JP5548292B1 - Heating vaporization system and heating vaporization method - Google Patents

Heating vaporization system and heating vaporization method Download PDF

Info

Publication number
JP5548292B1
JP5548292B1 JP2013114635A JP2013114635A JP5548292B1 JP 5548292 B1 JP5548292 B1 JP 5548292B1 JP 2013114635 A JP2013114635 A JP 2013114635A JP 2013114635 A JP2013114635 A JP 2013114635A JP 5548292 B1 JP5548292 B1 JP 5548292B1
Authority
JP
Japan
Prior art keywords
flow rate
pipe
material gas
sensor
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013114635A
Other languages
Japanese (ja)
Other versions
JP2014236018A (en
Inventor
正訓 寺阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Stec Co Ltd
Original Assignee
Horiba Stec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Stec Co Ltd filed Critical Horiba Stec Co Ltd
Priority to JP2013114635A priority Critical patent/JP5548292B1/en
Priority to KR1020130159227A priority patent/KR102116748B1/en
Priority to CN201410218730.9A priority patent/CN104213100B/en
Priority to TW103118569A priority patent/TWI628717B/en
Priority to US14/290,864 priority patent/US10240233B2/en
Application granted granted Critical
Publication of JP5548292B1 publication Critical patent/JP5548292B1/en
Publication of JP2014236018A publication Critical patent/JP2014236018A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4485Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation without using carrier gas in contact with the source material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0082Regulation; Control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use
    • F17C2270/0518Semiconductors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0028Regulation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Measuring Volume Flow (AREA)
  • Chemical Vapour Deposition (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

【課題】ガス流量計や材料ガスに生じる不具合を防止するとともに、ガス導出配管内での結露を防止した加熱気化システムおよび加熱気化方法を提供する。
【解決手段】材料を収容し、この材料を加熱及び気化して材料ガスを生成する容器2と、容器2に接続され、容器2内で生成された前記材料ガスを導出する配管3と、配管3に設けられたセンサ用流路3aと、センサ用流路3aに設けられた熱式流量センサ6を具備し、該熱式流量センサ6を用いて配管3を流れる材料ガスの流量を測定する流量検出部4aと、流量検出部4aの上流における配管3を流れる前記材料ガスの流量を調整する流量調整部4bと、流量検出部4aの検出結果を用いて、流量調整部4bを制御する制御部4cとを備える加熱気化システム1。
【選択図】図1
The present invention provides a heating vaporization system and a heating vaporization method that prevent problems occurring in a gas flow meter and a material gas and prevent condensation in a gas outlet pipe.
A container 2 for containing a material and generating a material gas by heating and vaporizing the material, a pipe 3 connected to the container 2 for leading out the material gas generated in the container 2, and a pipe 3 and a thermal flow sensor 6 provided in the sensor flow path 3a, and the flow rate of the material gas flowing through the pipe 3 is measured using the thermal flow sensor 6. A flow rate detection unit 4a, a flow rate adjustment unit 4b that adjusts the flow rate of the material gas flowing in the pipe 3 upstream of the flow rate detection unit 4a, and a control that controls the flow rate adjustment unit 4b using the detection result of the flow rate detection unit 4a. The heating vaporization system 1 provided with the part 4c.
[Selection] Figure 1

Description

本発明は、例えば半導体製造等に用いられる材料を加熱・気化する加熱気化システムおよび加熱気化方法に関する。   The present invention relates to a heating vaporization system and a heating vaporization method for heating and vaporizing a material used for semiconductor manufacturing, for example.

この加熱気化システムおよび加熱気化方法として例えば特許文献1記載のものがある。   There exists a thing of patent document 1 as this heating vaporization system and a heating vaporization method, for example.

特許文献1記載の加熱気化システムおよび加熱気化方法は、液体材料を収容するとともに、この液体材料を加熱・気化して材料ガスを発生させる材料タンクと、材料タンクで発生した材料ガスを導出するガス導出配管と、ガス導出配管を流れる材料ガスの流量を測定するガス流量計と、ガス流量計よりも下流に配置されてガス導出配管を流れる材料ガスの流量を調整するガス流量制御弁とを備える。   The heating vaporization system and the heating vaporization method described in Patent Literature 1 contain a liquid material, heat and vaporize the liquid material to generate a material gas, and a gas for deriving the material gas generated in the material tank A lead-out pipe, a gas flow meter that measures the flow rate of the material gas flowing through the gas lead-out pipe, and a gas flow rate control valve that is arranged downstream of the gas flow meter and adjusts the flow rate of the material gas flowing through the gas lead-out pipe .

特開2003−273026号公報JP 2003-273026 A

しかし、特許文献1記載のような従来の加熱気化システムでは、材料ガスの流量を調整するためにガス流量調整弁を開閉すると、圧力損失が発生して、ガス流量調整弁の上流の圧力が下流の圧力よりも高くなり、ガス流量調整弁の上流を流れる材料ガスが気体状態から液体状態となって結露しやすくなるという問題が生じる。   However, in the conventional heating and vaporization system as described in Patent Document 1, when the gas flow rate adjustment valve is opened and closed to adjust the flow rate of the material gas, a pressure loss occurs, and the pressure upstream of the gas flow rate adjustment valve is reduced downstream. This causes a problem that the material gas flowing upstream of the gas flow rate adjusting valve is changed from a gas state to a liquid state and is likely to condense.

この問題を解決するためには、ガス流量調整弁の圧力損失を見越して、材料ガスが結露しないように、材料タンク、ガス導出配管、ガス流量計及びガス流量調整弁の温度を上げる方法が考えられる。しかし、材料ガスの比熱を用いて流量を計測する熱式のガス流量計を用いる場合、材料ガスとガス流量計の温度をあげると、ガス流量計に内蔵されるセンサの温度を必要以上に上げる必要が生じる。すると、ガス流量計のセンサが測定可能な耐熱温度の範囲を超えてしまい、正確に流量を測ることができなくなるという問題が生じる。また、ガス流量計に内蔵される電子回路やセンサ等が劣化して、ガス流量計自体の寿命が短くなってしまうという問題もある。   In order to solve this problem, a method of raising the temperature of the material tank, the gas outlet piping, the gas flow meter and the gas flow adjustment valve in anticipation of the pressure loss of the gas flow adjustment valve is considered. It is done. However, when using a thermal gas flow meter that measures the flow rate using the specific heat of the material gas, raising the temperature of the material gas and the gas flow meter raises the temperature of the sensor built in the gas flow meter more than necessary. Need arises. As a result, the temperature of the gas flow meter exceeds the measurable temperature range, and the flow rate cannot be measured accurately. There is also a problem that the life of the gas flow meter itself is shortened due to deterioration of an electronic circuit, a sensor and the like built in the gas flow meter.

さらに、ガス流量計およびガス流量制御弁の温度を上げるとガス導出配管を流れる材料ガスの温度も上昇し、材料ガスが熱分解を起こして劣化するという問題も生じうる。   Furthermore, when the temperature of the gas flow meter and the gas flow control valve is raised, the temperature of the material gas flowing through the gas outlet pipe also rises, which may cause a problem that the material gas is deteriorated due to thermal decomposition.

本発明は上記問題を鑑み、ガス流量計や材料ガスに生じる不具合を防止するとともに、ガス導出配管内での結露を防止した加熱気化システムおよび加熱気化方法を提供することをその主たる所期課題とするものである。   In view of the above-mentioned problems, the present invention aims to provide a heating vaporization system and a heating vaporization method that prevent problems in gas flowmeters and material gases and prevent condensation in the gas outlet pipe. To do.

本発明の加熱気化システムは、材料を収容し、この材料を加熱及び気化して材料ガスを生成する容器と、前記容器に接続され、前記容器内で生成された前記材料ガスを導出する配管と、前記配管に設けられたセンサ用流路と、前記センサ用流路に設けられた熱式流量センサを具備し、該熱式流量センサを用いて前記配管を流れる前記材料ガスの流量を測定する流量検出部と、前記流量検出部の上流に設けられて、前記配管を流れる前記材料ガスの流量を調整する流量調整部と、前記流量検出部の測定結果を用いて、前記流量調整部を制御する制御部とを備える。   The heating and vaporizing system of the present invention contains a material, and heats and vaporizes the material to generate a material gas, and a pipe connected to the container and leading to the material gas generated in the container. A sensor flow path provided in the pipe, and a thermal flow sensor provided in the sensor flow path, and the flow rate of the material gas flowing through the pipe is measured using the thermal flow sensor. A flow rate detection unit, a flow rate adjustment unit that is provided upstream of the flow rate detection unit and adjusts the flow rate of the material gas flowing through the pipe, and controls the flow rate adjustment unit using the measurement result of the flow rate detection unit A control unit.

このような構成であれば、流量検出部を流量調整部の下流側に設けたので、圧力損失を考慮して流量調整部の温度を予め上げておく場合に、流量検出部の温度を流量調整部の温度以上に上げる必要がない。そのため、流量検出部の温度を上げることによる流量検出部の劣化や材料ガスの劣化等の悪影響を防ぐとともに、流量調整部の圧力損失に起因する配管内の結露を防いで、半導体製造チャンバ等に材料ガスを安定供給することができる。   In such a configuration, since the flow rate detection unit is provided on the downstream side of the flow rate adjustment unit, the temperature of the flow rate detection unit is adjusted when the temperature of the flow rate adjustment unit is raised in advance in consideration of pressure loss. There is no need to raise the temperature above the temperature. For this reason, it is possible to prevent the adverse effects such as deterioration of the flow rate detection unit and material gas caused by raising the temperature of the flow rate detection unit, and prevent condensation in the piping due to pressure loss of the flow rate adjustment unit, so The material gas can be stably supplied.

なお、本発明の流量制御装置は、収容した材料を加熱及び気化して材料ガスを生成する容器に連結されて前記容器内で生成された前記材料ガスが流れる配管に接続される接続部と、前記配管に設けられたセンサ用流路と、前記センサ用流路に設けられた熱式流量センサを具備し、該熱式流量センサを用いて前記配管を流れる前記材料ガスの流量を測定する流量検出部と、前記流量検出部の上流に設けられて、前記配管を流れる前記材料ガスの流量を調整する流量調整部と、前記流量検出部の測定結果を用いて、前記流量調整部を制御する制御部とを備えるものを挙げることができる。   The flow control device of the present invention is connected to a container that heats and vaporizes the contained material to generate a material gas and is connected to a pipe through which the material gas generated in the container flows, A flow rate for measuring the flow rate of the material gas flowing through the piping using the thermal flow rate sensor provided with a sensor flow channel provided in the piping and a thermal flow rate sensor provided in the sensor flow channel The flow rate adjustment unit is controlled by using a detection unit, a flow rate adjustment unit that is provided upstream of the flow rate detection unit and adjusts the flow rate of the material gas flowing through the pipe, and a measurement result of the flow rate detection unit. A thing provided with a control part can be mentioned.

また、流量検出部または流量調整部の少なくともいずれか一方において、前記配管を流れる材料ガスを加熱するための加熱手段をさらに備えれば、流量調整部の温度を結露が生じないように予め上げておくことや、流量検出部の温度を材料ガスが再度液化しない温度に維持することができ、配管内で結露が発生することを確実に防ぐことができる。   In addition, if at least one of the flow rate detection unit and the flow rate adjustment unit further includes a heating means for heating the material gas flowing through the pipe, the temperature of the flow rate adjustment unit is raised in advance so as not to cause condensation. It is possible to maintain the temperature of the flow rate detection unit at a temperature at which the material gas is not liquefied again, and it is possible to reliably prevent dew condensation in the piping.

さらに前記流量調整部の上流側又は下流側に位置する前記配管の内部に配置されて、材料ガスを加熱する内部加熱手段を備えれば、加熱手段が配管の外部に配置される場合と比較して効率よく加熱手段の熱を材料ガスに伝達することができる。そのため、材料ガスを均一に加熱することができ、加熱ムラに起因する流量検出部の検出精度の低下を防ぐことができる。   Furthermore, if the internal heating means for heating the material gas is provided inside the pipe located upstream or downstream of the flow rate adjusting unit, the heating means is compared with the case where the heating means is arranged outside the pipe. Thus, the heat of the heating means can be efficiently transmitted to the material gas. Therefore, the material gas can be heated uniformly, and a reduction in detection accuracy of the flow rate detection unit due to uneven heating can be prevented.

このように構成した本発明の加熱気化システムおよび加熱気化方法によれば、ガス流量計や材料ガスに生じる不具合を防止するとともに、ガス導出配管内での結露を防止することができる。   According to the heating vaporization system and the heating vaporization method of the present invention configured as described above, it is possible to prevent problems occurring in the gas flow meter and the material gas and to prevent condensation in the gas outlet pipe.

第1実施形態における加熱気化システムを示す概略図。Schematic which shows the heating vaporization system in 1st Embodiment. 第2実施形態における加熱気化システムを示す概略図。Schematic which shows the heating vaporization system in 2nd Embodiment. 第3実施形態における加熱気化システムを示す概略断面図。The schematic sectional drawing which shows the heating vaporization system in 3rd Embodiment. 内部加熱手段を示す参考斜視図。The reference perspective view which shows an internal heating means.

<第1実施形態>
本発明の第1実施形態にかかる加熱気化システム1について、以下図面を参照しながら説明する。
<First Embodiment>
A heating vaporization system 1 according to a first embodiment of the present invention will be described below with reference to the drawings.

第1実施形態の加熱気化システム1は、例えば半導体製造に用いられる液体材料を加熱・気化して材料ガスを生成し、この材料ガスを半導体製造チャンバ等に供給するためのものである。そして、図1に示すように、液体材料を収容するとともに、この液体材料を加熱及び気化して材料ガスを生成する容器2と、該容器2で生成された材料ガスを半導体製造チャンバ等へと供給するための配管3と、配管3を流れる材料ガスの流量を制御する流量制御装置4とを備える。   The heating and vaporizing system 1 of the first embodiment is for heating and vaporizing a liquid material used for semiconductor manufacturing, for example, to generate a material gas, and supplying the material gas to a semiconductor manufacturing chamber or the like. As shown in FIG. 1, a container 2 for containing a liquid material and generating a material gas by heating and vaporizing the liquid material, and a material gas generated in the container 2 into a semiconductor manufacturing chamber or the like. A pipe 3 for supplying and a flow rate control device 4 for controlling the flow rate of the material gas flowing through the pipe 3 are provided.

容器2は、液体材料を収容する中空のタンク2aと、タンク2aを加熱する加熱器2bと、タンク2aの上壁を貫通するように設けた導入配管2cと、タンク2aの上壁から突出させた導出配管2dとを有するものである。   The container 2 protrudes from a hollow tank 2a for storing a liquid material, a heater 2b for heating the tank 2a, an introduction pipe 2c provided so as to penetrate the upper wall of the tank 2a, and an upper wall of the tank 2a. And a lead-out pipe 2d.

加熱器2bは、例えばヒータ等であってタンク2aの外周側面及び底面を囲むように配置されている。この加熱器2bによって加熱されたタンク2a内では、液体材料が飽和蒸気圧に達して気化し、材料ガスが生成される。   The heater 2b is, for example, a heater and is disposed so as to surround the outer peripheral side surface and the bottom surface of the tank 2a. In the tank 2a heated by the heater 2b, the liquid material reaches the saturated vapor pressure and is vaporized to generate a material gas.

導入配管2cは、タンク2aに液体材料を供給するためのものであって、その下端をタンク2aの底面近傍まで延ばしたものである。   The introduction pipe 2c is for supplying a liquid material to the tank 2a, and its lower end is extended to the vicinity of the bottom surface of the tank 2a.

導出配管2dは、タンク2aの内部空間に連通するものであり、タンク2a内で生成された材料ガスがこの導出配管2dを通ってタンク2aから導出するように構成してある。   The lead-out piping 2d communicates with the internal space of the tank 2a, and the material gas generated in the tank 2a is configured to be led out from the tank 2a through the lead-out piping 2d.

なお、導入配管2c及び導出配管2dには、これら配管を流れる流体の流量を調整するためのバルブがそれぞれ設けられている。   The inlet pipe 2c and the outlet pipe 2d are provided with valves for adjusting the flow rate of fluid flowing through these pipes.

配管3は、その上流側の一端が導出配管2dに接続されるとともに、その下流側の他端が半導体製造チャンバ等に接続されるものである。そして、タンク2aから導出配管2dを介して導出された材料ガスがこの配管3を通って、半導体製造チャンバ等に供給される。   One end of the pipe 3 on the upstream side is connected to the lead-out pipe 2d, and the other end on the downstream side is connected to a semiconductor manufacturing chamber or the like. Then, the material gas led out from the tank 2a through the lead-out pipe 2d is supplied to the semiconductor manufacturing chamber or the like through the pipe 3.

また配管3の一部には、配管3から分岐して再度配管3と合流する概略コの字形状のセンサ用配管3aが設けられている。このセンサ用配管3aは配管3を流れる材料ガスの流量を調整するセンサ用流路となる。また、センサ用配管3aの管径は、配管3の管径に対して十分小さいものである。   Also, a part of the pipe 3 is provided with a substantially U-shaped sensor pipe 3 a that branches from the pipe 3 and joins the pipe 3 again. The sensor pipe 3 a becomes a sensor flow path for adjusting the flow rate of the material gas flowing through the pipe 3. The pipe diameter of the sensor pipe 3 a is sufficiently smaller than the pipe diameter of the pipe 3.

また、センサ用配管3aが配管3から分岐する分岐点から、センサ用配管3aが配管3に合流する合流点まではバイパス流路3bとなり、このバイパス流路3bには、エッチングで孔が設けられた平板を積層した図示しないバイパスが配置されている。このバイパスを通過する材料ガスに生じる圧力損失は、センサ用配管3aを通過する材料ガスに生じる圧力損失と同じものとなる。
このバイパス流路3bが設けられた配管3の周囲を囲むように、第1ブロック体5が設けられている。この第1ブロック体5は、概略直方体形状をなす熱伝導性に優れた金属で構成されるものであって、その内部に、バイパス流路3bが設けられた配管を配置するための貫通孔が設けられている。
Further, a bypass flow path 3b is formed from a branch point where the sensor pipe 3a branches from the pipe 3 to a junction where the sensor pipe 3a joins the pipe 3, and a hole is formed in the bypass flow path 3b by etching. A bypass (not shown) in which flat plates are stacked is disposed. The pressure loss generated in the material gas passing through the bypass is the same as the pressure loss generated in the material gas passing through the sensor pipe 3a.
A first block body 5 is provided so as to surround the periphery of the pipe 3 provided with the bypass flow path 3b. The first block body 5 is made of a metal having a substantially rectangular parallelepiped shape and excellent in heat conductivity, and has a through-hole for arranging a pipe provided with a bypass channel 3b therein. Is provided.

流量制御装置4は、配管3を流れる材料ガスの流量を測定する流量検出部4aと、配管3を流れる材料ガスの流量を調整する流量調整部4bと、流量検出部4aの検出結果を用いて流量調整部4bを制御する制御部4cとを備える。   The flow rate control device 4 uses the flow rate detection unit 4a that measures the flow rate of the material gas flowing through the pipe 3, the flow rate adjustment unit 4b that adjusts the flow rate of the material gas that flows through the pipe 3, and the detection result of the flow rate detection unit 4a. And a control unit 4c for controlling the flow rate adjusting unit 4b.

流量検出部4aは、センサ用配管3aの少なくとも一部を加熱するとともに温度に関連する物理量を検知する熱式流量センサ6と、熱式流量センサ6が検知した検知信号を受けて配管3を流れる材料ガスの流量を算出する流量算出部7とを有する。   The flow rate detection unit 4a heats at least a part of the sensor pipe 3a and detects a physical quantity related to temperature and receives a detection signal detected by the thermal type flow sensor 6 and flows through the pipe 3. A flow rate calculation unit 7 for calculating a flow rate of the material gas.

熱式流量センサ6は、センサ用配管3aを加熱して、センサ用配管3aの上流側及び下流側の温度に関連する物理量(例えば、電流、電圧、抵抗等)を検知するものである。具体的には、温度変化に伴って電気抵抗値が増減する感熱抵抗体を用いたものであって、センサ用配管3aの上流側にコイル状に巻きつけられる上流側センサ6aと、センサ用配管3aの下流側にコイル状に巻きつけられる下流側センサ6bとを備える。そして、上流側センサ6a及び下流側センサ6bに電流が流れることによって、上流側センサ6a及び下流側センサ6bが発熱し、センサ用配管3aを加熱するものである。   The thermal flow sensor 6 heats the sensor pipe 3a and detects a physical quantity (for example, current, voltage, resistance, etc.) related to the upstream and downstream temperatures of the sensor pipe 3a. Specifically, an upstream sensor 6a wound in a coil shape around the upstream side of the sensor pipe 3a, which uses a thermal resistor whose electrical resistance value increases or decreases with a temperature change, and the sensor pipe And a downstream sensor 6b wound in a coil on the downstream side of 3a. And when an electric current flows into the upstream sensor 6a and the downstream sensor 6b, the upstream sensor 6a and the downstream sensor 6b generate heat, and the sensor pipe 3a is heated.

流量算出部7は、具体的には電気回路から構成されるものであって、上流側センサ6aと下流側センサ6bの温度が、常に等しく一定となるように制御する制御回路と、制御回路の出力した電気信号を増幅する増幅回路と、この増幅回路で増幅された電気信号を流量に補正する補正回路とを有する。
なお、この流量算出部7は、熱式流量センサ6の熱が伝達しないように、例えば熱式流量センサ6とケーブルを介して接続されていたり、熱式流量センサ6とは異なるケーシングに収容される等して、熱式流量センサ6とは隔離して配置されている。
The flow rate calculation unit 7 is specifically composed of an electric circuit, and includes a control circuit that controls the temperature of the upstream sensor 6a and the downstream sensor 6b to be always equal and constant, It has an amplifier circuit that amplifies the output electric signal, and a correction circuit that corrects the electric signal amplified by the amplifier circuit to a flow rate.
The flow rate calculation unit 7 is connected to the thermal flow rate sensor 6 via a cable, for example, or accommodated in a casing different from the thermal flow rate sensor 6 so that the heat of the thermal flow rate sensor 6 is not transmitted. For example, the thermal flow sensor 6 is disposed separately.

配管3から分岐したセンサ用配管3aに材料ガスが流れていない場合、上流側センサ6a及び下流側センサ6bをそれぞれ制御する制御回路から流れる電流値と、上流側センサ6aと下流側センサ6bの抵抗値は同じであるので、上流側センサ6a及び下流側センサ6bの温度は等しく一定となる。
また、上流側センサ6aが検知した電気信号(電圧値)と、下流側センサ6bが検知した電気信号(電圧値)とは同じものとなる。
When the material gas does not flow into the sensor pipe 3a branched from the pipe 3, the current value flowing from the control circuit that controls the upstream sensor 6a and the downstream sensor 6b, and the resistance of the upstream sensor 6a and the downstream sensor 6b, respectively. Since the values are the same, the temperatures of the upstream sensor 6a and the downstream sensor 6b are equally constant.
The electrical signal (voltage value) detected by the upstream sensor 6a is the same as the electrical signal (voltage value) detected by the downstream sensor 6b.

一方、配管3から分岐したセンサ用配管3aに材料ガスが流れると、この材料ガスによって上流側センサ6aの熱量が奪われるので上流側センサ6aの抵抗値が下がる。そのため、上流側センサ6aを制御する制御回路は、上流側センサ6aと下流側センサ6bの温度を一定に保つために、上流側センサ6aに流れる電流値を大きくする。   On the other hand, when the material gas flows into the sensor pipe 3a branched from the pipe 3, the amount of heat of the upstream sensor 6a is taken away by the material gas, so that the resistance value of the upstream sensor 6a decreases. Therefore, the control circuit that controls the upstream sensor 6a increases the value of the current flowing through the upstream sensor 6a in order to keep the temperature of the upstream sensor 6a and the downstream sensor 6b constant.

すると、上流側センサ6aが検知した電気信号(電圧値)と、下流側センサ6bが検知した電気信号(電圧値)とはそれぞれ異なるものとなる。増幅回路はこれら電気信号の偏差を増幅する。そして、補正回路は、この増幅された偏差、及び、センサ用流路とバイパス流路3bとを流れる材料ガスの分流比を用いて配管3を流れる材料ガスの流量を算出する。   Then, the electrical signal (voltage value) detected by the upstream sensor 6a is different from the electrical signal (voltage value) detected by the downstream sensor 6b. The amplifier circuit amplifies the deviation of these electric signals. Then, the correction circuit calculates the flow rate of the material gas flowing through the pipe 3 using the amplified deviation and the diversion ratio of the material gas flowing through the sensor flow path and the bypass flow path 3b.

制御部4cは、構造的には、CPU、内部メモリ、I/Oバッファ回路、ADコンバータ等を有した所謂コンピュータ回路である。そして、内部メモリの所定領域に格納したプログラムに従って動作することで情報処理を行い、流量調整部4bを制御するものである。   The control unit 4c is structurally a so-called computer circuit including a CPU, an internal memory, an I / O buffer circuit, an AD converter, and the like. Information processing is performed by operating according to a program stored in a predetermined area of the internal memory, and the flow rate adjusting unit 4b is controlled.

具体的には、流量検出部4aが検出した材料ガスの流量を受信し、この検出流量と予め定めた設定流量とを比較して、検出流量を測定流量に近づけるように流量調整部4bに制御信号を送信するものである。   Specifically, the flow rate of the material gas detected by the flow rate detection unit 4a is received, the detected flow rate is compared with a predetermined set flow rate, and the flow rate adjustment unit 4b is controlled so as to bring the detected flow rate closer to the measured flow rate. A signal is transmitted.

流量調整部4bは、本実施形態において流量検出部4aの上流に配置されるものであって、配管3に外付けされる第2ブロック体9と、配管3を流れる材料ガスの流量を調整する調整バルブ10と、制御部4cから送信された制御信号を所定の駆動信号に変換し、この駆動信号を調整バルブ10へと送る駆動回路11とを備える。   The flow rate adjusting unit 4b is arranged upstream of the flow rate detecting unit 4a in the present embodiment, and adjusts the flow rate of the second block body 9 externally attached to the pipe 3 and the material gas flowing through the pipe 3. The adjustment valve 10 includes a drive circuit 11 that converts a control signal transmitted from the control unit 4 c into a predetermined drive signal and sends the drive signal to the adjustment valve 10.

第2ブロック体9は、第1ブロック体5と同様に概略直方体形状をなす熱伝導性に優れた金属で構成されるものであって、その内部に配管3を通すための貫通孔が設けられている。
この第2ブロック体9の配管3が挿入される上流側端部が、配管3に接続される接続部15となる。
The 2nd block body 9 is comprised with the metal excellent in the heat conductivity which makes a substantially rectangular parallelepiped shape similarly to the 1st block body 5, Comprising: The through-hole for letting the piping 3 pass is provided in the inside. ing.
The upstream end portion into which the pipe 3 of the second block body 9 is inserted becomes a connection portion 15 connected to the pipe 3.

調整バルブ10は、第2ブロック体9の内部に配置された配管3の管内を塞ぐように配置されるバルブ本体10aと、このバルブ本体10aを機械的に駆動させる駆動手段10bとを有する。この駆動手段10bとしては、例えばピエゾアクチュエータ等の圧電素子が用いられる。   The adjustment valve 10 includes a valve main body 10a arranged so as to close the inside of the pipe 3 arranged inside the second block body 9, and a driving means 10b for mechanically driving the valve main body 10a. As this driving means 10b, for example, a piezoelectric element such as a piezoelectric actuator is used.

駆動回路11は、制御部4cから送信された制御信号を所定の駆動信号に変換して、この駆動信号により駆動手段10bを駆動させるものである。例えば駆動手段10bに圧電素子が用いられる場合、制御信号は所定の電圧値(駆動信号)に変換される。この駆動回路11から駆動信号を受けた駆動手段10bは、バルブ本体10aの開度を変動させて、流量検出部4aよりも上流の配管3を流れる材料ガスの流量を調整する。
なお、この駆動回路11は、例えば調整バルブ10とケーブルを介して接続されていたり、調整バルブ10とは異なるケーシングに収容される等して、調整バルブ10とは隔離して配置されている。
The drive circuit 11 converts the control signal transmitted from the control unit 4c into a predetermined drive signal, and drives the drive means 10b with this drive signal. For example, when a piezoelectric element is used for the drive means 10b, the control signal is converted into a predetermined voltage value (drive signal). The drive means 10b that has received the drive signal from the drive circuit 11 adjusts the flow rate of the material gas flowing through the pipe 3 upstream of the flow rate detection unit 4a by changing the opening degree of the valve body 10a.
The drive circuit 11 is arranged separately from the adjustment valve 10, for example, connected to the adjustment valve 10 via a cable or housed in a casing different from the adjustment valve 10.

上述したように構成した本実施形態の加熱気化システム1の加熱気化方法について説明する。   The heating vaporization method of the heating vaporization system 1 of this embodiment comprised as mentioned above is demonstrated.

ユーザは、液体材料を気化した材料ガスを半導体製造チャンバ等に使用する場合、導入配管2cからタンク2aに液体材料を導入し、加熱器2bでタンク2aを加熱する。すると、タンク2a内の温度が上昇して液体材料が飽和蒸気圧に達して気化し、材料ガスが生成される。   When using a material gas obtained by vaporizing a liquid material in a semiconductor manufacturing chamber or the like, the user introduces the liquid material into the tank 2a from the introduction pipe 2c and heats the tank 2a with the heater 2b. Then, the temperature in the tank 2a rises, the liquid material reaches the saturated vapor pressure, and is vaporized, and a material gas is generated.

この材料ガスは、導出配管2dを介して配管3を流れて半導体製造チャンバ等に供給される。このとき、配管3を流れる材料ガスの一部はセンサ用配管3aを流れる。   This material gas flows through the piping 3 via the outlet piping 2d and is supplied to the semiconductor manufacturing chamber or the like. At this time, part of the material gas flowing through the pipe 3 flows through the sensor pipe 3a.

センサ用配管3aに材料ガスが流れると、センサ用配管3aに設けられた上流側センサ6aの温度が下がり、上流側センサ6a及び下流側センサ6bを同じ温度に保持するには、上流側センサ6aの電気抵抗値を大きくする必要が生じ、上流側センサ6aと下流側センサ6bの電気抵抗値に違いが生じる。流量算出部7は、この電気抵抗値の違いに基づく電気信号(電圧値)から増幅回路及び補正回路を用いて流量を算出する。これにより、流量検出部4aは配管3を流れる材料ガスの流量を検出して、この検出流量を制御部4cへ送信する。   When the material gas flows through the sensor pipe 3a, the temperature of the upstream sensor 6a provided in the sensor pipe 3a decreases, and in order to keep the upstream sensor 6a and the downstream sensor 6b at the same temperature, the upstream sensor 6a The electrical resistance value of the upstream side sensor 6a and the downstream side sensor 6b is different. The flow rate calculation unit 7 calculates the flow rate from the electrical signal (voltage value) based on the difference in the electrical resistance value by using an amplifier circuit and a correction circuit. Thereby, the flow rate detection unit 4a detects the flow rate of the material gas flowing through the pipe 3, and transmits this detected flow rate to the control unit 4c.

制御部4cは、検出流量を受けて、この検出流量と予め定めた設定流量とを比較して、検出流量を測定流量に近づけるように流量調整部4bに制御信号を送信する。   The control unit 4c receives the detected flow rate, compares the detected flow rate with a predetermined set flow rate, and transmits a control signal to the flow rate adjusting unit 4b so that the detected flow rate approaches the measured flow rate.

流量調整部4bは、制御部4cから送信された制御信号を所定の駆動信号に変換して、この駆動信号により駆動手段10bを駆動させてバルブ本体10aの開閉を行い、流量検出部4aよりも上流の配管3を流れる材料ガスの流量を調整する。   The flow rate adjusting unit 4b converts the control signal transmitted from the control unit 4c into a predetermined drive signal, drives the drive means 10b with this drive signal to open and close the valve body 10a, and is more than the flow rate detection unit 4a. The flow rate of the material gas flowing through the upstream pipe 3 is adjusted.

<第1実施形態の効果>
以上のように構成した第1実施形態の加熱気化システム1によれば、流量検出部4aを流量調整部4bの下流側に設けたので、圧力損失を考慮して流量調整部4bの温度を予め上げておく場合に、流量検出部4aの温度を流量調整部4bの温度以上に上げる必要がない。そのため、流量検出部4aの温度を上げることによる流量検出部4aの劣化や材料ガスの劣化等の悪影響を防ぐとともに、流量調整部4bの圧力損失に起因する配管3内の結露を防いで、半導体製造チャンバ等に材料ガスを安定供給することができる。
<Effects of First Embodiment>
According to the heating and vaporizing system 1 of the first embodiment configured as described above, since the flow rate detecting unit 4a is provided on the downstream side of the flow rate adjusting unit 4b, the temperature of the flow rate adjusting unit 4b is set in advance in consideration of pressure loss. In the case of increasing the temperature, it is not necessary to raise the temperature of the flow rate detection unit 4a to be higher than the temperature of the flow rate adjustment unit 4b. Therefore, it is possible to prevent adverse effects such as deterioration of the flow rate detection unit 4a and deterioration of material gas caused by raising the temperature of the flow rate detection unit 4a, and prevent condensation in the pipe 3 due to pressure loss of the flow rate adjustment unit 4b. A material gas can be stably supplied to a manufacturing chamber or the like.

<第2実施形態>
次に本発明に係る加熱気化システムの第2実施形態について説明する。第2実施形態にかかる加熱気化システム20では、流量検出部4a及び流量調整部4bに加熱手段が設けられている点が第1実施形態とは異なる。
なお、第1実施形態と同様の構成については同じ符号を付し、説明を省略する。
<Second Embodiment>
Next, a second embodiment of the heating and vaporizing system according to the present invention will be described. The heating vaporization system 20 according to the second embodiment differs from the first embodiment in that heating means are provided in the flow rate detection unit 4a and the flow rate adjustment unit 4b.
In addition, the same code | symbol is attached | subjected about the structure similar to 1st Embodiment, and description is abbreviate | omitted.

第2実施形態に係る加熱気化システム20は、図2に示すように、第1ブロック体5に内蔵されるとともに、センサ用配管3aの上流及び下流に位置する配管3の外側周面に配置されて、第1ブロック体5を貫通する配管3内を流れる材料ガスを加熱するための第1加熱手段12(12a、12b)を備える。   As shown in FIG. 2, the heating and vaporizing system 20 according to the second embodiment is built in the first block body 5 and disposed on the outer peripheral surface of the pipe 3 positioned upstream and downstream of the sensor pipe 3 a. The first heating means 12 (12a, 12b) for heating the material gas flowing in the pipe 3 penetrating the first block body 5 is provided.

さらに、第2実施形態に係る加熱気化システム20は、第2ブロック体9に内蔵されるとともに、バルブ本体10aの上流及び下流に位置する配管3の外側周面に配置されて、第2ブロック体9を貫通する配管3内を流れる材料ガスを加熱するための第2加熱手段13(13a、13b)を備える。   Furthermore, the heating and vaporizing system 20 according to the second embodiment is incorporated in the second block body 9 and is disposed on the outer peripheral surface of the pipe 3 located upstream and downstream of the valve body 10a, so that the second block body is provided. 2 is provided with second heating means 13 (13a, 13b) for heating the material gas flowing in the pipe 3 passing through 9.

この第1加熱手段12又は第2加熱手段13としては、例えばヒータ等が用いられる。第1ブロック体5又は第2ブロック体9はともに熱伝導性のよい金属で構成されているので、ヒータの熱は効率よく配管3に伝達し、配管3を流れる材料ガスを加熱する。   As this 1st heating means 12 or the 2nd heating means 13, a heater etc. are used, for example. Since both the first block body 5 and the second block body 9 are made of a metal having good thermal conductivity, the heat of the heater is efficiently transmitted to the pipe 3 and the material gas flowing through the pipe 3 is heated.

<第2実施形態の効果>
以上のように構成した第2実施形態の加熱気化システム20によれば、流量検出部4a及び流量調整部4bにおいて、第1加熱手段12及び第2加熱手段13をそれぞれ設けたので、圧力損失を見越して結露が生じないように流量調整部4bの温度を予め上げておくことや、流量検出部4aの温度を材料ガスが再度液化しない温度に維持することができ、配管3内で結露が発生することを確実に防ぐことができる。
<Effects of Second Embodiment>
According to the heating and vaporizing system 20 of the second embodiment configured as described above, the first heating unit 12 and the second heating unit 13 are provided in the flow rate detection unit 4a and the flow rate adjustment unit 4b, respectively. In anticipation, the temperature of the flow rate adjustment unit 4b can be raised in advance so that condensation does not occur, or the temperature of the flow rate detection unit 4a can be maintained at a temperature at which the material gas does not liquefy again. Can be surely prevented.

また、第1ブロック体5を第1加熱手段12で加熱して、第1ブロック体5を貫通する配管3内を流れる材料ガスの温度を、加熱部8で加熱されたセンサ用配管3aの温度に近づけると、該センサ用配管3aの温度と材料ガスの温度との温度差に基づく熱式流量センサ6の検出誤差を防いで、流量検出部4aの検出精度を高めることができる。   Further, the temperature of the material gas flowing in the pipe 3 penetrating the first block body 5 by heating the first block body 5 by the first heating means 12 is the temperature of the sensor pipe 3 a heated by the heating unit 8. If it is close to, the detection error of the thermal flow sensor 6 based on the temperature difference between the temperature of the sensor pipe 3a and the temperature of the material gas can be prevented, and the detection accuracy of the flow rate detector 4a can be improved.

<第3実施形態>
次に本発明に係る加熱気化システムの第3実施形態について説明する。第3実施形態にかかる加熱気化システム30では、流量検出部4a及び流量調整部4bに加熱手段を具備する点に加えて、流量検出部4aと流量調整部4bとの間に内部加熱手段をさらに具備する点が第1実施形態とは異なる。
なお、第1実施形態及び第2実施形態と同様の構成については同じ符号を付し、説明を省略する。
<Third Embodiment>
Next, a third embodiment of the heating vaporization system according to the present invention will be described. In the heating vaporization system 30 according to the third embodiment, in addition to the point that the flow rate detection unit 4a and the flow rate adjustment unit 4b are provided with heating means, an internal heating unit is further provided between the flow rate detection unit 4a and the flow rate adjustment unit 4b. The point which comprises differs from 1st Embodiment.
In addition, the same code | symbol is attached | subjected about the structure similar to 1st Embodiment and 2nd Embodiment, and description is abbreviate | omitted.

第3実施形態に係る加熱気化システム30は、図3に示すように、バルブ本体10aよりも下流であって、流量検出部4aよりも上流に位置する配管3の内部に設けられ、この配管3を流れる材料ガスの温度を均一にするための内部加熱手段14をさらに備える。   As shown in FIG. 3, the heating and vaporizing system 30 according to the third embodiment is provided inside a pipe 3 that is downstream of the valve body 10 a and upstream of the flow rate detection unit 4 a. The internal heating means 14 is further provided for making the temperature of the material gas flowing through the air uniform.

内部加熱手段14は、配管3の内部に配置される加熱部材と、この金属部材に熱を供給する熱供給装置(図示しない)とから構成され、加熱部材は、図4に示すように、その外側周面が配管3の内側周面に沿うように構成された中空の金属円筒の中に複数の金属細線がメッシュ状に張りめぐらされている。そして、熱供給装置が配管3の内部に配置される加熱部材に熱を供給すると、この加熱部材を通過した材料ガスは、金属円筒や金属細線に接触することで均一に加熱される。   The internal heating means 14 is composed of a heating member disposed inside the pipe 3 and a heat supply device (not shown) for supplying heat to the metal member, and the heating member, as shown in FIG. A plurality of fine metal wires are stretched in a mesh shape in a hollow metal cylinder configured such that the outer peripheral surface is along the inner peripheral surface of the pipe 3. And if a heat supply apparatus supplies heat to the heating member arrange | positioned inside the piping 3, the material gas which passed this heating member will be heated uniformly by contacting a metal cylinder or a thin metal wire.

<第3実施形態の効果>
以上のように構成した第3実施形態の加熱気化システム30によれば、内部加熱手段14は配管3の内部に設けられるので、配管3の外部に設けられた第1加熱手段12及び第2加熱手段13よりも効率よく熱を材料ガスに伝達することができる。そのため、内部加熱手段14を通過した材料ガスは均一に加熱され、加熱ムラに起因する流量検出部4aの検出精度の低下を防ぐことができる。
また、内部加熱手段14をメッシュ状に構成することで、内部加熱手段14の上流側と下流側との間で圧力損失が発生することを防ぐことができる。
<Effect of the third embodiment>
According to the heating vaporization system 30 of the third embodiment configured as described above, since the internal heating means 14 is provided inside the pipe 3, the first heating means 12 and the second heating means provided outside the pipe 3 are used. Heat can be transferred to the material gas more efficiently than the means 13. Therefore, the material gas that has passed through the internal heating means 14 is uniformly heated, and a reduction in detection accuracy of the flow rate detection unit 4a due to heating unevenness can be prevented.
Moreover, it can prevent that a pressure loss generate | occur | produces between the upstream and downstream of the internal heating means 14 by comprising the internal heating means 14 in mesh shape.

なお、本発明は上記実施形態に限定されたものではない。   In addition, this invention is not limited to the said embodiment.

上記実施形態では、材料として液体材料を用いたが、例えば固体材料を気化してもよい。   In the above-described embodiment, a liquid material is used as a material. However, for example, a solid material may be vaporized.

上記実施形態では、流量制御装置において、流量調整部と流量検出部を別体としているが、例えば流量調整部のバルブ本体が配置された配管及び迂回配管が設けられた配管を同一のブロック体で覆って、流量調整部と流量検出部とを一体に構成したものであってもよい。   In the above embodiment, in the flow control device, the flow rate adjustment unit and the flow rate detection unit are separated, but, for example, the pipe in which the valve body of the flow rate adjustment unit is arranged and the pipe in which the bypass pipe is provided are the same block body. The flow rate adjustment unit and the flow rate detection unit may be configured integrally.

また、上記実施形態では、流量検出部において、上流側センサ及び下流側センサがセンサ用配管を加熱するものであるが、別途センサ用配管を加熱するヒータ等を配置して、このヒータの上流及び下流に配置される一対のセンサで温度を検知するように構成してもよい。この場合、流量算出部は、これらセンサが検知した温度差から流量を算出する。   In the above embodiment, in the flow rate detection unit, the upstream sensor and the downstream sensor heat the sensor pipe. However, a heater or the like for heating the sensor pipe is separately arranged, and the upstream and You may comprise so that temperature may be detected with a pair of sensor arrange | positioned downstream. In this case, the flow rate calculation unit calculates the flow rate from the temperature difference detected by these sensors.

加えて、上記実施形態ではセンサ用流路としてセンサ用配管が設けられているが、センサ用配管を設けずに、配管をセンサ用流路として加熱して、該配管を流れる材料ガスの流量を検出してもよい。   In addition, in the above embodiment, the sensor pipe is provided as the sensor flow path. However, without providing the sensor pipe, the pipe is heated as the sensor flow path, and the flow rate of the material gas flowing through the pipe is increased. It may be detected.

さらに、上記実施形態では、流量調整部において、駆動手段がピエゾアクチュエータ等の圧電素子を用いたものであったが、ソレノイドアクチュエータやサーマルアクチュエータ等、バルブ本体を物理的に駆動させるものであれば特に限定されずに何でも用いることができる。   Furthermore, in the above embodiment, in the flow rate adjustment unit, the driving means uses a piezoelectric element such as a piezo actuator. However, especially if the valve body is physically driven, such as a solenoid actuator or a thermal actuator. Anything can be used without limitation.

第1加熱手段や第2加熱手段は、いずれか一方のみが設置されていてもよいし、上記実施形態のように両方が設置されていてもよい。
また、前記実施形態のように、流量検出部の第1ブロック体及び流量調整部の第2ブロック体に内蔵されたものではなく、流量検出部及び流量調整部に外付けされたものでもよい。
さらに流量検出部及び流量調整部の上流側又は下流側のいずれか一方に設置されたものでもよい。
Only one of the first heating means and the second heating means may be installed, or both may be installed as in the above embodiment.
Moreover, it is not built in the 1st block body of a flow volume detection part, and the 2nd block body of a flow volume adjustment part like the said embodiment, The thing attached externally to the flow volume detection part and the flow volume adjustment part may be used.
Further, it may be installed on either the upstream side or the downstream side of the flow rate detection unit and the flow rate adjustment unit.

内部加熱手段は、流量調整部におけるバルブ本体の上流に位置する配管内に設けられていてもよい。   The internal heating means may be provided in a pipe located upstream of the valve body in the flow rate adjusting unit.

その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能である。   In addition, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

1・・・加熱気化システム
2・・・容器
3・・・配管
4a・・・流量検出部
4b・・・流量調整部
4c・・・制御部
8・・・加熱部
10a・・・バルブ本体
12、13・・・加熱手段
14・・・内部加熱手段
DESCRIPTION OF SYMBOLS 1 ... Heating vaporization system 2 ... Container 3 ... Piping 4a ... Flow rate detection part 4b ... Flow rate adjustment part 4c ... Control part 8 ... Heating part 10a ... Valve body 12 13 heating means 14 internal heating means

Claims (4)

材料を収容し、この材料を加熱及び気化して材料ガスを生成する容器と、
前記容器に接続され、前記容器内で生成された前記材料ガスを導出する配管と、
前記配管に設けられたセンサ用流路と、
前記センサ用流路に設けられた熱式流量センサを具備し、該熱式流量センサを用いて前記配管を流れる前記材料ガスの流量を測定する流量検出部と、
前記容器の下流であって前記流量検出部の上流に設けられるとともに、前記配管を流れる前記材料ガスの流量を調整する流量調整部と、
前記流量検出部の測定結果を用いて、前記流量調整部を制御する制御部とを備える加熱気化システム。
A container containing the material and heating and vaporizing the material to generate a material gas;
A pipe connected to the container and leading out the material gas generated in the container;
A sensor flow path provided in the pipe;
A flow rate detector that includes a thermal flow sensor provided in the sensor flow path, and that measures the flow rate of the material gas flowing through the pipe using the thermal flow sensor;
Rutotomoni provided a downstream of the container upstream of the flow detector, the flow rate adjusting unit that adjusts the flow rate of the material gas flowing through the pipe,
A heating vaporization system comprising: a control unit that controls the flow rate adjusting unit using a measurement result of the flow rate detecting unit.
流量検出部または流量調整部の少なくともいずれか一方において、前記配管を流れる材料ガスを加熱するための加熱手段をさらに備える請求項1記載の加熱気化システム。   The heating vaporization system according to claim 1, further comprising heating means for heating the material gas flowing through the pipe in at least one of the flow rate detection unit and the flow rate adjustment unit. 前記流量調整部の上流側又は下流側に位置する前記配管の内部に配置されて、材料ガスを加熱する内部加熱手段をさらに備える請求項1又は2記載の加熱気化システム。   The heating and vaporizing system according to claim 1, further comprising an internal heating unit that is disposed inside the pipe positioned upstream or downstream of the flow rate adjusting unit and that heats the material gas. 容器内部に収容した液体材料を加熱及び気化させて材料ガスを生成し、この材料ガスを前記容器に接続された配管へ導出して、
前記配管にセンサ用流路を設けて、このセンサ用流路に設けた熱式流量センサを用いて前記配管を流れる材料ガスの流量を流量検出部が測定し、
前記流量検出部の測定結果を用いて、前記容器の下流であって前記流量検出部の上流に設けられ流量調整部で、前記配管を流れる前記材料ガスの流量を調整する加熱気化方法。
The liquid material stored in the container is heated and vaporized to generate a material gas, and the material gas is led to a pipe connected to the container,
A flow path for a sensor is provided in the pipe, and a flow rate detector measures the flow rate of the material gas flowing through the pipe using a thermal flow sensor provided in the flow path for the sensor.
The measurement result of the flow rate detection unit and according to the flow rate adjusting unit that is provided upstream of the flow rate detecting unit to a downstream of the container, heated and vaporized method for adjusting the flow rate of the material gas flowing through the pipe.
JP2013114635A 2013-05-30 2013-05-30 Heating vaporization system and heating vaporization method Active JP5548292B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013114635A JP5548292B1 (en) 2013-05-30 2013-05-30 Heating vaporization system and heating vaporization method
KR1020130159227A KR102116748B1 (en) 2013-05-30 2013-12-19 Heating evaporation system and heating evaporation method
CN201410218730.9A CN104213100B (en) 2013-05-30 2014-05-22 Heat carburetion system and heating gasification method
TW103118569A TWI628717B (en) 2013-05-30 2014-05-28 Heating vaporization system and heating vaporization method
US14/290,864 US10240233B2 (en) 2013-05-30 2014-05-29 Heating vaporization system and heating vaporization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013114635A JP5548292B1 (en) 2013-05-30 2013-05-30 Heating vaporization system and heating vaporization method

Publications (2)

Publication Number Publication Date
JP5548292B1 true JP5548292B1 (en) 2014-07-16
JP2014236018A JP2014236018A (en) 2014-12-15

Family

ID=51416729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013114635A Active JP5548292B1 (en) 2013-05-30 2013-05-30 Heating vaporization system and heating vaporization method

Country Status (5)

Country Link
US (1) US10240233B2 (en)
JP (1) JP5548292B1 (en)
KR (1) KR102116748B1 (en)
CN (1) CN104213100B (en)
TW (1) TWI628717B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104913658A (en) * 2015-06-05 2015-09-16 广东中鹏热能科技有限公司 Production management system of ceramic tile kiln and control method of production management system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6578125B2 (en) * 2015-04-30 2019-09-18 株式会社フジキン Vaporization supply device
CN110382103B (en) 2017-05-11 2022-07-22 株式会社堀场Stec Liquid material vaporization supply apparatus and computer-readable storage medium
JP7154850B2 (en) * 2017-09-19 2022-10-18 株式会社堀場エステック Concentration control device and material gas supply device
KR102607020B1 (en) * 2017-09-19 2023-11-29 가부시키가이샤 호리바 에스텍 Concentration control apparatus and material gas supply system
JP7421318B2 (en) * 2019-11-27 2024-01-24 株式会社堀場エステック Liquid material vaporization device, method of controlling the liquid material vaporization device, and program for the liquid material vaporization device
JP7344944B2 (en) * 2021-09-24 2023-09-14 株式会社Kokusai Electric Gas supply system, substrate processing equipment, semiconductor device manufacturing method and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07230941A (en) * 1994-02-20 1995-08-29 Stec Kk Liquid material evaporating and feeding device
JP2001156055A (en) * 1999-09-14 2001-06-08 Stec Inc Method and apparatus for gasifying liquid material
JP2004263230A (en) * 2003-02-28 2004-09-24 Advanced Energy Japan Kk Liquid material vaporizing and feeding device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4582480A (en) * 1984-08-02 1986-04-15 At&T Technologies, Inc. Methods of and apparatus for vapor delivery control in optical preform manufacture
US20030111014A1 (en) * 2001-12-18 2003-06-19 Donatucci Matthew B. Vaporizer/delivery vessel for volatile/thermally sensitive solid and liquid compounds
JP3828821B2 (en) 2002-03-13 2006-10-04 株式会社堀場エステック Liquid material vaporizer
KR100502217B1 (en) * 2002-12-27 2005-07-19 태산엘시디 주식회사 Mass flow controller for control purge and managing method thereof
JP2008021452A (en) * 2006-07-11 2008-01-31 Kobe Steel Ltd Induction heater
JP5020407B2 (en) * 2008-03-17 2012-09-05 アプライド マテリアルズ インコーポレイテッド Heated valve manifold for ampoules
JP5647083B2 (en) * 2011-09-06 2014-12-24 株式会社フジキン Raw material vaporization supply device with raw material concentration detection mechanism

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07230941A (en) * 1994-02-20 1995-08-29 Stec Kk Liquid material evaporating and feeding device
JP2001156055A (en) * 1999-09-14 2001-06-08 Stec Inc Method and apparatus for gasifying liquid material
JP2004263230A (en) * 2003-02-28 2004-09-24 Advanced Energy Japan Kk Liquid material vaporizing and feeding device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104913658A (en) * 2015-06-05 2015-09-16 广东中鹏热能科技有限公司 Production management system of ceramic tile kiln and control method of production management system

Also Published As

Publication number Publication date
US20140356796A1 (en) 2014-12-04
US10240233B2 (en) 2019-03-26
TWI628717B (en) 2018-07-01
KR102116748B1 (en) 2020-06-01
CN104213100B (en) 2019-02-05
KR20140141417A (en) 2014-12-10
CN104213100A (en) 2014-12-17
TW201448047A (en) 2014-12-16
JP2014236018A (en) 2014-12-15

Similar Documents

Publication Publication Date Title
JP5548292B1 (en) Heating vaporization system and heating vaporization method
JP6578125B2 (en) Vaporization supply device
TWI715535B (en) Flow rate control apparatus, storage medium storing program for flow rate control apparatus and flow rate control method
US7680399B2 (en) System and method for producing and delivering vapor
KR102097344B1 (en) Mass flow rate measurement method, thermal mass flow rate meter using said method, and thermal mass flow rate controller using said thermal mass flow rate meter
JP6212467B2 (en) Liquid level gauge and liquid raw material vaporizer
KR102639507B1 (en) Liquid material vaporization supply device and control program
JP7044629B2 (en) Fluid control device and flow rate control device
JP6399085B2 (en) Thermal mass flow meter and mass flow controller using the same
US20140216339A1 (en) Raw material vaporizing and supplying apparatus
CN105714271B (en) Vaporization system
JP2016211021A5 (en)
KR20120014105A (en) Vaporizing apparatus, substrate processing apparatus, coating and developing apparatus, and substrate processing method
JP5511470B2 (en) Thermal flow meter, thermal gas type discrimination device, and automatic gas type judgment method
KR20190140002A (en) Fluid control device
WO2011002662A1 (en) Thermal flow sensor with zero drift compensations
JPH0774113A (en) Gas supply system
KR20160076426A (en) Heating Type Vaporizing Device
WO2024048134A1 (en) Sensor
JP2005293906A (en) Fuel cell system and temperature control method thereof, and dew condensation detector
TWM641337U (en) Gas supply apparatus
KR20180019716A (en) Apparatus and method for controlling phase transition between liquid and gaseous state of fluid
KR20070070265A (en) Mass flow controller to detect actual gas flow in realtime

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140516

R150 Certificate of patent or registration of utility model

Ref document number: 5548292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250