JP5547493B2 - Method for producing iridium-containing phosphor - Google Patents

Method for producing iridium-containing phosphor Download PDF

Info

Publication number
JP5547493B2
JP5547493B2 JP2009548086A JP2009548086A JP5547493B2 JP 5547493 B2 JP5547493 B2 JP 5547493B2 JP 2009548086 A JP2009548086 A JP 2009548086A JP 2009548086 A JP2009548086 A JP 2009548086A JP 5547493 B2 JP5547493 B2 JP 5547493B2
Authority
JP
Japan
Prior art keywords
iridium
phosphor
ppm
complex salt
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009548086A
Other languages
Japanese (ja)
Other versions
JPWO2009084625A1 (en
Inventor
嘉久 辻
秀治 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2009548086A priority Critical patent/JP5547493B2/en
Publication of JPWO2009084625A1 publication Critical patent/JPWO2009084625A1/en
Application granted granted Critical
Publication of JP5547493B2 publication Critical patent/JP5547493B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/87Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing platina group metals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Description

本発明は、イリジウムを含有する蛍光体の製造方法に関する。   The present invention relates to a method for producing a phosphor containing iridium.

化合物半導体を主たる構成材料とする無機組成物は、蛍光、リン光などの発光材料、蓄光材料などの分野で用いられている。これらには、電気エネルギーによって光を発する特性を有するものもあり、光源として用いられ、表示など用途で一部用いられている。しかしながら、現在知られている材料は、電気エネルギーの光変換効率が不十分であり、そのため発熱、消費電力などの問題があり、用途が限定されている。特に青色蛍光体は、単色のみならず、白色の発光材料として有用である。   Inorganic compositions mainly composed of compound semiconductors are used in the fields of light emitting materials such as fluorescence and phosphorescence, and phosphorescent materials. Some of these have the property of emitting light by electrical energy, are used as light sources, and are partially used for applications such as display. However, currently known materials have insufficient light conversion efficiency of electric energy, and thus have problems such as heat generation and power consumption, and are limited in application. In particular, the blue phosphor is useful as a white light emitting material as well as a single color.

II−VI族化合物半導体を主たる構成要素とする蛍光体において、青色蛍光体として、銅をドーピングしたもの(例えば、非特許文献1参照)、ツリウム(Tm)をドーピングしたもの(例えば、非特許文献2参照)が知られている。また、II−VI族化合物半導体を水熱条件下などで調製したもの(例えば、特許文献1参照)、さらに、プラセオジムをドーパントとして使用したもの(非特許文献3参照)が知られている。   In a phosphor mainly composed of a II-VI group compound semiconductor, a blue phosphor that is doped with copper (for example, see Non-Patent Document 1) or a substance that is doped with thulium (Tm) (for example, Non-Patent Document) 2) is known. Moreover, what prepared the II-VI group compound semiconductor under hydrothermal conditions etc. (for example, refer patent document 1) and also used what used praseodymium as a dopant (refer nonpatent literature 3) are known.

しかしながら、上記した特許文献や非特許文献は、様々な発光色をもたらすために、発光中心をドープする方法を開示したものであるが、得られた青色蛍光材料は、エネルギー効率、色純度が低く、光源用途、ディスプレイ用途に使用することが難しいか、高価である希土類塩を多量に必要とし、経済的に不向きであるなどの問題を有している。   However, the above-mentioned patent documents and non-patent documents disclose a method of doping the emission center in order to bring about various emission colors, but the obtained blue fluorescent material has low energy efficiency and color purity. However, it is difficult to use for light sources and displays, or requires a large amount of expensive rare earth salts, and is not economically suitable.

一方、さらに発光輝度を向上させるために、イリジウムをドープした蛍光体の製造方法も提案されている(例えば、特許文献2、特許文献3参照)。   On the other hand, in order to further improve the light emission luminance, a method for producing a phosphor doped with iridium has also been proposed (see, for example, Patent Document 2 and Patent Document 3).

しかしながら、特許文献2や特許文献3には、イリジウムを使用して、蛍光体を調整する方法に関して記載されてはいるが、イリジウム化合物に関する特別な記載は無く、ましてイリジウム化合物中の不純物の影響についての記載や示唆は全く見られない。
特開2005−36214号公報 特開2006−143947号公報 WO2007/043676 A1 Journal of Luminescence 99(2002) 325-334 Journal Non-Crystalline Solids 352(2006) 1628-1632 Japanese Journal of Applied Physics Vol44 No.10,2005,p 7694-7697
However, Patent Document 2 and Patent Document 3 describe a method for adjusting a phosphor using iridium, but there is no special description regarding the iridium compound, and more about the influence of impurities in the iridium compound. There is no description or suggestion.
JP-A-2005-36214 JP 2006-143947 A WO2007 / 043676 A1 Journal of Luminescence 99 (2002) 325-334 Journal Non-Crystalline Solids 352 (2006) 1628-1632 Japanese Journal of Applied Physics Vol44 No.10,2005, p 7694-7697

したがって、解決しようとする課題は、エネルギー効率、色純度が高く、光源用途、ディスプレイ用途に使用することが可能で、経済的にも有利な蛍光体の製造方法を提供することにある。   Therefore, the problem to be solved is to provide a method for producing a phosphor that has high energy efficiency and high color purity, can be used for light sources and displays, and is economically advantageous.

本発明者らは鋭意検討を重ねた結果、II−VI族化合物半導体にイリジウムをドーピングする工程を含むイリジウム含有蛍光体の製造方法において、イリジウム錯塩中の鉄の含有量を100ppm以下に低減させることで、上記課題を解決できることを見出し、本発明を完成するに至った。本発明は以下のものを提供する。   As a result of intensive studies, the present inventors have reduced the iron content in an iridium complex salt to 100 ppm or less in a method for producing an iridium-containing phosphor including a step of doping iridium into a II-VI compound semiconductor. The present inventors have found that the above problems can be solved, and have completed the present invention. The present invention provides the following.

[1] II−VI族化合物半導体にイリジウムをドーピングする工程を含むイリジウム含有蛍光体の製造方法であって、イリジウムをドーピングする工程に、不純物の鉄の含有量が100ppm以下であるイリジウム錯塩を使用することを特徴とする方法。   [1] A method for producing an iridium-containing phosphor including a step of doping iridium into a II-VI group compound semiconductor, wherein an iridium complex salt having an impurity iron content of 100 ppm or less is used in the step of doping iridium A method characterized by:

[2] 不純物の鉄の含有量が50ppm以下であるイリジウム錯塩である[1]記載の方法。   [2] The method according to [1], which is an iridium complex salt having an impurity iron content of 50 ppm or less.

[3] 不純物の鉄の含有量が10ppm以下であるイリジウム錯塩である[1]記載の方法。   [3] The method according to [1], which is an iridium complex salt having an impurity iron content of 10 ppm or less.

[4] イリジウム錯塩がヘキサクロロイリジウム塩である[1]記載の方法。   [4] The method according to [1], wherein the iridium complex salt is a hexachloroiridium salt.

実施例1で得られた蛍光体の蛍光スペクトルである(発光ピーク波長:462nm)。It is a fluorescence spectrum of the phosphor obtained in Example 1 (emission peak wavelength: 462 nm). 実施例2で得られた蛍光体の蛍光スペクトルである(発光ピーク波長:464nm)。It is a fluorescence spectrum of the phosphor obtained in Example 2 (emission peak wavelength: 464 nm). 比較例1で得られた蛍光体の蛍光スペクトルである(発光ピーク波長:548nm)。It is a fluorescence spectrum of the phosphor obtained in Comparative Example 1 (emission peak wavelength: 548 nm).

以下に本発明の詳細な説明を行う。   The following is a detailed description of the present invention.

本発明に原料として使用するII−VI族化合物半導体としては、特に制限されるものではなく、硫化亜鉛、硫化カドミウム、セレン化亜鉛、セレン化カドミウムなど何れのものを使用しても構わない。これらは、単独で使用しても構わないし、複合化しても構わない。II−VI族化合物半導体を構成する結晶構造としても特に制限されるものではなく、六方晶、立方晶の単独体、およびこれらの混成体であっても構わない。   The II-VI group compound semiconductor used as a raw material in the present invention is not particularly limited, and any material such as zinc sulfide, cadmium sulfide, zinc selenide, cadmium selenide may be used. These may be used alone or in combination. The crystal structure constituting the II-VI group compound semiconductor is not particularly limited, and may be a hexagonal crystal, a cubic single body, or a hybrid thereof.

本発明では、イリジウム化合物として不純物の鉄の含有量が100ppm以下、好ましくは50ppm以下、より好ましくは10ppm以下であるイリジウムの錯塩が用いられる。市販のイリジウム錯塩はいずれも不純物として鉄を300ppm以上含有しているが、本発明者らがこれら鉄の濃度を100ppm以下に低減したイリジウム錯塩を使用して蛍光体を調製したところ、発光特性が予想外に大幅に向上した蛍光体を得ることができることがわかった。   In the present invention, a complex salt of iridium having an impurity iron content of 100 ppm or less, preferably 50 ppm or less, more preferably 10 ppm or less is used as the iridium compound. Although all commercially available iridium complex salts contain 300 ppm or more of iron as impurities, the present inventors prepared phosphors using iridium complex salts in which the concentration of these irons was reduced to 100 ppm or less. It has been found that an unexpectedly greatly improved phosphor can be obtained.

イリジウム錯塩から不純物である鉄の含有量を低減する方法としては、特に限定されるものではなく、一般的な洗浄、再結晶などの方法を用いることができるが、鉄の含有量を100ppm近辺又はそれ以下にまで低減させるには、再結晶を用いるのが鉄化合物除去効率の観点から好ましい。イリジウム錯塩中の鉄の含有量を100ppm以下にまで低減させることにより、蛍光体の発光特性は向上し、50ppm以下にまで低減させると発光特性はさらに向上し、10ppm以下にまで低減させると発光特性は飛躍的に向上する。再結晶用の溶媒としては、水、メタノール、エタノールなどのアルコール類、アセトン、ジメチルホルムアミド、N−メチルピロリドン、ジメチルスルホキシドなどの有機溶媒を使用することが出来る。残留物などの観点から、水、メタノールを使用することが好ましい。再結晶を繰り返すことによって、目的とする鉄不純物の濃度にまで、鉄の含有量を低減することが可能である。   The method for reducing the content of iron, which is an impurity from the iridium complex salt, is not particularly limited, and general methods such as washing and recrystallization can be used, but the iron content is around 100 ppm or In order to reduce it to less than that, it is preferable to use recrystallization from the viewpoint of iron compound removal efficiency. By reducing the iron content in the iridium complex salt to 100 ppm or less, the light emission characteristics of the phosphor are improved. When the content is reduced to 50 ppm or less, the light emission characteristics are further improved, and when it is reduced to 10 ppm or less, the light emission characteristics are obtained. Will improve dramatically. As the solvent for recrystallization, water, alcohols such as methanol and ethanol, and organic solvents such as acetone, dimethylformamide, N-methylpyrrolidone, and dimethyl sulfoxide can be used. From the viewpoint of residues and the like, it is preferable to use water and methanol. By repeating the recrystallization, the iron content can be reduced to the target concentration of iron impurities.

塩化イリジウムなどのハロゲン化イリジウム塩など一般的に入手されるイリジウム塩を用いた場合、水やアルコールなどの溶媒に溶解しにくく、大量の水を使用しなければならないことに加え、非常に凝集しやすいことから、イリジウム塩をII−VI族化合物半導体に均質に分散させることができない。そのため、加熱焼成時に、イリジウム塩が凝集し、加熱により熱還元されて、II−VI族化合物半導体に導入することが難しい。本発明ではイリジウム錯塩を使用するので上述した不利がなく、イリジウム塩をII−VI族化合物半導体に均質に分散させることができる。   When commonly available iridium salts such as iridium halide salts such as iridium chloride are used, they are difficult to dissolve in solvents such as water and alcohol, and in addition to using a large amount of water, they are extremely agglomerated. Since it is easy, an iridium salt cannot be uniformly dispersed in a II-VI group compound semiconductor. For this reason, the iridium salt aggregates during heating and baking, and is thermally reduced by heating and difficult to introduce into the II-VI group compound semiconductor. In the present invention, since the iridium complex salt is used, the above-described disadvantages are not caused, and the iridium salt can be uniformly dispersed in the II-VI group compound semiconductor.

使用されるイリジウムの錯塩に制限はなく、イリジウムの価数にも特に制限はなく、三価、四価のものを用いることができる。例えば、ヘキサクロロイリジウム(III)酸アンモニウム、ヘキサクロロイリジウム(III)酸ナトリウム、ヘキサクロロイリジウム(III)酸カリウム、ヘキサクロロイリジウム(IV)酸アンモニウム、ヘキサクロロイリジウム(IV)酸2アンモニウム、ヘキサクロロイリジウム(IV)酸ナトリウム、ヘキサクロロイリジウム(IV)酸カリウム、ヘキサクロロイリジウム(IV)酸水素、ヘキサブロモイリジウム(III)酸アンモニウム、ヘキサブロモイリジウム(III)酸ナトリウム、ヘキサブロモイリジウム(III)酸カリウム、ヘキサブロモイリジウム(IV)酸アンモニウム、ヘキサブロモイリジウム(IV)酸ナトリウム、ヘキサブロモイリジウム(IV)酸カリウム、ヘキサブロモイリジウム(IV)酸水素、ヘキサヨードイリジウム(III)酸アンモニウム、ヘキサヨードイリジウム(III)酸ナトリウム、ヘキサヨードイリジウム(III)酸カリウム、ヘキサヨードイリジウム(IV)酸アンモニウム、ヘキサヨードイリジウム(IV)酸ナトリウム、ヘキサヨードイリジウム(IV)酸カリウム、ヘキサヨードイリジウム(IV)酸水素、ヘキサアンミンイリジウム(III)塩化物、ヘキサシアノイリジウム(III)酸カリウム、ペンタアンミンクロロイリジウム(III)塩化物などが挙げられる。入手性、安全性や、得られる硫化イリジウムに金属不純物を残存させないことを考慮し、これらのアンモニウム塩を用いることが好ましい。すなわち、ヘキサクロロイリジウム(III)酸アンモニウム、ヘキサクロロイリジウム(IV)酸アンモニウム、ヘキサクロロイリジウム(IV)酸2アンモニウムなどのヘキサクロロイリジウム塩を使用することが好ましい。   The complex salt of iridium used is not limited, and the valence of iridium is not particularly limited, and trivalent or tetravalent ones can be used. For example, ammonium hexachloroiridium (III), sodium hexachloroiridium (III), potassium hexachloroiridium (III), ammonium hexachloroiridium (IV), diammonium hexachloroiridium (IV), sodium hexachloroiridium (IV) , Potassium hexachloroiridium (IV), hydrogen hexachloroiridium (IV), ammonium hexabromoiridium (III), sodium hexabromoiridium (III), potassium hexabromoiridium (III), hexabromoiridium (IV) Ammonium acid, sodium hexabromoiridium (IV), potassium hexabromoiridium (IV), hydrogen hexabromoiridium (IV), ammonium hexaiodoiridium (III), sodium hexaiodoiridium (III) Potassium hexaiodoiridium (III), ammonium hexaiodoiridium (IV), sodium hexaiodoiridium (IV), potassium hexaiodoiridium (IV), hydrogen hexaiodoiridium (IV), hexaammineiridium (III ) Chloride, potassium hexacyanoiridium (III), pentaamminechloroiridium (III) chloride, and the like. These ammonium salts are preferably used in consideration of availability, safety, and the fact that metal impurities do not remain in the resulting iridium sulfide. That is, it is preferable to use hexachloroiridium salts such as ammonium hexachloroiridium (III), ammonium hexachloroiridium (IV), and diammonium hexachloroiridium (IV).

これらのイリジウムの導入方法としても特に限定されるものではなく、一般的に、II−VI族化合物半導体と固体混合して、加熱焼成する方法、または、II−VI族化合物半導体を水に分散し、イリジウム錯塩の粉末或いは水に溶解したイリジウム錯塩を加え、攪拌しながら、水を蒸発させて無機組成物を得、その無機組成物を加熱焼成する方法、更には、II-VI族化合物半導体を生成するときにイリジウム錯塩を共存させて生成させ、得られた組成物を加熱焼成する方法、などが用いられる。イリジウム錯塩の凝集を抑制し、II−VI族化合物半導体に定着させるには、イリジウム錯塩を溶解した状態で定着させる方法の使用が好ましい。   The method for introducing these iridium is not particularly limited, and generally, a method of solid mixing with a II-VI group compound semiconductor and heating and firing, or a II-VI group compound semiconductor dispersed in water. Adding an iridium complex salt powder or an iridium complex salt dissolved in water, evaporating water while stirring to obtain an inorganic composition, and heating and firing the inorganic composition; For example, a method in which an iridium complex salt is produced in the coexistence and the obtained composition is heated and fired is used. In order to suppress aggregation of the iridium complex salt and fix it on the II-VI group compound semiconductor, it is preferable to use a method of fixing the iridium complex salt in a dissolved state.

定着させるときの、水の使用量は特に限定されるものではないが、通常、分散性を考慮して、II−VI族化合物半導体のスラリー濃度として、0.1〜50重量%、より好ましくは、1〜30重量%の範囲で定着を行うことが好ましい。   The amount of water used for fixing is not particularly limited, but usually considering the dispersibility, the slurry concentration of the II-VI group compound semiconductor is 0.1 to 50% by weight, more preferably The fixing is preferably performed in the range of 1 to 30% by weight.

スラリーから水を除去する方法としては、特に限定されるものではないが、デカンテーションなどの方法を用いると、溶液中に溶解しているイリジウム錯塩をロスするため好ましくない。通常、スラリーから水を、減圧または加熱により留去する方法を使用する。   The method for removing water from the slurry is not particularly limited, but using a method such as decantation is not preferable because iridium complex salt dissolved in the solution is lost. Usually, a method is used in which water is distilled off from the slurry by decompression or heating.

本発明により、II−VI族化合物半導体に導入されるイリジウムの量としては、特に限定されるものではないが、多すぎる導入は、その導入量に対し、経済的ではなく、また、濃度消光を引き起こすため好ましくなく、低すぎる濃度は、高い蛍光効率を引き出すに十分な発光中心を持たないため好ましくない。したがって、通常、蛍光体中、5〜5000ppmの範囲、より好ましくは、10〜1000ppmの範囲で導入することが好ましい。   According to the present invention, the amount of iridium introduced into the II-VI group compound semiconductor is not particularly limited, but too much introduction is not economical with respect to the amount introduced, and concentration quenching is not possible. Concentrations that are too low are undesirable because they do not have enough emission centers to elicit high fluorescence efficiency. Therefore, it is usually preferable to introduce the phosphor in the range of 5 to 5000 ppm, more preferably in the range of 10 to 1000 ppm.

本発明において、イリジウムをII−VI族化合物半導体に導入するために、加熱焼成する方法を使用することが出来る。焼成する温度としては、II−VI族化合物半導体の結晶形が変化する温度以上、昇華する温度以下で実施する。即ち、500℃以上、1250℃以下、好ましくは、550℃以上、1000℃以下、より好ましくは、600℃以上、800℃以下の温度で実施する。   In the present invention, in order to introduce iridium into the II-VI group compound semiconductor, a method of heating and baking can be used. The firing temperature is not less than the temperature at which the crystal form of the II-VI compound semiconductor changes and not more than the temperature at which sublimation occurs. That is, it is carried out at a temperature of 500 ° C. or higher and 1250 ° C. or lower, preferably 550 ° C. or higher and 1000 ° C. or lower, more preferably 600 ° C. or higher and 800 ° C. or lower.

焼成温度までの昇温速度は特に限定されるものではないが、通常、2.0℃/分以上40.0℃/分以下の速度で昇温する。早すぎる温度は、炉体やII−VI族化合物半導体を入れる容器を破損するため好ましくなく、遅すぎる速度では、生産効率が著しく低下するため好ましくない。このような観点から、2.5℃/分以上、30.0℃以下/分の速度で実施することが好ましい。   The rate of temperature rise up to the firing temperature is not particularly limited, but the temperature is usually raised at a rate of 2.0 ° C./min to 40.0 ° C./min. Too early temperature is not preferable because it damages the furnace body and the container containing the II-VI group compound semiconductor, and excessively low speed is not preferable because production efficiency is remarkably lowered. From such a viewpoint, it is preferable to carry out at a rate of 2.5 ° C./min to 30.0 ° C./min.

本発明では、焼成をおこなう雰囲気は特に限定されるものではなく、空気下、不活性ガス雰囲気下、還元性ガス雰囲気下何れのガス雰囲気の下で実施しても構わない。   In the present invention, the atmosphere in which the firing is performed is not particularly limited, and the firing may be performed in any gas atmosphere such as air, inert gas atmosphere, or reducing gas atmosphere.

本発明において、焼成時に結晶化の促進や粒径を大きくするために融剤を使用することができる。使用できる融剤としては、塩化ナトリウム、塩化カリウムなどのアルカリ金属塩、塩化マグネシウム、塩化カルシウム、塩化マグネシウムなどのアルカリ土類塩、塩化アンモニウム、塩化亜鉛などを使用することができる。これらの融剤は単独で使用しても、複数を混合して使用しても構わない。使用する量としては、特に限定されるものではなく、II−VI族化合物半導体100重量部に対して、0.1〜50重量部、操作性、経済性を考慮して、0.5〜10重量部を使用することが好ましい。   In the present invention, a flux can be used to promote crystallization and increase the particle size during firing. Usable fluxes include alkali metal salts such as sodium chloride and potassium chloride, alkaline earth salts such as magnesium chloride, calcium chloride and magnesium chloride, ammonium chloride and zinc chloride. These fluxes may be used alone or in combination. The amount to be used is not particularly limited, and it is 0.5 to 10 parts by weight with respect to 100 parts by weight of the II-VI group compound semiconductor in consideration of operability and economy. It is preferred to use parts by weight.

本発明においては、他の元素を同時にドープすることもできる。同時にドープする方法としては、特に制限されるものではなく、イリジウム錯塩と同時に水に溶解して混合し、焼成することでドープすることもできるし、イリジウム錯塩を混合した後に、塩を固体混合し、焼成することでドープすることも可能である。ドープする元素としては、銀、銅、マンガンなどの遷移金属やセリウム、ユーロピウムなどの希土類元素、ガリウムをドープすることもできる。これらは、塩化物、臭化物などのハロゲン化物、硫酸、りん酸、硝酸などの鉱酸塩、酢酸、プロピオン酸などの有機酸塩として混合することができ、単独または複数を混合して使用しても構わない。   In the present invention, other elements can be doped at the same time. The method of doping at the same time is not particularly limited, and can be doped by dissolving in water at the same time as the iridium complex salt, followed by baking, and after mixing the iridium complex salt, the salt is mixed into the solid. It is also possible to dope by baking. As the element to be doped, transition metals such as silver, copper and manganese, rare earth elements such as cerium and europium, and gallium can also be doped. These can be mixed as halides such as chloride, bromide, mineral acid salts such as sulfuric acid, phosphoric acid and nitric acid, organic acid salts such as acetic acid and propionic acid, and can be used alone or in combination It doesn't matter.

本発明により、II−VI族化合物半導体に導入される他の元素の量としては、特に限定されるものではないが、多すぎる導入は、その導入量に対し、経済的ではなく、また、濃度消光を引き起こすため好ましくなく、低すぎる濃度は、高い蛍光効率を引き出すに十分な発光中心を持たないため好ましくない。したがって、通常、蛍光体中、5〜5000ppmの範囲、より好ましくは、10〜1000ppmの範囲で導入することが好ましい。   According to the present invention, the amount of other elements introduced into the II-VI compound semiconductor is not particularly limited, but too much introduction is not economical with respect to the amount introduced, and the concentration A concentration that is not preferable because it causes quenching, and a concentration that is too low is not preferable because it does not have a sufficient emission center to extract high fluorescence efficiency. Therefore, it is usually preferable to introduce the phosphor in the range of 5 to 5000 ppm, more preferably in the range of 10 to 1000 ppm.

本発明において、焼成時に欠落するVI族元素を補うためそのVI族元素単体を添加することができる。例えば、硫黄分を補うため硫黄を添加することが出来る。添加する量は特に限定されるものではなく、通常、II−VI族化合物半導体100重量部に対して、0.1重量部〜300重量部、より好ましくは、1重量部〜200重量部の範囲で添加する。   In the present invention, the group VI element alone can be added to compensate for the group VI element missing during firing. For example, sulfur can be added to supplement the sulfur content. The amount to be added is not particularly limited, and is usually in the range of 0.1 to 300 parts by weight, more preferably 1 to 200 parts by weight with respect to 100 parts by weight of the II-VI group compound semiconductor. Add in.

本発明において、焼成終了後、焼成物を洗浄する。洗浄によって、導入されなかったイリジウム塩、さらには、添加した、余分の融剤を除去する。洗浄は、中性水や酸性水を使用することが出来る。酸性分としては、特に限定されるものではなく、塩酸、硫酸、硝酸、リン酸などの鉱酸、酢酸、プロピオン酸、酪酸などの有機酸を使用することができる。これらは、単独で使用することも出来るし、複数を混合して使用することもできる。II−VI族化合物半導体が、高濃度の酸性物と接触すると分解する場合があるので、酸性水を使用する場合、通常0.1〜20重量%の水溶液を使用することが好ましく、より好ましくは1〜10重量%の水溶液を使用する。更に、II−VI族化合物半導体の分解、表面へのイオン残留性を考慮して、酢酸の使用が好ましい。   In the present invention, the fired product is washed after the firing. By washing, the iridium salt which has not been introduced and the added extra flux are removed. For washing, neutral water or acidic water can be used. The acid content is not particularly limited, and mineral acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, and organic acids such as acetic acid, propionic acid and butyric acid can be used. These can be used alone or in combination. Since the II-VI compound semiconductor may be decomposed when it comes into contact with a high concentration acidic substance, it is usually preferable to use an aqueous solution of 0.1 to 20% by weight, more preferably, when using acidic water. A 1-10% by weight aqueous solution is used. Furthermore, the use of acetic acid is preferred in consideration of the decomposition of the II-VI group compound semiconductor and the ionic residue on the surface.

本発明では、焼成または衝撃を付与した後、洗浄したII−VI族化合物半導体を真空、熱風などの方法で乾燥し、所望の蛍光体を得ることが出来る。   In the present invention, after applying firing or impact, the cleaned II-VI group compound semiconductor can be dried by a method such as vacuum or hot air to obtain a desired phosphor.

蛍光体が形成されたことは、量子効率を測定することによって確認することができる。量子効率とは、入射光による励起によって放出された光子の数と物質に吸収された入射光の光子の数との比であり、この数値が大きいほどドーピング効果が高いことを意味する。量子効率は分光蛍光光度計によって測定することができる。   The formation of the phosphor can be confirmed by measuring the quantum efficiency. Quantum efficiency is the ratio between the number of photons emitted by excitation by incident light and the number of photons of incident light absorbed by the material, and the larger this value, the higher the doping effect. Quantum efficiency can be measured with a spectrofluorometer.

以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these.

参考例1:
鉄300ppmを含有するヘキサクロロイリジウム(IV)酸2アンモニウム2.1gを45℃のイオン交換水32gに溶解した。不溶物を0.2ミクロンのメンブランフィルターでろ過した後、ヘキサクロロイリジウム(IV)酸2アンモニウム水溶液を5℃まで冷却した。析出したヘキサクロロイリジウム(IV)酸2アンモニウムをろ別し、真空乾燥して、鉄100ppm含有のヘキサクロロイリジウム(IV)酸2アンモニウム1.4gを得た。この操作を繰り返すことで、鉄含有量の低減したヘキサクロロイリジウム(IV) 酸2アンモニウムを得た。鉄の含有量と回収量を表1に示す。また、再結晶に使用した水の使用量を変えて鉄の含有量と回収量を見た結果を表2に示す。
Reference example 1:
2.1 g of diammonium hexachloroiridium (IV) containing 300 ppm of iron was dissolved in 32 g of ion-exchanged water at 45 ° C. The insoluble material was filtered through a 0.2 micron membrane filter, and the aqueous diammonium hexachloroiridium (IV) acid solution was cooled to 5 ° C. The precipitated diammonium hexachloroiridium (IV) acid was filtered off and vacuum dried to obtain 1.4 g of diammonium hexachloroiridium (IV) acid containing 100 ppm of iron. By repeating this operation, diammonium hexachloroiridium (IV) acid having a reduced iron content was obtained. Table 1 shows the iron content and the amount recovered. In addition, Table 2 shows the results of examining the iron content and the recovered amount by changing the amount of water used for recrystallization.

Figure 0005547493
Figure 0005547493

Figure 0005547493
Figure 0005547493

参考例2:
参考例1で使用したヘキサクロロイリジウム(IV)酸2アンモニウムに代えて、鉄366ppmを含有するヘキサクロロイリジウム(III)酸2アンモニウムを用い、参考例1と同様の方法で再結晶を行い、再結晶使用水量、回収量、鉄含有量を見た結果を表3に示す。
Reference example 2:
Instead of diammonium hexachloroiridium (IV) used in Reference Example 1, diammonium hexachloroiridium (III) containing 366 ppm of iron was used for recrystallization in the same manner as in Reference Example 1, and recrystallization was used. Table 3 shows the results of looking at the amount of water, the amount recovered, and the iron content.

Figure 0005547493
Figure 0005547493

実施例1
2L三つ口フラスコに、攪拌機、還流管、温度計を装着し、硝酸亜鉛6水和物223.2g、硝酸銅(II)3水和物90.9mg、硝酸ガリウム6水和物2.73mg、参考例1のように再結晶を実施して得たヘキサクロロイリジウム(IV)酸2アンモニウム0.078g(鉄含有量100ppm)、チオアセトアミド84.5gを投入し、イオン交換水750mLを加えて溶解した。硝酸1.5gを添加した後、系内を窒素置換し、オイルバスにて90℃に加熱、昇温した。昇温終了後、2時間加熱攪拌した。得られた結晶をろ別し、イオン交換水でpHが6になるまで洗浄、乾燥し、固体粒子63.9gを得た。
Example 1
A 2 L three-necked flask is equipped with a stirrer, a reflux tube, and a thermometer. Zinc nitrate hexahydrate 223.2 g, copper (II) nitrate trihydrate 90.9 mg, gallium nitrate hexahydrate 2.73 mg Then, 0.078 g of diammonium hexachloroiridium (IV) obtained by recrystallization as in Reference Example 1 (iron content 100 ppm) and 84.5 g of thioacetamide were added and dissolved by adding 750 mL of ion-exchanged water. did. After adding 1.5 g of nitric acid, the inside of the system was replaced with nitrogen, heated to 90 ° C. in an oil bath, and heated. After completion of the temperature increase, the mixture was stirred for 2 hours. The obtained crystals were separated by filtration, washed with ion-exchanged water until the pH became 6, and dried to obtain 63.9 g of solid particles.

固体粒子63.9gを坩堝に入れ、窒素雰囲気下、800℃にて4時間焼成した。焼成後、固体粒子を1重量%シアン化ナトリウム水溶液600gで洗浄し、更にpHが6になるまで、イオン交換水で洗浄した。シアンは検出限界以下であった。固体粒子を150℃にて15時間乾燥し、蛍光体60.1gを得た。   63.9 g of solid particles were placed in a crucible and calcined at 800 ° C. for 4 hours under a nitrogen atmosphere. After calcination, the solid particles were washed with 600 g of a 1% by weight aqueous sodium cyanide solution and further washed with ion-exchanged water until the pH reached 6. Cyan was below the detection limit. The solid particles were dried at 150 ° C. for 15 hours to obtain 60.1 g of a phosphor.

得られた蛍光体をICP発光分析したところ、Cuを564ppm、Gaを71.2ppm、Irを55.9ppm含有していることがわかった。   ICP emission analysis of the obtained phosphor revealed that it contained 564 ppm of Cu, 71.2 ppm of Ga, and 55.9 ppm of Ir.

蛍光体について紫外線照射による光励起スペクトル及び量子効率を測定した。図1に蛍光スペクトル、表4に量子効率を示す。   The photoexcitation spectrum and quantum efficiency of the phosphor were measured by ultraviolet irradiation. FIG. 1 shows the fluorescence spectrum, and Table 4 shows the quantum efficiency.

得られた蛍光体1.5gにバインダーとしてフッ素系バインダー(DuPont製7155)1.0gを添加し、混合、脱泡して発光層ペーストを作成した。ITO付きPETフィルムに、20mm角でスクリーン版(200メッシュ、25μm)を用い、上記発光層ペーストを膜厚40μmで製版、100℃で10分間乾燥して発光層を製膜した。この発光層の上面に更にチタン酸バリウムペースト(DuPont製7153)をスクリーン版(150メッシュ、25μm)を用い製版、100℃で10分間乾燥の後、再度製版し、100℃で10分間乾燥、20μmの誘電層を製膜した。その上面に、電極として、銀ペースト(アチソン製461SS)をスクリーン版(150メッシュ、25μm)を用い製版、100℃で10分間乾燥して電極を製膜し、印刷型EL素子を構成した。得られた素子について、200V、1kHzで発光輝度を測定することによりEL材料評価を行なった。結果を表4に示す。   To 1.5 g of the obtained phosphor, 1.0 g of a fluorine-based binder (DuPont 7155) was added as a binder, mixed and degassed to prepare a light emitting layer paste. Using a 20 mm square screen plate (200 mesh, 25 μm) on the PET film with ITO, the light emitting layer paste was made into a plate with a film thickness of 40 μm and dried at 100 ° C. for 10 minutes to form a light emitting layer. Further, barium titanate paste (7153 manufactured by DuPont) was made on the upper surface of the light emitting layer using a screen plate (150 mesh, 25 μm), dried at 100 ° C. for 10 minutes, then re-engraved, dried at 100 ° C. for 10 minutes, and 20 μm. A dielectric layer was formed. On the upper surface, a silver paste (461SS made by Acheson) was made as a plate using a screen plate (150 mesh, 25 μm) and dried at 100 ° C. for 10 minutes to form an electrode, thereby constituting a printing EL device. About the obtained element, EL material evaluation was performed by measuring light emission luminance at 200 V and 1 kHz. The results are shown in Table 4.

実施例2
実施例1において、参考例1のように再結晶を実施して得た鉄含有量10ppmのヘキサクロロイリジウム(IV)酸2アンモニウム0.078gを使用した以外は、実施例1と同様に行なった。
Example 2
In Example 1, it carried out like Example 1 except having used 0.078g of hexachloro iridium (IV) acid diammonium with an iron content of 10 ppm obtained by recrystallizing like the reference example 1. FIG.

蛍光体について紫外線照射による光励起スペクトル及び量子効率を測定した。図2に蛍光スペクトル、表4に量子効率を示す。また得られた蛍光体を使用して実施例1と同様にして印刷型EL素子を作製し、EL材料評価を行なった。その評価結果を表4に示す。   The photoexcitation spectrum and quantum efficiency of the phosphor were measured by ultraviolet irradiation. FIG. 2 shows the fluorescence spectrum, and Table 4 shows the quantum efficiency. Further, using the obtained phosphor, a printing type EL element was produced in the same manner as in Example 1, and the EL material was evaluated. The evaluation results are shown in Table 4.

実施例3
実施例1において、参考例1のように再結晶を実施して得た鉄含有量78ppmのヘキサクロロイリジウム(IV)酸2アンモニウム0.078gを使用した以外は、実施例1と同様に行なった。
Example 3
In Example 1, it carried out like Example 1 except having used 0.078g of hexachloro iridium (IV) acid diammonium with an iron content of 78 ppm obtained by implementing recrystallization like the reference example 1. FIG.

蛍光体について紫外線照射による光励起スペクトルおよび量子効率を測定した。蛍光スペクトルは図1と同様であった。表4に量子効率を示す。また得られた蛍光体を使用して実施例1と同様にして印刷型EL素子を作製し、EL材料評価を行なった。その評価結果を表4に示す。   The photoexcitation spectrum and quantum efficiency of the phosphor were measured by ultraviolet irradiation. The fluorescence spectrum was the same as in FIG. Table 4 shows the quantum efficiency. Further, using the obtained phosphor, a printing type EL element was produced in the same manner as in Example 1, and the EL material was evaluated. The evaluation results are shown in Table 4.

実施例4
実施例1において、参考例1のように再結晶を実施して得た鉄含有量46ppmのヘキサクロロイリジウム(IV)酸2アンモニウム0.078gを使用した以外は、実施例1と同様に行なった。
Example 4
In Example 1, it carried out like Example 1 except having used 0.078 g of hexaammonium iridium (IV) acid diammonium with an iron content of 46 ppm obtained by recrystallizing like the reference example 1. FIG.

蛍光体について紫外線照射による光励起スペクトルおよび量子効率を測定した。蛍光スペクトルは図2と同様であった。表4に量子効率を示す。また得られた蛍光体を使用して実施例1と同様にして印刷型EL素子を作製し、EL材料評価を行なった。その評価結果を表4に示す。   The photoexcitation spectrum and quantum efficiency of the phosphor were measured by ultraviolet irradiation. The fluorescence spectrum was the same as in FIG. Table 4 shows the quantum efficiency. Further, using the obtained phosphor, a printing type EL element was produced in the same manner as in Example 1, and the EL material was evaluated. The evaluation results are shown in Table 4.

実施例5
実施例1において、参考例1のように再結晶を実施して得た鉄2ppmのヘキサクロロイリジウム(IV)酸2アンモニウム0.078gを使用した以外は、実施例1と同様に行った。
Example 5
In Example 1, it carried out like Example 1 except having used 0.078 g of 2 ammonium iron hexachloro iridium (IV) acids obtained by recrystallizing like the reference example 1. FIG.

蛍光体について紫外線照射による光励起スペクトルおよび量子効率を測定した。蛍光スペクトルは図2と同様であった。表4に量子効率を示す。また得られた蛍光体を使用して実施例1と同様にして印刷型EL素子を作製し、EL材料評価を行なった。その評価結果を表4に示す。   The photoexcitation spectrum and quantum efficiency of the phosphor were measured by ultraviolet irradiation. The fluorescence spectrum was the same as in FIG. Table 4 shows the quantum efficiency. Further, using the obtained phosphor, a printing type EL element was produced in the same manner as in Example 1, and the EL material was evaluated. The evaluation results are shown in Table 4.

実施例6
実施例1において、参考例2のように再結晶を実施して得た鉄4ppmのヘキサクロロイリジウム(III)酸3アンモニウム0.080gを使用した以外は、実施例1と同様に行った。
Example 6
In Example 1, it carried out like Example 1 except having used 0.080 g of 3 ammonium hexachloro iridium (III) acid of 4 ppm iron obtained by recrystallizing like the reference example 2. FIG.

蛍光体について紫外線照射による光励起スペクトルおよび量子効率を測定した。蛍光スペクトルは図2と同様であった。表4に量子効率を示す。また得られた蛍光体を使用して実施例1と同様にして印刷型EL素子を作製し、EL材料評価を行なった。その評価結果を表4に示す。   The photoexcitation spectrum and quantum efficiency of the phosphor were measured by ultraviolet irradiation. The fluorescence spectrum was the same as in FIG. Table 4 shows the quantum efficiency. Further, using the obtained phosphor, a printing type EL element was produced in the same manner as in Example 1, and the EL material was evaluated. The evaluation results are shown in Table 4.

実施例7
実施例1において、参考例2のように再結晶を実施して得た鉄12ppmのヘキサクロロイリジウム(III)酸3アンモニウム0.080gを使用した以外は、実施例1と同様に行った。
Example 7
In Example 1, it carried out like Example 1 except having used 0.080 g of triammonium hexachloro iridium (III) of 12 ppm iron obtained by implementing recrystallization like the reference example 2. FIG.

蛍光体について紫外線照射による光励起スペクトルおよび量子効率を測定した。蛍光スペクトルは図2と同様であった。表4に量子効率を示す。また得られた蛍光体を使用して実施例1と同様にして印刷型EL素子を作製し、EL材料評価を行なった。その評価結果を表4に示す。   The photoexcitation spectrum and quantum efficiency of the phosphor were measured by ultraviolet irradiation. The fluorescence spectrum was the same as in FIG. Table 4 shows the quantum efficiency. Further, using the obtained phosphor, a printing type EL element was produced in the same manner as in Example 1, and the EL material was evaluated. The evaluation results are shown in Table 4.

比較例1
実施例1において、鉄300ppm含有のヘキサクロロイリジウム(IV)酸2アンモニウム0.078gを使用した以外は、実施例1と同様に行なった。
Comparative Example 1
In Example 1, it carried out similarly to Example 1 except having used 0.078 g of hexachloro iridium (IV) acid diammonium containing 300 ppm of iron.

蛍光体について紫外線照射による光励起スペクトル及び量子効率を測定した。図3に蛍光スペクトル、表4に量子効率を示す。また得られた蛍光体を使用して実施例1と同様にして印刷型EL素子を作製し、EL材料評価を行なった。その評価結果を表4に示す。   The photoexcitation spectrum and quantum efficiency of the phosphor were measured by ultraviolet irradiation. FIG. 3 shows the fluorescence spectrum, and Table 4 shows the quantum efficiency. Further, using the obtained phosphor, a printing type EL element was produced in the same manner as in Example 1, and the EL material was evaluated. The evaluation results are shown in Table 4.

比較例2
実施例1において、参考例1のように再結晶を実施して得た鉄含有量120ppmのヘキサクロロイリジウム(IV)酸2アンモニウム0.078gを使用した以外は、実施例1と同様に行なった。
Comparative Example 2
In Example 1, it carried out like Example 1 except having used 0.078g of hexachloro iridium (IV) acid diammonium with an iron content of 120 ppm obtained by recrystallizing like the reference example 1. FIG.

蛍光体について紫外線照射による光励起スペクトル及び量子効率を測定した。発光スペクトルは図3と同様であった。表4に量子効率を示す。また得られた蛍光体を使用して実施例1と同様にして印刷型EL素子を作製し、EL材料評価を行なった。その評価結果を表4に示す。   The photoexcitation spectrum and quantum efficiency of the phosphor were measured by ultraviolet irradiation. The emission spectrum was the same as in FIG. Table 4 shows the quantum efficiency. Further, using the obtained phosphor, a printing type EL element was produced in the same manner as in Example 1, and the EL material was evaluated. The evaluation results are shown in Table 4.

比較例3
実施例1において、参考例1のように再結晶を実施して得た鉄含有量180ppmのヘキサクロロイリジウム(IV)酸2アンモニウム0.078gを使用した以外は、実施例1と同様に行なった。
Comparative Example 3
In Example 1, it carried out like Example 1 except having used 0.078g of hexachloro iridium (IV) acid diammonium with an iron content of 180 ppm obtained by recrystallizing like the reference example 1. FIG.

蛍光体について紫外線照射による光励起スペクトル及び量子効率を測定した。発光スペクトルは図3と同様であった。表4に量子効率を示す。また得られた蛍光体を使用して実施例1と同様にして印刷型EL素子を作製し、EL材料評価を行なった。その評価結果を表4に示す。   The photoexcitation spectrum and quantum efficiency of the phosphor were measured by ultraviolet irradiation. The emission spectrum was the same as in FIG. Table 4 shows the quantum efficiency. Further, using the obtained phosphor, a printing type EL element was produced in the same manner as in Example 1, and the EL material was evaluated. The evaluation results are shown in Table 4.

比較例4
実施例1において、参考例1のように再結晶を実施して得た鉄含有量103ppmのヘキサクロロイリジウム(IV)酸2アンモニウム0.078gを使用した以外は、実施例1と同様に行なった。
Comparative Example 4
In Example 1, it carried out like Example 1 except having used 0.078g of hexachloro iridium (IV) acid diammonium with an iron content of 103 ppm obtained by recrystallizing like the reference example 1. FIG.

蛍光体について紫外線照射による光励起スペクトル及び量子効率を測定した。発光スペクトルは図3と同様であった。表4に量子効率を示す。また得られた蛍光体を使用して実施例1と同様にして印刷型EL素子を作製し、EL材料評価を行なった。その評価結果を表4に示す。   The photoexcitation spectrum and quantum efficiency of the phosphor were measured by ultraviolet irradiation. The emission spectrum was the same as in FIG. Table 4 shows the quantum efficiency. Further, using the obtained phosphor, a printing type EL element was produced in the same manner as in Example 1, and the EL material was evaluated. The evaluation results are shown in Table 4.

Figure 0005547493
Figure 0005547493

なお、分光蛍光光度計の測定条件は以下のとおりであった。
測定装置:日本分光株式会社製 FP−6500
励起波長:350nm
励起バンド幅:5nm
ソフトウェア:Spectra Manager for Windows(登録商標) 95/NT Ver1.00.00 2005 日本分光株式会社製
The measurement conditions of the spectrofluorometer were as follows.
Measuring device: FP-6500 manufactured by JASCO Corporation
Excitation wavelength: 350 nm
Excitation bandwidth: 5 nm
Software: Spectra Manager for Windows (registered trademark) 95 / NT Ver1.00.00 2005 manufactured by JASCO Corporation

蛍光体の量子効率は30%以上あれば実用性があるが、本発明の方法により得られた蛍光体はいずれもほぼ40%又はそれ以上という高い量子効率を有するので、さらに発光特性に優れた蛍光体として有用である。実際、本発明の方法により得られた蛍光体を使用してEL素子を作製すると、EL素子の発光輝度が著しく向上することが判明した。   If the quantum efficiency of the phosphor is 30% or more, it is practical, but all of the phosphors obtained by the method of the present invention have a high quantum efficiency of approximately 40% or more, and thus have excellent emission characteristics. Useful as a phosphor. In fact, it has been found that when an EL device is manufactured using the phosphor obtained by the method of the present invention, the light emission luminance of the EL device is remarkably improved.

Claims (4)

II−VI族化合物半導体にイリジウムをドーピングする工程を含むイリジウム含有蛍光体の製造方法であって、イリジウムをドーピングする工程に、不純物の鉄の含有量が100ppm以下であるイリジウム錯塩を使用し、
II−VI族化合物半導体を水に分散し、イリジウム錯塩の粉末或いは水に溶解したイリジウム錯塩を加え、攪拌しながら、水を蒸発させて無機組成物を得、その無機組成物を加熱焼成することを特徴とする方法。
A method for producing an iridium-containing phosphor including a step of doping iridium into a II-VI group compound semiconductor, wherein an iridium complex salt having an impurity iron content of 100 ppm or less is used in the step of doping iridium ,
Disperse II-VI compound semiconductor in water, add iridium complex salt powder or iridium complex salt dissolved in water, evaporate water while stirring to obtain an inorganic composition, and heat-fire the inorganic composition A method characterized by.
不純物の鉄の含有量が50ppm以下であるイリジウム錯塩である請求項1記載の方法。 2. The method according to claim 1, wherein the iridium complex salt has an impurity iron content of 50 ppm or less. 不純物の鉄の含有量が10ppm以下であるイリジウム錯塩である請求項1記載の方法。 The method according to claim 1, wherein the iridium complex salt has an impurity iron content of 10 ppm or less. イリジウム錯塩がヘキサクロロイリジウム塩である請求項1記載の方法。 The process according to claim 1, wherein the iridium complex salt is a hexachloroiridium salt.
JP2009548086A 2007-12-27 2008-12-26 Method for producing iridium-containing phosphor Expired - Fee Related JP5547493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009548086A JP5547493B2 (en) 2007-12-27 2008-12-26 Method for producing iridium-containing phosphor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2007336726 2007-12-27
JP2007336726 2007-12-27
JP2008258713 2008-10-03
JP2008258713 2008-10-03
PCT/JP2008/073710 WO2009084625A1 (en) 2007-12-27 2008-12-26 Method for producing iridium-containing phosphor
JP2009548086A JP5547493B2 (en) 2007-12-27 2008-12-26 Method for producing iridium-containing phosphor

Publications (2)

Publication Number Publication Date
JPWO2009084625A1 JPWO2009084625A1 (en) 2011-05-19
JP5547493B2 true JP5547493B2 (en) 2014-07-16

Family

ID=40824338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009548086A Expired - Fee Related JP5547493B2 (en) 2007-12-27 2008-12-26 Method for producing iridium-containing phosphor

Country Status (3)

Country Link
JP (1) JP5547493B2 (en)
TW (1) TW200934857A (en)
WO (1) WO2009084625A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001152144A (en) * 1999-12-01 2001-06-05 Mitsubishi Chemicals Corp Preparation process of fluorescent body
JP2006241183A (en) * 2005-02-28 2006-09-14 Fuji Photo Film Co Ltd Electroluminescent phosphor and el element by using the same
WO2007043676A1 (en) * 2005-10-11 2007-04-19 Kuraray Luminas Co., Ltd. A luminous body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001152144A (en) * 1999-12-01 2001-06-05 Mitsubishi Chemicals Corp Preparation process of fluorescent body
JP2006241183A (en) * 2005-02-28 2006-09-14 Fuji Photo Film Co Ltd Electroluminescent phosphor and el element by using the same
WO2007043676A1 (en) * 2005-10-11 2007-04-19 Kuraray Luminas Co., Ltd. A luminous body

Also Published As

Publication number Publication date
WO2009084625A1 (en) 2009-07-09
JPWO2009084625A1 (en) 2011-05-19
TW200934857A (en) 2009-08-16

Similar Documents

Publication Publication Date Title
Ren et al. Water triggered interfacial synthesis of highly luminescent CsPbX 3: Mn 2+ quantum dots from nonluminescent quantum dots
DE112007001645T5 (en) Phosphorus, process for its preparation and light emitting apparatus
JP5337158B2 (en) Method for producing zinc sulfide phosphor
JPWO2006001194A1 (en) Phosphor, production method thereof, and particle dispersion type EL device using the same
Varnakavi et al. Compositional engineering of ZnBr 2-doped CsPbBr 3 perovskite nanocrystals: insights into structure transformation, optical performance, and charge-carrier dynamics
JP5583403B2 (en) Blue phosphor
JP5547493B2 (en) Method for producing iridium-containing phosphor
WO2014006755A1 (en) Silicate phosphor and process for manufacturing same
JP2000080363A (en) Preparation of green light-emitting phosphor
JP5394914B2 (en) Iridium element-containing phosphor and method for producing the same
JP5484397B2 (en) Silicate phosphor and method for producing the same
JP2010143967A (en) Method for preparing zinc sulfide phosphor
JP2010143969A (en) Method for preparing phosphor
US20130105737A1 (en) Zinc sulfide blue phosphor and a method for producing the same
JP2009161680A (en) Method for preparing highly crystalline fluorescent material
JP2012144689A5 (en)
JP2008291125A (en) Method for producing phosphor
JP2008248106A (en) Blue fluorophor
JP2010180297A (en) Zinc sulfide phosphor and process of producing the same
JP5627281B2 (en) Zinc sulfide phosphor, precursor thereof, and production method thereof
JP5572032B2 (en) Method for producing zinc sulfide phosphor
JP2010143965A (en) Method for preparing phosphor
WO2010147180A1 (en) Process for producing zinc sulfide-based blue fluorescent substance
JP2010270253A (en) Method for producing zinc sulfide-based phosphor
CN112135889A (en) Red phosphor and light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140515

R150 Certificate of patent or registration of utility model

Ref document number: 5547493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees