JP5548889B2 - Thermoelectric composition - Google Patents

Thermoelectric composition Download PDF

Info

Publication number
JP5548889B2
JP5548889B2 JP2009236219A JP2009236219A JP5548889B2 JP 5548889 B2 JP5548889 B2 JP 5548889B2 JP 2009236219 A JP2009236219 A JP 2009236219A JP 2009236219 A JP2009236219 A JP 2009236219A JP 5548889 B2 JP5548889 B2 JP 5548889B2
Authority
JP
Japan
Prior art keywords
power generation
thermoelectric power
thermal conductivity
composition
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009236219A
Other languages
Japanese (ja)
Other versions
JP2011084759A (en
Inventor
友秀 原口
一雄 柴田
光将 空澤
正芳 森
武 山上
亮 大谷
直樹 光田
健 黒崎
伸介 山中
正美 宇埜
浩明 牟田
健太 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009236219A priority Critical patent/JP5548889B2/en
Publication of JP2011084759A publication Critical patent/JP2011084759A/en
Application granted granted Critical
Publication of JP5548889B2 publication Critical patent/JP5548889B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、熱発電組成物に関する。詳しくは、熱伝導率が低く、優れた熱発電性能を有する熱発電組成物に関する。   The present invention relates to a thermoelectric power generation composition. Specifically, the present invention relates to a thermoelectric power generation composition having low thermal conductivity and excellent thermoelectric power generation performance.

熱発電組成物は、ゼーベック効果によって、熱エネルギを電気エネルギに変換できる性質を有する。このため、熱発電組成物を用いて、例えばエンジンの排熱等から電気を取り出すことができる。この熱発電組成物によるエネルギ変換は、直接変換であることから、エネルギの高効率利用技術として注目されている。   Thermoelectric power generation compositions have the property of converting thermal energy into electrical energy by the Seebeck effect. For this reason, electricity can be taken out, for example from exhaust heat of an engine, etc. using a thermoelectric-generation composition. Since the energy conversion by this thermoelectric power generation composition is direct conversion, it has attracted attention as a technology for efficiently using energy.

例えば、熱発電組成物として知られているハーフホイスラー型FeVSb系材料またはFeNbSb系材料において、VやNbの原子位置にTiやMo等を導入し、VやNbの少なくとも一部をTiやMo等で置換する技術が開示されている(非特許文献1参照)。
この技術によれば、VやNbの少なくとも一部をTiやMo等で置換してキャリア量を調整することにより、熱発電組成物の電気伝導率を高めることができ、優れた熱発電性能を有する熱発電組成物が得られるとされている。
For example, in a half-Heusler type FeVSb-based material or FeNbSb-based material known as a thermoelectric power generation composition, Ti, Mo or the like is introduced into the atomic position of V or Nb, and at least a part of V or Nb is Ti, Mo A technique for substituting with is disclosed (see Non-Patent Document 1).
According to this technology, the electrical conductivity of the thermoelectric generator composition can be increased by replacing at least a part of V and Nb with Ti, Mo, etc. to adjust the carrier amount, and the excellent thermoelectric generator performance can be obtained. It is supposed that the thermoelectric power generation composition which has is obtained.

Journal of Applied Physics, vol.87, P317−321.Journal of Applied Physics, vol. 87, P317-321.

ところが、熱発電組成物の熱発電性能を向上させるためには、熱発電組成物の電気伝導率を高めるだけでは不十分であり、熱発電組成物の熱伝導率を低減させることが必要である。熱伝導率が高い場合には、素子化したときに端子間に生じる温度差を維持できないからである。
しかしながら、上記の非特許文献1では、熱発電組成物の熱伝導率の低減については全く検討されてはおらず、熱発電性能のさらなる向上が望まれる。
However, in order to improve the thermoelectric power generation performance of the thermoelectric generator composition, it is not sufficient to increase the electric conductivity of the thermoelectric generator composition, and it is necessary to reduce the thermal conductivity of the thermoelectric generator composition. . This is because when the thermal conductivity is high, the temperature difference generated between the terminals when the element is formed cannot be maintained.
However, in the above Non-Patent Document 1, no consideration has been given to the reduction of the thermal conductivity of the thermoelectric power generation composition, and further improvement of the thermoelectric power generation performance is desired.

本発明は、上記に鑑みてなされたものであり、その目的は、従来に比して熱伝導率が低く、優れた熱発電性能を有する熱発電組成物を提供することにある。   The present invention has been made in view of the above, and an object of the present invention is to provide a thermoelectric power generation composition having a low thermal conductivity and excellent thermoelectric power generation performance as compared with the conventional art.

上記目的を達成するため、本発明に係る熱発電組成物は、下記一般式(1)で表されるもののうち、下記一般式(2)で表わされることを特徴とする。

Figure 0005548889
[一般式(1)中、Aは、Nb、Ta、及びVからなる群より選択される2種以上の元素の組み合わせからなる。]
Figure 0005548889
[一般式(2)中、x及びyは、0.2≦x≦0.8、0.2≦y≦0.8、及び0.5≦x+y≦1.0の関係を満たす。] In order to achieve the above object, the thermoelectric power generation composition according to the present invention is represented by the following general formula (2) among those represented by the following general formula (1).
Figure 0005548889
[In General Formula (1), A consists of a combination of two or more elements selected from the group consisting of Nb, Ta, and V. ]
Figure 0005548889
[In General Formula (2), x and y satisfy the relationship of 0.2 ≦ x ≦ 0.8, 0.2 ≦ y ≦ 0.8, and 0.5 ≦ x + y ≦ 1.0. ]

本発明では、上記一般式(1)で表される化合物のうち、上記一般式(2)で表される化合物により熱発電組成物を構成した
これにより、従来に比して、熱発電組成物の熱伝導率を6.5W/mK以下にまで低減できる。このため、本発明に係る熱発電組成物を素子化した場合には、素子の端子間で大きな温度差を確保できる結果、より優れた熱発電性能が得られる。
In the present invention, among the compounds represented by the general formula (1), the thermoelectric power generation composition is composed of the compound represented by the general formula (2) .
Thereby, compared with the past, the thermal conductivity of a thermoelectric power generation composition can be reduced to 6.5 W / mK or less . For this reason, when the thermoelectric power generation composition according to the present invention is formed into an element, a large temperature difference can be ensured between the terminals of the element, and as a result, more excellent thermoelectric power generation performance can be obtained.

また、本発明に係る熱発電組成物は、上記一般式(2)において、x及びyが、0.3≦x≦0.7、0.3≦y≦0.7、及び0.7≦x+y≦1.0の関係を満たすことがさらに好ましい。   In the thermoelectric power generation composition according to the present invention, in the general formula (2), x and y are 0.3 ≦ x ≦ 0.7, 0.3 ≦ y ≦ 0.7, and 0.7 ≦ More preferably, the relationship x + y ≦ 1.0 is satisfied.

本発明のさらに好ましい態様では、上記一般式(2)で表される化合物であって、x及びyが、0.3≦x≦0.7、0.3≦y≦0.7、及び0.7≦x+y≦1.0の関係を満たす化合物により、熱発電組成物を構成した。これにより、熱発電組成物の熱伝導率を6.0W/mK以下にまで低減できる。このため、素子化した場合に端子間でさらに大きな温度差を確保できる結果、より一層優れた熱発電性能が得られる。   In a more preferred embodiment of the present invention, the compound represented by the general formula (2) is such that x and y are 0.3 ≦ x ≦ 0.7, 0.3 ≦ y ≦ 0.7, and 0. The thermoelectric power generation composition was composed of a compound satisfying the relationship of 7 ≦ x + y ≦ 1.0. Thereby, the thermal conductivity of the thermoelectric generator composition can be reduced to 6.0 W / mK or less. For this reason, as a result of securing a larger temperature difference between the terminals when it is made into an element, a further excellent thermoelectric power generation performance is obtained.

本発明によれば、従来に比して熱伝導率が低く、優れた熱発電性能を有する熱発電組成物を提供できる。   According to the present invention, it is possible to provide a thermoelectric power generation composition having a lower thermal conductivity than the conventional one and having excellent thermoelectric power generation performance.

FeNbSbのNbを、V及び/またはTaで置換したときの温度と熱伝導率との関係を示す図である。It is a figure which shows the relationship between temperature and thermal conductivity when Nb of FeNbSb is substituted with V and / or Ta. 実施例、参考例及び比較例に係る熱発電組成物の室温下における熱伝導率算出結果である。It is a thermal conductivity calculation result in the room temperature of the thermoelectric power generation composition which concerns on an Example , a reference example, and a comparative example. 実施例、参考例及び比較例に係る熱発電組成物の元素種及び構成比率と熱伝導率との関係を示す図である。It is a figure which shows the relationship between the element seed | species of the thermoelectric power generation composition which concerns on an Example , a reference example, and a comparative example, a structural ratio, and thermal conductivity.

