JP5548355B2 - Thermal gas flow meter - Google Patents

Thermal gas flow meter Download PDF

Info

Publication number
JP5548355B2
JP5548355B2 JP2008279044A JP2008279044A JP5548355B2 JP 5548355 B2 JP5548355 B2 JP 5548355B2 JP 2008279044 A JP2008279044 A JP 2008279044A JP 2008279044 A JP2008279044 A JP 2008279044A JP 5548355 B2 JP5548355 B2 JP 5548355B2
Authority
JP
Japan
Prior art keywords
heating resistor
resistor
thermal gas
temperature
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008279044A
Other languages
Japanese (ja)
Other versions
JP2010107327A (en
Inventor
浩昭 星加
昇 徳安
尚徳 国分
大介 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2008279044A priority Critical patent/JP5548355B2/en
Publication of JP2010107327A publication Critical patent/JP2010107327A/en
Application granted granted Critical
Publication of JP5548355B2 publication Critical patent/JP5548355B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、発熱抵抗体と測温抵抗体を用いて、被測定流体を測定する熱式ガス流量計に関する。   The present invention relates to a thermal gas flowmeter that measures a fluid to be measured using a heating resistor and a resistance temperature detector.

自動車用エンジンシステムの中を流れる排気の流量を計量する熱式ガス流量計として、巻線式の素子を基本とした片持ち支持構造の流量センサ(センサ素子)を備えたものが知られている(例えば、特許文献1参照)。この流量センサでは、素子の先端から第1発熱抵抗体,測温抵抗体,第2発熱抵抗体の順に3つの抵抗体が保持体となるアルミナパイプに巻かれている。アルミナパイプの外周にはその長手方向に沿う溝が周方向に6つ形成されており、各溝には支持体が挿入されている。3つの抵抗体のそれぞれには、支持体が2本ずつ割り当てられている。2本の支持体のうち、一方の支持体は各抵抗体の巻き始め部分に溶接等により接続され、他方の支持体は各抵抗体の巻き終わり部分に溶接等により接続されている。なお、支持体は電気導体で構成され、各抵抗体の引出し導体になっている。   2. Description of the Related Art A thermal gas flow meter that measures the flow rate of exhaust gas flowing through an automobile engine system is known that has a flow sensor (sensor element) with a cantilever support structure based on a wound element. (For example, refer to Patent Document 1). In this flow sensor, three resistors are wound around an alumina pipe serving as a holder in the order of a first heating resistor, a resistance temperature detector, and a second heating resistor from the tip of the element. Six grooves along the longitudinal direction are formed on the outer periphery of the alumina pipe in the circumferential direction, and a support is inserted in each groove. Two supports are assigned to each of the three resistors. Of the two supports, one support is connected to the winding start portion of each resistor by welding or the like, and the other support is connected to the winding end portion of each resistor by welding or the like. The support is made of an electric conductor and serves as a lead conductor for each resistor.

また、流量センサに接続される流量測定回路は、第1発熱抵抗体の温度制御回路と第2発熱抵抗体の温度制御回路と測温抵抗体の温度測定回路とが独立した3回路構成とし、発熱抵抗体を流れる電流により流量の検出を行っている。   The flow rate measurement circuit connected to the flow rate sensor has a three-circuit configuration in which the temperature control circuit of the first heating resistor, the temperature control circuit of the second heating resistor, and the temperature measurement circuit of the resistance thermometer are independent, The flow rate is detected by the current flowing through the heating resistor.

特開2008−32501号公報(段落0042,図19,図21)JP 2008-32501 A (paragraph 0042, FIG. 19, FIG. 21)

上記特許文献1に開示された技術では、第1発熱抵抗体と測温抵抗体と第2発熱抵抗体の各巻線が独立しており、各抵抗体の巻き始めと巻き終わりにそれぞれ1本の引出し導体が設けられている。そのため、抵抗体数の2倍の数の引出し導体を設ける必要があった。引出し導体は流量センサの熱容量に関係しており、引出し導体の数が増えると引出し導体からの放熱量が大きくなり、熱容量が増大する傾向にある。   In the technique disclosed in Patent Document 1, each winding of the first heating resistor, the resistance temperature detector, and the second heating resistor is independent, and one winding is provided at each winding start and end of winding. A lead conductor is provided. Therefore, it has been necessary to provide as many lead conductors as the number of resistors. The lead conductor is related to the heat capacity of the flow sensor. When the number of lead conductors increases, the amount of heat released from the lead conductor increases, and the heat capacity tends to increase.

本発明の目的は、発熱抵抗体を含む複数の抵抗体を有する流量センサの熱容量を小さくして、低消費電力化が可能な熱式ガス流量計を提供することにある。   An object of the present invention is to provide a thermal gas flow meter capable of reducing power consumption by reducing the heat capacity of a flow sensor having a plurality of resistors including a heating resistor.

上記目的を達成するために、本発明の熱式ガス流量計は、保持体と前記保持体に連続した導体線を巻き回して構成した抵抗体とを有する流量センサを備えた熱式ガス流量計において、前記抵抗体として、前記保持体上に、一方向に第1発熱抵抗体,測温抵抗体及び第2発熱抵抗体の順に構成し、前記導体線の巻き始め点と、前記第1発熱抵抗体と前記測温抵抗体との区分点と、前記測温抵抗体と前記第2発熱抵抗体との区分点と、巻き終り点とに、引出し導体を接続して構成されたものである。
To achieve the above object, a thermal gas flowmeter of the present invention, with a flow rate sensor including a resistor antibody constructed by winding a continuous conductor wire to said holding member and the holding member thermal gas flow in total, as before Symbol resistor, on the holding member, the first heating resistor in one direction, constitutes in the order of RTD and the second heating resistor, and the winding start point of said conductor line, said first 1 Constructed by connecting a lead conductor to a dividing point between the heating resistor and the temperature measuring resistor, a dividing point between the temperature measuring resistor and the second heating resistor, and a winding end point It is.

本発明の熱式ガス流量計は、複数の抵抗体を構成する巻線を、連続した導体線を巻き回し、隣接する抵抗体の巻線部の区分点に引出し導体を電気的に接続して構成することにより、タクトタイムを短縮することができる。   The thermal gas flowmeter of the present invention has a winding that constitutes a plurality of resistors, winding a continuous conductor wire, and electrically connecting a lead conductor to a dividing point of a winding portion of an adjacent resistor. By configuring, the tact time can be shortened.

以下、本発明の実施例を図面を参照して説明する   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の熱式ガス流量計の流量センサ10を示しており、図1(A)は抵抗体の巻線構造、図1(B)は抵抗体の電気接続を示す図である。   FIG. 1 shows a flow sensor 10 of a thermal gas flow meter of the present invention, FIG. 1 (A) is a winding structure of a resistor, and FIG. 1 (B) is a diagram showing electrical connection of the resistor.

図1において、流量センサ10は、アルミナパイプ11に第1発熱抵抗体100,測温抵抗体200,第2発熱抵抗体300の巻線が配置され、巻線は巻き始め点12から巻き終り点15まで連続している。このような巻線は、巻き始め点12から巻き終り点15まで、材料や線径が同一な線材を用いてもよいし、第1発熱抵抗体100,測温抵抗体200,第2発熱抵抗体300毎に材料や線径が変化するものを連続した一本の線材に仕上げたものであってもよい。ただし、材料については、後述するように、白金線を用いるのが一般的である。   In FIG. 1, the flow rate sensor 10 includes windings of a first heating resistor 100, a resistance temperature detector 200, and a second heating resistor 300 arranged on an alumina pipe 11, and the winding starts from a winding start point 12 to a winding end point. It is continuous to 15. Such a winding may use a wire having the same material and wire diameter from the winding start point 12 to the winding end point 15, or the first heating resistor 100, the resistance temperature detector 200, and the second heating resistor. What changed material and a wire diameter for every body 300 may be finished into one continuous wire. However, as a material, a platinum wire is generally used as will be described later.

このとき、流量センサ10の先端側から、第1発熱抵抗体100,測温抵抗体200,第2発熱抵抗体300の順に、各抵抗体が配置されている。   At this time, the resistors are arranged in the order of the first heating resistor 100, the resistance temperature detector 200, and the second heating resistor 300 from the front end side of the flow sensor 10.

第1発熱抵抗体100の巻き始め点12には、引出し導体16の一方端が接続され、引出し導体16の他方端は端子20となっている。第1発熱抵抗体100と測温抵抗体200との区分点13には、引出し導体17の一方端が接続され、他方端は端子21となっている。測温抵抗体200と第2の発熱抵抗300との区分点14には、引出し導体18の一方端が接続され、他方端は端子22となっている。第2の発熱抵抗体の巻き終り点15には、引出し導体19の一方端が接続され、他方端は端子23となっている。   One end of the lead conductor 16 is connected to the winding start point 12 of the first heating resistor 100, and the other end of the lead conductor 16 is a terminal 20. One end of the lead conductor 17 is connected to the dividing point 13 between the first heating resistor 100 and the resistance temperature detector 200, and the other end is a terminal 21. One end of the lead conductor 18 is connected to the dividing point 14 between the resistance temperature detector 200 and the second heating resistor 300, and the other end is a terminal 22. One end of the lead conductor 19 is connected to the winding end point 15 of the second heating resistor, and the other end is a terminal 23.

端子20〜23は制御回路と接続されて、流量センサ10を有する熱式ガス流量計として動作する。   The terminals 20 to 23 are connected to a control circuit and operate as a thermal gas flow meter having the flow sensor 10.

抵抗体100,200,300を巻き回す巻線装着体(保持体)は、絶縁体であるアルミナパイプ11を用いており、抵抗体100,200,300と引出し導体16〜18とが耐熱性の高いガラスコーテングによりアルミナパイプ11に固定されている。   The winding mounting body (holding body) for winding the resistors 100, 200, 300 uses the alumina pipe 11 that is an insulator, and the resistors 100, 200, 300 and the lead conductors 16 to 18 are heat resistant. It is fixed to the alumina pipe 11 by a high glass coating.

引出し導体16〜19は、抵抗体100〜300の内部側、あるいは表面を経由するようにして、一方向に集中して引出し、片側で支持する構成にすることにより、制御回路との接続が容易にできるようになっている。   The lead conductors 16 to 19 are connected to the control circuit easily by being drawn out in one direction and supported on one side so as to pass through the inside or the surface of the resistors 100 to 300. You can do it.

図2は、図1に示した流量センサ10の製造工程を示す図である。   FIG. 2 is a diagram showing a manufacturing process of the flow sensor 10 shown in FIG.

図2において、最初のステップS1で第1発熱抵抗体100の巻き始め点12を引出し導体16に接続する作業を行う。   In FIG. 2, in the first step S <b> 1, an operation of connecting the winding start point 12 of the first heating resistor 100 to the lead conductor 16 is performed.

次のステップS2では、アルミナパイプ11に、第1発熱抵抗体100と測温抵抗体200と第2発熱抵抗体300を連続した巻線作業によって巻きつける。   In the next step S2, the first heating resistor 100, the resistance temperature detector 200, and the second heating resistor 300 are wound around the alumina pipe 11 by a continuous winding operation.

ステップS3では、ステップS2で終了した巻線作業の終点、すなわち第2発熱抵抗体300の巻き終り点15で、引出し導体19と接続する作業を行う。   In step S3, an operation of connecting to the lead conductor 19 is performed at the end point of the winding work completed in step S2, that is, at the winding end point 15 of the second heating resistor 300.

ステップS4では、ステップS3の接続作業の後、引出し導体19と第2発熱抵抗体300の接続部分の近傍で巻線を切断する作業を行う。   In step S4, after the connection operation in step S3, an operation for cutting the winding in the vicinity of the connection portion between the lead conductor 19 and the second heating resistor 300 is performed.

ステップS5では、第1発熱抵抗体100と測温抵抗体200の区分点13、ステップS6では、測温抵抗体200と第2発熱抵抗体300の区分点14に、それぞれ引出し導体17と18を接続して、流量センサ10の製造工程が終了する。   In step S5, the lead conductors 17 and 18 are respectively connected to the dividing point 13 of the first heating resistor 100 and the resistance temperature detector 200, and in step S6 to the dividing point 14 of the resistance temperature detector 200 and the second heating resistor 300, respectively. After connecting, the manufacturing process of the flow sensor 10 is completed.

図2の流量センサ製造工程では、巻線作業は第1発熱抵抗体100と測温抵抗体200と第2発熱抵抗体300とを連続して行うことができるので、巻線の切断作業が1回、引出し導体16〜19との接合作業が4回で製造工程を終了することが可能となり、タクトタイムを短縮することができる。   In the flow sensor manufacturing process of FIG. 2, the winding work can be performed continuously with the first heating resistor 100, the resistance temperature detector 200, and the second heating resistor 300. It is possible to finish the manufacturing process after four times of joining work with the lead conductors 16 to 19, and the tact time can be shortened.

図2では、巻線の巻き始めを第1発熱抵抗体100としたが、巻線の巻き始めを第2発熱抵抗体300として、測温抵抗体200,第1発熱抵抗体100の順に巻線作業をしても、巻線の巻き始めを第1発熱抵抗体100とした場合と同様に、タクトタイムを短縮することができる。   In FIG. 2, the winding start of the winding is the first heating resistor 100, but the winding start of the winding is the second heating resistor 300, and the temperature measuring resistor 200 and the first heating resistor 100 are wound in this order. Even if the work is performed, the tact time can be shortened as in the case where the winding start of the first heating resistor 100 is used.

第1発熱抵抗体100,第2発熱抵抗体300,測温抵抗体200が巻き回される巻線装着体は、アルミナパイプで説明したが電気的に絶縁体であれば、他の材料でも作用,効果は同等である。   The winding mounting body around which the first heating resistor 100, the second heating resistor 300, and the resistance temperature detector 200 are wound is described as an alumina pipe. However, other materials can be used as long as they are electrically insulating. , The effect is equivalent.

また、第1発熱抵抗体100,第2発熱抵抗体300,測温抵抗体200の巻線素材は、一般には白金線が使用されることが多いが、発熱抵抗体としての機能を有する材料であれば白金線に限らない。   The winding material of the first heating resistor 100, the second heating resistor 300, and the temperature measuring resistor 200 is generally a platinum wire, but is a material having a function as a heating resistor. If there is, it is not limited to platinum wire.

次に図1の流量センサの制御方法について説明する。   Next, a control method of the flow sensor of FIG. 1 will be described.

図1の巻線構造に示すように、第1発熱抵抗体100と第2発熱抵抗体300との間に測温抵抗体200を配置して、測温抵抗体200で検出される温度によって、第2発熱抵抗体300の温度を制御して、第1発熱抵抗体100で必要となる発熱量と引出し導体16,17への伝熱分を切り離す構造としている。すなわち、第1発熱抵抗体100と第2発熱抵抗体300の伝熱量を任意に制御し、ガス流量の検出を引出し導体16,17の汚損とは無関係にすることで、流量検出精度の向上を可能にしている。   As shown in the winding structure of FIG. 1, a resistance temperature detector 200 is arranged between the first heating resistor 100 and the second heating resistor 300, and depending on the temperature detected by the resistance temperature detector 200, The temperature of the second heating resistor 300 is controlled to separate the amount of heat generated by the first heating resistor 100 from the heat transfer to the lead conductors 16 and 17. That is, by arbitrarily controlling the heat transfer amount of the first heating resistor 100 and the second heating resistor 300 and making the gas flow rate detection unrelated to the contamination of the lead conductors 16 and 17, the flow rate detection accuracy can be improved. It is possible.

なお、第1発熱抵抗体100と第2発熱抵抗体300の温度関係は、
第1発熱抵抗体100の温度<第2発熱抵抗体300の温度
とすることが望ましい。
The temperature relationship between the first heating resistor 100 and the second heating resistor 300 is as follows:
It is desirable that the temperature of the first heating resistor 100 <the temperature of the second heating resistor 300.

図3は、ガス流路400を流れる被測定ガス410の流量を測定するために、ガス流路400に流量センサ10を配置した状態を示す図である。尚、流量センサ10には引出し導体16〜19を介してガス流路400の外側に配置された制御回路500が接続されている。   FIG. 3 is a diagram showing a state in which the flow rate sensor 10 is arranged in the gas flow path 400 in order to measure the flow rate of the gas 410 to be measured flowing through the gas flow path 400. The flow rate sensor 10 is connected to a control circuit 500 disposed outside the gas flow path 400 through lead conductors 16 to 19.

第1発熱抵抗体100,第2発熱抵抗体300,測温抵抗体200の3巻線に対して、引出し導体は16〜19の4本であり、制御回路500は引出し導体16〜19に設けられた4個の端子20〜23によって、第1発熱抵抗体100及び第2発熱抵抗体300の温度制御及び温度計測と、測温抵抗体200の温度計測とを行うことが必要になる。   For the three windings of the first heating resistor 100, the second heating resistor 300, and the resistance temperature detector 200, there are four lead conductors 16-19, and the control circuit 500 is provided on the lead conductors 16-19. It is necessary to perform temperature control and temperature measurement of the first heating resistor 100 and the second heating resistor 300 and temperature measurement of the temperature measuring resistor 200 by the four terminals 20 to 23 that are provided.

図4は、制御回路500の回路接続を示す図である。   FIG. 4 is a diagram showing circuit connections of the control circuit 500.

温度設定回路510は、第1発熱抵抗体100の巻き始め側を基準にして、第1発熱抵抗体100の電圧降下511,第1発熱抵抗体100と測温抵抗体200との電圧降下512,第1発熱抵抗体100と測温抵抗体200と第2発熱抵抗体300との電圧降下513を取り込んで温度の算出を行い、第1発熱抵抗体100の加熱制御回路520と第2発熱抵抗体300の加熱制御回路530に温度設定値514と515を出力する。   The temperature setting circuit 510 has a voltage drop 511 of the first heating resistor 100, a voltage drop 512 of the first heating resistor 100 and the temperature measuring resistor 200, with reference to the winding start side of the first heating resistor 100. The temperature is calculated by taking in the voltage drop 513 among the first heating resistor 100, the resistance temperature detector 200, and the second heating resistor 300, and the heating control circuit 520 of the first heating resistor 100 and the second heating resistor. Temperature set values 514 and 515 are output to the 300 heating control circuit 530.

加熱制御回路520は、第1発熱抵抗体100に加熱電流521を、加熱制御回路530は第2発熱抵抗体300に加熱電流531を通電し、第1発熱抵抗体100を温度設定値514,第2発熱抵抗体300を温度設定値515になるように制御する。   The heating control circuit 520 energizes the first heating resistor 100 with the heating current 521, the heating control circuit 530 energizes the second heating resistor 300 with the heating current 531, and sets the first heating resistor 100 to the temperature setting value 514. (2) The heating resistor 300 is controlled to have the temperature set value 515.

測温抵抗体200には、第1発熱抵抗体100と測温抵抗体200と第2発熱抵抗体300とを直列に接続した直列回路に定電流回路540から測温用の測温電流541を通電する。   The temperature measuring resistor 200 is supplied with a temperature measuring current 541 from the constant current circuit 540 to a series circuit in which the first heating resistor 100, the temperature measuring resistor 200, and the second heating resistor 300 are connected in series. Energize.

測温電流541は、第1発熱抵抗体100と第2発熱抵抗体300の加熱電流521と531の通電を中断し、抵抗体の抵抗値に左右されない一定電流を定電流回路540から通電する。   The temperature measuring current 541 interrupts energization of the heating currents 521 and 531 of the first heating resistor 100 and the second heating resistor 300, and energizes a constant current from the constant current circuit 540 that is not influenced by the resistance value of the resistor.

これにより、第1発熱抵抗体100の温度は、電圧降下511の値、測温抵抗体200の温度は電圧降下512と511の差電圧(512−511)の値、第2発熱抵抗体300の温度は、電圧降下513と512の差電圧(513−512)の値から算出することができる。   Accordingly, the temperature of the first heating resistor 100 is the value of the voltage drop 511, the temperature of the resistance temperature detector 200 is the value of the voltage difference between the voltage drops 512 and 511 (512-511), and the temperature of the second heating resistor 300 is The temperature can be calculated from the value of the voltage difference (513-512) between the voltage drops 513 and 512.

図5は被測定ガス410の流量に対する第1発熱抵抗体100と第2発熱抵抗体300の温度変化を示しており、図6は制御方法のフローを示している。   FIG. 5 shows the temperature change of the first heating resistor 100 and the second heating resistor 300 with respect to the flow rate of the measured gas 410, and FIG. 6 shows the flow of the control method.

図5は発熱抵抗体の温度を、「第1発熱抵抗体100の設定温度T1<第2発熱抵抗体300の設定温度T3」となるように制御した場合の例で示しており、被測定ガス410の流量に応じて設定温度T1をほぼ等しく制御する場合の第2発熱抵抗体300の温度変化を示している。   FIG. 5 shows an example in which the temperature of the heating resistor is controlled so that “the set temperature T1 of the first heating resistor 100 <the set temperature T3 of the second heating resistor 300”. A temperature change of the second heating resistor 300 in the case where the set temperature T1 is controlled almost equally according to the flow rate of 410 is shown.

すなわち、高流量では、引出し導体16,17の温度低下が大きくなり、汚損の蒸発ができなくなるので、第2発熱抵抗体の温度T3を高くし、低流量では、高流量の場合より第2発熱抵抗体の温度T3を低く制御する。   That is, at the high flow rate, the temperature drop of the lead conductors 16 and 17 becomes large and the contamination cannot evaporate. Therefore, the temperature T3 of the second heating resistor is increased, and the second heat generation at the low flow rate is higher than that at the high flow rate. The temperature T3 of the resistor is controlled to be low.

これにより、第1発熱抵抗体100で必要となる発熱量と引出し導体への伝熱分を切り離すことができ、ガス流量の検出を引出し導体の汚損とは無関係にすることができる。   As a result, the amount of heat generated by the first heating resistor 100 and the heat transfer to the lead conductor can be separated, and the detection of the gas flow rate can be made independent of the contamination of the lead conductor.

図6は第2発熱抵抗体300の温度制御の具体的な制御フローの一例を示す図である。   FIG. 6 is a diagram illustrating an example of a specific control flow of temperature control of the second heating resistor 300.

まず、ステップS10で、図4に示した各電圧降下511,512,513を読み込み、ステップS11で電圧降下から第1発熱抵抗体100の抵抗値と測温抵抗体200の抵抗値とを算出し、各抵抗体の温度係数を用いて第1発熱抵抗体100の温度T1と測温抵抗体200の温度T2を算出する。   First, in step S10, the voltage drops 511, 512, and 513 shown in FIG. 4 are read. In step S11, the resistance value of the first heating resistor 100 and the resistance value of the resistance temperature detector 200 are calculated from the voltage drop. The temperature T1 of the first heating resistor 100 and the temperature T2 of the resistance temperature detector 200 are calculated using the temperature coefficient of each resistor.

次に、ステップS12において、算出した温度T1とT2の温度判定「T1≦T2」を実行し、NO判定の場合は、ステップS13により第2発熱抵抗体300の加熱電流531を増加させ、ステップS12の温度判定「T1≦T2」がYESになるまでステップS10〜S13を繰り返し実行する。   Next, in step S12, the temperature determination “T1 ≦ T2” of the calculated temperatures T1 and T2 is executed. If NO, the heating current 531 of the second heating resistor 300 is increased in step S13, and step S12 is performed. Steps S10 to S13 are repeatedly executed until the temperature determination “T1 ≦ T2” becomes YES.

これにより第2発熱抵抗体300の温度T3が上昇し、その影響によって測温抵抗体200の温度T2が上昇する。   As a result, the temperature T3 of the second heating resistor 300 rises, and the temperature T2 of the resistance temperature detector 200 rises due to the influence.

ステップS12の温度判定「T1≦T2」がYESになると、ステップS14で測温抵抗体200の温度T2とあらかじめ設定した上限値T2maxの温度判定「T2<T2max」を実行し、NO判定の場合は、ステップS15により第2発熱抵抗体300の加熱電流531を減少させ、ステップS14の温度判定「T2<T2max」がYESになるまでステップS10〜S15を繰り返し実行する。   If the temperature determination “T1 ≦ T2” in step S12 is YES, a temperature determination “T2 <T2max” of the temperature T2 of the resistance thermometer 200 and the preset upper limit value T2max is executed in step S14. In step S15, the heating current 531 of the second heating resistor 300 is decreased, and steps S10 to S15 are repeatedly executed until the temperature determination “T2 <T2max” in step S14 becomes YES.

図6の第2発熱抵抗体300の温度制御は、一定周期で繰り返し実行することにより、常時、「T1≦T2<T2max」に制御されるので、第1発熱抵抗体100部の温度勾配を所定の範囲内にすることができる。   The temperature control of the second heating resistor 300 in FIG. 6 is always controlled to “T1 ≦ T2 <T2max” by repeatedly executing at a constant cycle, so that the temperature gradient of the first heating resistor 100 part is set to a predetermined value. Can be within the range.

制御方法としては、図6以外にも、測温抵抗体200の温度T2に下限目標温度を設定し、「下限目標温度<測温抵抗体温度T2≦第1発熱抵抗体温度T1」の関係を保持するなどが考えられる。   As a control method, in addition to FIG. 6, the lower limit target temperature is set to the temperature T2 of the resistance temperature detector 200, and the relationship of “lower limit target temperature <temperature resistance temperature T2 ≦ first heating resistor temperature T1” is established. It is possible to hold it.

本発明の一実施例によれば、第1発熱抵抗体100と測温抵抗体200と第2発熱抵抗体300の巻線を連続して巻き回わすことにより、巻線の切断工程が1回にでき、また、巻き始め点12と巻き終り点15と巻線の区分点13,14の4ヶ所に引出し導体16〜19を接続することにより、流量センサ10の製造工程のタクトタイムを短縮できる効果がある。   According to one embodiment of the present invention, the winding cutting process is performed once by continuously winding the windings of the first heating resistor 100, the resistance temperature detector 200, and the second heating resistor 300. In addition, by connecting the lead conductors 16 to 19 to the four winding start points 12, the winding end point 15, and the winding dividing points 13 and 14, the tact time of the manufacturing process of the flow sensor 10 can be shortened. effective.

また、引出し導体16〜19の4本を制御回路500と接続すればよいので、接続端子数を削減することができる。   In addition, since four of the lead conductors 16 to 19 may be connected to the control circuit 500, the number of connection terminals can be reduced.

さらに、第1発熱抵抗体100と測温抵抗体200と第2発熱抵抗体300の温度計測において、計測用の定電流回路を共通化でき、回路を簡略することができる。   Furthermore, in the temperature measurement of the first heating resistor 100, the temperature measuring resistor 200, and the second heating resistor 300, a constant current circuit for measurement can be shared, and the circuit can be simplified.

図7は流量センサ10の他の実施例を示す図であり、(A)はアルミナパイプ600の断面を示す図、(B)は流量センサ10の側面図、(C)及び(D)は第1発熱抵抗体100,測温抵抗体200,第2発熱抵抗体300と引出し導体との接続図で、図1と同一部分は同一符号で示している。   FIG. 7 is a view showing another embodiment of the flow sensor 10, (A) is a view showing a cross section of the alumina pipe 600, (B) is a side view of the flow sensor 10, and (C) and (D) are first views. 1 is a connection diagram of a heating resistor 100, a resistance temperature detector 200, a second heating resistor 300, and a lead conductor, and the same parts as those in FIG.

図7(A)に示すように、巻線装着体であるアルミナパイプ600の外周面には、引出し導体を挿入する溝状の凹部610〜640がアルミナパイプ600の長手方向に沿うように周方向に複数(4つ)形成されている。各凹部610,620,630,640には、引出し導体16,17,18,19がそれぞれ1つずつ挿入されている。図7(B)は、凹部630と640とに引出し導体18と19とを挿入した様子を示している。   As shown in FIG. 7 (A), groove-like recesses 610 to 640 for inserting lead conductors are arranged on the outer peripheral surface of the alumina pipe 600 as a winding mounting body in the circumferential direction so as to follow the longitudinal direction of the alumina pipe 600. A plurality (four) are formed. In each of the recesses 610, 620, 630, and 640, one lead conductor 16, 17, 18, and 19 is inserted. FIG. 7B shows a state in which the lead conductors 18 and 19 are inserted into the recesses 630 and 640.

引出し導体18と19の端部は、図7(C)に示すように、溝状の凹部610〜640の上方を横切る抵抗体に向けて、溝状の凹部610〜640の底部側からL字状に折り曲げられて、抵抗体と接触する端部18aと19aとが形成されており、この端部18aと19aの先端部が区分点14と巻き終わり点15でそれぞれ抵抗体と接続されるようになっている。   As shown in FIG. 7C, the end portions of the lead conductors 18 and 19 are L-shaped from the bottom side of the groove-like recesses 610 to 640 toward the resistor crossing over the groove-like recesses 610 to 640. The end portions 18a and 19a that are in contact with the resistor are formed, and the end portions of the end portions 18a and 19a are connected to the resistor at the dividing point 14 and the winding end point 15, respectively. It has become.

アルミナパイプ600の凹部630と640に引出し導体18と19を挿入した時、引出し導体の端部18aと19aは、抵抗体より下方(凹部630と640の底部側)に位置し、接続が容易にできるようになっている。   When the lead conductors 18 and 19 are inserted into the recesses 630 and 640 of the alumina pipe 600, the end portions 18a and 19a of the lead conductor are located below the resistor (the bottom side of the recesses 630 and 640), and the connection is easy. It can be done.

図7(D)は、引出し導体18と19に、L字状に折り曲げた18aと19aの先で、さらにL字状に折り曲げて、凹部630と640の溝方向に沿う端部18bと19bを形成した例を示している。   FIG. 7D shows that the end portions 18b and 19b along the groove direction of the recesses 630 and 640 are further bent on the lead conductors 18 and 19 at the tips of the L-shaped ends 18a and 19a. The example which formed is shown.

端部18bと19bは、図7(C)に示した端部18aと19aよりも、抵抗体との接続部の面積が大きくなっている。すなわち、抵抗体と引出し導体の端部との接続において、図7(C)に比較して許容公差を大きくできる。   The end portions 18b and 19b have a larger area of the connecting portion to the resistor than the end portions 18a and 19a shown in FIG. That is, the tolerance can be increased in the connection between the resistor and the end portion of the lead conductor as compared with FIG.

実施例2では、引出し導体18と19がアルミナパイプ600から突出しないので、第1発熱抵抗体100,測温抵抗体200,第1発熱抵抗体100をアルミナパイプ600に密着して巻くことができ、安定した固定ができる効果があると共に、巻線材料の使用量が少なくできる効果がある。   In the second embodiment, since the lead conductors 18 and 19 do not protrude from the alumina pipe 600, the first heating resistor 100, the resistance temperature detector 200, and the first heating resistor 100 can be tightly wound around the alumina pipe 600. There is an effect that stable fixing can be achieved, and an amount of use of the winding material can be reduced.

さらに、引出し導体18と19が凹部610と620に挿入されているので安定した固定ができると共に、流量センサ10をガラスコーテングした場合、凹部610と620にもコーテング材を充填することにより、引出し導体18と19の強度を補強することができ、片持ち構造の本流量センサ10全体の強度補強となる効果がある。   Further, since the lead conductors 18 and 19 are inserted into the recesses 610 and 620, stable fixing can be achieved. When the flow sensor 10 is coated with glass, the recesses 610 and 620 are also filled with a coating material, whereby the lead conductors The strengths of 18 and 19 can be reinforced, and there is an effect of reinforcing the strength of the entire flow sensor 10 having a cantilever structure.

なお、凹部610と620にはそれぞれ引出し導体16と17が挿入されて、図7(C)または(D)と同じ接続構造をとっている。4本の引出し導体16〜19は一方向に引出され、流量センサ10が片持ち状態で支持される構造となっている。   The lead conductors 16 and 17 are inserted into the recesses 610 and 620, respectively, and the same connection structure as that shown in FIG. 7C or 7D is adopted. The four lead conductors 16 to 19 are drawn in one direction, and the flow sensor 10 is supported in a cantilever state.

図8は、さらに流量センサ10の他の実施例を示す図である。図9は、図8の流量センサ10の制御回路から通電する電流通路を示す図である。図8と図9において、図1と図4と同一部分は同一符号で示している。   FIG. 8 is a diagram showing another embodiment of the flow sensor 10. FIG. 9 is a diagram illustrating a current path that is energized from the control circuit of the flow sensor 10 of FIG. 8 and 9, the same parts as those in FIGS. 1 and 4 are denoted by the same reference numerals.

本実施例では、図8に示すように、第1発熱抵抗体100の巻き始め点12に、引出し導体16と24を接続して端子20と26を設け、第2発熱抵抗体300の巻き終り点15に、引出し導体19と25を接続して端子23と27を設けた構造としている。   In this embodiment, as shown in FIG. 8, the lead conductors 16 and 24 are connected to the winding start point 12 of the first heating resistor 100 to provide the terminals 20 and 26, and the winding of the second heating resistor 300 is finished. The lead conductors 19 and 25 are connected to the point 15 and the terminals 23 and 27 are provided.

図9において、通電電流は実施例1と同様に、第1発熱抵抗体100には端子20から端子21に加熱電流521を、第2発熱抵抗体300には端子22から端子23に加熱電流531を、測温抵抗体200には端子20から端子23に測温電流541を通電する。   In FIG. 9, as in the first embodiment, the energizing current is the heating current 521 from the terminal 20 to the terminal 21 in the first heating resistor 100, and the heating current 531 from the terminal 22 to the terminal 23 in the second heating resistor 300. A temperature measuring current 541 is supplied to the temperature measuring resistor 200 from the terminal 20 to the terminal 23.

そして各抵抗体の温度は、電流を通電しない端子26と端子27により、電圧降下から算出するようにした。すなわち、第1発熱抵抗体100では電圧降下516、第2発熱抵抗体300では電圧降下517、測温抵抗体200では電圧降下518を測定して、それぞれの抵抗体の温度を算出する。   The temperature of each resistor is calculated from the voltage drop by the terminal 26 and the terminal 27 through which no current is passed. That is, the voltage drop 516 is measured for the first heating resistor 100, the voltage drop 517 is measured for the second heating resistor 300, and the voltage drop 518 is measured for the resistance temperature detector 200, and the temperature of each resistor is calculated.

なお、図8では、引出し導体24を引出し導体16と同じく巻き始め点12で第1発熱抵抗体100に接続し、引出し導体25を引出し導体19と同じく巻き終わり点15で第2発熱抵抗体300に接続しているが、引出し導体24を引出し導体16と第1発熱抵抗体100との接続点である巻き始め点12からずらして第1発熱抵抗体100に接続してもよいし、引出し導体25を引出し導体19と第2発熱抵抗体300との接続点である巻き終わり点15からずらして第2発熱抵抗体300に接続してもよい。   In FIG. 8, the lead conductor 24 is connected to the first heating resistor 100 at the winding start point 12 like the lead conductor 16, and the lead conductor 25 is connected to the second heating resistor 300 at the winding end point 15 like the lead conductor 19. However, the lead conductor 24 may be shifted from the winding start point 12 that is the connection point between the lead conductor 16 and the first heating resistor 100 and connected to the first heating resistor 100, or the lead conductor. 25 may be shifted from the winding end point 15, which is a connection point between the lead conductor 19 and the second heating resistor 300, and connected to the second heating resistor 300.

また、図7に示した巻線装着体に適用する場合、引出し導体16と24、引出し導体19と25を同一の凹部に挿入し、それぞれの引出し導体間を電気的に絶縁されるようにする。   Further, when applied to the winding attachment shown in FIG. 7, the lead conductors 16 and 24 and the lead conductors 19 and 25 are inserted into the same recess so that the respective lead conductors are electrically insulated. .

また、図7に示した巻線装着体の凹部を、引出し導体24と25用に個別に成形して6ヶ所の凹部を設け、電気的に絶縁することもできる。   Further, the recesses of the winding mounting body shown in FIG. 7 can be individually formed for the lead conductors 24 and 25 to provide six recesses to be electrically insulated.

実施例3では、電圧降下516,517,518の測定は、電流を通電しない端子26,27に接続されたリード線及び引出し導体24,25を使用するので、電流が通電されている端子20,23に接続されたリード線及び引出し導体16,19の電圧降下やノイズ分が排除されるので、測温時の電圧降下が安定し、温度算出の精度を向上できる効果がある。   In the third embodiment, the voltage drops 516, 517, and 518 are measured by using the lead wires and the lead conductors 24 and 25 connected to the terminals 26 and 27 that are not energized with current. Since the voltage drop and noise components of the lead wire and the lead conductors 16 and 19 connected to 23 are eliminated, the voltage drop at the time of temperature measurement is stabilized, and the temperature calculation accuracy can be improved.

図10は、流量センサ10の他の制御回路500を示す図である。   FIG. 10 is a diagram illustrating another control circuit 500 of the flow sensor 10.

回路700は、第1発熱抵抗体100と測温抵抗体200と抵抗701と抵抗702で構成したブリッジ回路の中間点709の電位と710の電位とをそれぞれオペアンプ703の+端子と−端子に入力し、オペアンプ703の出力により電源800に接続されたトランジスタ704を制御して第1発熱抵抗体100の温度を制御する構成になっている。   The circuit 700 inputs the potential of the intermediate point 709 and the potential of 710 of the bridge circuit constituted by the first heating resistor 100, the resistance temperature detector 200, the resistor 701, and the resistor 702 to the + terminal and the − terminal of the operational amplifier 703, respectively. In addition, the transistor 704 connected to the power source 800 is controlled by the output of the operational amplifier 703 to control the temperature of the first heating resistor 100.

第1発熱抵抗体100がガス流量によって冷却されると、オペアンプ703の+端子電位が上昇し、トランジスタ703からの供給電流が増加して第1発熱抵抗体100の温度を上昇させ、常にオペアンプ703の+端子と−端子の電位が一定に保持される。   When the first heating resistor 100 is cooled by the gas flow rate, the potential at the positive terminal of the operational amplifier 703 increases, the supply current from the transistor 703 increases, and the temperature of the first heating resistor 100 is increased. The potentials of the + terminal and the − terminal of are kept constant.

オペアンプ703の+端子の電位はガス流量と一定の関係があるので、端子705の電位を測定することにより、ガス流量を測定することができる。   Since the potential at the + terminal of the operational amplifier 703 has a certain relationship with the gas flow rate, the gas flow rate can be measured by measuring the potential at the terminal 705.

一方、回路800は、第2発熱抵抗体300と温度補償抵抗801と抵抗802と抵抗803で構成したブリッジ回路の中間点813の電位と814の電位とをそれぞれオペアンプ804の+と−端子に入力し、オペアンプ804の出力により電源800に接続されたトランジスタ805を制御して第2発熱抵抗体300の温度を制御する構成になっている。   On the other hand, the circuit 800 inputs the potential of the intermediate point 813 and the potential of 814 of the bridge circuit constituted by the second heating resistor 300, the temperature compensation resistor 801, the resistor 802, and the resistor 803 to the + and − terminals of the operational amplifier 804, respectively. In addition, the transistor 805 connected to the power source 800 is controlled by the output of the operational amplifier 804 to control the temperature of the second heating resistor 300.

第2発熱抵抗体300は、温度補償抵抗801により温度補償された所定の温度に一定制御される。   The second heating resistor 300 is constantly controlled to a predetermined temperature that is temperature compensated by the temperature compensation resistor 801.

第2発熱抵抗体300の温度は、図5で説明したように、引出し導体への伝熱分が切り離されるように、第1発熱抵抗体より高い温度に制御される。   As described with reference to FIG. 5, the temperature of the second heating resistor 300 is controlled to be higher than that of the first heating resistor so that the heat transfer to the lead conductor is cut off.

流量センサ10の3つの抵抗体100,200,300は直列接続されているので、回路700と回路800を同時に動作させることはできない。   Since the three resistors 100, 200, and 300 of the flow sensor 10 are connected in series, the circuit 700 and the circuit 800 cannot be operated simultaneously.

そこで、第1発熱抵抗体100の制御では、回路800のスイッチ素子806と807をオフし、第2発熱抵抗体300の制御では、回路700のスイッチ素子706と707をオフして切替えるようにしている。   Therefore, in the control of the first heating resistor 100, the switch elements 806 and 807 of the circuit 800 are turned off, and in the control of the second heating resistor 300, the switch elements 706 and 707 of the circuit 700 are turned off and switched. Yes.

スイッチ素子806,807と706,707の切替えは、一定時間毎に時分割で切替え、この時間間隔は、流量測定と温度制御が最適となる値が選択される。   Switching between the switch elements 806, 807 and 706, 707 is performed in a time-sharing manner at fixed time intervals, and a value that optimizes flow rate measurement and temperature control is selected for this time interval.

図11は、流量センサ10のさらに他の制御回路500を示す図で、図10と同一部分は同一符号で示している。   FIG. 11 is a diagram showing still another control circuit 500 of the flow sensor 10, and the same parts as those in FIG. 10 are denoted by the same reference numerals.

図10と異なる点は、回路700による第1発熱抵抗体100の制御は、温度補償抵抗708により所定温度になるように制御し、回路800による第2発熱抵抗体300の制御は、定電流源808により測温抵抗体200に定電流を通電して電圧降下809を測定し、演算回路810により温度算出を行い、その結果により抵抗811の抵抗値を変化させることにより、所定の温度になるように制御している。   The difference from FIG. 10 is that the control of the first heating resistor 100 by the circuit 700 is controlled to reach a predetermined temperature by the temperature compensation resistor 708, and the control of the second heating resistor 300 by the circuit 800 is a constant current source. A constant current is applied to the resistance temperature detector 200 in 808 to measure the voltage drop 809, the temperature is calculated by the arithmetic circuit 810, and the resistance value of the resistor 811 is changed based on the result, so that the predetermined temperature is reached. Is controlling.

そして、第1発熱抵抗体100の制御では、回路800のスイッチ素子806と807と812をオフし、第2発熱抵抗体300の制御では、回路700のスイッチ素子706と707をオフして切替えるようにしている。   In the control of the first heating resistor 100, the switch elements 806, 807, and 812 of the circuit 800 are turned off, and in the control of the second heating resistor 300, the switch elements 706 and 707 of the circuit 700 are turned off and switched. I have to.

図10,図11では、発熱抵抗体を加熱する場合、トランジスタ704,805のエミッタフォロア動作によって直流電流を通電するようにしているが、トランジスタの消費電力が増大するなどの問題を含んでいる。   In FIGS. 10 and 11, when heating the heating resistor, a direct current is applied by the emitter follower operation of the transistors 704 and 805, but there is a problem that the power consumption of the transistor increases.

そこで、制御回路をA/D変換器やマイクロコンピュータを使用したデジタル化により、トランジスタ704,805をスイッチング動作で使用するPWM方式での発熱抵抗体の温度制御にすることもできる。   Therefore, the control circuit can be digitized using an A / D converter or a microcomputer to control the temperature of the heating resistor in the PWM method using the transistors 704 and 805 in the switching operation.

実施例4では、4端子の流量センサ10による熱式ガス流量計において、抵抗体の温度制御,測温,ガス流量を時分割で制御することができる。   In the fourth embodiment, the temperature control, temperature measurement, and gas flow rate of the resistor can be controlled in a time-sharing manner in the thermal gas flow meter using the four-terminal flow sensor 10.

また、測温抵抗体200を省略して、第1発熱抵抗体100と第2発熱抵抗体300の2つの抵抗体で構成し、それぞれの抵抗体を個別に温度制御して、第1発熱抵抗体100に接合される引出し導体の温度低下を抑制する制御方式においても、2つの抵抗体の巻線を連続して巻き回した構成の流量センサにすることもできる。   Further, the resistance thermometer 200 is omitted, and the first heating resistor 100 and the second heating resistor 300 are constituted by two resistors, and the temperature of each resistor is individually controlled so that the first heating resistor Even in the control system that suppresses the temperature drop of the lead conductor joined to the body 100, a flow sensor having a configuration in which the windings of the two resistors are continuously wound can be provided.

また、発熱抵抗体や測温抵抗体を分割して3つ以上の巻線を巻き回した構成の流量センサに適用することもでき、共に同等の効果を得ることが可能である。   Moreover, it can also be applied to a flow sensor having a configuration in which a heating resistor or a resistance temperature detector is divided and three or more windings are wound, and it is possible to obtain the same effect.

上記特許文献1に開示された技術では、第1発熱抵抗体と測温抵抗体と第2発熱抵抗体の各巻線が独立しており、各抵抗体の巻き始めと巻き終わりにそれぞれ1本の支持体が設けられているため、合計6本の支持体との接合が必要であった。このため、1つの抵抗体を製造するのに、アルミナパイプに巻き始める部分と支持体との接合工程,巻線工程,巻き終わり部分と支持体との接合工程,巻線の切断工程の4工程が必要であった。この4工程を3つの抵抗体で計3回行う必要があり、タクトタイムが増大し、コストアップを招く傾向にあった。また、支持体が6本必要であり、支持体部での放熱量が大きくなり、熱容量が増大することになる。このため、供給電力が大きくなる傾向にあった。これに対して、本発明に係る各実施例によれば、抵抗体からの引出し導体(支持体)を少なくして、タクトタイムを短縮することができる。   In the technique disclosed in Patent Document 1, each winding of the first heating resistor, the resistance temperature detector, and the second heating resistor is independent, and one winding is provided at each winding start and end of winding. Since the support was provided, it was necessary to join a total of six supports. For this reason, in order to manufacture one resistor, the four steps of the joining process of the part which starts winding to the alumina pipe and the support, the winding process, the joining process of the winding end part and the support, and the cutting process of the winding are performed. Was necessary. These four steps need to be performed three times with three resistors, and the tact time tends to increase and the cost tends to increase. Moreover, six support bodies are required, and the amount of heat radiation at the support section increases, resulting in an increase in heat capacity. For this reason, the power supply tends to increase. On the other hand, according to each embodiment of the present invention, the number of lead conductors (supports) from the resistor can be reduced, and the tact time can be shortened.

本発明の実施例では、自動車の排気ガス雰囲気におけるガス流量の測定について説明しているが、空気流量や他の流体流量の測定についても適用することができる。   In the embodiment of the present invention, the measurement of the gas flow rate in the exhaust gas atmosphere of the automobile is described. However, the measurement can be applied to the measurement of the air flow rate and other fluid flow rates.

本発明のガス流量計の流量センサの実施例1を示す構造図。1 is a structural diagram showing a first embodiment of a flow sensor of a gas flow meter of the present invention. 本発明の流量センサの製造工程図。The manufacturing process figure of the flow sensor of this invention. 本発明のガス流量計の流量測定構成図。The flow measurement configuration figure of the gas flowmeter of the present invention. 本発明のガス流量計の制御回路構成図。The control circuit block diagram of the gas flowmeter of this invention. 本発明のガス流量計の温度制御説明図。Explanatory drawing of temperature control of the gas flowmeter of this invention. 本発明のガス流量計の温度制御フロー図。The temperature control flowchart of the gas flowmeter of this invention. 本発明のガス流量計の流量センサの実施例2を示す構造図。FIG. 3 is a structural diagram showing Example 2 of a flow sensor of a gas flow meter of the present invention. 本発明のガス流量計の流量センサの実施例3を示す構造図。FIG. 6 is a structural diagram showing Example 3 of a flow sensor of a gas flow meter of the present invention. 本発明の実施例3による温度検出説明図。Explanatory drawing of the temperature detection by Example 3 of this invention. 本発明の実施例4による制御回路構成図。The control circuit block diagram by Example 4 of this invention. 本発明の実施例4による他の制御回路構成図。The other control circuit block diagram by Example 4 of this invention.

符号の説明Explanation of symbols

10 流量センサ
11 アルミナパイプ
12〜15 接合部
16〜19,24,25 引出し導体
18a,19a,18b,19b 引出し導体18,19の端部
20〜23,26,27 流量センサ端子
100 第1発熱抵抗体
200 測温抵抗体
300 第2発熱抵抗体
500 制御回路
510 温度設定回路
520,530 加熱制御回路
540 定電流回路
610〜640 アルミナパイプ600の凹部
DESCRIPTION OF SYMBOLS 10 Flow sensor 11 Alumina pipe 12-15 Joint part 16-19, 24, 25 Lead conductor 18a, 19a, 18b, 19b End part 20-23, 26, 27 of lead conductor 18, 19 Flow sensor terminal 100 1st heating resistance Body 200 RTD 300 Second heating resistor 500 Control circuit 510 Temperature setting circuit 520, 530 Heating control circuit 540 Constant current circuit 610-640 Concave part of alumina pipe 600

Claims (9)

保持体と前記保持体に連続した導体線を巻き回して構成した抵抗体とを有する流量センサを備えた熱式ガス流量計において
記抵抗体として、前記保持体上に、一方向に第1発熱抵抗体,測温抵抗体及び第2発熱抵抗体の順に構成し、
前記導体線の巻き始め点と、前記第1発熱抵抗体と前記測温抵抗体との区分点と、前記測温抵抗体と前記第2発熱抵抗体との区分点と、巻き終り点とに、引出し導体を接続したことを特徴とする熱式ガス流量計。
The thermal gas flowmeter having a flow rate sensor including a resistor antibody constructed by winding a continuous conductor wire to said holding member and the holding member,
As before Symbol resistor, on the holding member, the first heating resistor in one direction, constitutes in the order of RTD and the second heating resistor,
The winding start point of the conductor wire, the dividing point of the first heating resistor and the resistance temperature detector, the dividing point of the resistance temperature detector and the second heating resistor, and the winding end point A thermal gas flowmeter characterized by connecting a lead conductor.
請求項1に記載の熱式ガス流量計において、
前記引出し導体は、前記第1発熱抵抗体と、前記測温抵抗体と、前記第2発熱抵抗体の配置の延長方向でかつ一方向に引出されたことを特徴とする熱式ガス流量計。
The thermal gas flow meter according to claim 1,
The thermal gas flowmeter, wherein the lead conductor is drawn in one direction in an extension direction of the arrangement of the first heating resistor, the temperature measuring resistor, and the second heating resistor.
請求項1に記載の熱式ガス流量計において、
前記第1発熱抵抗体と前記測温抵抗体と前記第2発熱抵抗体とは直列接続され、直列接続された抵抗体に測温電流を通電することを特徴とする熱式ガス流量計。
The thermal gas flow meter according to claim 1,
The thermal gas flowmeter, wherein the first heating resistor, the temperature measuring resistor, and the second heating resistor are connected in series, and a temperature measuring current is passed through the series connected resistors.
請求項3に記載の熱式ガス流量計において、
前記測温電流は、単一定電流源により通電されることを特徴とする熱式ガス流量計。
The thermal gas flow meter according to claim 3,
The thermal gas flowmeter is characterized in that the temperature measuring current is energized by a single constant current source.
請求項1に記載の熱式ガス流量計において
第1発熱抵抗体、測温抵抗体及び第2発熱抵抗体の測温電流の通電と前記発熱抵抗体の加熱電流の通電とは異なる時間に行うことを特徴とする熱式ガス流量計。
The thermal gas flow meter according to claim 1 ,
Before Symbol first heating resistor, thermal gas flowmeter and performing at different times from the energization of the heating current of electrical communication with the heating resistor temperature measuring current of RTD and the second heating resistor .
請求項1に記載の熱式ガス流量計において、
前記保持体には、前記第1発熱抵抗体、測温抵抗体及び第2発熱抵抗体が巻かれた表面に、前記第1発熱抵抗体、測温抵抗体及び第2発熱抵抗体の配置方向に沿って延設された凹部が形成されており、前記凹部に前記引出し導体を配置したことを特徴とする熱式ガス流量計。
The thermal gas flow meter according to claim 1,
The holding body has an arrangement direction of the first heating resistor, the temperature measuring resistor, and the second heating resistor on a surface around which the first heating resistor, the temperature measuring resistor, and the second heating resistor are wound. A thermal gas flowmeter is characterized in that a recess extending along the line is formed, and the lead conductor is disposed in the recess.
請求項6に記載の熱式ガス流量計において、
前記凹部に配置された前記引出し導体は、前記導体線と接続される側の端部が前記導体線に向けて折り曲げられていることを特徴とする熱式ガス流量計。
The thermal gas flow meter according to claim 6,
The thermal gas flowmeter, wherein the lead conductor disposed in the recess is bent toward the conductor wire at an end connected to the conductor wire.
請求項1に記載の熱式ガス流量計において、
前記導体線の前記巻き始め点と前記巻き終り点とに接続される引出し導体は、それぞれ2本であることを特徴とする熱式ガス流量計。
The thermal gas flow meter according to claim 1,
There are two lead conductors connected to the winding start point and the winding end point of the conductor wire, respectively.
請求項8に記載の熱式ガス流量計において、
前記巻き始め点に接続された2本の引出し導体のうち一方の引出し導体と前記巻き終り点に接続された2本の引出し導体のうち一方の引出し導体とに測温電流を通電し、前記巻き始め点に接続された2本の引出し導体のうち他方の引出し導体と前記巻き終り点に接続された2本の引出し導体のうち他方の引出し導体とには測温電流を通電しないことを特徴とする請求項9記載の熱式ガス流量計。
The thermal gas flow meter according to claim 8,
A temperature measuring current is passed through one of the two lead conductors connected to the winding start point and one of the two lead conductors connected to the winding end point. A temperature measuring current is not passed through the other lead conductor of the two lead conductors connected to the start point and the other lead conductor of the two lead conductors connected to the winding end point. The thermal gas flowmeter according to claim 9.
JP2008279044A 2008-10-30 2008-10-30 Thermal gas flow meter Expired - Fee Related JP5548355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008279044A JP5548355B2 (en) 2008-10-30 2008-10-30 Thermal gas flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008279044A JP5548355B2 (en) 2008-10-30 2008-10-30 Thermal gas flow meter

Publications (2)

Publication Number Publication Date
JP2010107327A JP2010107327A (en) 2010-05-13
JP5548355B2 true JP5548355B2 (en) 2014-07-16

Family

ID=42296914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008279044A Expired - Fee Related JP5548355B2 (en) 2008-10-30 2008-10-30 Thermal gas flow meter

Country Status (1)

Country Link
JP (1) JP5548355B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7521951B2 (en) 2020-07-01 2024-07-24 Koa株式会社 Flow Sensor Element

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3248603A1 (en) * 1982-12-30 1984-07-12 Robert Bosch Gmbh, 7000 Stuttgart DEVICE FOR MEASURING THE MASS FLOW OF A FLOWING MEDIUM
JPH0712610A (en) * 1993-06-22 1995-01-17 Hitachi Ltd Heat resistance type air flowmeter
JP3865159B2 (en) * 1997-07-31 2007-01-10 日立金属株式会社 Thermal mass flow meter
JP2000074716A (en) * 1998-09-01 2000-03-14 Ricoh Co Ltd Method of measuring flow rate
JP2000227354A (en) * 1998-12-01 2000-08-15 Nippon M K S Kk Flow rate sensor
JP5080020B2 (en) * 2006-04-13 2012-11-21 日立オートモティブシステムズ株式会社 Thermal flow sensor
JP4341651B2 (en) * 2006-07-28 2009-10-07 株式会社日立製作所 Thermal gas flow meter

Also Published As

Publication number Publication date
JP2010107327A (en) 2010-05-13

Similar Documents

Publication Publication Date Title
JP4836988B2 (en) Thermal flow meter
KR100506023B1 (en) Heater-sensor complex
WO2010128573A1 (en) Temperature sensor and temperature sensor system
KR102150579B1 (en) Thermal mass flow rate measurement method, thermal mass flow rate meter using said method, and thermal mass flow rate controller using said thermal mass flow rate meter
JP2007285756A (en) Thermal flow sensor
JP2000227354A (en) Flow rate sensor
JPS6283622A (en) Heat-sensitive air flow meter
JP5548355B2 (en) Thermal gas flow meter
JP2009300237A (en) Temperature sensor and method of manufacturing the same
JP2016085864A (en) Heater with thermoelectric couple, and gas sensor with the same
US20230134684A1 (en) Modular heater assembly with interchangeable auxiliary sensing junctions
JPH07243888A (en) Flow rate sensor
JPH0854268A (en) Mass flow rate sensor
JP2938700B2 (en) Thermal flow meter
JP5292201B2 (en) RTD
JP7156014B2 (en) Thermistor and gas sensor provided with the same
JP5529056B2 (en) Liquid level detector
JP2018014290A (en) Hot-air heater
WO2023195365A1 (en) Heater–sensor complex and iron tip cartridge
JP2013122724A (en) Heater drive circuit
JP3179722B2 (en) Soldering iron heater and soldering iron
JP2007155502A (en) Detector
JP2022160157A (en) Gas sensor controller and method for controlling gas sensor
KR20220162091A (en) Exhaust-gas heater
WO2021207092A1 (en) Modular heater assembly with interchangeable auxiliary sensing junctions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140519

R150 Certificate of patent or registration of utility model

Ref document number: 5548355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees