JP5547841B1 - 空間線量率測定システム - Google Patents

空間線量率測定システム Download PDF

Info

Publication number
JP5547841B1
JP5547841B1 JP2013213581A JP2013213581A JP5547841B1 JP 5547841 B1 JP5547841 B1 JP 5547841B1 JP 2013213581 A JP2013213581 A JP 2013213581A JP 2013213581 A JP2013213581 A JP 2013213581A JP 5547841 B1 JP5547841 B1 JP 5547841B1
Authority
JP
Japan
Prior art keywords
target
measurement
dose rate
region
air dose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013213581A
Other languages
English (en)
Other versions
JP2015075455A (ja
Inventor
敬太郎 杉田
真悟 吉田
拡 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2013213581A priority Critical patent/JP5547841B1/ja
Application granted granted Critical
Publication of JP5547841B1 publication Critical patent/JP5547841B1/ja
Publication of JP2015075455A publication Critical patent/JP2015075455A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

【課題】GPSを用いることなく放射線を検出した位置を特定することが可能であり、かつ、測定対象空間に障害物が多い場合等であっても測定に要する手間の低減を図ることが可能な、空間線量率測定システムを提供すること。
【解決手段】空間線量率測定システム10は、測定装置20のPSFが第一測定領域及び第二測定領域に位置するように配置する空間線量率測定システム10であって、測定対象空間に複数の対象領域を設定する領域設定部35aと、第一測定領域と、第一対象領域とを対応付けすると共に、第二測定領域と、第二対象領域とを対応付けすることによって、各対象領域における空間線量率を特定する対応付け部35bと、を備え、対応付け部35bは、第一対象領域と第二対象領域との相互間において、連続する対象領域の数又は対象領域が連続する方向の少なくとも一方が異なるように、第一対象領域及び第二対象領域を対応付けする。
【選択図】図1

Description

本発明は、空間線量率測定システムに関する。
近年、放射能により汚染された地域等(以下、測定対象空間)を対象として空間線量率を測定する空間線量率測定システムが提案されている。このような空間線量率測定システムとしては、一点において放射線を検出するサーベイメーターの如き検出器を用いて空間線量率の測定を行う空間線量率測定システムが提案されていた。当該システムは具体的には、測定者が検出器を所持して測定対象空間における各位置において測定を行い、このように測定した測定位置を特定するための位置情報をGPS(全地球測位網)により取得することによって、測定位置と当該測定位置における空間線量率を対応付けて特定し、空間線量率の二次元分布を表示するものである。
ここで、上記のシステムによれば、放射線を検出した位置を特定するための位置情報を取得するためにGPSを用いる。したがって、例えば、木や建物の陰となっている位置のようにGPSにより位置情報を取得することができない位置において測定を行う場合には、放射線を検出した位置の正確な位置情報を取得することができない。
一方、線状の範囲において網羅的に放射線を検出するプラスチックシンチレーションファイバー(以下、PSF)等を利用した検出器を用いて、空間線量率の測定を行う空間線量率測定システムが提案されている(例えば、非特許文献1参照)。当該システムは具体的には、線状の検出器を水平方向に沿って配置した状態にて台車等に固定し、台車等を一定の速度で検出器の配置方向と直交する方向へ移動させる。そして、PSFの各位置において発せられた検出光、及び台車等の速度に基づいて、面状の範囲において網羅的に各位置における空間線量率を対応付けて特定することができる。
日本原子力研究開発機構、福島技術本部、[平成25年9月1日検索]URL<http://fukushima.jaea.go.jp/pdf/2012-0528.pdf>
ここで、上記の非特許文献1に記載のシステムによれば、台車等の進行方向と速度、線状の検出器の台車等への固定位置に基づいて放射線を検出した位置の位置情報を特定するため、木や建物の陰となっている位置等といったGPSにより位置情報を取得することが困難な位置においても、GPSの固定位置において正確な位置情報が得られれば、放射線を検出した位置の正確な位置情報を取得することができる。しかし、当該システムによれば、線状の検出器の台車等への固定位置に基づいて放射線を検出した位置の位置情報を特定するため、線状の検出器の台車等への固定位置を測定中に任意に変更することができない。したがって、測定対象空間に台車の移動の障害となる障害物(樹木等)が複数点在している場合や、測定対象空間自体が複雑な形状の敷地である場合等には、台車をスムーズに移動させることが出来ないため、測定に手間を要する場合があった。
本発明は、上記に鑑みてなされたものであって、GPSにより位置情報を取得することが困難な位置においても放射線を検出した位置を特定することが可能であり、かつ、測定対象空間に障害物が多い場合や、測定対象空間自体が複雑な形状の敷地である場合等に、測定に要する手間の低減を図ることが可能な空間線量率測定システムを提供することを目的とする。
上述した課題を解決し、目的を達成するために、請求項1に記載の空間線量率測定システムは、検出された空間線量率に応じた検出光を発信する検出部を有する空間線量率測定手段を、測定対象空間におけるユーザにより設定された領域である第一測定領域及び第二測定領域に対して前記検出部が前記第一測定領域及び前記第二測定領域に位置するように配置し、前記検出部から発信された前記検出光に基づいて空間線量率を特定することによって、前記第一測定領域及び前記第二測定領域の空間線量率を特定する空間線量率測定システムであって、前記測定対象空間に相互に重複しない複数の対象領域を設定する領域設定手段と、前記領域設定手段にて設定された対象領域のうち連続する複数の対象領域の入力を受け付けることによって、ユーザにより設定された前記第一測定領域及び前記第二測定領域の入力を受け付ける入力受付手段であって、前記領域設定手段にて設定された各対象領域の大きさ又は向きの変更を受け付けた場合には、当該変更後の対象領域のうち連続する複数の対象領域の入力を受け付ける入力受付手段と、前記入力受付手段により入力を受け付けた前記第一測定領域と、当該第一測定領域に対応する連続する複数の対象領域である第一対象領域とを対応付けし、前記入力受付手段により入力を受け付けた前記第二測定領域と、当該第二測定領域に対応する連続する複数の対象領域である第二対象領域とを対応付けし、前記検出部における各対象領域に属する位置から発信された検出光に基づいて、前記各対象領域における空間線量率を特定する対応付け手段であって、前記入力受付手段にて前記各対象領域の大きさ又は向きの変更を受け付けた場合には、前記検出部における大きさ又は向きの変更後の各対象領域に属する位置から発信された検出光に基づいて、前記各対象領域における空間線量率を特定する対応付け手段と、を備え、前記入力受付手段にて、前記第一測定領域及び前記第二測定領域として、連続する前記対象領域の数又は前記対象領域が連続する方向の少なくとも一方が相互に異なる対象領域の入力が受け付けられた場合、前記対応付け手段は、前記第一対象領域及び前記第二対象領域との相互間において、連続する前記対象領域の数又は前記対象領域が連続する方向の少なくとも一方が異なるように、前記第一対象領域及び前記第二対象領域を対応付けする。
また、請求項2に記載の空間線量率測定システムは、請求項1に記載の空間線量率測定システムにおいて、前記測定対象空間の地図又は写真を取得する外観図取得手段と、前記対応付け手段により特定した各対象領域の空間線量率を、前記外観図取得手段により取得した地図又は写真の対応する位置に重畳表示することにより空間線量率分布図を作成する分布図作成手段と、を備える。
また、請求項3に記載の空間線量率測定システムは、請求項2に記載の空間線量率測定システムにおいて、所定の数値間隔毎に分類された相互に重複しない複数の空間線量率の区分と、相互に重複しない複数の種類の表示色とを対応付けて記録した区分記録手段を備え、前記分布図作成手段は、前記空間線量率分布図における各対象領域を、前記対応付け手段により特定された各対象領域における空間線量率に対して前記区分記録手段において対応付けられて記録された前記表示色により表示する。
また、請求項4に記載の空間線量率測定システムは、請求項3に記載の空間線量率測定システムにおいて、前記領域設定手段は、前記測定対象空間において複数の列及び行を有する碁盤目状に配置された複数の対象領域であって、各対象領域はいずれも同一の幅及び長さを有する正方形状にて形成される複数の対象領域を設定し、前記入力受付手段にて、前記第一測定領域及び前記第二測定領域として、相互に平行かつ隣接する複数の対象領域の入力が受け付けられた場合、前記対応付け手段は、前記第一対象領域として、前記第一測定領域に対応する複数の対象領域であって、所定の列において列方向に沿って連続する複数の対象領域を対応付けすると共に、前記第二対象領域として、前記第二測定領域に対応する複数の対象領域であって、前記所定の列に隣接する他の列において列方向に沿って連続する複数の対象領域を対応付けし、前記所定の数値間隔△tは、下記条件を満たすように設定される、△t<A/{1+L/(4H)}(ただし、L=各対象領域の幅(cm)、H=各列を構成する各対象領域の幅方向における中央部に沿って配置された前記検出部の地面からの高さ(cm)、A=発見対象となる高濃度汚染地点の垂直高さHでの空間線量率(μSv/h))。
また、請求項5に記載の空間線量率測定システムは、請求項3又は4に記載の空間線量率測定システムにおいて、前記領域設定手段は、前記測定対象空間において複数の列及び行を有する碁盤目状に配置された複数の対象領域であって、各対象領域はいずれも同一の幅及び長さを有する正方形状にて形成される複数の対象領域を設定し、前記入力受付手段にて、前記第一測定領域及び前記第二測定領域として、相互に平行かつ隣接する複数の対象領域の入力が受け付けられた場合、前記対応付け手段は、前記第一対象領域として、前記第一測定領域に対応する複数の対象領域であって、所定の列において列方向に沿って連続する複数の対象領域を対応付けすると共に、前記第二対象領域として、前記第二測定領域に対応する複数の対象領域であって、前記所定の列に隣接する他の列において列方向に沿って連続する複数の対象領域を対応付けし、前記各対象領域の幅L(cm)、及び各列を構成する各対象領域の幅方向における中央部に沿って配置された前記検出部の地面からの高さH(cm)は、下記条件を満たすように設定される、L/H=0.5〜6.0。
また、請求項6に記載の空間線量率測定システムは、請求項5に記載の空間線量率測定システムにおいて、前記各対象領域の幅L(cm)、及び各列を構成する各対象領域の幅方向における中央部に沿って配置された前記検出部の地面からの高さH(cm)は、下記条件を満たすように設定される、L/H=1.0〜4.0。
請求項1に記載の空間線量率測定システムによれば、第一対象領域と第二対象領域との連続する対象領域の数又は対象領域が連続する方向の少なくとも一方が異なるように第一測定領域及び第二測定領域を設定することが出来るので、測定対象空間の形状や障害物の有無に応じた測定を行うことが可能となり、測定の自由度の向上を図ることが可能となる。
請求項2に記載の空間線量率測定システムによれば、測定対象空間の地図又は写真に空間線量率を重畳表示した空間線量率分布図を作成するので、ユーザに対して測定対象空間の各位置と当該各位置における空間線量率とを対応付けて容易に認識させることが可能となり、測定対象空間の各位置における空間線量率を容易に把握させることが可能となる。
請求項3に記載の空間線量率測定システムによれば、各対象領域を区分記録手段において対応付けられて記録された表示色により表示するので、各対象領域を空間線量率に応じて定められた表示色により表示することが可能となり、ユーザに対して測定対象空間の各位置における空間線量率を一層容易に把握させることが可能となる。
請求項4に記載の空間線量率測定システムによれば、所定の数値間隔Δtは、Δt<A/{1+L/(4H)}の条件を満たすように設定されるので、高濃度汚染地点が測定部の相互間に位置する場合であっても、当該高濃度汚染地点の存在が表示色の違いに反映されやすくすることが可能となり、高濃度汚染地点をより発見し易くすることが可能となる。
請求項5に記載の空間線量率測定システムによれば、L/H=0.5〜6.0の条件を満たすようにL及びHを設定するので、1回の測定に要する測定費用及び測定時間を抑制しつつ、二次元平面分布の安定を図ることが可能となる。
請求項6に記載の空間線量率測定システムによれば、L/H=1.0〜4.0の条件を満たすようにL及びHを設定するので、1回の測定に要する測定費用及び測定時間を抑制しつつ、二次元平面分布の安定を図ることが可能となる。
本発明の実施の形態に係る空間線量率測定システムを概略的に示すブロック図である。 空間線量率測定システムを構成する各機器の概要図である。 表示区分DBに格納された情報を示す図である。 地図にメッシュを重畳表示した際のディスプレイの表示例である。 各対象領域のサイズを変更した際のディスプレイの表示例である。 メッシュの角度及び位置の変更を行った際のディスプレイの表示例である。 地図及びメッシュを拡大表示した際のディスプレイの表示例である。 対象領域を選択する際のディスプレイの表示例である。 空間線量率分布図を作成中のディスプレイの表示例を示す図である。 第二対象領域を特定した際のディスプレイの表示例を示す図である。 測定対象空間全体の空間線量率を示す空間線量率分布図を表示した際のディスプレイの表示例を示す図である。 測定時のPSFの配置を概略的に示す斜視図である。 測定時のPSFの配置を概略的に示す正面図であり、(a)は条件イ、(b)は条件ロを示す図である。 L/HとA´/Aの関係を示す図である。 H=50cmの場合におけるLとA´/Aの関係を示す図である。 L/Hと1/Lの関係を示す図である。 L/Hと(A´/A)Lの関係を示す図である。 本発明に係る実施例の結果を示す図である。
以下に添付図面を参照して、この発明に係る空間線量率測定システムの実施の形態を詳細に説明する。まず、〔I〕実施の形態の基本的概念を説明した後、〔II〕実施の形態の具体的内容について説明し、〔III〕最後に、実施の形態に対する変形例について説明する。ただし、実施の形態によって本発明が限定されるものではない。
〔I〕実施の形態の基本的概念
まず、実施の形態の基本的概念について説明する。本実施の形態は、測定対象空間の空間線量率を特定する空間線量率測定システムに関する。ここで、「測定対象空間」とは、空間線量率の測定対象となる空間であって、ユーザによって任意に設定された空間である。なお、この測定対象空間は屋外又は屋内を問わないが、本実施の形態においては、住宅の敷地内を測定対象空間として設定するものとして説明する。
〔II〕実施の形態の具体的内容
次に、本発明に係る実施の形態の具体的内容について説明する。
(構成)
最初に、本実施の形態に係る空間線量率測定システム10の構成について説明する。図1は、本実施の形態に係る空間線量率測定システム10を概略的に示すブロック図である。また、図2は、空間線量率測定システム10を構成する各機器の概要図である。これら図1及び図2に示すように、空間線量率測定システム10は、測定装置20、及び制御装置30を備えて構成される。以下では、これら測定装置20及び制御装置30の構成について詳細に説明する。
(構成−測定装置)
測定装置20は、空間線量率を測定する空間線量率測定手段であって、概略的に、検出器21と、測定器22とを備えて構成されている。
(構成−測定装置−検出器)
検出器21は、検出された空間線量率に応じた検出光を発信する検出手段である。具体的には、図2に示すように、PSF21aと、PSF21aの両端部に形成される2つの光電子増倍管21bと、を備えて構成される。
PSF21aは、放射線の検出を行うための光ケーブルであって、放射線が当該PSF21aのいずれかの位置に照射されると、当該照射された位置にて検出光が発せられる。そして、このように放射線が照射された位置にて発せられた検出光は、PSF21aの内部を通って、PSF21aの両端部に形成された光電子増倍管21bへ入射される。また、光電子増倍管21bは、PSF21aの両端部に形成されており、PSF21aから入射された検出光を電子に変換し、電子の数を増幅して電流パルスとして後述する測定器22の制御部22bに対して出力する。
(構成−測定装置−測定器)
測定器22は、検出器21と有線ケーブルを介して接続されて検出器21から送信された電子信号を受信して空間線量率を測定する測定手段であって、概略的に、通信部22aと、制御部22bとを備えて構成されている。
通信部22aは、検出器21又は制御装置30との間で通信を行う通信手段である。具体的には、通信部22aは、検出器21から出力された各種の情報を有線ケーブルを介して受信する。また、測定器22から出力された各種の情報を有線ケーブルを介して制御装置30へ送信する。なお、通信の方法は有線に限らず無線であっても構わず、例えば公知のBluetooth(登録商標)により通信を行っても良い。
制御部22bは、測定器22を制御する測定器制御手段であり、具体的には、CPU、当該CPU上で解釈実行される各種のプログラム(OSなどの基本制御プログラムや、OS上で起動され特定機能を実現するアプリケーションプログラムを含む)、及びプログラムや各種のデータを格納するためのRAMの如き内部メモリを備えて構成されるコンピュータである。特に、制御部22bは、PSF21aの両端に設けられた2つの光電子増倍管21bから出力された各電子パルスの到達時間差に基づいて、PSF21aにおける放射線が照射された位置を特定し、電子パルスに基づいて当該各位置における空間線量率を特定する。なお、このような制御部22bの処理については公知であるため、その詳細な説明を省略する。
(構成−制御装置)
制御装置30は、概略的に、通信部31、ディスプレイ32、タッチパネル33、入力部34、制御部35、及びデータ記録部36を備えて構成されていれる。
通信部31は、測定器22との間で通信を行う通信手段である。具体的には、通信部31は、制御装置30から出力された各種の情報を有線ケーブルを介して測定器22へ送信し、測定器22から出力された各種の情報を有線ケーブルを介して受信する。なお、通信の方法は有線に限らず無線であっても構わず、例えば公知のBluetooth(登録商標)により通信を行っても良い。
ディスプレイ32は、制御部35の制御に基づいて各種の画像を表示する表示手段である。このディスプレイ32は、例えば、公知の液晶ディスプレイや有機ELディスプレイの如きフラットパネルディスプレイを用いて構成されている。
タッチパネル33は、ユーザによる操作入力を受け付ける操作手段である。このタッチパネル33は、透明又は半透明状に形成され、ディスプレイ32の前面において当該ディスプレイ32の表示面と重畳するように設けられている。このタッチパネル33としては、例えば抵抗膜方式や静電容量方式等による操作位置検出手段を備えた公知のタッチパネル33を使用することができる。
入力部34は、制御装置30が実行する各種処理に必要な情報を当該制御装置30に入力する入力手段であり、ここでは、キーボード及びマウスとして構成されている。
制御部35は、制御装置30を制御する制御手段である。特に、本実施の形態に係る空間線量率測定プログラムは、任意の記録媒体又はネットワークを介して制御装置30にインストールされることで、制御部35の各部を実質的に構成する。この制御部35は、図1に示すように、領域設定部35a、対応付け部35b、外観図取得部35c、及び分布図作成部35dを備えている。
領域設定部35aは、測定対象空間に相互に重複しない複数の対象領域Eを設定する領域設定手段である。ここで、本実施の形態に係る各種の領域である「測定領域」及び「対象領域」Eについて説明する。まず、「測定領域」とは、測定対象空間における一部の領域であって、ユーザが上述した測定装置20を用いて測定を行う際に、一度の測定において実際に測定が行われる領域である。また、「対象領域」Eとは、ユーザによって設定された設定上の領域であって、測定対象空間において相互に重複しない複数の領域であり、具体的には、測定対象空間に設定されたメッシュ(後述する)のうちの一つのセルである。複数の対象領域Eは後述する処理において対応する位置の測定領域と対応付けられる。
また、対応付け部35bは、各測定領域と各対象領域Eとを対応付けする事により、各測定領域において検出された空間線量率を各対象領域Eに対応付けし、各対象領域Eにおける空間線量率を特定する対応付け手段である。また、外観図取得部35cは、測定対象空間の地図又は写真を取得する外観図取得手段である。なお、本実施の形態においては後述するデータ記録部36の地図DB36aを参照してこれらの地図又は写真を取得するものとして説明するが、これに限らず例えば公知のデータセンターから無線により取得しても良い。また、分布図作成部35dは、対応付け部35bにより特定した各対象領域Eの空間線量率を、外観図取得部35cにより取得した地図又は写真の対応する位置に重畳表示することにより空間線量率分布図を作成する分布図作成手段である。なお、これら制御部35を構成する各部によって実行される処理の詳細については後述する。
データ記録部36は、制御装置30の動作に必要なプログラム及び各種のデータを記録する記録手段であり、地図DB36a、及び表示区分DB36bを備えている。
地図DB36aは、地図情報を格納する地図情報格納手段である。ここで、「地図情報」とは、道路、道路構造物、施設等を含む各種の位置の特定に必要な情報であり、例えば、道路上に設定された各ノードに関するノードデータ(ノード番号、座標)や、道路上に設定された各リンクに関するリンクデータ(リンクID、リンク名、接続ノード番号、道路座標、道路種別(例えば高速道路、有料道路、国道、都道府県道、市町村道等)、道路情報、地物データ(信号機、道路標識、ガードレール、施設等)、及び地形データ)等、航空写真や地図、及び当該航空写真や地図と対応付けられた住所を含んで構成される。
表示区分DB36bは、空間線量率の区分と、表示色とを対応付けて記録した区分記録手段である。図3は、表示区分DB36bに格納された情報を示す図である。この図3に示すように、表示区分DB36bには、項目「空間線量率の区分」と、項目「表示色」とが相互に対応付けて格納されている。
ここで、項目「空間線量率の区分」に対応付けられて格納される情報は、所定の数値間隔毎に分類された相互に重複しない複数の空間線量率の区分である。なお、空間線量率の区分の数については任意であるが、本実施の形態においては、図3に示すように、0.000〜0.230、0.231〜0.420、0.421〜0.610、0.611〜0.800、0.801〜0.990、0.991〜、(単位はいずれも(μSv/h))の計6つの区分を設けるものとして説明する。ここで、各区分(最小の区分及び最大の区分を除く各区分)における上限値から下限値に至る範囲の値を「空間線量率の区分の間隔」Δtと必要に応じて称して説明する。例えば、本実施の形態においては、最小の区分(すなわち0.000〜0.230の区分)及び最大の区分(すなわち0.991〜の区分)を除いて、各区分は0.190(μSv/h)毎に均等に区切られているため、空間線量率の区分の間隔Δtは0.190(μSv/h)となる。
また、項目「表示色」に対応付けられて格納される情報は、相互に重複しない複数の種類の表示色であって、この表示色は、空間線量率分布図において各対象領域Eの空間線量率を色により識別するためのものである。なお、本実施の形態においては、各区分に対応付けて記録された表示色は、それぞれ、青色、水色、緑色、黄色、赤色、及び紫色であるものとして説明する。
(測定方法)
続いて、このように構成された空間線量率測定システム10を用いた空間線量率測定方法について説明する。ここで、「ユーザ」とは、当該空間線量率測定システム10を利用するものであるが、以下では必要に応じて、測定器22を用いて実際に空間線量率の測定を行う2人の「測定者」と、制御装置30を操作する「操作者」とに分けて説明する。なお、本実施の形態においては、測定者と操作者が異なる者であるとして説明するが、例えば一方の測定者と操作者は同一の者であっても構わない。なお、以下に示す制御手段の各部が実行する各処理については、例えば制御手段の電源を入れて起動した際等の任意のタイミングにより実行される。
初めに、操作者は、空間線量率の測定対象となる測定対象空間の設定を行う。例えば、操作者が、ディスプレイ32に表示された入力欄に対して、測定対象空間の住所を入力することにより、当該住所に対応する住宅の敷地が測定対象空間として設定される。
このように操作者によって測定対象空間の設定がされた場合、設定された測定対象空間の地図にメッシュが重畳表示される。図4は、地図にメッシュを重畳表示した際のディスプレイ32の表示例である。具体的には、まず外観図取得部35cは、地図DB36aを参照して、上述したようにユーザにより設定された測定対象空間を含む地図を取得し、このようにして取得した地図をディスプレイ32に表示する。なお、図4において、測定対象空間である住宅の敷地境界を点線により図示している。また、本実施の形態では、この際にディスプレイ32に表示するものは地図であるものとして説明するが、地図以外にも、航空写真等のように測定対象空間を視覚的に一意に特定可能なものであればこれに限定されない。次に、領域設定部35aは、メッシュをディスプレイ32に表示する。このメッシュは、所定の列及び所定の行からなるメッシュであって、このメッシュにおける各セルのそれぞれが対象領域Eに該当する。ここで、各対象領域Eの大きさ、及びメッシュの列数や行数については任意の初期設定値を用いることができるが、本実施の形態においては、図4に示すように、実寸における5m四方の正方形状の対象領域Eを、6行7列に配置するものとして説明する。
次に、操作者は、メッシュを構成する各対象領域Eのサイズの変更を行う。図5は、各対象領域Eのサイズを変更した際のディスプレイ32の表示例である。具体的には、操作者がタッチパネル33に表示されたメッシュをタップ(一本の指で触れる動作)して当該メッシュを選択した後に、メッシュをピンチアウト(二本の指で押し広げるような動作)することにより、メッシュ全体のサイズを変えずに、各対象領域Eのサイズのみを一律に拡大してディスプレイ32に表示することができる。逆に、操作者がタッチパネル33に表示されたメッシュをタップして当該メッシュを選択した後に、タッチパネル33をピンチイン(二本の指でつまむような動作)することにより、メッシュ全体のサイズを変えずに、各対象領域Eのサイズのみを一律に縮小してディスプレイ32に表示することができる。そして、操作者は、このようにして対象領域Eのサイズを操作者の所望のサイズに変更した後に、タッチパネル33をピンチアウト又はピンチインする際に抑えていた二本の指をタッチパネル33から離すことにより、各対象領域Eのサイズの変更の決定が受け付けられる。なお、本実施の形態においてはこのようにタッチパネル33を用いて感覚的に対象領域Eのサイズを変更するものとして説明するが、これに限らず、例えばキーボードを用いて直接対象領域Eのサイズを入力しても良い。
次に、操作者は、メッシュの角度及び位置の変更を行う。図6は、メッシュの角度及び位置の変更を行った際のディスプレイ32の表示例である。具体的には、操作者がタッチパネル33に二本の指を置いて左右に回転させる動作を行うことにより、メッシュを回転させてディスプレイ32に表示することができ、また、ディスプレイ32に二本の指を置いたままこれら二本の指を上下左右にスライドさせることにより、メッシュの位置を上下左右に移動させてディスプレイ32に表示することができる。そして、操作者が、このようにしてメッシュの角度及び位置を操作者の所望の角度及び位置に変更した後に、上記操作を行う際にタッチパネル33を抑えていた二本の指をタッチパネル33から離すことにより、メッシュの角度及び位置の変更の決定が受け付けられる。このように、メッシュの角度及び位置を変更することが出来るので、メッシュの方向を測定対象空間における建屋の任意の辺に合わせることが可能となる。したがって、建屋の形状に適応させてメッシュを設定することが可能となり、測定効率の向上を図ることが可能となる。なお、本実施の形態においてはこのようにタッチパネル33を用いて感覚的にメッシュの角度及び位置の変更を行うものとして説明するが、これに限らず、例えばキーボードを用いて直接メッシュの角度や位置座標を入力しても良い。
次に、操作者は、メッシュを構成する各対象領域Eを見易くすべく、ディスプレイ32に表示された地図及びメッシュを拡大表示させる。図7は、地図及びメッシュを拡大表示した際のディスプレイ32の表示例である。具体的には、ディスプレイ32に表示された地図上の一点(メッシュ上を除く一点)をタップして当該地図を選択した後に、タッチパネル33をピンチインすることにより、地図及びメッシュをディスプレイ32に拡大表示させることができる。そして、操作者が、このようにして地図及びメッシュの表示を操作者の所望のサイズまで拡大した後に、タッチパネル33をピンチインする際に抑えていた二本の指をタッチパネル33から離すことにより、地図及びメッシュの拡大表示の決定が受け付けられる。このように地図及びメッシュを拡大表示することにより、各対象領域Eが見やすくなり、さらに後述するように各対象領域Eを選択する際の操作性の向上を図ることが可能となる。なお、このような操作を行うまでもなくディスプレイ32に表示された各対象領域Eが十分に見易い場合には、このような操作を省略しても良い。
なお、以上に示した、メッシュを構成する各対象領域Eのサイズの変更と、メッシュの角度及び位置の変更と、地図及びメッシュの拡大表示とは、いずれも順不同に実行できる操作であって、操作者は適宜任意の順番に各操作を実行して構わない。
そして、上記のようにディスプレイ32の表示を設定する各種作業を終えた後に実行する作業について、まずは概略について説明する。まず、操作者は、測定者に測定を行わせる測定領域を決定し、当該決定した測定領域に対して対応付けする複数の対象領域Eを選択する。次に、当該決定した測定領域の空間線量率を測定者が測定することにより、決定した測定領域の空間線量率を特定する。次に、対応付け部35bは、決定した測定領域に対応する対象領域Eに、当該測定領域の空間線量率を対応付けすることにより、各対象領域Eの空間線量率を特定する。最後に、分布図作成部35dは、空間線量率を地図に反映させた空間線量率分布図を作成する。
ここで、本実施の形態においては、上述した測定領域の決定及び測定を、測定対象空間全体に掛けて繰り返し行う。すなわち、測定対象空間には複数の測定領域が設定される事となる。ここで、一つの測定領域と他の測定領域とを区別して説明する必要がある場合については、これらの各測定領域を「第一測定領域」、「第二測定領域」といったように区別して称する。なお、これらを特に区別して説明する必要がない場合については、これらを総称して単に「測定領域」と称して説明する。また、第一測定領域に対して対応付けされる対象領域Eと、第二測定領域に対して対応付けされる対象領域Eを区別して説明する必要がある場合については、これらの各対象領域Eを「第一対象領域」、「第二対象領域」、といったように区別して称する。なお、これらを特に区別して説明する必要がない場合については、これらを総称して単に「対象領域」Eと称して説明する。
以下では、上記のようにディスプレイ32の表示を設定する各種作業を終えた後に実行する作業について詳細に説明する。
まず、操作者は、測定者に測定させる測定領域を決定する。ここで、本実施の形態に係る測定装置20では、PSF21aを用いて線状の範囲において空間線量率の測定を行うことが可能であるため、操作者は測定領域として線状の範囲を決定する。例えば、本実施の形態においては、一方向に連続する複数の対象領域Eと対応する位置を測定領域として決定する。
次に、操作者は、決定した測定領域に対して対応付けする複数の対象領域Eを選択する。図8は、対象領域Eを選択する際のディスプレイ32の表示例である。具体的には、まず、操作者は、複数の対象領域Eの中から一つの対象領域Eを選択して、タッチパネル33における当該対象領域Eが表示された位置をタップする。なお、このように最初に選択する対象領域Eは、線状に決定された測定領域における一方の端部と対応する位置の対象領域Eである。以下ではこのように最初に選択した対象領域Eを「始点」Sと称して説明する。
このようにして操作者によって始点Sが設定されると、領域設定部35aは、当該始点Sを中心とする、PSF21aの長さ(例えば20m)と同一の半径を有する正円をディスプレイ32の地図上に重畳表示する。すなわち、この正円の半径は、PSF21aを張り巡らすことの可能な最大の距離を示している。そして、次に操作者は、この正円における円内のいずれかの位置に配置された対象領域Eを選択して、タッチパネル33における当該対象領域Eが表示された位置をタップする。このようにして二番目に選択する対象領域Eは、線状に決定された測定領域における始点Sと反対側の端部と対応する位置の対象領域Eである。以下ではこのように二番目に選択した対象領域Eを「終点」Gと称して説明する。すなわち、このように設定された始点Sから終点Gに至る対象領域Eが、上記において決定した測定領域となるように、始点S及び終点Gを設定する。
このようにして対象領域Eを設定した後に、上記決定した測定領域において2人の測定者が測定を行う。具体的には、測定者のうち一人が始点Sに立ってPSF21aの一方の端部を所持し、他の測定者が終点Gに立ってPSF21aの他方の端部を所持する。この際において、地面からPSF21aまでの距離(すなわち後述する高さH)を一律にして測定を行う必要があるため、例えば地面が傾斜している場合には、傾斜に沿ってPSF21aが配置されるように各測定者はそれぞれPSF21aの端部を所持する。また、例えば地面が凸型形状となっている場合には、当該凸型形状に沿うようにPSF21aを変形させた状態において固定してPSF21aを配置する。
このようにして、始点Sから終点Gに至る各対象領域EにPSF21aを張り巡らせた状態にし、この状態において測定を開始する(例えば、測定器22に設けられた測定開始スイッチ(図示省略)を押圧する)。このように測定開始スイッチが押圧されると、測定装置20は所定時間(例えば、1分間)が経過するまで継続して測定を行う。この測定中において、PSF21aに放射線が入射された場合には、当該放射線に応じた検出光が光電子増倍管21bに入射されて電子変換され、増倍されて、有線ケーブルを介して測定器22に取り入れられる。そして、測定器22の制御部22bは、取り入れられた電子信号に関して各種処理を行う。当該各種処理としては具体的には、まず測定器22の制御部22bは、PSF21aにおける一方の端部に設けられた光電子増倍管21bから測定器22に取り入れられた電流パルスと、PSF21aにおける他方の端部に設けられた光電子増倍管21bから測定器22に取り入れられた電流パルスの到達時間を比較する。そして、測定器22の制御部22bは、この電流パルスの到達時間の比較結果に基づいてPSF21aにおける放射線の入射位置を特定する。また、測定器22の制御部22bは、各電流パルスの波高に基づいて当該入射位置における空間線量率を特定する。
そして、測定器22の制御部22bにより特定された入射位置及び当該入射位置における空間線量率は、測定器22の通信部22aを介して制御装置30に対して送信される。
次に、対応付け部35bは、上記のように測定者が実際に測定を行った測定領域と、操作者が選択した対象領域Eとを対応付けする。具体的には、対応付け部35bは、操作者が選択した各対象領域Eと、ディスプレイ32に表示された地図における前記各対象領域Eに対して重畳して表示された各位置(すなわち、測定領域)とを相互に対応付けてデータ記録部36に記録する。なお、対応付けの具体的な手段については任意であるが、例えば各測定領域を一意に特定するための位置座標と、各対象領域Eを一意に特定するためのセルID等とを相互に関連付けて記録しても良い。
最後に、制御装置30の通信部31を介して受信した入射位置及び当該入射位置における空間線量率に基づいて、分布図作成部35dは、空間線量率を地図に反映させた空間線量率分布図を作成する。図9は、空間線量率分布図を作成中のディスプレイ32の表示例を示す図である。
ここで、分布図作成部35dがこの空間線量率分布図を作成する際の具体的な手順について説明する。まず、分布図作成部35dは、上記の作業により特定した、PSF21aにおける放射線の入射位置及び当該入射位置における空間線量率に基づいて、始点Sから終点Gに至る各対象領域Eの空間線量率を特定する。ここで、「各対象領域Eの空間線量率」とは、測定対象空間における各対象領域Eと対応する位置の空間線量率であって、その具体的な特定方法については任意であるが、本実施の形態においてはその一例について説明する。まず、PSF21aには、長さ方向に沿って所定の長さ間隔(例えば10cm)置きに測定点が設定されているものと仮定する。そして、分布図作成部35dは、各測定点の長さ方向における前後の所定長さ(例えば前後それぞれ5cm)において測定された空間線量率の平均値を、当該測定点における測定値として算出する。そして、分布図作成部35dは、各対象領域Eにそれぞれ属する複数の測定点(例えば5つの測定点)における各測定値の平均値を算出し、算出された平均値を当該対象領域Eの空間線量率として特定する。
次に、分布図作成部35dは、ディスプレイ32における各対象領域Eが表示された位置に、各対象領域Eの空間線量率に対応する表示色を表示する。具体的には、分布図作成部35dは、表示区分DB36bを参照し、特定した対象領域Eの空間線量率が表示区分DB36bにおけるどの表示色に対応するかを特定する。そして、分布図作成部35dはこのように特定した表示色にて各対象領域Eを表示する。なお、この際には、表示した地図が透けて見えるような透明度において各表示色を表示することが好ましい。そして、分布図作成部35dは、同様にして始点Sから終点Gに至る各対象領域Eを、当該対象領域Eの空間線量率を表す表示色にて表示する。
以上に示すように、測定領域の決定、測定領域と対応する対象領域Eの選択、決定した測定領域の測定、決定した測定領域と選択した対象領域Eとの対応付け、及び空間線量率分布図の作成を行うことにより、対象領域Eに各測定領域の空間線量率を対応付けてディスプレイ32に表示することができる。ここで、以上においては、第一測定領域に関して実行する作業についてのみ説明したが、第二測定領域に関しても同様に各種作業を実行することができる。このようにして、測定対象空間全体において同様の作業を繰り返すことにより、測定対象空間全体の空間線量率を空間線量率分布図に反映させることができる。
ここで、当該第一対象領域と第二対象領域とは、連続する対象領域Eの数又は対象領域Eが連続する方向の少なくとも一方が異なっていても構わない。図10は、第二対象領域を特定した際のディスプレイ32の表示例を示す図である。すなわち、本実施の形態においては、第一対象領域を設定する際には、図8に示すように東方向に沿って連続する18つの対象領域Eを第一対象領域として設定したが、第二対象領域を設定する際には、図10に示すように北方向に沿って連続する5つの対象領域Eを第二対象領域として設定しても良い。具体的には、始点Sを設定して当該始点Sを中心とする正円がディスプレイ32に表示された際に、北方向に連続する5つ目の対象領域Eをタップすることにより、このような第二対象領域の設定が可能である。
図11は、測定対象空間全体の空間線量率を示す空間線量率分布図を表示した際のディスプレイ32の表示例を示す図である。この図11に示すように、以上に記載した各作業を測定対象空間全体について実行することにより、測定対象空間全体における空間線量率の特定を行う。なお、図11に示すように、空間線量率分布図に加えて、表示区分DB36bを参照して、空間線量率の区分と表示色とを対応付けて記載した凡例をディスプレイ32に表示することにより、ユーザに対して各位置における空間線量率を容易に把握させることが可能となる。
(設定条件)
次に、このような空間線量率測定システム10に関して最適な測定を行うための設定条件について説明する。すなわち、本実施の形態においては、最適な測定を行うために、ホットスポット見逃し防止条件、二次元平面分布安定条件、及び経済性条件の3つの条件を考慮して上述した各種作業を行う。以下では、これら3つの条件について詳細に説明する。
(設定条件−ホットスポット見逃し防止条件)
まずは、ホットスポット見逃し防止条件について説明する。当該条件は、本実施の形態に係る空間線量率測定システム10を用いた測定において、発見対象となる高濃度汚染地点(以下、ホットスポットHSと称する)を発見し逃してしまう可能性を低減するために考慮されるべき条件である。なお、どの程度の空間線量率を有する地点をホットスポットHSと定めるかについては任意であるが、例えば、環境省が示す汚染状況重点調査地域の要件(平成25年9月現在)である0.23(μSv/h)(すなわち、追加被ばく線量1(mSv/年間)に対応する0.19(μSv/h)に対して、自然被ばく線量0.04(μSv/h)を加えた値)以上の空間線量率を有する地点をホットスポットHSと定めても良い。なお、本実施の形態においては、距離Hで空間線量率Aを与える点線源をホットスポットHSと定めて、このようなホットスポットHSを当該空間線量率測定システム10により発見することが可能な設定条件について説明する。
ここで、図12は、測定時のPSF21aの配置を概略的に示す斜視図である。図13は、測定時のPSF21aの配置を概略的に示す正面図であり、(a)は条件イ、(b)は条件ロを示す図である。ここで、以下の説明において、図12及び図13に示すX方向を横方向、Y方向を縦方向、Z方向を高さ方向と必要に応じて称して説明する。この図12及び図13に示すように、本実施の形態においては、PSF21aが測定対象空間の地面の上方の位置、かつ対象領域Eの横方向における中央部を通るように、複数の対象領域Eに架けて連続的に配置される。ここで、以下ではPSF21aが配置される高さをH(cm)で表し、対象領域Eの幅(すなわち、PSF21a同士の距離)をL(cm)で表す。なお、図12及び図13においては、図示の便宜上、一回目、二回目、及び三回目の測定において測定対象空間に配置するPSF21aを同一の図に図示しているが、実際にはこれらの各PSF21aは各回の測定毎に時間間隔を置いて配置される。
ここで、「条件イ」とは、ホットスポットHSがPSF21aの相互間の位置の真下に位置している場合であり、すなわちPSF21aからホットスポットHSに至る距離が最も大きく、ホットスポットHSが最も発見し辛い位置にある場合を想定した条件である。また、「条件ロ」とは、ホットスポットHSがいずれかのPSF21aの真下に位置している場合であり、すなわちPSF21aからホットスポットHSに至る距離が最も小さく、ホットスポットHSが最も発見し易い位置にある場合を想定した条件である。つまり、当該ホットスポット見逃し防止条件とは、条件イのようなホットスポットHSの配置においても、ホットスポットHSの存在が空間線量率分布図に反映され易くするための条件である。
まず、空間線量率は線源からの距離の2乗に反比例するので、距離Hで空間線量率Aを与える点線源の、距離Xにおける空間線量率A´は、下記式(1)で表すことができる。
A´=(H/X)A
={H/(L/4+H)}A・・・式(1)
ここで、空間線量率の区分の間隔Δt(μSv/h)において、Δt<A´の条件を満たすようにΔtを設定することにより、ホットスポットHSが最も発見し難い条件(すなわち条件イ)であっても、空間線量率分布図における表示色の違いとして表れる。これを式に表すと、下記式(2)で表すことができる。
Δt<A´
Δt<{H/(L/4+H)}A
<A/{1+L/(4H)}・・・式(2)
このように、式(2)を満たすようにΔtを設定することで、ユーザは空間線量率分布図を視認することによって、当該空間線量率分布図に表示された表示色の違いによりホットスポットHSを認識することが可能となる。よって、ユーザがホットスポットHSを見逃してしまう可能性を低減させることが可能となる。
(設定条件−二次元平面分布安定条件)
次に、二次元平面分布安定条件について説明する。ここで、「二次元平面分布安定条件」とは、二次元平面分布を安定させるための条件であり、要するに、ホットスポットHSの位置に関わらず、作成される空間線量率分布図を近似させるために考慮されるべき条件である。具体的には、ホットスポットHSを最も検出し難い条件(すなわち条件(イ))において測定装置20にて測定される空間線量率A´と、最も検出し易い条件(すなわち条件(ロ))において測定装置20にて測定される空間線量率Aとの差を小さくするための条件である。ここで、上記式(1)より、空間線量率A´と空間線量率Aとの比A´/Aは、下記式(3)により表すことができる。
A´/A=H/(L/4+H
=1/{1+(1/4)(L/H)}・・・式(3)
ここで、式(3)より、空間線量率A´と空間線量率Aとの差を小さくするためには(すなわち、比A´/Aを1に近づけるためには)、L/Hを小さくする必要があることが分かる。図14は、L/HとA´/Aの関係を示す図である。この図14からも明らかであるように、L/Hが小さい程、A´/Aが1により近づき、二次元平面分布を安定させることができる。また、図15は、H=50cmの場合におけるLとA´/Aの関係を示す図である。この図15に示すように、例えばH=50cmの場合には、L=10cmのときにA´/A=0.99となり、L=50cmのときにA´/A=0.8となり、L=100cmのときにA´/A=0.5となる。すなわち、二次元平面分布安定条件についてのみを考慮するのであれば、Lは小さい程好ましい。
(設定条件−経済性条件)
次に経済性条件について説明する。ここで、「経済性条件」とは、測定対象空間全体の測定を行うために要する測定時間や測定コストを低減させるために考慮されるべき条件である。すなわち、上述した二次元平面分布安定条件のみを考慮するのであれば、Lは小さい程好ましいが、Lを小さくすると、測定対象空間において空間線量率を測定する回数が多くなってしまう。そのため、測定時間や測定コストが多大となってしまい、実用性に欠ける。したがって、このような測定時間や測定コストを低減させるための条件の設定について以下では説明する。
まず、PSF21aの長さを20(m)、各測定領域の横幅をL(cm)とすると、1回の測定で空間線量率を測定することのできる範囲の面積は20×(L/100)(m/回)となる。そして、1回の測定あたりのコスト係数をk(円/回)とすると、単位面積あたりの測定コストC(円/m)は、下記式(4)で表すことができる。
C=k÷(20L/100)
=100k/(20L)・・・・式(4)
ここで、二次元平面分布安定条件の指標であるA´/Aは大きい方が望ましく、経済性条件の指標であるCは小さい方が望ましいので、二次元平面分布安定条件と経済性条件とを合わせた指標をRとして下記式(5)で表す。
R=(A´/A)×(1/C)
=(A´/A)×(20L)/(100k)
=20/(100k)(A´/A)L
=K(A´/A)L・・・・式(5) (ただし、Kは定数)
ここで、図16は、L/Hと1/Lの関係を示す図である。また、図17は、L/Hと(A´/A)Lの関係を示す図である。ここで、L/Hが0.5〜6.0となるようにL及びHを設定することにより、(A´/A)L、すなわちR/Kが30以上となり、二次元平面分布安定条件及び経済性条件の観点から優れた測定を実施することが可能となる。さらに、L/Hが1.0〜4.0となるようにL及びHを設定することにより、(A´/A)L、すなわちR/Kが40以上となり、二次元平面分布安定条件及び経済性条件の観点から一層優れた測定を実施することが可能となる。
(実施例)
次に、上記に示す二次元平面分布安定条件に基づいて構成された空間線量率測定システム10の作用効果を、実施例を挙げて説明する。まず、本実施例においては、測定対象空間のいずれかの位置に発見対象となるホットスポットHSと同等の空間線量率の放射線を発するCs134、Cs137の濃度比1:2、放射性Cs合計放射能量140万Bqの放射線源を収納した容器(以下、放射線容器)を配置し、L及びHを適宜変更して測定を行い空間線量率分布図を作成した。具体的には、3m×3mの測定対象空間に、L=10cm、かつH=50cmのパターンAと、L=50cm、かつH=50cmのパターンBと、L=100cm、かつH=50cmのパターンCと、L=100cm、かつH=10cmのパターンDの、L/Hがそれぞれ0.2、1、2、10となる4種類のパターンについて、上記条件(イ)の及び条件(ロ)の2種類の条件において、Δt=0.1(μSv/h)として空間線量率分布図を作成した。図18は、本実施例の結果を示す図である。この図18において放射線容器の位置を二重円で示している。
まず、パターンAにおいては、A´/A=0.99であり、非常に1に近似した高い値となるため、条件(イ)及び条件(ロ)のいずれにおいても近似した空間線量率分布図を得ることが出来る。しかし、測定時間が63分と長くなっている。パターンBにおいては、A´/A=0.80であり、パターンAと比べると低い値となるが、条件(イ)及び条件(ロ)における空間線量率分布図の違いはわずかである。測定時間は14分とパターンAに比べて短くなっている。パターンCにおいては、A´/A=0.50であり、パターンBに比べてさらに低い値となっており、条件(イ)及び条件(ロ)において空間線量率分布図に相違が生じている。具体的には、パターンCの条件(ロ)においては、ホットスポットHSの位置に対応する対象領域Eが橙色の表示色により表示されているにも関わらず、パターンCの条件(イ)においては、ホットスポットHSの位置に対応する対象領域Eが緑色の表示色で表示されており、条件(イ)と条件(ロ)は空間線量率の区分が3段階異なっている。また、測定時間は7分とパターンBに比べてさらに短くなっている。パターンDにおいては、測定時間はパターンCとほぼ同じであるが、A´/A=0.038とパターンCに比べてさらに低くなっており、条件(イ)及び条件(ロ)にいて空間線量率分布図に相違が生じている。具体的には、パターンDの条件(ロ)においては、ホットスポットHSの位置に対応する対象領域Eが赤色の表示色(すなわち最大区分の表示色)により表示されており、パターンDの条件(イ)においては、ホットスポットHSの位置に対応する対象領域Eが黄緑色の表示色で表示されており、条件(イ)と条件(ロ)は空間線量率の区分が表示色として3段階異なっている。なお、図18において0.91(μSv/h)以上の空間線量率の対象領域Eは全て赤色の表示色により表示されるものとしたため、当該ホットスポットHSの位置に対応する対象領域Eは赤色の表示色により表示されているが、実際には当該対象領域Eの空間線量率は0.91(μSv/h)よりも遥かに高く、条件(イ)と条件(ロ)とでは、空間線量率の区分の間隔Δt(μSv/h)を基準として11段階異なっていた。
以上の実施例により、A´/Aの値が1に近い値となるようにL及びHを設定することにより、二次元平面分布を安定させることができる。また、Lが大きくなるほど(1/Lが小さくなるほど)測定時間が短くなり、経済性条件が良くなり、(A´/A)Lが大きくなるようにL及びHを設定することにより、二次元平面分布を安定させ、かつ経済性条件の良い測定を実施することができることが分かる。
(実施の形態の効果)
このように、本実施の形態に係る空間線量率測定システム10によれば、第一対象領域と第二対象領域との連続する対象領域Eの数又は対象領域Eが連続する方向の少なくとも一方が異なるように第一測定領域及び第二測定領域を設定することが出来るので、測定対象空間の形状や障害物の有無に応じた測定を行うことが可能となり、測定の自由度の向上を図ることが可能となる。
また、測定対象空間の地図又は写真に空間線量率を重畳表示した空間線量率分布図を作成するので、ユーザに対して測定対象空間の各位置と当該各位置における空間線量率とを対応付けて容易に認識させることが可能となり、測定対象空間の各位置における空間線量率を容易に把握させることが可能となる。
また、各対象領域Eを表示区分DB36bにおいて対応付けられて記録された表示色により表示するので、各対象領域Eを空間線量率に応じて定められた表示色により表示することが可能となり、ユーザに対して測定対象空間の各位置における空間線量率を一層容易に把握させることが可能となる。
また、所定の数値間隔Δtは、Δt<A/{1+L/(4H)}の条件を満たすように設定されるので、高濃度汚染地点が測定部の相互間に位置する場合であっても、当該高濃度汚染地点の存在が表示色の違いに反映されやすくすることが可能となり、高濃度汚染地点をより発見し易くすることが可能となる。
また、L/H=0.5〜6.0の条件を満たすようにL及びHを設定するので、1回の測定に要する測定費用及び測定時間を抑制しつつ、二次元平面分布の安定を図ることが可能となる。
また、L/H=1.0〜4.0の条件を満たすようにL及びHを設定するので、1回の測定に要する測定費用及び測定時間を抑制しつつ、二次元平面分布の安定を図ることが可能となる。
〔III〕各実施の形態に対する変形例
以上、本発明に係る各実施の形態について説明したが、本発明の具体的な構成及び手段は、特許請求の範囲に記載した各発明の技術的思想の範囲内において、任意に改変及び改良することができる。以下、このような変形例について説明する。
(解決しようとする課題や発明の効果について)
まず、発明が解決しようとする課題や発明の効果は、前記した内容に限定されるものではなく、本発明によって、前記に記載されていない課題を解決したり、前記に記載されていない効果を奏することもでき、また、記載されている課題の一部のみを解決したり、記載されている効果の一部のみを奏することがある。例えば、測定の自由度が従来と同程度に留まる場合であっても、従来と異なるシステムによって空間線量率の測定の自由度の向上を達成できている場合には、本発明の課題は解決されている。
(寸法や材料について)
発明の詳細な説明や図面で説明した空間線量率測定システム10の各部の寸法、形状、比率等は、あくまで例示であり、その他の任意の寸法、形状、比率等とすることができる。
(測定作業の順序について)
本実施の形態においては、対象領域Eを設定した後に、設定した対象領域Eと対応する位置の測定領域において測定者が実際に測定を行うものとして説明したが、これらの順序は逆であっても構わない。すなわち、測定領域において測定者が実際に測定を行い、測定を行った測定領域と対応する対象領域Eを操作者がタッチパネル33を操作することにより特定しても良い。
また、第一測定領域について測定を行った後に、第二測定領域について測定を行うものとして説明したが、これに限定されない。例えば、複数のPSF21aを測定器22に対して接続し、第一測定領域と第二測定領域とに関する測定を同時に実行しても良い。
(各対象領域の空間線量率について)
また、本実施の形態においては、各測定点における測定値の平均値を対象領域Eの空間線量率として特定するものとして説明したが、これに限定されない。例えば、対象領域Eに属する複数の測定点における最大値を当該対象領域Eの空間線量率として特定しても良い。
(メッシュの角度の回転について)
また、本実施の形態においては、ディスプレイ32に表示させたメッシュを操作者が二本の指で回転させる動作を行うことにより、住宅における任意の辺に合わせて回転させたが、これに限定されない。例えば、地図DB36aを参照して住宅の基準線を取得し、この基準線に合致するように自動的にメッシュの角度を調整するようにしても良い。このように自動的にメッシュの角度を回転させることが可能となるので、メッシュの角度を操作者が調整する手間を削減することが可能となる。
(対象領域が連続する方向について)
また、本実施の形態においては、第一対象領域や第二対象領域における対象領域Eが連続する方向は一方向であるものとして説明したが、これに限定されない。例えば、対象領域Eは途中で方向転換するように設定してもよく、これと対応するように、測定者が測定を行う際にも、PSF21aを途中で折り曲げて測定を行っても良い。
(設定条件について)
また、本実施の形態においては、ホットスポット見逃し防止条件、二次元平面分布安定条件、及び経済性条件の3つの条件をすべて考慮するものとして説明したが、これに限定されない。すなわち、これらの条件のうち、いずれか、または全てを考慮せずに各種条件の設定を行っても良い。
(付記)
付記1に記載の空間線量率測定システムは、検出された空間線量率に応じた検出光を発信する検出部を有する空間線量率測定手段を、測定対象空間におけるいずれかの領域である第一測定領域及び第二測定領域に対して前記検出部が前記第一測定領域及び前記第二測定領域に位置するように配置し、前記検出部から発信された前記検出光に基づいて当該検出部の位置における空間線量率を特定することによって、前記第一測定領域及び前記第二測定領域の空間線量率を特定する空間線量率測定システムであって、前記測定対象空間に相互に重複しない複数の対象領域を設定する領域設定手段と、前記第一測定領域と、前記領域設定手段により設定された複数の対象領域のうち連続する複数の対象領域である第一対象領域とを対応付けすると共に、前記第二測定領域と、前記領域設定手段により設定された複数の対象領域のうち前記第一対象領域とは少なくとも一部において異なる連続する複数の対象領域である第二対象領域とを対応付けすることによって、各対象領域における空間線量率を特定する対応付け手段と、を備え、前記対応付け手段は、前記第一対象領域と前記第二対象領域との相互間において、連続する前記対象領域の数又は前記対象領域が連続する方向の少なくとも一方が異なるように、前記第一対象領域及び前記第二対象領域を対応付けする。
また、付記2に記載の空間線量率測定システムは、付記1に記載の空間線量率測定システムにおいて、前記測定対象空間の地図又は写真を取得する外観図取得手段と、前記対応付け手段により特定した各対象領域の空間線量率を、前記外観図取得手段により取得した地図又は写真の対応する位置に重畳表示することにより空間線量率分布図を作成する分布図作成手段と、を備える。
また、付記3に記載の空間線量率測定システムは、付記2に記載の空間線量率測定システムにおいて、所定の数値間隔毎に分類された相互に重複しない複数の空間線量率の区分と、相互に重複しない複数の種類の表示色とを対応付けて記録した区分記録手段と、前記分布図作成手段は、前記空間線量率分布図における各対象領域を、前記対応付け手段により特定された各対象領域における空間線量率に対して前記区分記録手段において対応付けられて記録された前記表示色により表示する。
また、付記4に記載の空間線量率測定システムは、付記3に記載の空間線量率測定システムにおいて、前記領域設定手段は、前記測定対象空間において複数の列及び行を有する碁盤目状に配置された複数の対象領域であって、各対象領域はいずれも同一の幅及び長さを有する正方形状にて形成される複数の対象領域を設定し、前記対応付け手段は、所定の列において列方向に沿って連続する複数の対象領域として設定された前記第一対象領域を前記第一測定領域と対応付けすると共に、当該所定の列に隣接する他の列において列方向に沿って連続する複数の対象領域として設定された前記第二対象領域を前記第二測定領域と対応付けし、前記所定の数値間隔Δtは、下記条件を満たすように設定される、Δt<A/{1+L/(4H)}(ただし、L=各対象領域の幅(cm)、H=各列を構成する各対象領域の幅方向における中央部に沿って配置された前記検出部の地面からの高さ(cm)、A=発見対象となる高濃度汚染地点の垂直高さHでの空間線量率(μSv/h))。
また、付記5に記載の空間線量率測定システムは、付記3又は4に記載の空間線量率測定システムにおいて、前記領域設定手段は、前記測定対象空間において複数の列及び行を有する碁盤目状に配置された複数の対象領域であって、各対象領域はいずれも同一の幅及び長さを有する正方形状にて形成される複数の対象領域を設定し、前記対応付け手段は、所定の列において列方向に沿って連続する複数の対象領域として設定された前記第一対象領域を前記第一測定領域と対応付けすると共に、当該所定の列に隣接する他の列において列方向に沿って連続する複数の対象領域として設定された前記第二対象領域を前記第二測定領域と対応付けし、前記各対象領域の幅L(cm)、及び各列を構成する各対象領域の幅方向における中央部に沿って配置された前記検出部の地面からの高さH(cm)は、下記条件を満たすように設定される、L/H=0.5〜6.0。
また、付記6に記載の空間線量率測定システムは、付記5に記載の空間線量率測定システムにおいて、前記各対象領域の幅L(cm)、及び各列を構成する各対象領域の幅方向における中央部に沿って配置された前記検出部の地面からの高さH(cm)は、下記条件を満たすように設定される、L/H=1.0〜4.0。
(付記の効果)
付記1に記載の空間線量率測定システムによれば、第一対象領域と第二対象領域との連続する対象領域の数又は対象領域が連続する方向の少なくとも一方が異なるように第一測定領域及び第二測定領域を設定することが出来るので、測定対象空間の形状や障害物の有無に応じた測定を行うことが可能となり、測定の自由度の向上を図ることが可能となる。
付記2に記載の空間線量率測定システムによれば、測定対象空間の地図又は写真に空間線量率を重畳表示した空間線量率分布図を作成するので、ユーザに対して測定対象空間の各位置と当該各位置における空間線量率とを対応付けて容易に認識させることが可能となり、測定対象空間の各位置における空間線量率を容易に把握させることが可能となる。
付記3に記載の空間線量率測定システムによれば、各対象領域を区分記録手段において対応付けられて記録された表示色により表示するので、各対象領域を空間線量率に応じて定められた表示色により表示することが可能となり、ユーザに対して測定対象空間の各位置における空間線量率を一層容易に把握させることが可能となる。
付記4に記載の空間線量率測定システムによれば、所定の数値間隔Δtは、Δt<A/{1+L/(4H)}の条件を満たすように設定されるので、高濃度汚染地点が測定部の相互間に位置する場合であっても、当該高濃度汚染地点の存在が表示色の違いに反映されやすくすることが可能となり、高濃度汚染地点をより発見し易くすることが可能となる。
付記5に記載の空間線量率測定システムによれば、L/H=0.5〜6.0の条件を満たすようにL及びHを設定するので、1回の測定に要する測定費用及び測定時間を抑制しつつ、二次元平面分布の安定を図ることが可能となる。
付記6に記載の空間線量率測定システムによれば、L/H=1.0〜4.0の条件を満たすようにL及びHを設定するので、1回の測定に要する測定費用及び測定時間を抑制しつつ、二次元平面分布の安定を図ることが可能となる。
10 空間線量率測定システム
20 測定装置
21 検出器
21a PSF
21b 光電子増倍管
22 測定器
22a 通信部
22b 制御部
30 制御装置
31 通信部
32 ディスプレイ
33 タッチパネル
34 入力部
35 制御部
35a 領域設定部
35b 対応付け部
35c 外観図取得部
35d 分布図作成部
36 データ記録部
36a 地図DB
36b 表示区分DB
E 対象領域
G 終点
HS ホットスポット
S 始点

Claims (6)

  1. 検出された空間線量率に応じた検出光を発信する検出部を有する空間線量率測定手段を、測定対象空間におけるユーザにより設定された領域である第一測定領域及び第二測定領域に対して前記検出部が前記第一測定領域及び前記第二測定領域に位置するように配置し、前記検出部から発信された前記検出光に基づいて空間線量率を特定することによって、前記第一測定領域及び前記第二測定領域の空間線量率を特定する空間線量率測定システムであって、
    前記測定対象空間に相互に重複しない複数の対象領域を設定する領域設定手段と、
    前記領域設定手段にて設定された対象領域のうち連続する複数の対象領域の入力を受け付けることによって、ユーザにより設定された前記第一測定領域及び前記第二測定領域の入力を受け付ける入力受付手段であって、前記領域設定手段にて設定された各対象領域の大きさ又は向きの変更を受け付けた場合には、当該変更後の対象領域のうち連続する複数の対象領域の入力を受け付ける入力受付手段と、
    前記入力受付手段により入力を受け付けた前記第一測定領域と、当該第一測定領域に対応する連続する複数の対象領域である第一対象領域とを対応付けし、前記入力受付手段により入力を受け付けた前記第二測定領域と、当該第二測定領域に対応する連続する複数の対象領域である第二対象領域とを対応付けし、前記検出部における各対象領域に属する位置から発信された検出光に基づいて、前記各対象領域における空間線量率を特定する対応付け手段であって、前記入力受付手段にて前記各対象領域の大きさ又は向きの変更を受け付けた場合には、前記検出部における大きさ又は向きの変更後の各対象領域に属する位置から発信された検出光に基づいて、前記各対象領域における空間線量率を特定する対応付け手段と、を備え、
    前記入力受付手段にて、前記第一測定領域及び前記第二測定領域として、連続する前記対象領域の数又は前記対象領域が連続する方向の少なくとも一方が相互に異なる対象領域の入力が受け付けられた場合、前記対応付け手段は、前記第一対象領域及び前記第二対象領域との相互間において、連続する前記対象領域の数又は前記対象領域が連続する方向の少なくとも一方が異なるように、前記第一対象領域及び前記第二対象領域を対応付けする、
    空間線量率測定システム。
  2. 前記測定対象空間の地図又は写真を取得する外観図取得手段と、
    前記対応付け手段により特定した各対象領域の空間線量率を、前記外観図取得手段により取得した地図又は写真の対応する位置に重畳表示することにより空間線量率分布図を作成する分布図作成手段と、を備える、
    請求項1に記載の空間線量率測定システム。
  3. 所定の数値間隔毎に分類された相互に重複しない複数の空間線量率の区分と、相互に重複しない複数の種類の表示色とを対応付けて記録した区分記録手段を備え、
    前記分布図作成手段は、前記空間線量率分布図における各対象領域を、前記対応付け手段により特定された各対象領域における空間線量率に対して前記区分記録手段において対応付けられて記録された前記表示色により表示する、
    請求項2に記載の空間線量率測定システム。
  4. 前記領域設定手段は、前記測定対象空間において複数の列及び行を有する碁盤目状に配置された複数の対象領域であって、各対象領域はいずれも同一の幅及び長さを有する正方形状にて形成される複数の対象領域を設定し、
    前記入力受付手段にて、前記第一測定領域及び前記第二測定領域として、相互に平行かつ隣接する複数の対象領域の入力が受け付けられた場合、前記対応付け手段は、前記第一対象領域として、前記第一測定領域に対応する複数の対象領域であって、所定の列において列方向に沿って連続する複数の対象領域を対応付けすると共に、前記第二対象領域として、前記第二測定領域に対応する複数の対象領域であって、前記所定の列に隣接する他の列において列方向に沿って連続する複数の対象領域を対応付けし、
    前記所定の数値間隔△tは、下記条件を満たすように設定される、
    △t<A/{1+L/(4H)}
    (ただし、L=各対象領域の幅(cm)、H=各列を構成する各対象領域の幅方向における中央部に沿って配置された前記検出部の地面からの高さ(cm)、A=発見対象となる高濃度汚染地点の垂直高さHでの空間線量率(μSv/h))
    請求項3に記載の空間線量率測定システム。
  5. 前記領域設定手段は、前記測定対象空間において複数の列及び行を有する碁盤目状に配置された複数の対象領域であって、各対象領域はいずれも同一の幅及び長さを有する正方形状にて形成される複数の対象領域を設定し、
    前記入力受付手段にて、前記第一測定領域及び前記第二測定領域として、相互に平行かつ隣接する複数の対象領域の入力が受け付けられた場合、前記対応付け手段は、前記第一対象領域として、前記第一測定領域に対応する複数の対象領域であって、所定の列において列方向に沿って連続する複数の対象領域を対応付けすると共に、前記第二対象領域として、前記第二測定領域に対応する複数の対象領域であって、前記所定の列に隣接する他の列において列方向に沿って連続する複数の対象領域を対応付けし、
    前記各対象領域の幅L(cm)、及び各列を構成する各対象領域の幅方向における中央部に沿って配置された前記検出部の地面からの高さH(cm)は、下記条件を満たすように設定される、
    L/H=0.5〜6.0
    請求項3又は4に記載の空間線量率測定システム。
  6. 前記各対象領域の幅L(cm)、及び各列を構成する各対象領域の幅方向における中央部に沿って配置された前記検出部の地面からの高さH(cm)は、下記条件を満たすように設定される、
    L/H=1.0〜4.0
    請求項5に記載の空間線量率測定システム。
JP2013213581A 2013-10-11 2013-10-11 空間線量率測定システム Active JP5547841B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013213581A JP5547841B1 (ja) 2013-10-11 2013-10-11 空間線量率測定システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013213581A JP5547841B1 (ja) 2013-10-11 2013-10-11 空間線量率測定システム

Publications (2)

Publication Number Publication Date
JP5547841B1 true JP5547841B1 (ja) 2014-07-16
JP2015075455A JP2015075455A (ja) 2015-04-20

Family

ID=51416717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013213581A Active JP5547841B1 (ja) 2013-10-11 2013-10-11 空間線量率測定システム

Country Status (1)

Country Link
JP (1) JP5547841B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113504561A (zh) * 2021-07-15 2021-10-15 山西安弘检测技术有限公司 一种可实时监测的剂量计系统及检测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032926A (ja) * 2011-08-01 2013-02-14 Kyoto Univ 放射線量率の測定方法及び放射線量率マップの作製方法
JP2013113594A (ja) * 2011-11-25 2013-06-10 Hitachi-Ge Nuclear Energy Ltd 空間線量評価装置および方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5839280B2 (ja) * 2012-03-21 2016-01-06 清水建設株式会社 3次元線量評価マッピングシステム及びその方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032926A (ja) * 2011-08-01 2013-02-14 Kyoto Univ 放射線量率の測定方法及び放射線量率マップの作製方法
JP2013113594A (ja) * 2011-11-25 2013-06-10 Hitachi-Ge Nuclear Energy Ltd 空間線量評価装置および方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113504561A (zh) * 2021-07-15 2021-10-15 山西安弘检测技术有限公司 一种可实时监测的剂量计系统及检测方法

Also Published As

Publication number Publication date
JP2015075455A (ja) 2015-04-20

Similar Documents

Publication Publication Date Title
CN105550199B (zh) 一种基于多源地图的点位聚合方法及装置
US10309797B2 (en) User interface for displaying navigation information in a small display
US7031836B2 (en) Grid mapping utility for a GPS device
CN108051835B (zh) 一种基于双天线的倾斜测量装置及测量与放样方法
CN107076859B (zh) 具有光共享和相互作用深度估计的pet探测器闪烁体布置
CN103760379A (zh) 一种大靶面脱靶量修正测试系统及测试方法
CN107532885A (zh) 光图案中的强度变化用于体积中的物体的深度绘制
JP4914560B2 (ja) 環境内から生じる放射線についての情報を得るための方法
CN106125994B (zh) 坐标匹配方法及使用该坐标匹配方法的操控方法和终端
JP6375524B2 (ja) 放射線分布計測システム
CN106597416A (zh) 一种地面GPS辅助的LiDAR数据高程差的误差修正方法
RU2013145888A (ru) Указатель картирования коррелированных изображений
CN109964321A (zh) 用于室内定位的方法和设备
CN103954970A (zh) 一种地形要素采集方法
JP2013113594A (ja) 空間線量評価装置および方法
Pardo-García et al. Measurement of visual parameters of landscape using projections of photographs in GIS
Nelson et al. Reconstructing flood basalt lava flows in three dimensions using terrestrial laser scanning
JP5547841B1 (ja) 空間線量率測定システム
Cervilla et al. Siting multiple observers for maximum coverage: An accurate approach
CN107884805B (zh) 一种射源定位的方法及装置
CN107918147B (zh) 绕射波成像方法和装置
JP5671184B1 (ja) 断層図作成装置及び断層図作成方法並びに断層図作成プログラム
CN116311010A (zh) 一种林地资源调查与碳汇计量的方法与系统
JP2014169943A (ja) 放射線測定装置及び放射線測定プログラム
CN105279305B (zh) 一种地面三维激光扫描技术测站选取方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140515

R150 Certificate of patent or registration of utility model

Ref document number: 5547841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150