以下、本発明の実施形態について図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の一実施形態に係る熱発電組成物は、下記一般式(1)で表され、下記一般式(1)中のAが、Nb、Ta、及びVからなる群より選択される2種以上の元素の組み合わせからなることを特徴とする。

Figure 0005548889
The thermoelectric power generation composition according to an embodiment of the present invention is represented by the following general formula (1), and A in the following general formula (1) is selected from the group consisting of Nb, Ta, and V It consists of a combination of the above elements.
Figure 0005548889

本実施形態に係る熱発電組成物の熱伝導率について説明する。
図1は、FeNbSbのNb原子位置を、Nbと同族の5A族元素であるV及び/またはTaで置換したときの温度(K)と熱伝導率(W/mK)との関係を示した図である。置換率%は、Nb原子位置におけるNbに対する置換元素のモル%である。
The thermal conductivity of the thermoelectric generator composition according to this embodiment will be described.
FIG. 1 is a graph showing the relationship between temperature (K) and thermal conductivity (W / mK) when the Nb atom position of FeNbSb is substituted with V and / or Ta which are 5A group elements belonging to Nb. It is. The substitution rate% is the mol% of the substitution element with respect to Nb at the Nb atom position.

また、ULVAC理工社製の「TC−7000」を用いて、室温から約973Kの温度範囲で、各熱発電組成物の熱伝導率の測定を実施したものである。   Moreover, the thermal conductivity of each thermoelectric power generation composition was measured in the temperature range from room temperature to about 973 K using “TC-7000” manufactured by ULVAC Riko.

図1から分かるように、NbをV及び/またはTaで置換したものは、FeNbSb(無置換)に比して、熱伝導率が大きく低減している。即ち、上記一般式FeASbで表され、且つAが、原子質量及び原子サイズの異なる5A同族元素のNb、Ta、及びVからなる群より選択される2種以上の元素の組み合わせからなる熱発電組成物は、従来に比して熱伝導率が大きく低減している。従って、本実施形態に係る熱発電組成物によれば、素子化したときに端子間に生じる温度差を維持でき、優れた熱発電性能が得られることが分かる。
ここで、熱発電組成物の熱伝導率は、格子熱伝導率とキャリア熱伝導率との和で表される。本実施形態における熱伝導率の低減は、後述する実施例で示すように、概ね格子熱伝導率の減少によるものであると推察される。
As can be seen from FIG. 1, the thermal conductivity of Nb substituted with V and / or Ta is greatly reduced as compared with FeNbSb (unsubstituted). That is, a thermoelectric power generation composition composed of a combination of two or more elements selected from the group consisting of Nb, Ta, and V of 5A homologous elements having different atomic masses and atomic sizes, represented by the above general formula FeASb The product has a greatly reduced thermal conductivity as compared with the prior art. Therefore, according to the thermoelectric power generation composition according to the present embodiment, it can be understood that the temperature difference generated between the terminals when the element is formed can be maintained, and excellent thermoelectric power generation performance can be obtained.
Here, the thermal conductivity of the thermoelectric generator composition is represented by the sum of the lattice thermal conductivity and the carrier thermal conductivity. The reduction in thermal conductivity in the present embodiment is presumed to be due to the decrease in lattice thermal conductivity, as shown in the examples described later.

また、V10%置換、V20%置換、及びV30%置換したものを比較すれば分かるように、置換率が高まるにつれて、熱伝導率が低減する。これは、V5%,Ta5%置換、V10%,Ta10%置換、及びV15%,Ta15%置換でも同様の傾向が認められ、トータルの置換率が高いほど熱伝導率が低減する。
さらには、トータルの置換率が同一である場合には、V及びTaの2種の元素で置換した場合の方が、Vのみで置換した場合よりも熱伝導率が低減する。
Further, as can be seen from comparison of the V10% substitution, the V20% substitution, and the V30% substitution, the thermal conductivity decreases as the substitution rate increases. The same tendency is observed for V5%, Ta5% substitution, V10%, Ta10% substitution, and V15%, Ta15% substitution. The higher the total substitution rate, the lower the thermal conductivity.
Furthermore, when the total substitution rate is the same, the thermal conductivity is reduced in the case of substitution with two elements of V and Ta than in the case of substitution with V alone.

また、本実施形態に係る熱発電組成物は、上記一般式(1)で表される化合物のうち、下記一般式(2)で表され、下記一般式(2)中のx及びyが、0.2≦x≦0.8、0.2≦y≦0.8、及び0.5≦x+y≦1.0の関係(以下、Iの関係という)を満たす化合物であることが好ましい。

Figure 0005548889
Moreover, the thermoelectric power generation composition according to the present embodiment is represented by the following general formula (2) among the compounds represented by the general formula (1), and x and y in the following general formula (2) are: A compound satisfying the relationship of 0.2 ≦ x ≦ 0.8, 0.2 ≦ y ≦ 0.8, and 0.5 ≦ x + y ≦ 1.0 (hereinafter referred to as the relationship of I) is preferable.
Figure 0005548889

後述する実施例で示すように、上記一般式(2)で表される化合物であって、x及びyが上記Iの関係を満たす場合には、熱発電組成物の熱伝導率を6.5W/mK以下にまで低減できる。これにより、素子化した場合に端子間で大きな温度差を確保できる結果、より優れた熱発電性能が得られる。   As shown in the examples described later, when the compound represented by the general formula (2) and x and y satisfy the relationship I, the thermal conductivity of the thermoelectric composition is 6.5 W. / MK or less. As a result, when a device is formed, a large temperature difference can be secured between the terminals, and as a result, more excellent thermoelectric generation performance can be obtained.

また、本発明に係る熱発電組成物は、上記一般式(2)において、x及びyが、0.3≦x≦0.7、0.3≦y≦0.7、及び0.7≦x+y≦1.0の関係(以下、IIの関係という)を満たすことがさらに好ましい。
後述する実施例で示すように、上記一般式(2)で表される化合物であって、x及びyが上記IIの関係を満たす場合には、熱発電組成物の熱伝導率を6.0W/mK以下にまで低減できる。これにより、素子化した場合に端子間でさらに大きな温度差を確保できる結果、より一層優れた熱発電性能が得られる。
In the thermoelectric power generation composition according to the present invention, in the general formula (2), x and y are 0.3 ≦ x ≦ 0.7, 0.3 ≦ y ≦ 0.7, and 0.7 ≦ It is more preferable to satisfy the relationship x + y ≦ 1.0 (hereinafter referred to as II relationship).
As shown in the examples described later, when the compound represented by the general formula (2) and x and y satisfy the above relationship II, the thermal conductivity of the thermoelectric composition is 6.0 W. / MK or less. As a result, when an element is formed, a larger temperature difference can be secured between the terminals, and as a result, a further excellent thermoelectric generation performance can be obtained.

次に、本実施形態に係る熱発電組成物の熱発電性能について説明する。
通常、熱発電組成物の熱発電性能の評価では、下記数式(1)により算出される性能指数Zが利用される。

Figure 0005548889
Next, the thermoelectric power generation performance of the thermoelectric power generation composition according to this embodiment will be described.
Usually, in the evaluation of the thermoelectric generation performance of the thermoelectric generation composition, a figure of merit Z calculated by the following formula (1) is used.
Figure 0005548889

ここで、上記数式(1)中、Sはゼーベック係数、σは電気伝導率、kは熱伝導率である。この数式(1)から分かるように、熱発電組成物において、熱伝導率の低下は性能指数Zの向上を意味する。後述する実施例で示すように、本実施形態に係る熱発電組成物によれば、熱伝導率を最大で70%低減することができるため、性能指数Zはおよそ3倍以上向上することを意味する。   Here, in the above formula (1), S is the Seebeck coefficient, σ is the electrical conductivity, and k is the thermal conductivity. As can be seen from this mathematical formula (1), in the thermoelectric power generation composition, a decrease in thermal conductivity means an improvement in the figure of merit Z. As shown in the examples described later, according to the thermoelectric generator composition according to this embodiment, the thermal conductivity can be reduced by up to 70%, which means that the figure of merit Z is improved by about 3 times or more. To do.

本実施形態に係る熱発電組成物の製造方法は特に限定されず、従来公知の方法により製造される。出発物質である各金属素材としては、市販の高純度金属素材を用いることができる。金属素材の形状は特に限定されず、例えばチャンク形状やフレーク形状等の金属素材を用いることができる。
具体的な製造手順について、一例を挙げて説明する。
先ず、所望の元素構成比率となるように、上記の金属素材を化学量論比で秤量する。秤量後、例えば希薄アルゴン雰囲気下でアーク溶解して溶融・反応させる。得られたインゴットに対して、所定の条件で均質化熱処理を施した後、粉砕して粒系制御を行う。次いで、得られた粉末に対して、プラズマ等を利用した焼結処理を所定の条件下で行う。得られた焼結体を切断・整形・研磨することにより、目的とする熱発電組成物を得る。
The method for producing the thermoelectric generator composition according to this embodiment is not particularly limited, and is produced by a conventionally known method. As each metal material which is a starting material, a commercially available high purity metal material can be used. The shape of the metal material is not particularly limited, and for example, a metal material such as a chunk shape or a flake shape can be used.
A specific manufacturing procedure will be described with an example.
First, the above metal material is weighed in a stoichiometric ratio so that a desired elemental composition ratio is obtained. After weighing, for example, arc melting is performed in a dilute argon atmosphere to melt and react. The obtained ingot is subjected to homogenization heat treatment under predetermined conditions, and then pulverized to control the grain system. Next, the obtained powder is subjected to a sintering process using plasma or the like under predetermined conditions. By cutting, shaping, and polishing the obtained sintered body, a target thermoelectric power generation composition is obtained.

以上説明したような本実施形態に係る熱発電組成物によれば、所望の形状に加工した後、外部電極と接合して素子化することにより、熱発電装置として利用することができる。また、複数の素子を電気的に直列に接続してモジュール化することにより、より大きな電力を得ることができる。   The thermoelectric power generation composition according to the present embodiment as described above can be used as a thermoelectric power generation device by processing into a desired shape and then joining an external electrode to form an element. Further, a larger power can be obtained by modularizing a plurality of elements electrically connected in series.

なお、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。   It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within a scope that can achieve the object of the present invention are included in the present invention.

次に、本発明の実施例について説明するが、本発明はこれら実施例に限定されるものではない。   Next, examples of the present invention will be described, but the present invention is not limited to these examples.

<実施例、参考例及び比較例1>
[熱発電組成物の製造]
任意の熱発電組成物が得られる下記製造方法により、実施例、参考例及び比較例の各熱発電組成物を得た。
具体的には、先ず、実施例、参考例及び比較例に係る熱発電組成物の出発物質として、下記の各金属素材を準備した。なお、素材形状は、いずれもチャンク形状またはフレーク形状とした。
V:フルウチ化学社製、純度99.99%
Nb:フルウチ化学社製、純度99.99%
Ta:高純度化学社製、純度99.95%
Fe:フルウチ化学、純度99.9%
Sb:フルウチ化学、純度99.9%
<Example , Reference Example and Comparative Example 1>
[Manufacture of thermoelectric power generation composition]
The thermoelectric power generation compositions of Examples , Reference Examples, and Comparative Examples were obtained by the following production methods that can obtain arbitrary thermoelectric power generation compositions.
Specifically, first, the following metal materials were prepared as starting materials for the thermoelectric power generation compositions according to Examples , Reference Examples, and Comparative Examples. The material shape was either a chunk shape or a flake shape.
V: manufactured by Furuuchi Chemical Co., Ltd., purity 99.99%
Nb: manufactured by Furuuchi Chemical Co., Ltd., purity 99.99%
Ta: High purity chemical company, purity 99.95%
Fe: Furuuchi chemistry, purity 99.9%
Sb: Furuuchi chemistry, purity 99.9%

上記一般式(1)のFeASbで表される化合物のうち、Aが、図2に示す元素種及び構成比率となるように、上記の各金属素材を化学量論比で秤量した。即ち、Aが、Nb、Ta、及びVからなる群より選択される2種以上の元素の組み合わせからなる熱発電組成物を実施例又は参考例とし、AがNb100%の熱発電組成物を比較例1とした。
秤量後、希薄アルゴン雰囲気下でアーク溶解して溶融・反応させた。得られたインゴットを石英管に真空封入した後、850℃×3日間で均質化熱処理を施した。熱処理後のインゴットをWC製の乳鉢で粉砕し、目の開きが53μmのふるいを通すことにより、粉末の粒径を揃えた。次いで、得られた粉末を放電プラズマ焼結することにより、多結晶バルク体を得た。得られた焼結体の焼結密度はいずれも97%以上であった。焼結の条件は、成型圧力50MPa、アルゴン気流下、1173Kで実施した。得られた焼結体を、切断・整形・研磨することにより、実施例、参考例及び比較例の各熱発電組成物を得た。
Among the compounds represented by FeASb of the above general formula (1), each of the above metal materials was weighed at a stoichiometric ratio so that A had the element species and the composition ratio shown in FIG. That is, a thermoelectric power generation composition comprising a combination of two or more elements selected from the group consisting of Nb, Ta, and V is used as an example or reference example, and a thermoelectric power generation composition in which A is Nb 100% is compared. Example 1 was adopted.
After weighing, it was melted and reacted by arc melting in a diluted argon atmosphere. The obtained ingot was vacuum-sealed in a quartz tube, and then subjected to homogenization heat treatment at 850 ° C. for 3 days. The ingot after the heat treatment was pulverized with a WC mortar, and passed through a sieve having an opening of 53 μm, so that the particle size of the powder was made uniform. Next, the obtained powder was sintered by discharge plasma to obtain a polycrystalline bulk body. The sintered density of the obtained sintered bodies was 97% or more. The sintering conditions were 1173K under a molding pressure of 50 MPa and an argon stream. The obtained sintered body was cut, shaped, and polished to obtain thermoelectric power generation compositions of Examples , Reference Examples, and Comparative Examples.

また、実施例の各熱発電組成物の電気伝導率測定結果を用いて、キャリア熱伝導率を算出した結果、概ねキャリア熱伝導率は0.5W/mK以下であった。この結果から、実施例の各熱発電組成物の熱伝導率の低減は、概ね格子熱伝導率の減少によるものであることが推察された。   Moreover, as a result of calculating carrier thermal conductivity using the electrical conductivity measurement result of each thermoelectric generation composition of the example, the carrier thermal conductivity was approximately 0.5 W / mK or less. From this result, it was inferred that the decrease in the thermal conductivity of each thermoelectric power generation composition of the example was mainly due to the decrease in the lattice thermal conductivity.

[熱伝導率の算出]
M.Zhou et.al, J.Appl.Phys.98,013708(2005)の2頁〜3頁に記載の方法により、具体的には、同文献中の式(8)及び(9)を用いて熱伝導率κの推算を行った。その際に必要となるパラメータγ1及びβは、それぞれ同文献中の式(6)及び(7)により得た。その際、デバイ温度及び格子定数は、無置換FeNbSbから実験的に求められたデバイ温度394K及び格子定数0.595nmを用いた。また、分子量は270.56とした。εについては、実験を行った全ての成分に対して独立にフィッティングを行い、推算にはそれらの平均値εave=53を用いた。
[Calculation of thermal conductivity]
M.M. Zhou et. al, J. et al. Appl. Phys. Specifically, the thermal conductivity κ was estimated by the methods described on pages 2 to 3 of 98, 013708 (2005) using the equations (8) and (9) in the document. The parameters γ1 and β required at that time were obtained by the equations (6) and (7) in the document, respectively. At that time, the Debye temperature and the lattice constant used were a Debye temperature of 394 K and a lattice constant of 0.595 nm obtained experimentally from unsubstituted FeNbSb. The molecular weight was 270.56. For ε, fitting was performed independently for all the components that were tested, and the average value εave = 53 was used for the estimation.

図2は、実施例、参考例及び比較例に係る各熱発電組成物の室温下における熱伝導率算出結果を示した図である。また、図3は、実施例、参考例及び比較例に係る各熱発電組成物の元素種及び構成比率(モル%)と、熱伝導率との関係を示した図である。
ここで、図3は、図2の各組成と熱伝導率算出結果に基づいて作成したものであり、正三角形の各頂点は、それぞれ、FeNbSb、FeVSb、及びFeTaSbに対応する。FeNbSbの頂点からFeVSbの頂点に向かうにつれて、Vのモル%が増加することを意味する。同様に、FeVSbの頂点からFeTaSbの頂点に向かうにつれて、Taのモル%が増加し、FeTaSbの頂点からFeNbSbの頂点に向かうにつれて、Nbのモル%が増加することを意味する。また、頂点を含む各点に記載されている数値は、各点に対応する組成を有する熱発電組成物の熱伝導率を表す。
FIG. 2 is a diagram showing thermal conductivity calculation results at room temperature of the thermoelectric power generation compositions according to Examples , Reference Examples, and Comparative Examples. FIG. 3 is a graph showing the relationship between the thermal conductivity and the element type and composition ratio (mol%) of each thermoelectric composition according to Examples , Reference Examples and Comparative Examples.
Here, FIG. 3 is created based on the respective compositions and thermal conductivity calculation results of FIG. 2, and each vertex of the equilateral triangle corresponds to FeNbSb, FeVSb, and FeTaSb, respectively. It means that the mol% of V increases from the top of FeNbSb to the top of FeVSb. Similarly, it means that the mole percentage of Ta increases from the top of FeVSb to the top of FeTaSb, and the mole percentage of Nb increases from the top of FeTaSb to the top of FeNbSb. Moreover, the numerical value described in each point including the vertex represents the thermal conductivity of the thermoelectric power generation composition having a composition corresponding to each point.

これら図2及び図3に示したように、実施例、参考例の熱発電組成物は、比較例1の熱発電組成物に比して熱伝導率が小さいことが分かった。この結果から、上記一般式(1)中のAが、Nb、Ta、及びVからなる群より選択される2種以上の元素の組み合わせで表される熱発電組成物によれば、従来に比して低い熱伝導率が得られ、優れた熱発電性能が得られることが確認された。 As shown in FIGS. 2 and 3, it was found that the thermoelectric power generation compositions of Examples and Reference Examples had lower thermal conductivity than the thermoelectric power generation composition of Comparative Example 1. From this result, according to the thermoelectric power generation composition represented by a combination of two or more elements selected from the group consisting of Nb, Ta, and V, A in the above general formula (1) As a result, it was confirmed that a low thermal conductivity was obtained and an excellent thermoelectric power generation performance was obtained.

また、実施例20〜26,38〜42,44〜48,50〜53,55〜57,59〜60,及び62(図3の黒丸部分)のように、Vが20%〜80%、Taが20%〜80%、及びVとTaの合計が50%〜100%の場合には、熱伝導率が6.5W/mK以下であることが分かった。この結果から、上記一般式(2)中のx及びyが、0.2≦x≦0.8、0.2≦y≦0.8、及び0.5≦x+y≦1.0の関係を満たす化合物からなる熱発電組成物によれば、熱伝導率が大きく低減され、より優れた熱発電性能が得られることが確認された。   Further, as in Examples 20 to 26, 38 to 42, 44 to 48, 50 to 53, 55 to 57, 59 to 60, and 62 (black circles in FIG. 3), V is 20% to 80%, Ta Was 20% to 80%, and the total of V and Ta was 50% to 100%, it was found that the thermal conductivity was 6.5 W / mK or less. From this result, x and y in the general formula (2) satisfy the relationship of 0.2 ≦ x ≦ 0.8, 0.2 ≦ y ≦ 0.8, and 0.5 ≦ x + y ≦ 1.0. It was confirmed that according to the thermoelectric power generation composition composed of the satisfying compound, the thermal conductivity is greatly reduced, and more excellent thermoelectric power generation performance can be obtained.

また、実施例21〜25,45〜48,51〜53,56〜57,及び60のように、Vが30%〜70%、Taが30%〜70%、及びVとTaの合計が70%〜100%の場合には、熱伝導率が6.0W/mK以下であることが分かった。この結果から、上記一般式(2)中のx及びyが、0.3≦x≦0.7、0.3≦y≦0.7、及び0.7≦x+y≦1.0の関係を満たす化合物からなる熱発電組成物によれば、熱伝導率がさらに大きく低減され、さらに優れた熱発電性能が得られることが確認された。   Further, as in Examples 21 to 25, 45 to 48, 51 to 53, 56 to 57, and 60, V is 30% to 70%, Ta is 30% to 70%, and the total of V and Ta is 70. In the case of% to 100%, it was found that the thermal conductivity was 6.0 W / mK or less. From this result, x and y in the general formula (2) satisfy the relationship of 0.3 ≦ x ≦ 0.7, 0.3 ≦ y ≦ 0.7, and 0.7 ≦ x + y ≦ 1.0. It was confirmed that according to the thermoelectric power generation composition composed of the satisfying compound, the thermal conductivity is further greatly reduced and further excellent thermoelectric power generation performance can be obtained.

Claims (2)

下記一般式(2)で表されることを特徴とす熱発電組成物。
Figure 0005548889
[一般式(2)中、x及びyは、0.2≦x≦0.8、0.2≦y≦0.8、及び0.5≦x+y≦1.0の関係を満たす。]
Thermoelectric composition you characterized by being represented by the following general formula (2).
Figure 0005548889
[In General Formula (2), x and y satisfy the relationship of 0.2 ≦ x ≦ 0.8, 0.2 ≦ y ≦ 0.8, and 0.5 ≦ x + y ≦ 1.0. ]
前記一般式(2)において、前記x及びyが、0.3≦x≦0.7、0.3≦y≦0.7、及び0.7≦x+y≦1.0の関係を満たすことを特徴とする請求項記載の熱発電組成物。 In the general formula (2), x and y satisfy a relationship of 0.3 ≦ x ≦ 0.7, 0.3 ≦ y ≦ 0.7, and 0.7 ≦ x + y ≦ 1.0. The thermoelectric power generation composition according to claim 1 .
JP2009236219A 2009-10-13 2009-10-13 Thermoelectric composition Expired - Fee Related JP5548889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009236219A JP5548889B2 (en) 2009-10-13 2009-10-13 Thermoelectric composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009236219A JP5548889B2 (en) 2009-10-13 2009-10-13 Thermoelectric composition

Publications (2)

Publication Number Publication Date
JP2011084759A JP2011084759A (en) 2011-04-28
JP5548889B2 true JP5548889B2 (en) 2014-07-16

Family

ID=44077927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009236219A Expired - Fee Related JP5548889B2 (en) 2009-10-13 2009-10-13 Thermoelectric composition

Country Status (1)

Country Link
JP (1) JP5548889B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104681706B (en) * 2015-02-12 2017-11-17 浙江大学 P-type FeNbHfSb thermoelectric materials of the high figure of merit and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4374578B2 (en) * 2004-12-03 2009-12-02 株式会社豊田中央研究所 Thermoelectric material and manufacturing method thereof
WO2006068325A2 (en) * 2004-12-24 2006-06-29 Showa Denko K. K. Production method of thermoelectric semiconductor alloy, thermoelectric conversion module and thermoelectric power generating device
JP4900819B2 (en) * 2007-06-12 2012-03-21 株式会社豊田中央研究所 Thermoelectric material and manufacturing method thereof
US20100193001A1 (en) * 2007-07-09 2010-08-05 Kabushiki Kaisha Toshiba Thermoelectric conversion module, and heat exchanger, thermoelectric temperature control device and thermoelectric generator employing the same

Also Published As

Publication number Publication date
JP2011084759A (en) 2011-04-28

Similar Documents

Publication Publication Date Title
JP4900061B2 (en) Thermoelectric conversion element and manufacturing method thereof
Yeo et al. Thermoelectric properties of p-type (Bi, Sb) 2Te3 nanocomposites dispersed with multiwall carbon nanotubes
Akshay et al. Tailoring thermoelectric properties through structure and morphology in chemically synthesized n-type bismuth telluride nanostructures
JP6401436B2 (en) Thermoelectric material having strained electronic density of state, manufacturing method thereof, thermoelectric module and thermoelectric device including the same
JP6460225B2 (en) Thermoelectric conversion material and method for producing the same
JP6424959B2 (en) Thermoelectric material
JPWO2008150026A1 (en) Thermoelectric conversion element and manufacturing method thereof
JP5181707B2 (en) Thermoelectric conversion element and manufacturing method thereof
KR20140065721A (en) Thermoelectric material, thermoelectric device and apparatus comprising same, and preparation method thereof
Lee et al. Improved carrier transport properties by I-doping in n-type Cu0. 008Bi2Te2. 7Se0. 3 thermoelectric alloys
CN108242500A (en) A kind of copper seleno nano composite thermoelectric materials and preparation method thereof
JP5548889B2 (en) Thermoelectric composition
JP2001064006A (en) Si CLATHRATE COMPOUND, ITS PRODUCTION AND THERMOELECTRIC MATERIAL
JP2005286228A (en) Thermoelectric material and thermoelectric transducer
Assahsahi et al. Influence of the synthesis parameters on the transport properties of Mg2Si0. 4Sn0. 6 solid solutions produced by melting and spark plasma sintering
JP6865951B2 (en) P-type thermoelectric semiconductor, its manufacturing method and thermoelectric power generation element using it
JP6588194B2 (en) Thermoelectric materials and thermoelectric modules
JP2005217310A (en) Clathrate compound, thermoelectric conversion element, and its manufacturing method
JP6632218B2 (en) Clathrate compound, thermoelectric conversion material and method for producing the same
WO2008149910A1 (en) Method for production of thermoelectric conversion element
JP6747828B2 (en) Thermoelectric conversion material and manufacturing method thereof
JP2005183528A (en) Thermoelectric conversion element and its manufacturing method
JP6799341B2 (en) Thermoelectric materials, their manufacturing methods and thermoelectric power generation modules using them
JP7209957B2 (en) THERMOELECTRIC MATERIAL, MANUFACTURING METHOD THEREOF AND THERMOELECTRIC GENERATION ELEMENT USING THE SAME
JP6877814B2 (en) Thermoelectric materials and thermoelectric elements containing them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140423

R150 Certificate of patent or registration of utility model

Ref document number: 5548889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees