JP5546983B2 - Plasma CVD film forming method and gas barrier film - Google Patents

Plasma CVD film forming method and gas barrier film Download PDF

Info

Publication number
JP5546983B2
JP5546983B2 JP2010169021A JP2010169021A JP5546983B2 JP 5546983 B2 JP5546983 B2 JP 5546983B2 JP 2010169021 A JP2010169021 A JP 2010169021A JP 2010169021 A JP2010169021 A JP 2010169021A JP 5546983 B2 JP5546983 B2 JP 5546983B2
Authority
JP
Japan
Prior art keywords
film
frequency
inorganic
inorganic film
gas barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010169021A
Other languages
Japanese (ja)
Other versions
JP2012031436A (en
Inventor
年哉 高橋
滋英 伊藤
勝 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010169021A priority Critical patent/JP5546983B2/en
Publication of JP2012031436A publication Critical patent/JP2012031436A/en
Application granted granted Critical
Publication of JP5546983B2 publication Critical patent/JP5546983B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

本発明は、プラズマCVDによる成膜の技術分野に関し、詳しくは、表面が高分子化合物等の有機材料からなる基板を用いて、目的とする性能を有する無機膜を安定して成膜できるプラズマCVD成膜方法、および、このプラズマCVD成膜方法で成膜したガスバリア膜に関する。   The present invention relates to the technical field of film formation by plasma CVD, and more specifically, plasma CVD that can stably form an inorganic film having a target performance using a substrate whose surface is made of an organic material such as a polymer compound. The present invention relates to a film forming method and a gas barrier film formed by the plasma CVD film forming method.

ガスバリアフィルム、保護フィルム、光学フィルタや反射防止フィルム等の光学フィルムなど、プラスチックフィルム等のフィルム状基板の表面に、ガスバリア性や反射防止性などの目的とする機能を発現する無機膜を成膜してなる機能性フィルム(機能性シート)が、光学素子、液晶ディスプレイや有機ELディスプレイなどの表示装置、半導体装置、薄膜太陽電池などの、各種の用途に利用されている。
また、目的とする性能を発揮する製品を得るために、光学素子、プラスチック板、各種のデバイスなど、各種の物品の表面に、ガスバリア膜、反射防止膜、防曇膜、透明導電膜等の目的とする機能を発現する無機膜を成膜することも行なわれている。
On the surface of a film substrate such as a plastic film, such as a gas barrier film, protective film, optical film such as an optical filter or an antireflection film, an inorganic film that exhibits the desired functions such as gas barrier properties and antireflection properties is formed. The functional film (functional sheet) is used for various applications such as optical elements, display devices such as liquid crystal displays and organic EL displays, semiconductor devices, and thin film solar cells.
In addition, in order to obtain a product that exhibits the target performance, the object such as a gas barrier film, an antireflection film, an antifogging film, a transparent conductive film, etc. on the surface of various articles such as optical elements, plastic plates and various devices An inorganic film that exhibits the function is also formed.

ガスバリアフィルムなどの機能性フィルムの基板(ベースフィルム)としては、PET(ポリエチレンテレフタレート)フィルムなどの高分子材料からなるフィルムが汎用されている。また、プラスチック板はもちろん、光学素子など各種の物品が高分子材料で形成されている場合も多い。
このような高分子材料からなるフィルムなど、有機材料からなる表面を有する基板の表面に、各種の無機膜を成膜する方法の1つとして、プラズマCVDが例示される。
As a functional film substrate (base film) such as a gas barrier film, a film made of a polymer material such as a PET (polyethylene terephthalate) film is widely used. In addition to plastic plates, various articles such as optical elements are often formed of a polymer material.
As one of methods for forming various inorganic films on the surface of a substrate having a surface made of an organic material such as a film made of such a polymer material, plasma CVD is exemplified.

例えば、特許文献1には、透明性を有する高分子材料からなる基板の表面に、炭素を5〜15%有する酸化珪素膜をガスバリア膜として形成してなるガスバリアフィルムにおいて、有機珪素化合物ガスおよび酸素ガスを反応ガスとして用いるプラズマCVDによって、前記無機膜を成膜することが開示されている。   For example, Patent Document 1 discloses an organic silicon compound gas and oxygen in a gas barrier film in which a silicon oxide film having 5 to 15% of carbon is formed as a gas barrier film on the surface of a substrate made of a polymer material having transparency. It is disclosed that the inorganic film is formed by plasma CVD using a gas as a reaction gas.

特開平11−70611号公報JP-A-11-70611

特許文献1に示されるようなガスバリア膜は、窒化珪素や酸化珪素等のガスバリア性を発現する材料からなる無機膜であり、プラスチックフィルム等の基板の表面に、目的とするガスバリア性を得ることができる所定膜厚、スパッタリングやCVDなどの気相成膜法によって形成される。
また、当然のことであるが、ガスバリア膜に限らず、プラスチックフィルム等の各種の基板に、各種の機能を付与する目的として成膜される無機膜は、製品の用途に応じて、目的とする性能を十分に発揮できるだけの膜厚が成膜される。
A gas barrier film as shown in Patent Document 1 is an inorganic film made of a material that exhibits gas barrier properties such as silicon nitride and silicon oxide, and can obtain a desired gas barrier property on the surface of a substrate such as a plastic film. The film can be formed by a vapor deposition method such as sputtering or CVD.
Naturally, an inorganic film formed for the purpose of imparting various functions to various substrates such as a plastic film is not limited to a gas barrier film. A film thickness sufficient to exhibit the performance is formed.

ところが、前記特許文献1に開示されるような、プラスチックフィルムなどの有機材料からなる表面を有する基板に、プラズマCVDによって無機膜を成膜した際には、目的とする膜厚の無機膜を形成したにも関わらず、膜厚に応じた目的とする性能を得ることが出来ない場合が有る。   However, when an inorganic film is formed by plasma CVD on a substrate having a surface made of an organic material such as a plastic film as disclosed in Patent Document 1, an inorganic film having a desired thickness is formed. Nevertheless, there are cases in which the intended performance corresponding to the film thickness cannot be obtained.

本発明の目的は、前記従来技術の問題点を解決することにあり、プラスチックフィルムなどの有機材料からなる表面を有する基板に、プラズマCVDによってガスバリア膜等の目的とする機能を発現する無機膜を成膜するに際し、膜厚に応じた、目的とする性能を発揮する無機膜を、安定して成膜することを可能にするプラズマCVD成膜方法、および、この成膜方法で形成したガスバリア膜を提供することにある。   An object of the present invention is to solve the above-mentioned problems of the prior art, and an inorganic film that expresses a target function such as a gas barrier film by plasma CVD is formed on a substrate having a surface made of an organic material such as a plastic film. Plasma CVD film forming method capable of stably forming an inorganic film exhibiting desired performance according to the film thickness, and gas barrier film formed by this film forming method Is to provide.

前記目的を達成するために、本発明のプラズマCVD成膜方法は、有機材料からなる表面を有する基板に、プラズマCVDによって無機膜を成膜するに際し、第1のプラズマ励起周波数で無機膜を成膜し、その後、前記第1のプラズマ励起周波数よりも低い周波数の第2のプラズマ励起周波数で、無機膜を成膜することを特徴とするプラズマCVD成膜方法を提供する。   In order to achieve the above object, the plasma CVD film forming method of the present invention forms an inorganic film at a first plasma excitation frequency when forming an inorganic film on a substrate having a surface made of an organic material by plasma CVD. There is provided a plasma CVD film forming method characterized in that an inorganic film is formed at a second plasma excitation frequency lower than the first plasma excitation frequency.

このような本発明のプラズマCVD成膜方法において、前記第1のプラズマ励起周波数が5〜300MHzであり、前記第2のプラズマ励起周波数が0.1〜60MHzであるのが好ましく、また、前記第1のプラズマ励起周波数によって、3nm以上の膜厚となるまで成膜を行なうのが好ましく、さらに、ガスバリア膜を成膜するのが好ましい。   In such a plasma CVD film forming method of the present invention, the first plasma excitation frequency is preferably 5 to 300 MHz, the second plasma excitation frequency is preferably 0.1 to 60 MHz, and the first plasma excitation frequency is preferably 0.1 to 60 MHz. It is preferable to form a film with a plasma excitation frequency of 1 to a film thickness of 3 nm or more, and it is preferable to form a gas barrier film.

また、本発明のガスバリア膜は、前記本発明のプラズマCVD成膜方法で成膜したガスバリア膜である。   The gas barrier film of the present invention is a gas barrier film formed by the plasma CVD film forming method of the present invention.

本発明のプラズマCVD成膜方法は、プラスチックフィルムのような有機材料からなる表面(成膜面)を有する基板に、プラズマCVDによって、ガスバリア膜などの目的とする機能を発現する無機膜を成膜するものであり、まず、第1のプラズマ励起周波数で成膜を行い、その後、第1のプラズマ励起周波数よりも低い周波数である第2のプラズマ励起周波数で無機膜を成膜して、目的とする膜厚の無機膜を成膜する。   In the plasma CVD film forming method of the present invention, an inorganic film exhibiting a desired function such as a gas barrier film is formed by plasma CVD on a substrate having a surface (film forming surface) made of an organic material such as a plastic film. First, a film is formed at a first plasma excitation frequency, and then an inorganic film is formed at a second plasma excitation frequency that is lower than the first plasma excitation frequency. An inorganic film having a thickness to be formed is formed.

後に詳述するが、有機材料からなる表面を有する基板に、プラズマCVDによって無機膜を成膜すると、最初は純粋な無機膜が成膜されることはなく、基板表面の有機材料と成膜する無機膜材料との混合層のような膜が成膜され、その後、目的とする無機膜が純粋な状態で成膜される。
この混合層は、純粋な無機膜ほどの機能性を発現しない。従って、この混合層が厚い場合には、要求性能に応じた膜厚だけ無機膜を成膜しても、無機膜の実質的な膜厚が少なくなってしまい、目的とする性能を発揮する無機膜にはならない。また、この場合には、目的とする性能を得るためには、無機膜の膜厚を厚くする必要がある。
As will be described in detail later, when an inorganic film is formed by plasma CVD on a substrate having a surface made of an organic material, a pure inorganic film is not formed at first, but an organic material on the substrate surface is formed. A film such as a mixed layer with an inorganic film material is formed, and then the target inorganic film is formed in a pure state.
This mixed layer does not exhibit the functionality as a pure inorganic film. Therefore, when this mixed layer is thick, even if the inorganic film is formed by the film thickness corresponding to the required performance, the substantial film thickness of the inorganic film decreases, and the inorganic film that exhibits the desired performance is obtained. It does not become a film. In this case, it is necessary to increase the thickness of the inorganic film in order to obtain the desired performance.

これに対し、本件出願人は、先に、有機材料からなる表面を有する基板にプラズマCVDによって無機膜(ガスバリア膜)を成膜するに際し、この混合層の生成を好適に抑制できる成膜方法を提案している。この成膜方法は、まず、第1のプラズマ励起電力でガスバリア膜を成膜し、その後、プラズマ励起電力を、この第1のプラズマ励起電力よりも高い第2のプラズマ励起電力に変更してガスバリア膜を成膜する成膜方法である(特開2010−1535号公報参照)。また、混合層の生成を好適に抑制できる、別の成膜方法として、まず、第1のプラズマ放電圧力でガスバリア膜を成膜し、その後、この第1のプラズマ放電圧力よりも低圧力の第2のプラズマ放電圧力でガスバリア膜を成膜する成膜方法も、提案している(特開2010−77461号公報参照)。
これらのガスバリア膜の成膜方法によれば、混合層の形成を好適に抑制して、薄くても、目的とする機能を発現するガスバリア膜を、安定して成膜することができる。
本発明のプラズマCVD成膜方法は、有機材料からなる表面を有する基板に無機膜を成膜するに際し、前記混合層の生成を抑制できる無機膜のプラズマCVD成膜方法として、これらとは異なる新しい方法を提案するものであり、最初は、前記混合層が形成され難い高いプラズマ励起周波数で無機膜の成膜を行い、その後、緻密で膜質の良好な無機膜が得られる低いプラズマ励起周波数で無機膜の成膜を行うことにより、目的とする膜厚の無機膜を成膜する。
従って、本発明のプラズマCVD成膜方法によれば、混合層の生成を大幅に抑制して、かつ、緻密で膜質の良好な無機膜を成膜できる。そのため、本発明によれば、プラスチックフィルム等の有機材料からなる基板の表面に、ガスバリア膜等の目的とする機能を発現する無機膜を成膜する際に、不要に膜厚を厚くする必要がなく、薄くても、所定の性能を有する無機膜を成膜することができる。また、有機材料からなる表面を有する基板に、目的とする機能を発現する無機膜を成膜してなる、各種の製品の生産性も向上できる。
In contrast, the applicant of the present invention previously described a film forming method capable of suitably suppressing the generation of the mixed layer when forming an inorganic film (gas barrier film) by plasma CVD on a substrate having a surface made of an organic material. is suggesting. In this film forming method, first, a gas barrier film is formed with a first plasma excitation power, and then the plasma excitation power is changed to a second plasma excitation power higher than the first plasma excitation power. This is a film formation method for forming a film (see JP 2010-1535 A). In addition, as another film forming method that can suitably suppress the generation of the mixed layer, first, a gas barrier film is formed at a first plasma discharge pressure, and then, a first pressure lower than the first plasma discharge pressure is formed. A film forming method for forming a gas barrier film at a plasma discharge pressure of 2 has also been proposed (see JP 2010-77461 A).
According to these gas barrier film forming methods, it is possible to stably form a gas barrier film that exhibits the desired function even if it is thin by suitably suppressing the formation of the mixed layer.
The plasma CVD film forming method of the present invention is a new and different plasma CVD film forming method for an inorganic film capable of suppressing the formation of the mixed layer when forming an inorganic film on a substrate having a surface made of an organic material. First, an inorganic film is formed at a high plasma excitation frequency at which the mixed layer is difficult to be formed, and then an inorganic film is formed at a low plasma excitation frequency to obtain a dense inorganic film with good film quality. By forming the film, an inorganic film having a target film thickness is formed.
Therefore, according to the plasma CVD film forming method of the present invention, it is possible to significantly suppress the generation of the mixed layer and to form a dense inorganic film with good film quality. Therefore, according to the present invention, it is necessary to unnecessarily increase the film thickness when forming an inorganic film exhibiting a desired function such as a gas barrier film on the surface of a substrate made of an organic material such as a plastic film. Even if it is thin, an inorganic film having a predetermined performance can be formed. In addition, productivity of various products in which an inorganic film that exhibits a target function is formed on a substrate having a surface made of an organic material can be improved.

以下、本発明のプラズマCVD成膜方法およびガスバリア膜について詳細に説明する。   Hereinafter, the plasma CVD film-forming method and gas barrier film of the present invention will be described in detail.

本発明のプラズマCVD成膜方法は、有機材料からなる表面を有する基板の表面(成膜面)に、ガスバリア膜や反射防止膜などの、目的とする機能を発現する無機膜をプラズマCVDによって成膜するものである。
本発明において、基板表面への無機膜の成膜(無機膜の形成)の開始時には、第1のプラズマ励起周波数で成膜を行う。本発明では、この第1のプラズマ励起周波数で所定の膜厚だけ無機膜の成膜を行なったら、その後、第1のプラズマ励起周波数よりも周波数が低い第2のプラズマ励起周波数で同じ無機膜を成膜して、目的とする膜厚(最終的に作成する膜厚)の無機膜を成膜する。
In the plasma CVD film forming method of the present invention, an inorganic film exhibiting a desired function, such as a gas barrier film or an antireflection film, is formed by plasma CVD on the surface (film forming surface) of a substrate having a surface made of an organic material. It is a film.
In the present invention, at the start of the formation of an inorganic film on the substrate surface (formation of an inorganic film), the film is formed at the first plasma excitation frequency. In the present invention, after the inorganic film is formed by a predetermined film thickness at the first plasma excitation frequency, the same inorganic film is then formed at the second plasma excitation frequency that is lower than the first plasma excitation frequency. An inorganic film having a target film thickness (final film thickness) is formed by film formation.

本発明のプラズマCVD成膜方法(以下、成膜方法とする)において、無機膜を成膜する基板(基材/被処理体)は、表面が、高分子材料(重合体/ポリマー)や樹脂材料などの各種の有機材料(有機物)からなるものである。
基板は、表面が有機材料で形成され、プラズマCVDによる無機膜の成膜が可能なものであれば、各種の物が利用可能である。具体的には、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアミド、ポリ塩化ビニル、ポリカーボネート、ポリアクリロニトリル、ポリイミド、ポリアクリレート、ポリメタクリレートなどの高分子材料からなる基板が、好適な一例として例示される。
また、本発明において、基板は、長尺なフィルム(ウエブ状のフィルム)やカットシート状のフィルムなどのフィルム状物(シート状物)が好適であるが、これに限定はされず、レンズや光学フィルタなどの光学素子、有機ELや太陽電池などの光電変換素子、液晶ディスプレイや電子ペーパーなどのディスプレイパネル等、表面が有機材料からなる各種の物品(部材)も、基板として利用可能である。
In the plasma CVD film-forming method of the present invention (hereinafter referred to as film-forming method), the substrate (base material / object to be processed) on which the inorganic film is formed has a polymer material (polymer / polymer) or resin on the surface. It consists of various organic materials (organic matter) such as materials.
Any substrate can be used as long as the surface is formed of an organic material and an inorganic film can be formed by plasma CVD. Specifically, a substrate made of a polymer material such as polyethylene terephthalate (PET), polyethylene naphthalate, polyethylene, polypropylene, polystyrene, polyamide, polyvinyl chloride, polycarbonate, polyacrylonitrile, polyimide, polyacrylate, polymethacrylate is preferable. It is illustrated as an example.
In the present invention, the substrate is preferably a film-like material (sheet-like material) such as a long film (web-like film) or a cut-sheet-like film. Various articles (members) whose surface is made of an organic material such as an optical element such as an optical filter, a photoelectric conversion element such as an organic EL or a solar cell, and a display panel such as a liquid crystal display or electronic paper can also be used as a substrate.

さらに、基板は、プラスチックフィルム(高分子フィルム)、有機材料からなる物品、金属フィルムやガラス板、各種の金属製の物品などを本体(基材)として、その表面に、保護層、接着層、光反射層、遮光層、平坦化層、緩衝層、応力緩和層等の、各種の機能を得るための有機材料からなる層(膜)が形成されているものであってもよい。   Furthermore, the substrate is made of a plastic film (polymer film), an article made of an organic material, a metal film or glass plate, various metal articles, etc. as a main body (base material), and a protective layer, an adhesive layer, Layers (films) made of an organic material for obtaining various functions such as a light reflection layer, a light shielding layer, a planarization layer, a buffer layer, and a stress relaxation layer may be formed.

本発明は、このような基板の表面に、プラズマCVDによって無機膜を成膜するものであり、前述のように、第1のプラズマ励起周波数で、予め設定した所定膜厚まで無機膜を成膜したら、その後、第1のプラズマ励起周波数よりも低い第2のプラズマ励起周波数で無機膜を成膜することにより、目的の膜厚まで無機膜を成膜する。
言い換えれば、第1の周波数を有するプラズマ励起電力(プラズマCVDを行なうための投入電力)で無機膜の成膜を開始し、第1の周波数で予め設定した所定膜厚まで無機膜を成膜したら、次いで、第1の周波数よりも低い第2の周波数を有するプラズマ励起電力で無機膜を成膜して、第1の周波数による無機膜の成膜と第2の周波数による無機膜の成膜とによって、目的の膜厚の無機膜を得る。
In the present invention, an inorganic film is formed on the surface of such a substrate by plasma CVD, and as described above, the inorganic film is formed up to a predetermined film thickness at a first plasma excitation frequency. Then, after that, an inorganic film is formed into a target film thickness by forming an inorganic film at a second plasma excitation frequency lower than the first plasma excitation frequency.
In other words, when the inorganic film is formed with plasma excitation power (input power for performing plasma CVD) having the first frequency and the inorganic film is formed up to a predetermined film thickness set in advance at the first frequency. Then, an inorganic film is formed with plasma excitation power having a second frequency lower than the first frequency, and an inorganic film is formed with the first frequency and an inorganic film is formed with the second frequency. Thus, an inorganic film having a target film thickness is obtained.

なお、本発明において、プラズマCVDは、CCP(Capacitively Coupled Plasma 容量結合プラズマ)−CVD法やICP(Inductively Coupled Plasma 誘導結合プラズマ)−CVD法など、公知のプラズマCVDが、全て利用可能である。   In the present invention, as the plasma CVD, all known plasma CVD methods such as CCP (Capacitively Coupled Plasma) -CVD method and ICP (Inductively Coupled Plasma) -CVD method can be used.

前述のように、プラスチックフィルム等の有機材料からなる表面を有する基板に、プラズマCVDによって無機膜を成膜すると、目的とする膜厚(要求される性能/特性に応じた膜厚)の無機膜を成膜したにも関わらず、目的とする性能を得られない場合が、多々、生じた。
本発明者らは、この原因について鋭意検討を重ねた結果、有機材料からなる表面を有する基板にプラズマCVDによって無機膜を成膜すると、基板表面の有機材料と、無機膜の材料(無機膜の成分)とが混合された状態の層が形成されてしまうことに、原因が有ることを見出した。
As described above, when an inorganic film is formed by plasma CVD on a substrate having a surface made of an organic material such as a plastic film, an inorganic film having a target film thickness (a film thickness according to required performance / characteristics) is obtained. In many cases, however, the target performance could not be obtained despite the film formation.
As a result of intensive studies on this cause, the inventors of the present invention have formed an inorganic film by plasma CVD on a substrate having a surface made of an organic material, and an organic material on the surface of the substrate and an inorganic film material (inorganic film). It has been found that there is a cause in the formation of a layer in a state where the component) is mixed.

有機材料の表面にプラズマCVDによって無機膜を成膜すると、プラズマの生成開始時はプラズマのエネルギーが高いこともあり、基板に入射したプラズマの構成要素(ラジカル、イオン、電子等)が基板(有機材料)の内部に進入するような状態となってしまい、基板表面の有機材料と無機膜の材料とが混在する状態の有機材料/無機材料の混合層(以下、便宜的に混合層とする)が形成されてしまう。混合層における有機材料の量は、無機膜の成膜が進行するしたがって低減して、最終的には、有機材料が混在しない、純粋な無機膜が成膜される。
すなわち、有機材料の表面にプラズマCVDによって無機膜を成膜すると、基板と無機膜との界面に、混合層が形成されてしまう。
When an inorganic film is formed on the surface of an organic material by plasma CVD, the plasma energy may be high at the start of plasma generation, and plasma components (radicals, ions, electrons, etc.) incident on the substrate may be the substrate (organic). The mixed layer of the organic material / inorganic material in which the organic material on the substrate surface and the material of the inorganic film are mixed (hereinafter referred to as a mixed layer for convenience) Will be formed. The amount of the organic material in the mixed layer is reduced as the formation of the inorganic film proceeds, so that a pure inorganic film in which no organic material is mixed is finally formed.
That is, when an inorganic film is formed on the surface of the organic material by plasma CVD, a mixed layer is formed at the interface between the substrate and the inorganic film.

ここで、この混合層は、純粋な無機膜ほどの性能を発揮しない。そのため、無機膜が、気相成膜法によって成膜される珪素化合物膜やアルミニウム化合物膜などからなるガスバリア膜のように、機能(性能/特性)の発現に一定の膜厚を必要とする膜(性能が膜厚に依存する無機膜)である場合には、混合層が厚く形成されてしまうと、実質的な無機膜の膜厚が薄くなってしまい、目的とする性能を得ることができない。
混合層が形成されることによる性能の低下分を見越して、無機膜を厚く成膜すれば、目的とする性能を確保することはできる。しかしながら、この方法では、成膜する無機膜の膜厚が厚くなってしまい、材料コストや製造時間等の点で、生産性が低下してしまう。
Here, this mixed layer does not perform as well as a pure inorganic film. Therefore, a film that requires a certain film thickness for function (performance / characteristics) such as a gas barrier film made of a silicon compound film, an aluminum compound film, or the like, in which an inorganic film is formed by a vapor deposition method. In the case of (inorganic film whose performance depends on the film thickness), if the mixed layer is formed thick, the film thickness of the substantial inorganic film becomes thin, and the desired performance cannot be obtained. .
In anticipation of the performance degradation due to the formation of the mixed layer, if the inorganic film is formed thick, the target performance can be ensured. However, in this method, the film thickness of the inorganic film to be formed is increased, and productivity is reduced in terms of material cost, manufacturing time, and the like.

本発明者らは、このような問題を解決するために、鋭意検討を重ねた。その結果、混合層は、プラズマCVDにおけるプラズマ励起周波数(プラズマ励起電力の周波数)が高いほど、薄くなることを見出した。すなわち、プラズマ励起周波数が高いほど、混合層の形成を抑制できることを見出した。
一方で、緻密で高い性能を有する無機膜(十分な機能を発現する無機膜)を成膜するためには、プラズマ励起周波数が低い方が有利であることも、見出した。
The inventors of the present invention have made extensive studies in order to solve such problems. As a result, it has been found that the mixed layer becomes thinner as the plasma excitation frequency (frequency of plasma excitation power) in plasma CVD is higher. That is, it has been found that the higher the plasma excitation frequency, the more the formation of the mixed layer can be suppressed.
On the other hand, it has also been found that a lower plasma excitation frequency is advantageous for forming a dense and high performance inorganic film (an inorganic film exhibiting a sufficient function).

本発明は、上記知見を得ることによって成されたものであり、表面が有機材料である基板に、プラズマCVDで無機膜を成膜する際に、まず、第1のプラズマ励起周波数(以下、第1の周波数とする)でプラズマCVDによる成膜を開始して、所定の膜厚まで無機膜を成膜し、その後、第1の周波数よりも低い第2のプラズマ励起周波数(以下、第2の周波数とする)で無機膜を成膜することにより、目的とする膜厚の無機膜を成膜する。
すなわち、本発明の成膜方法は、最初は、混合層が形成され難い高周波数の第1の周波数で基板の表面に無機膜を成膜し、その後、高い性能が得られる低周波数の第2の周波数で無機膜を成膜して、目的膜厚の無機膜を成膜することで、混合層の生成を抑制し(混合層が薄く)、かつ、緻密で良好な高性能な無機膜を成膜できる。
従って、本発明によれば、大部分が実質的に無機膜で、かつ、緻密で高性能な無機膜を成膜できるので、目的とする性能を発揮する無機膜を、安定して成膜できる。また、混合層の低減および膜の緻密性向上等の相乗効果によって、目的性能を得るための無機膜の膜厚を薄くすることもでき、材料コストの低減や材料利用効率の向上、製造時間の短縮等、生産性を向上することもできる。
The present invention has been made by obtaining the above knowledge. When an inorganic film is formed by plasma CVD on a substrate whose surface is an organic material, first, a first plasma excitation frequency (hereinafter referred to as a first plasma excitation frequency) is obtained. 1), an inorganic film is formed to a predetermined film thickness, and then a second plasma excitation frequency (hereinafter referred to as a second plasma frequency) lower than the first frequency is formed. The inorganic film having a desired film thickness is formed by forming an inorganic film at a frequency).
That is, according to the film forming method of the present invention, first, an inorganic film is formed on the surface of the substrate at the first high frequency at which the mixed layer is difficult to be formed, and then the second low frequency that provides high performance. By forming an inorganic film at the frequency of, and forming an inorganic film with the desired film thickness, the formation of a mixed layer is suppressed (the mixed layer is thin), and a dense and good high-performance inorganic film is formed. A film can be formed.
Therefore, according to the present invention, most of the inorganic film can be formed substantially, and a dense and high-performance inorganic film can be formed. Therefore, the inorganic film exhibiting the desired performance can be stably formed. . In addition, the synergistic effects such as reduction of the mixed layer and improvement of the denseness of the film can reduce the thickness of the inorganic film to obtain the target performance, thereby reducing the material cost, improving the material utilization efficiency, and reducing the production time. Productivity can also be improved, such as shortening.

本発明の成膜方法において、第1の周波数には、特に限定は無く、形成する無機膜の種類(組成)、使用する反応ガスの種類、成膜レート、無機膜の膜厚、要求される性能(特性)等に応じて、適宜、決定すればよい。ここで、本発明者の検討によれば、第1の周波数は、5〜300MHz、特に、13.56〜100MHzが好ましい。
第1の周波数を上記範囲とすることにより、混合層の生成をより好適に抑制して混合層を薄くできる、混合層の厚さを薄くしつつ第1の周波数で比較的高い性能を有する無機膜を形成できる、可視光領域での光吸収やヘイズ(光散乱)を低減できる等の点で好ましい結果を得る。
In the film forming method of the present invention, the first frequency is not particularly limited, and the type (composition) of the inorganic film to be formed, the type of reaction gas to be used, the film forming rate, and the film thickness of the inorganic film are required. What is necessary is just to determine suitably according to performance (characteristics) etc. Here, according to the study by the present inventor, the first frequency is preferably 5 to 300 MHz, particularly 13.56 to 100 MHz.
By setting the first frequency in the above range, the generation of the mixed layer can be more suitably suppressed and the mixed layer can be thinned. Inorganic having relatively high performance at the first frequency while reducing the thickness of the mixed layer Preferred results are obtained in that a film can be formed, light absorption in the visible light region and haze (light scattering) can be reduced.

第1の周波数で成膜する無機膜(混合層/無機膜)の膜厚には、特に限定はなく、目的とする無機膜の膜厚等に応じて、適宜、設定すればよい。
ここで、本発明者らの検討によれば、第1の周波数での無機膜の成膜は、第1の周波数による成膜での膜厚が、3nm以上となるまで行なうのが好ましい。特に、第1の周波数による無機膜の成膜は、膜厚が5nm以上となるまで行なうのが、好ましい。
The film thickness of the inorganic film (mixed layer / inorganic film) formed at the first frequency is not particularly limited, and may be appropriately set according to the film thickness of the target inorganic film.
Here, according to the study by the present inventors, it is preferable that the inorganic film is formed at the first frequency until the film thickness at the first frequency is 3 nm or more. In particular, it is preferable to form the inorganic film at the first frequency until the film thickness reaches 5 nm or more.

第1の周波数によって、膜厚が3nm以上、特に5nm以上となるまで成膜を行なうことにより、無機膜の成膜による混合層の形成をより確実に終了して、低周波数で混合層が形成され易い条件である、第2の周波数での成膜における混合層の生成を、より確実に防止できる。なお、第1の周波数によって成膜する無機膜の膜厚制御は、予め実験やシミュレーションで調べた成膜レートを利用する方法、レーザ変位センサ等を用いて実際に形成された膜の厚さを測定する方法等、気相成膜法で利用されている、公知の膜厚制御方法が、全て利用可能である。   By forming the film until the film thickness becomes 3 nm or more, particularly 5 nm or more with the first frequency, the formation of the mixed layer by the formation of the inorganic film is completed more reliably, and the mixed layer is formed at a low frequency. The generation of the mixed layer in the film formation at the second frequency, which is a condition that is easily performed, can be more reliably prevented. Note that the thickness control of the inorganic film formed by the first frequency is based on the method of using the film formation rate previously examined through experiments and simulations, the thickness of the film actually formed using a laser displacement sensor, etc. Any known film thickness control method used in the vapor phase film forming method, such as a measuring method, can be used.

同様に、第1の周波数で成膜する無機膜の膜厚の上限にも、特に限定は無い。
しかしながら、第1の周波数より、第2の周波数によって成膜される無機膜の方が、緻密で優れた性能を有するのは、前述のとおりである。すなわち、本発明においては、目的とする膜厚の無機膜において、第2の周波数によって成膜される無機膜が厚い程、性能の点で有利である。
以上の点を考慮すると、第1の周波数で形成する無機膜の膜厚は、30nm以下、特に、15nm以下とするのが好ましい。
Similarly, there is no particular limitation on the upper limit of the thickness of the inorganic film formed at the first frequency.
However, as described above, the inorganic film formed by the second frequency is denser and has better performance than the first frequency. That is, in the present invention, in an inorganic film having a target film thickness, the thicker the inorganic film formed at the second frequency, the more advantageous in terms of performance.
Considering the above points, the thickness of the inorganic film formed at the first frequency is preferably 30 nm or less, particularly preferably 15 nm or less.

ここで、本発明者らの検討によれば、第1の周波数および第2の周波数が、どのような大きさの周波数であっても、第2の周波数は、第1の周波数の0.5倍以下の周波数とするのが好ましい。特に、第2の周波数は、第1の周波数の0.1倍以下の周波数とするのが好ましい
第1の周波数と第2の周波数とが、上記条件を満たすことにより、混合層の抑制効果をより向上できる、より緻密な無機膜を成膜できる(その結果、膜厚を薄くできる)、より単位膜厚当りの無機膜の機能を向上できる(その結果、膜厚を薄くできる)、可視光領域での光吸収やヘイズを低減できる等の点で好ましい結果を得る。
Here, according to the study by the present inventors, the second frequency is 0.5% of the first frequency regardless of the magnitude of the first frequency and the second frequency. The frequency is preferably less than twice. In particular, the second frequency is preferably set to a frequency not more than 0.1 times the first frequency. When the first frequency and the second frequency satisfy the above conditions, the suppression effect of the mixed layer can be reduced. A denser inorganic film that can be further improved can be formed (as a result, the film thickness can be reduced), and the function of the inorganic film per unit film thickness can be improved (as a result, the film thickness can be reduced), visible light Preferred results are obtained in that light absorption and haze in the region can be reduced.

本発明の成膜方法において、第2の周波数にも、特に限定はなく、成膜する無機膜の種類、使用する反応ガスの種類、成膜レート、無機膜の膜厚、要求される性能等に応じて、第1の周波数よりも低い周波数を、適宜、決定すればよい。ここで、本発明者らの検討によれば、第2の周波数は、0.1(100kHz)〜60MHz、特に、1〜27.12MHzが好ましい。
第2の周波数を上記範囲とすることにより、より緻密な無機膜を成膜できる(その結果、膜厚を薄くできる)、より単位膜厚当りの無機膜の機能を向上できる(その結果、膜厚を薄くできる)、可視光領域での光吸収やヘイズを低減できる等の点で好ましい結果を得る。
In the film forming method of the present invention, the second frequency is not particularly limited, and the kind of inorganic film to be formed, the kind of reaction gas to be used, the film forming rate, the film thickness of the inorganic film, the required performance, etc. Accordingly, a frequency lower than the first frequency may be determined as appropriate. Here, according to the study by the present inventors, the second frequency is preferably 0.1 (100 kHz) to 60 MHz, particularly 1 to 27.12 MHz.
By setting the second frequency in the above range, a denser inorganic film can be formed (as a result, the film thickness can be reduced), and the function of the inorganic film per unit film thickness can be improved (as a result, the film A preferable result is obtained in that the thickness can be reduced), light absorption in the visible light region and haze can be reduced.

第2の周波数によって成膜する無機膜の膜厚は、第1の周波数によって成膜する膜厚、および、目的とする無機膜の膜厚(最終的に成膜する無機膜の膜厚)に応じて、適宜、設定すればよい。
なお、本発明において、成膜する無機膜(第1の周波数+第2の周波数による合計の膜厚)には、特に限定はなく、無機膜の種類、無機膜に要求される機能および性能、無機膜を成膜した基板の用途等に応じて、適宜、設定すればよい。
例えば、無機膜として、ガスバリア膜となる窒化珪素膜や酸化珪素膜を形成する場合であれば、膜厚は20〜1000nm程度が好ましい。
The film thickness of the inorganic film formed at the second frequency is equal to the film thickness formed at the first frequency and the film thickness of the target inorganic film (the film thickness of the inorganic film finally formed). Accordingly, it may be set appropriately.
In the present invention, there is no particular limitation on the inorganic film to be formed (total thickness by the first frequency + the second frequency), and there are no particular limitations on the type of inorganic film, the functions and performance required for the inorganic film, What is necessary is just to set suitably according to the use etc. of the board | substrate which formed the inorganic film | membrane.
For example, in the case where a silicon nitride film or a silicon oxide film serving as a gas barrier film is formed as the inorganic film, the film thickness is preferably about 20 to 1000 nm.

本発明の成膜方法においては、まず、第1の周波数で無機膜の成膜を行い、次いで、第2の周波数で無機膜を成膜して、目的膜厚の無機膜を成膜する以外は、反応ガスの流量、反応ガスの流量比、プラズマ励起電力の強度、成膜温度(基板温度)、成膜レート、成膜圧力、基板−電極間距離など、無機膜の成膜条件は、通常の無機膜の成膜と同様でよい。
従って、無機膜の成膜条件は、成膜する無機膜や反応ガスの種類、要求される成膜レート、目的とする膜厚、目的とする性能等に応じて、適宜、設定すればよい。
In the film forming method of the present invention, first, an inorganic film is formed at a first frequency, then an inorganic film is formed at a second frequency, and an inorganic film having a target film thickness is formed. The deposition conditions of the inorganic film, such as the flow rate of the reaction gas, the flow rate ratio of the reaction gas, the intensity of the plasma excitation power, the deposition temperature (substrate temperature), the deposition rate, the deposition pressure, and the substrate-electrode distance are It may be the same as the formation of a normal inorganic film.
Accordingly, the film formation conditions for the inorganic film may be set as appropriate according to the type of the inorganic film to be formed and the reaction gas, the required film formation rate, the target film thickness, the target performance, and the like.

なお、本発明においては、第1の周波数による成膜と、第2の周波数による成膜とでは、プラズマ励起周波数以外の無機膜の成膜条件は、同一である。すなわち、本発明においては、2つの異なるプラズマ励起周波数で同じ無機膜を成膜する以外は、基本的に、一定の条件で無機膜の成膜を行なう。
また、本発明の成膜方法では、第1の周波数と第2の周波数とで同じ反応ガスを導入して、無機膜を成膜する。すなわち、本発明においては、他の成膜条件は変更することなく、第1の周波数と第2の周波数という、異なる周波数で無機膜の成膜を行うだけで、十分に混合膜形成の抑制効果を得ることができる。
しかしながら、本発明においては、第1の周波数による成膜と、第2の周波数による成膜とで、周波数以外は同一条件とするのに限定はされず、必要に応じて、反応ガス流量等の他の成膜条件を変更してもよい。
In the present invention, the film formation conditions of the inorganic film other than the plasma excitation frequency are the same for the film formation at the first frequency and the film formation at the second frequency. That is, in the present invention, the inorganic film is basically formed under certain conditions except that the same inorganic film is formed at two different plasma excitation frequencies.
In the film forming method of the present invention, the same reactive gas is introduced at the first frequency and the second frequency to form the inorganic film. In other words, in the present invention, the effect of suppressing the formation of the mixed film can be sufficiently achieved by merely depositing the inorganic film at different frequencies of the first frequency and the second frequency without changing other film forming conditions. Can be obtained.
However, in the present invention, the film formation at the first frequency and the film formation at the second frequency are not limited to the same conditions except for the frequency. Other film forming conditions may be changed.

本発明の成膜方法において、成膜する無機膜には、特に限定はなく、有機材料からなる表面を有する基板に、プラズマCVDによって成膜可能な物であれば各種の無機物の膜が利用可能である。   In the film forming method of the present invention, the inorganic film to be formed is not particularly limited, and various inorganic films can be used as long as they can be formed by plasma CVD on a substrate having a surface made of an organic material. It is.

例えば、無機膜としてガスバリア膜(水蒸気バリア膜)を成膜する場合であれば、窒化珪素膜、酸化珪素膜、酸窒化珪素膜、DLC(Diamond Like Carbon)膜等を成膜すればよい。
また、無機膜として、有機ELディスプレイや液晶ディスプレイのような表示装置など、各種のデバイスや装置の保護膜を成膜する際には、酸化珪素膜等を成膜すればよい。
また、無機膜として、有機ELディスプレイや液晶ディスプレイのような表示装置など、各種のデバイスや装置に利用される透明導電膜を成膜する場合には、酸化亜鉛系の膜を成膜すればよい。
さらに、無機膜として、光反射防止フィルム、光反射フィルム、各種のフィルタ等の光学膜を成膜する際には、目的とする光学特性を有する、あるいは発現する材料からなる無機膜を成膜すればよい。
中でも、本発明の成膜方法は、珪素の酸化物、窒化物、酸窒化物、酸窒化炭化物を主成分とする無機膜の成膜には好適である。また、本発明によれば、緻密な膜が成膜可能であるので、ガスバリア膜、特に前記珪素化合物からなるガスバリア膜の成膜(ガスバリアフィルムの製造)には、最適である。本発明は、その中でも特に、窒化珪素からなる膜の成膜には好適である。
For example, when a gas barrier film (water vapor barrier film) is formed as an inorganic film, a silicon nitride film, a silicon oxide film, a silicon oxynitride film, a DLC (Diamond Like Carbon) film, or the like may be formed.
In addition, as an inorganic film, a silicon oxide film or the like may be formed when a protective film of various devices such as a display device such as an organic EL display or a liquid crystal display is formed.
In addition, when forming a transparent conductive film used for various devices and apparatuses such as an organic EL display and a display device such as a liquid crystal display as the inorganic film, a zinc oxide-based film may be formed. .
Furthermore, when an optical film such as an antireflection film, a light reflection film, or various filters is formed as an inorganic film, an inorganic film made of a material having or exhibiting the desired optical characteristics should be formed. That's fine.
Among these, the film forming method of the present invention is suitable for forming an inorganic film mainly composed of silicon oxide, nitride, oxynitride, and oxynitride carbide. Further, according to the present invention, since a dense film can be formed, it is optimal for forming a gas barrier film, particularly a gas barrier film made of the silicon compound (production of a gas barrier film). The present invention is particularly suitable for forming a film made of silicon nitride.

ところで、無機膜をプラズマCVDによって形成する際に、ガスバリア性などの膜質を低下させる一因として、膜形成における副反応(主に酸化)が挙げられる。
この副反応は、プラズマ励起電力の周波数が高いほど、生じ易い。また、副反応は、主たる反応が酸化であるので、窒化物が、最も副反応による悪影響を受ける。
前述のように、本発明は、最初は第1の周波数で無機膜を成膜し、その後、第1の周波数よりも低い周波数の第2の周波数で無機膜を成膜する。従って、本発明によれば、第2の周波数での成膜の方が、より副反応を抑制することができる。また、通常は、第1の周波数に比して、第2の周波数の方が、成膜する膜厚が大きい。
そのため、本発明を、窒化珪素からなる膜、特に窒化珪素からなるガスバリア膜の成膜に利用することにより、前記本発明の特性に加え、副反応に起因する膜質低下も大幅に低減することができる。その結果、窒化珪素膜によって、目的とする性能を有する膜を安定して形成することができる。すなわち、本発明を窒化珪素膜の成膜、特に、窒化珪素からなるガスバリア膜の成膜に利用することにより、本発明の効果を、より顕著に発現することができ、好ましい。
By the way, when forming an inorganic film by plasma CVD, a side reaction (mainly oxidation) in film formation can be cited as one factor for lowering film quality such as gas barrier properties.
This side reaction is more likely to occur as the frequency of the plasma excitation power is higher. In addition, since the main reaction is oxidation, the nitride is most adversely affected by the side reaction.
As described above, in the present invention, the inorganic film is first formed at the first frequency, and then the inorganic film is formed at the second frequency lower than the first frequency. Therefore, according to the present invention, the side reaction can be further suppressed by the film formation at the second frequency. In general, the second frequency has a larger film thickness than the first frequency.
Therefore, by using the present invention for the formation of a film made of silicon nitride, particularly a gas barrier film made of silicon nitride, in addition to the characteristics of the present invention, film quality degradation caused by side reactions can be greatly reduced. it can. As a result, a film having the intended performance can be stably formed with the silicon nitride film. That is, it is preferable that the present invention can be manifested more significantly by using the present invention for forming a silicon nitride film, particularly for forming a gas barrier film made of silicon nitride.

本発明の成膜方法において、無機膜を成膜するため用いる反応ガスにも、特に限定はなく、形成する無機膜に応じた公知の反応ガスが、全て利用可能である。
例えば、無機膜としてガスバリア膜等として利用される窒化珪素膜を成膜する場合であれば、反応ガスして、シランガスと、アンモニアガスおよび/または窒素ガスとを用いればよく、同じく酸化珪素膜を形成する場合であれば、反応ガスとして、シランガスと酸素ガスとを用いればよい。
なお、本発明の成膜方法においては、必要に応じて、反応ガスに加え、ヘリウムガス、ネオンガス、アルゴンガス、クリプトンガス、キセノンガス、ラドンガスなどの不活性ガス等の各種のガスを併用してもよい。
In the film forming method of the present invention, the reaction gas used for forming the inorganic film is not particularly limited, and any known reaction gas corresponding to the inorganic film to be formed can be used.
For example, when a silicon nitride film used as a gas barrier film or the like is formed as an inorganic film, the reaction gas may be silane gas and ammonia gas and / or nitrogen gas. In the case of formation, silane gas and oxygen gas may be used as the reaction gas.
In the film forming method of the present invention, various gases such as an inert gas such as helium gas, neon gas, argon gas, krypton gas, xenon gas, and radon gas are used in combination with the reaction gas as necessary. Also good.

また、本発明のプラズマCVD成膜方法は、カットシートなどの単体の基板(複数でも可)にガスバリア膜を形成する、いわゆるバッチ式の装置に利用してもよく、あるいは、いわゆるロール・トゥ・ロール(Roll to Roll)の装置に利用してもよい。
ロール・トゥ・ロールの装置とは、長尺な基板をロール状に巻回してなる基板ロールから基板を送り出して成膜室に搬送し、成膜室において、基板を長手方向に搬送しつつ成膜を行って、成膜室から排出し、成膜済の基板を、再度、ロール状に巻回する装置である。
Further, the plasma CVD film forming method of the present invention may be used in a so-called batch-type apparatus for forming a gas barrier film on a single substrate (or a plurality of substrates) such as a cut sheet, or a so-called roll-to- You may use for the apparatus of a roll (Roll to Roll).
The roll-to-roll apparatus is a device that feeds a substrate from a substrate roll formed by winding a long substrate into a roll shape and transports the substrate to a film formation chamber, while transporting the substrate in the longitudinal direction in the film formation chamber. It is an apparatus that performs a film, discharges it from the film formation chamber, and winds the film-formed substrate again in a roll shape.

本発明をバッチ式の装置に利用する場合には、一例として、1つのプラズマCVD装置(チャンバ)で、第1の周波数で所定厚さのガスバリア膜を形成したら、プラズマ励起周波数を第1の周波数から第2の周波数に切り換えて(プラズマ励起周波数を第1の周波数から第2の周波数に変更して)、無機膜を成膜すればよい。あるいは、第1の周波数で所定厚さの無機膜を成膜したら、基板をプラズマCVD装置から取り出して、他のプラズマCVD装置において、第2の周波数による無機膜の成膜を行なってもよい。   When the present invention is used in a batch type apparatus, as an example, when a gas barrier film having a predetermined thickness is formed at a first frequency in one plasma CVD apparatus (chamber), the plasma excitation frequency is set to the first frequency. The inorganic film may be formed by switching from 1 to the second frequency (changing the plasma excitation frequency from the first frequency to the second frequency). Alternatively, when an inorganic film having a predetermined thickness is formed at the first frequency, the substrate may be taken out from the plasma CVD apparatus, and the inorganic film may be formed at the second frequency in another plasma CVD apparatus.

また、本発明をロール・トゥ・ロールの装置に利用する場合には、一例として、1つの成膜室に、独立してプラズマ励起周波数が調整可能な電極を、基板の搬送方向に、複数、配列し、例えば最上流の電極で第1の周波数による無機膜の成膜を行い、その直下流の電極で第2の周波数による無機膜の成膜を行えばよい。
あるいは、基板の搬送方向に複数のプラズマCVDによる成膜室を設け、例えば最上流の成膜室において、第1の周波数で無機膜を成膜し、その直下流の成膜室において、第2の周波数で無機膜を成膜するようにしてもよい。
Further, when the present invention is used for a roll-to-roll apparatus, as an example, a plurality of electrodes in which the plasma excitation frequency can be adjusted independently in one film forming chamber, For example, the inorganic film may be formed at the first frequency with the most upstream electrode, and the inorganic film may be formed with the second frequency at the immediately downstream electrode.
Alternatively, a plurality of plasma CVD film forming chambers are provided in the substrate transport direction. For example, an inorganic film is formed at the first frequency in the most upstream film forming chamber, and the second film forming chamber is located immediately downstream of the second film forming chamber. An inorganic film may be formed at a frequency of

以上、本発明のプラズマCVD成膜方法およびガスバリア膜について詳細に説明したが、本発明は、上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行なってもよいのは、もちろんである。   As described above, the plasma CVD film forming method and the gas barrier film of the present invention have been described in detail. However, the present invention is not limited to the above-described examples, and various improvements and modifications are made without departing from the gist of the present invention. Of course, you may.

以下、本発明の具体的実施例を挙げて、本発明について、より詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to specific examples of the present invention.

[実施例]
CCP−CVD法による成膜を行なう一般的なCVD装置を用いて、基板に、ガスバリア膜として窒化珪素膜を形成した。
[Example]
A silicon nitride film was formed as a gas barrier film on the substrate using a general CVD apparatus that performs film formation by the CCP-CVD method.

基板は、厚さ188μmのPETフィルム(東レフィルム加工株式会社製のポリエチレンテレフタレートフィルム「ルミナイス」)を用いた。なお、基板の面積は300cm2とした。
基板を真空チャンバ内の所定位置にセットして、真空チャンバを閉塞した。
次いで、真空チャンバ内を排気して、圧力が0.01Paとなった時点で、反応ガスとして、シランガス、アンモニアガス、および、窒素ガスを導入した。なお、シランガスの流量は50sccm、アンモニアガスの流量は100sccm、窒素ガスの流量は150sccmとした。
さらに、真空チャンバ内の圧力が100Paとなるように、真空チャンバ内の排気を調整した。
As the substrate, a PET film having a thickness of 188 μm (polyethylene terephthalate film “Lumina Rice” manufactured by Toray Film Processing Co., Ltd.) was used. The area of the substrate was 300 cm 2 .
The substrate was set at a predetermined position in the vacuum chamber, and the vacuum chamber was closed.
Next, the vacuum chamber was evacuated, and when the pressure reached 0.01 Pa, silane gas, ammonia gas, and nitrogen gas were introduced as reaction gases. The flow rate of silane gas was 50 sccm, the flow rate of ammonia gas was 100 sccm, and the flow rate of nitrogen gas was 150 sccm.
Further, the exhaust in the vacuum chamber was adjusted so that the pressure in the vacuum chamber was 100 Pa.

次いで、電極に750Wの高周波電力を供給して、基板の表面へのガスバリア膜(窒化珪素膜)の成膜を開始した。
成膜途中で、電極に供給する高周波電力の周波数(プラズマ励起周波数)を第1の周波数から第2の周波数に切り換えて、基板に厚さ50nmのガスバリア膜を成膜した。なお、第1の周波数は60MHz、第2の周波数は13.56MHzとした。
Next, high-frequency power of 750 W was supplied to the electrode to start the formation of a gas barrier film (silicon nitride film) on the surface of the substrate.
During the film formation, the frequency of the high-frequency power supplied to the electrode (plasma excitation frequency) was switched from the first frequency to the second frequency, and a gas barrier film having a thickness of 50 nm was formed on the substrate. The first frequency was 60 MHz, and the second frequency was 13.56 MHz.

第1の周波数によって成膜されるガスバリア膜の膜厚が、0nm(すなわち、第2の周波数のみでガスバリア膜を成膜)、3nm、5nm、10nm、および、50nm(すなわち、第1の周波数のみでガスバリア膜を成膜)となるように、第1の周波数から第2の周波数への切り換えタイミングを変更して、5種類のガスバリア膜(すなわち、PETフィルムを基板とするガスバリアフィルム)を形成した。
なお、第1の周波数によるガスバリア膜の膜厚(すなわち第1の周波数と第2の周波数の切り換えタイミング)、および、ガスバリア膜の膜厚50nmは、予め実験によって調べた成膜レートによって制御した。
The film thickness of the gas barrier film formed by the first frequency is 0 nm (that is, the gas barrier film is formed only by the second frequency), 3 nm, 5 nm, 10 nm, and 50 nm (that is, only the first frequency) 5 types of gas barrier films (that is, gas barrier films having a PET film as a substrate) were formed by changing the switching timing from the first frequency to the second frequency so that .
Note that the film thickness of the gas barrier film by the first frequency (that is, the switching timing of the first frequency and the second frequency) and the film thickness of the gas barrier film of 50 nm were controlled by the film formation rate examined in advance by experiments.

作製した4種のガスバリアフィルムについて、モコン法によって水蒸気透過率[g/(m2・day)]を測定した。なお、水蒸気透過率がモコン法の測定限界を超えたサンプルについては、カルシウム腐食法(特開2005−283561号公報に記載される方法)によって、水蒸気透過率を測定した。
結果を下記表に示す。
The water vapor permeability [g / (m 2 · day)] of the produced four types of gas barrier films was measured by the mocon method. In addition, about the sample whose water vapor transmission rate exceeded the measurement limit of the Mokon method, water vapor transmission rate was measured by the calcium corrosion method (method described in Unexamined-Japanese-Patent No. 2005-283561).
The results are shown in the table below.

上記表に示されるように、まず、第1の周波数でガスバリア膜(無機膜)の成膜を行い、次いで、第2の周波数でガスバリア膜を成膜して目的厚さ(50nm)のガスバリア膜を成膜する本発明によれば、全てを第1の周波数や第2の周波数で成膜した従来のガスバリア膜に比して、非常に優れたガスバリア性を有するガスバリア膜を成膜することができる。特に、第1の周波数によって成膜したガスバリア膜の膜厚を5nm以上にした本発明例においては、いずれも水蒸気透過率が0.0025[g/(m2・day)]以下と、非常に優れたガスバリア性を有する。
以上の結果より、本発明の効果は明らかである。
As shown in the above table, a gas barrier film (inorganic film) is first formed at a first frequency, and then a gas barrier film is formed at a second frequency to form a gas barrier film having a target thickness (50 nm). According to the present invention, it is possible to form a gas barrier film having a very excellent gas barrier property as compared with a conventional gas barrier film formed entirely at the first frequency or the second frequency. it can. In particular, in the examples of the present invention in which the film thickness of the gas barrier film formed at the first frequency is 5 nm or more, the water vapor transmission rate is 0.0025 [g / (m 2 · day)] or less in all cases. Excellent gas barrier properties.
From the above results, the effects of the present invention are clear.

Claims (4)

有機材料からなる表面を有する基板に、プラズマCVDによって窒化硅素膜を成膜するに際し、
5〜300MHzである第1のプラズマ励起周波数で窒化硅素膜を成膜し、その後、前記第1のプラズマ励起周波数の0.5倍以下の周波数で、かつ、0.1〜60MHzである第2のプラズマ励起周波数で窒化硅素膜を成膜することを特徴とするプラズマCVD成膜方法。
When a silicon nitride film is formed by plasma CVD on a substrate having a surface made of an organic material,
A silicon nitride film is formed at a first plasma excitation frequency of 5 to 300 MHz, and then a second frequency that is 0.5 times or less the first plasma excitation frequency and 0.1 to 60 MHz. A method of forming a silicon nitride film at a plasma excitation frequency of plasma CVD.
前記第1のプラズマ励起周波数によって、3nm以上の膜厚となるまで成膜を行なう請求項1に記載のプラズマCVD成膜方法。 The plasma CVD film forming method according to claim 1 , wherein the film formation is performed until the film thickness becomes 3 nm or more by the first plasma excitation frequency. ガスバリア膜を成膜する請求項1または2に記載のプラズマCVD成膜方法。 The plasma CVD film forming method according to claim 1, wherein a gas barrier film is formed. 請求項3に記載のプラズマCVD成膜方法で成膜したガスバリア膜。 A gas barrier film formed by the plasma CVD film forming method according to claim 3 .
JP2010169021A 2010-07-28 2010-07-28 Plasma CVD film forming method and gas barrier film Active JP5546983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010169021A JP5546983B2 (en) 2010-07-28 2010-07-28 Plasma CVD film forming method and gas barrier film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010169021A JP5546983B2 (en) 2010-07-28 2010-07-28 Plasma CVD film forming method and gas barrier film

Publications (2)

Publication Number Publication Date
JP2012031436A JP2012031436A (en) 2012-02-16
JP5546983B2 true JP5546983B2 (en) 2014-07-09

Family

ID=45845191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010169021A Active JP5546983B2 (en) 2010-07-28 2010-07-28 Plasma CVD film forming method and gas barrier film

Country Status (1)

Country Link
JP (1) JP5546983B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521362A (en) * 1991-07-17 1993-01-29 Mitsubishi Electric Corp Forming method for cvd film
JP4067589B2 (en) * 1995-02-28 2008-03-26 株式会社半導体エネルギー研究所 Thin film solar cell fabrication method
JP2004095953A (en) * 2002-09-02 2004-03-25 Canon Inc Method for forming silicon nitride deposited film
JP4289246B2 (en) * 2004-07-21 2009-07-01 富士電機システムズ株式会社 Thin film forming equipment
JP5139894B2 (en) * 2008-06-20 2013-02-06 富士フイルム株式会社 Method for forming gas barrier film and gas barrier film
JP5256441B2 (en) * 2008-08-22 2013-08-07 株式会社ユーテック Transparent resin laminate and method for producing the same
JP5405075B2 (en) * 2008-09-24 2014-02-05 富士フイルム株式会社 Method for forming gas barrier film and gas barrier film

Also Published As

Publication number Publication date
JP2012031436A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
EP3014675B1 (en) Method for deposition of high-performance coatings and encapsulated electronic devices
JP5139894B2 (en) Method for forming gas barrier film and gas barrier film
KR102197243B1 (en) Laminate and gas barrier film
CN103382549B (en) A kind of preparation method of multilayered structure high-isolation film
JP5405075B2 (en) Method for forming gas barrier film and gas barrier film
WO2015098671A1 (en) Laminate film and flexible electronic device
JP2009274251A (en) Transparent barrier film and its manufacturing method
JP2012517530A (en) Two-layer barrier on polymer substrate
WO2016136935A1 (en) Method for producing gas barrier film, and gas barrier film
CN109468607B (en) Preparation method of gas barrier film
Chua et al. High-rate, room temperature plasma-enhanced deposition of aluminum-doped zinc oxide nanofilms for solar cell applications
Chang et al. Enhancement of the light-scattering ability of Ga-doped ZnO thin films using SiOx nano-films prepared by atmospheric pressure plasma deposition system
JP4899863B2 (en) Thin film forming apparatus and thin film forming method
JP5546983B2 (en) Plasma CVD film forming method and gas barrier film
JP2010001551A (en) Plasma cvd film deposition method and plasma cvd apparatus
CN107428126B (en) Laminate and gas barrier film
JP2009193674A (en) Method for manufacturing transparent conductive film, and transparent conductive film manufactured according to it
Zimmermann et al. Inline deposition of microcrystalline silicon solar cells using a linear plasma source
JP2012077315A (en) Functional film and method for manufacturing functional film
JP2004063453A (en) Transparent conductive film laminate and its forming method
JP6110939B2 (en) Method and apparatus for producing a barrier layer on a flexible substrate
WO2015137389A1 (en) Gas barrier film production method
KR101644038B1 (en) Transparent conductive film, method for manufacturing the same and touch panel containing the same
JP2009299130A (en) Method for manufacturing sio2 film
JP2009140626A (en) Transparent conductive thin film and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140514

R150 Certificate of patent or registration of utility model

Ref document number: 5546983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250