being suspended in the chamber after being smoked and scattered as described above, the solvent is evaporated and removed, and the smoked and scattered particles are somewhere. It does not accumulate and become larger, and its diameter is smaller by removing the solvent component from the scattered particles. Therefore, as shown in the examples, solid particles having a nano-level diameter can be generated, and the characteristics of the centrifugal spray can be utilized to obtain a uniform particle size.

本発明の雰囲気温度の制御についての概要図。The schematic diagram about control of the atmospheric temperature of this invention. 実施例1の装置の概要を示す縦断正面図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 生成されたサポナイトナノ粒子(走査型電子顕微鏡写真)。Saponite nanoparticles produced (scanning electron micrograph). 生成されたサポナイトナノ粒子(透過型電子顕微鏡写真)。Saponite nanoparticles produced (transmission electron micrograph). 本装置で生成したアルミノ珪酸塩ナノ粒子(透過型電子顕微鏡写真)。Aluminosilicate nanoparticles produced by this device (transmission electron micrograph).

本発明は、原材料の煙化飛散の前後における雰囲気温度をコントロールするという、従来法からは想起できない特徴を有するものである。
そして、揮発性溶媒中に固形成分を溶解した原材料を用いることにより、煙化飛散直後の粒子径が例えミクロンレベルであっても、その後の溶媒の蒸発除去により、直径が縮小し、ナノスケールの粒径を持つものとして製造することが可能になった。
ここで、固形成分と揮発性溶媒との組合わせは、固形成分が溶媒に溶解し、溶媒の蒸発にともなって乾固される結果となる組合せであれば、その他の制限を必要としない。たとえば、揮発性溶媒としては水、あるいはアルコール、エーテル等の各種の有機溶媒、あるいはこれらの混合物であってもよい。
たとえば、前記特許文献1に記載して示した各種無機酸化物、無機水酸化物については、いずれも本発明に使用可能である。揮発性溶媒とこれら無機酸化物、無機水酸化物としては、たとえば、ヘクトライトやモンモリロナイトなどが挙げられる。
固形粒子の生成においては、物理的な析出、結晶化だけでなく、化学的な反応を伴うものであってもよい。たとえば無機粒子、有機塩等における水和物粒子の形成でもよく、その外に、揮発性溶媒に有機モノマーを溶解した溶液を用いた場合は、モノマーの微粒子化を粒子径の揃った形で達成し得るものである。
The present invention has a feature that cannot be recalled from the conventional method of controlling the ambient temperature before and after the raw material is smoked and scattered.
Then, by using raw materials in which solid components are dissolved in a volatile solvent, even if the particle diameter immediately after the smoky scattering is on the micron level, the diameter is reduced by subsequent evaporation of the solvent, and the nanoscale It has become possible to manufacture as having a particle size.
Here, the combination of the solid component and the volatile solvent does not require any other restriction as long as the solid component is dissolved in the solvent and results in drying as the solvent evaporates. For example, the volatile solvent may be water, various organic solvents such as alcohol and ether, or a mixture thereof.
For example, any of the various inorganic oxides and inorganic hydroxides described in Patent Document 1 can be used in the present invention. Examples of the volatile solvent and these inorganic oxides and inorganic hydroxides include hectorite and montmorillonite.
In the production of solid particles, not only physical precipitation and crystallization, but also chemical reactions may be involved. For example, hydrate particles in inorganic particles, organic salts, etc. may be formed. In addition to this, when a solution in which an organic monomer is dissolved in a volatile solvent is used, the formation of fine particles of the monomer is achieved with a uniform particle size. It is possible.

本発明は、発明の効果の項ですでに述べたとおり、原材料の状態変化に対応した雰囲気温度の制御を基本とするもので、その理想的な制御パターンを図1に示す。
当該パターンは、図中、受け面(34)の上方から原材料から受け面(34)に供給されることを前提にしたもので、受け面(34)の上方には、煙化飛散された原材料が至らないことを前提にしている。
すなわち、回転盤(33)の上面を受け面(34)とし、その上の原材料(溶液)の薄膜(50)の外周縁(35)を基準とすると、この外周縁とそこから回転盤(33)の回転中心側への領域(A)での雰囲気温度(T)、そして外周縁よりも外側の領域(A)での雰囲気温度(T)は、原材料溶液中の揮発性溶媒の揮発温度(T)との関係として、
<T≦T
であるようにする。この場合、「雰囲気」とは薄膜近傍であることは言うまでもない。また、領域A、Aの全体において温度T、Tは一定である必要はなく、図1に例示したように、前記回転中心からの距離に応じて勾配を有していてもよい。
As already described in the section of the effect of the invention, the present invention is based on the control of the atmospheric temperature corresponding to the state change of the raw material, and an ideal control pattern is shown in FIG.
The pattern is assumed to be supplied from the raw material to the receiving surface (34) from the upper side of the receiving surface (34) in the figure, and the raw material scattered and smoked above the receiving surface (34). This is based on the assumption that
That is, when the upper surface of the rotating disk (33) is the receiving surface (34) and the outer peripheral edge (35) of the thin film (50) of the raw material (solution) is used as a reference, the outer peripheral edge and the rotating disk (33) region to the rotation center side of) (a 1) ambient temperature at (T 1), and the ambient temperature than the outer peripheral edge in the outer area (a 2) (T 2), the volatile solvent of the raw material solution As the relationship with the volatilization temperature (T 0 ) of
T 1 <T 0 ≦ T 2
To be. In this case, needless to say, the “atmosphere” is in the vicinity of the thin film. Further, the temperatures T 1 and T 2 do not need to be constant in the entire regions A 1 and A 2 , and may have a gradient according to the distance from the rotation center as illustrated in FIG. .

前記T<T≦Tのように温度をコントロールするための手段としては、回転盤をその内部に配置しているチャンバー内の複数箇所にヒータ(41)(42)(43)を設けて、その設定温度の組合わせ調整(たとえば実施例1のように)や、光熱照射の調整等の各種のものとしてよい。
もちろん、本発明の装置、方法においては、以上のような発明の本質的特徴の前提として、また組合わせとして、回転盤(33)の受け面(34)上への原材料溶液の薄膜(50)が形成されるようにする。このため、製造装置の原料供給機構において、原材料の供給(量、速度)を調整可能とし、かつ回転盤の回転機構において、回転速度を調整可能とする。薄膜(50)は、これら調整をともなって、前記のT<Tの温度コントロールで、その厚さを小さくすることができる。このことがナノレベルの固形粒子形成を可能とする。
また、前記回転機構については、煙化飛散された原材料から揮発性溶媒が十分に、ほぼ完全に蒸発除去されるだけの飛散時間を保つように、遠心力を、回転速度によって調整可能とする。
As means for controlling the temperature such that T 1 <T 0 ≦ T 2 , heaters (41) (42) (43) are provided at a plurality of locations in the chamber in which the rotating disk is arranged. Then, various adjustments such as a combination adjustment of the set temperatures (for example, as in the first embodiment) and adjustment of photothermal irradiation may be used.
Of course, in the apparatus and method of the present invention, the thin film (50) of the raw material solution on the receiving surface (34) of the rotating disk (33) as a premise and combination of the above essential features of the invention. To be formed. For this reason, supply (amount and speed) of raw materials can be adjusted in the raw material supply mechanism of the manufacturing apparatus, and the rotation speed can be adjusted in the rotation mechanism of the rotating disk. With these adjustments, the thickness of the thin film (50) can be reduced by controlling the temperature T 2 <T 0 . This enables nano-level solid particle formation.
Further, with respect to the rotation mechanism, the centrifugal force can be adjusted by the rotation speed so as to maintain a scattering time sufficient for the volatile solvent to be sufficiently and completely evaporated and removed from the smoked and scattered raw material.

以上のような温度TとT、そして回転盤の回転速度は、溶媒、固形成分の種類と原材料としての溶液の濃度や粘度、受け面の面積、薄膜の厚みと所望の固形粒子の粒径等を考慮して定めることができる。
たとえば、雰囲気温度については、一般的には揮発温度(T)との差として、
−Tが、30℃〜50℃の範囲内に、また、
−Tが、20℃〜50℃の範囲内にあるようにすることが考慮される。また、回転盤の回転数としては、一般的には、20000rpm〜60000rpmの範囲内にすることが考慮される。
そこで以下に、実施例を示し、さらに詳しく説明する。もちろん、本発明は以下の例によって限定されるものではない。
The temperatures T 1 and T 2 and the rotation speed of the rotating disk are as follows: solvent, solid component type and solution concentration and viscosity as raw materials, receiving surface area, thin film thickness and desired solid particle size It can be determined in consideration of the diameter and the like.
For example, regarding the ambient temperature, in general, the difference from the volatilization temperature (T 0 )
T 0 -T 1 is in the range of 30 ° C. to 50 ° C., and
It is considered that T 2 −T 0 is in the range of 20 ° C. to 50 ° C. Moreover, as a rotation speed of a turntable, it is generally considered to be within a range of 20000 rpm to 60000 rpm.
Therefore, examples will be shown below and described in more detail. Of course, the present invention is not limited to the following examples.

本実施例は、本発明の製造装置の一例を示す。
図2に示したように、実施例としての製造装置では、外部空間と隔絶する円筒型のチャンバー(10)を用いている。このチャンバー(10)の上端には原材料を貯蔵するタンク(21)が配置されている。また、前記チャンバー(10)の天井部中央には前記タンク(21)に貯留された原材料を下方に滴下するノズル(22)が設けてある。原料供給機構(20)は、このタンク(21)とノズル(22)を備え、これらは、原料供給の調整手段によって制御されている。
また、前記チャンバー(10)の内部中央には、回転軸部(31)を上方に向けて電動モータ(32)が配置され、その回転軸部(31)の上端に円盤状の一軸回転盤(33)を固定して、回転機構(30)を構成してある。
この回転盤(33)の上面を受け面(34)とし、前記ノズル(22)から滴下した原材料を受け止め、回転盤(33)の回転によりそれを薄膜化し、その外周縁(35)から前記チャンバー内に煙化飛散させるようにしてある。
The present embodiment shows an example of the manufacturing apparatus of the present invention.
As shown in FIG. 2, the manufacturing apparatus according to the embodiment uses a cylindrical chamber (10) that is isolated from the external space. A tank (21) for storing raw materials is disposed at the upper end of the chamber (10). A nozzle (22) for dropping the raw material stored in the tank (21) downward is provided at the center of the ceiling of the chamber (10). The raw material supply mechanism (20) includes the tank (21) and the nozzle (22), and these are controlled by a raw material supply adjusting means.
An electric motor (32) is disposed in the center of the chamber (10) with the rotary shaft portion (31) facing upward, and a disc-shaped uniaxial rotary disc (on the upper end of the rotary shaft portion (31)). 33) is fixed to constitute the rotating mechanism (30).
The upper surface of the rotating disk (33) is used as a receiving surface (34), the raw material dropped from the nozzle (22) is received, and the rotating disk (33) is turned into a thin film. The smoke is scattered inside.

前記チャンバー(10)の内周面には、上限3段に区切って円筒状のヒータ(41)(42)(43)が設けてあり、上部ヒータ(41)は、前記回転盤(33)、受け面(34)よりも上部の空間を、中間ヒータ(42)と下部ヒータ(43)とは、前記回転盤(33)、受け面(34)よりも下方の空間を、上下2分割して加熱するようにして温度調整機構(40)が設けてある。チャンバー(10)の内壁が最も高温となり、前記回転軸(31)に近づくほどにヒータからの加熱が低減されるようにしてある。
たとえば以上のようにヒータ加熱システムを複数区分することによって、本発明の雰囲気温度調整はより容易に行うことが可能となる。
Cylindrical heaters (41), (42), and (43) are provided on the inner peripheral surface of the chamber (10) in an upper limit of three stages, and the upper heater (41) includes the rotating disk (33), The space above the receiving surface (34) is divided into two parts, the middle heater (42) and the lower heater (43), the space below the rotating disk (33) and the receiving surface (34). A temperature adjusting mechanism (40) is provided so as to be heated. Heat from the heater is reduced as the inner wall of the chamber (10) reaches the highest temperature and approaches the rotating shaft (31).
For example, by dividing a plurality of heater heating systems as described above, the atmospheric temperature adjustment of the present invention can be performed more easily.

実施例1の装置を用いて、固形粒子を製造した。
原材料は表1に示した。

原材料をタンク内に貯留し、表2で示す操作条件にて操作した。なお、これらの条件は、予備的実験によってあらかじめ選択し、設定されている。

この表2において、「外周縁近傍」は、薄膜外周縁の外側の近傍位置を意味しており、そこでの温度250℃(No.1)、150℃(No.2)は、熱電対測定によって測定したものである。
実験No.1およびNo.2のいずれにおいても薄膜外周縁から回転中心への内側での雰囲気温度は、いずれも100℃未満であることは、薄膜形成をともなわない予備的実験によって確認した。
また、薄膜外周縁での薄膜の厚さは、No.1、No.2のいずれにおいても約100ナノメータと確認された。
以上の結果得られた固形粒子は表3の通りである。
なお、図3、図4は、No.1で生成されたサポナイトナノ粒子のSEMおよびTEM写真であり、図5はNo.2で生成されたアルミノ珪酸塩ナノ粒子のTEM写真である。
Solid particles were produced using the apparatus of Example 1.
The raw materials are shown in Table 1.

Raw materials were stored in the tank and operated under the operating conditions shown in Table 2. These conditions are selected and set in advance by preliminary experiments.

In Table 2, “near the outer peripheral edge” means a position near the outer side of the outer peripheral edge of the thin film, and temperatures of 250 ° C. (No. 1) and 150 ° C. (No. 2) are measured by thermocouple measurement. It is measured.
Experiment No. 1 and no. In both cases, it was confirmed by a preliminary experiment that does not involve the formation of a thin film that the atmospheric temperature inside the outer periphery of the thin film from the thin film outer periphery to the center of rotation was less than 100 ° C.
The thickness of the thin film at the outer periphery of the thin film is No. 1, no. In both cases, it was confirmed to be about 100 nanometers.
The solid particles obtained as a result are as shown in Table 3.
3 and FIG. 1 is an SEM and TEM photograph of the saponite nanoparticles produced in FIG. 2 is a TEM photograph of aluminosilicate nanoparticles generated in 2.

サポナイトおよびアルミノ珪酸塩ナノ粒子はその触媒作用のみならず、触媒担持材料、吸着材料など様々な機能を有するナノ材料として期待される。   Saponite and aluminosilicate nanoparticles are expected not only as their catalytic action, but also as nanomaterials having various functions such as catalyst support materials and adsorbing materials.

Claims (1)

揮発性溶媒中に固形成分が溶解した原材料より前記溶媒を乾燥除去して固形粒子を製造するための装置であって、
外部空間と隔絶するチャンバーと、
当該チャンバー内に配置した一軸回転盤と、
この回転盤の一端にある受け面と、
この受け面に前記原材料を供給する原料供給機構と、
前記回転盤に遠心力を与えて、前記受け面に供給された原材料を薄膜化し、そして、その薄膜を前記受け面の外周縁から煙化飛散させる回転機構とが具備されているとともに、
煙化飛散するまでの原材料の雰囲気温度を、前記揮発性溶媒の揮発温度未満とし、かつ、煙化飛散した原材料の雰囲気温度を、前記揮発性溶媒の揮発温度以上にするチャンバー内温度調整機構が設けられていると共に、
前記受け面が水平面とされていて、
前記チャンバー内温度調整機構は、前記受け面より上部のチャンバー内空間を加熱制御する第一ヒータと、前記受け面より下部のチャンバー内空間を加熱制御する第二ヒータとにより構成されていていることを特徴とする固形粒子の製造装置。
An apparatus for producing solid particles by drying and removing the solvent from a raw material in which a solid component is dissolved in a volatile solvent,
A chamber isolated from the external space;
A uniaxial rotating disk disposed in the chamber;
A receiving surface at one end of the turntable,
A raw material supply mechanism for supplying the raw material to the receiving surface;
A rotating mechanism is provided that applies centrifugal force to the rotating disk, thins the raw material supplied to the receiving surface, and smokes and scatters the thin film from the outer periphery of the receiving surface,
A chamber temperature adjustment mechanism that makes the ambient temperature of the raw material until smoked and scattered less than the volatile temperature of the volatile solvent, and makes the ambient temperature of the smoked and scattered raw material equal to or higher than the volatile temperature of the volatile solvent. As well as
The receiving surface is a horizontal plane,
The chamber temperature adjustment mechanism includes a first heater that controls heating of the chamber space above the receiving surface, and a second heater that controls heating of the chamber space below the receiving surface. An apparatus for producing solid particles.
JP2009247172A 2009-10-28 2009-10-28 Solid particle production equipment Expired - Fee Related JP5548980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009247172A JP5548980B2 (en) 2009-10-28 2009-10-28 Solid particle production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009247172A JP5548980B2 (en) 2009-10-28 2009-10-28 Solid particle production equipment

Publications (2)

Publication Number Publication Date
JP2011094837A JP2011094837A (en) 2011-05-12
JP5548980B2 true JP5548980B2 (en) 2014-07-16

Family

ID=44111949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009247172A Expired - Fee Related JP5548980B2 (en) 2009-10-28 2009-10-28 Solid particle production equipment

Country Status (1)

Country Link
JP (1) JP5548980B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6281832B2 (en) * 2013-07-29 2018-02-21 国立研究開発法人物質・材料研究機構 Hollow particles and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127248A (en) * 2006-11-21 2008-06-05 National Institute For Materials Science Method for powdering inorganic oxide or inorganic hydroxide
JP2010099586A (en) * 2008-10-23 2010-05-06 National Institute For Materials Science Apparatus and method for producing solid particle

Also Published As

Publication number Publication date
JP2011094837A (en) 2011-05-12

Similar Documents

Publication Publication Date Title
Chou et al. Fabrication and sintering effect on the morphologies and conductivity of nano-Ag particle films by the spin coating method
Motl et al. Aerosol-assisted synthesis and assembly of nanoscale building blocks
JP2008055418A5 (en)
EP2202277A1 (en) Manufacturing method of core-shell-type ceria-polymer hybrid nanoparticles and dispersion sols of them
JP5548980B2 (en) Solid particle production equipment
JP5248054B2 (en) Method for producing spherical alumina particles
CN107109620B (en) Production of nanostructured materials
Sahoo et al. Single-step growth dynamics of core–shell GaN on Ga 2 O 3 freestanding nanoprotruded microbelts
JP2007154060A (en) Production method for film having uniformly arranged pores
KR101249958B1 (en) Hybrid carbonaceous nanotube, and preparing method of the same
JP7120210B2 (en) Method for producing carbon nanohorn aggregate
JP2015105224A (en) Burned alumina fine powder, and method for production thereof
US8080188B2 (en) Manufacturing apparatus and manufacturing method for solid particle
Shukla et al. Structural properties and wettability of TiO2 nanorods
JP2023029359A (en) Manufacturing method for article
Verissimo et al. Microstructural modifications in macroporous oxides prepared via latex templating: synthesis and thermal stability of porous microstructure
Ju et al. Atmosphere effects on micron-sized ZnO ridges during sintering
Ottaviano et al. Nanowire directed diffusion limited aggregation growth of nanoparticles
CN108568218B (en) Preparation method of porous graphene membrane and application of porous graphene membrane in aspect of carbon dioxide capture
KR101123398B1 (en) Vanadia sol containing tungsten trioxide and manufacturing method thereof
JP5542610B2 (en) Vacuum deposition equipment
KR100669819B1 (en) Method for manufacturing ceramic powder for plasma spraying and ceramic powder using the same
KR100759286B1 (en) Producing method for zirconium-iron-vanadium nanopowder using laser ablation
JP2006261046A (en) Manufacturing method of electrode catalyst powder for solid polymer fuel cell using metallic glass and electrode catalyst powder for solid polymer fuel cell using metallic glass
KR20200105015A (en) Apparatus for a oxide powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140430

R150 Certificate of patent or registration of utility model

Ref document number: 5548980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees