JP5546372B2 - Process for producing benzylhydantoin compounds - Google Patents

Process for producing benzylhydantoin compounds Download PDF

Info

Publication number
JP5546372B2
JP5546372B2 JP2010148818A JP2010148818A JP5546372B2 JP 5546372 B2 JP5546372 B2 JP 5546372B2 JP 2010148818 A JP2010148818 A JP 2010148818A JP 2010148818 A JP2010148818 A JP 2010148818A JP 5546372 B2 JP5546372 B2 JP 5546372B2
Authority
JP
Japan
Prior art keywords
group
compound
chlorine
benzylhydantoin
bromine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010148818A
Other languages
Japanese (ja)
Other versions
JP2012012319A (en
Inventor
泰一郎 宮澤
俊也 瀧澤
和夫 長野
準 阿部
俊英 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Medical Co Ltd
Original Assignee
Sekisui Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Medical Co Ltd filed Critical Sekisui Medical Co Ltd
Priority to JP2010148818A priority Critical patent/JP5546372B2/en
Publication of JP2012012319A publication Critical patent/JP2012012319A/en
Application granted granted Critical
Publication of JP5546372B2 publication Critical patent/JP5546372B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、医薬、農薬、各種のアミノ酸等の製造中間体として有用なベンジルヒダントイン化合物の製造法に関する。   The present invention relates to a method for producing a benzylhydantoin compound useful as an intermediate for producing pharmaceuticals, agricultural chemicals, various amino acids and the like.

ベンジルヒダントイン化合物は、医薬、農薬、各種アミノ酸の製造中間体として有用であるほか、光学材料、電子材料等としても有用な化合物である。   Benzylhydantoin compounds are useful as intermediates for the production of pharmaceuticals, agricultural chemicals and various amino acids, and are also useful as optical materials, electronic materials and the like.

ベンジルヒダントイン化合物の製造法としては、安価なベンズアルデヒド化合物とヒダントインを脱水縮合して得られるベンジリデンヒダントイン化合物を還元する方法が広く採用されている。そして、当該ベンジリデンヒダントイン化合物の還元方法としては、アルカリ性溶媒中で電解還元する方法(非特許文献1)、及びラネーニッケル、パラジウム等の触媒の存在下に接触還元やギ酸を反応させる方法(特許文献1〜3)が知られている。   As a method for producing a benzylhydantoin compound, a method of reducing a benzylidenehydantoin compound obtained by dehydration condensation of an inexpensive benzaldehyde compound and hydantoin is widely employed. And as the reduction method of the said benzylidene hydantoin compound, the method of carrying out electrolytic reduction in an alkaline solvent (nonpatent literature 1), and the method of making a catalytic reduction and formic acid react in presence of catalysts, such as Raney nickel and palladium (patent literature 1). ~ 3) is known.

特開昭61−167669号公報JP 61-167669 A 特開平05−255273号公報JP 05-255273 A 特開平05−345713号公報JP 05-345713 A

Bulletin of the Chemical Society of Japan,59(11),3690−2(1986)Bulletin of the Chemical Society of Japan, 59 (11), 3690-2 (1986)

しかしながら、電解還元法では、装置が特殊で操作が煩雑になるという問題がある。一方、接触還元法は、水素ガス及び金属触媒を使用し、時として高圧、高温の条件を必要とすることから、耐圧、耐熱設備を必要とする。水素ガスは可燃性、爆発性を有し、また使用する金属触媒は通常それ自体、発火性を有する。また触媒は時としてパラジウム、白金を含有する高価な貴金属触媒である。以上より、安全面、コスト面で接触還元法は課題を有する製法である。   However, the electrolytic reduction method has a problem that the apparatus is special and the operation becomes complicated. On the other hand, the catalytic reduction method uses hydrogen gas and a metal catalyst, and sometimes requires high pressure and high temperature conditions, and therefore requires pressure resistance and heat resistance equipment. Hydrogen gas is flammable and explosive, and the metal catalyst used is usually itself ignitable. The catalyst is an expensive noble metal catalyst sometimes containing palladium and platinum. From the above, the contact reduction method has a problem in terms of safety and cost.

従って、本発明の課題は、安全、かつ工業的に有利にベンジルヒダントイン化合物を製造する方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing a benzylhydantoin compound in a safe and industrially advantageous manner.

そこで本発明者は、ベンジリデンヒダントインの還元反応について検討した結果、ケトンやアルデヒド、ニトリル等の還元には用いられるが、一般に炭素−炭素二重結合の還元には採用されない水素化ホウ素ナトリウムを用い、安価なコバルト化合物とキレート剤の存在下、アルカリ条件でベンジリデンヒダントイン化合物を還元すれば、安全、かつ工業的に有利にベンジルヒダントイン化合物が得られることを見出し、本発明を完成するに至った。   Therefore, as a result of examining the reduction reaction of benzylidenehydantoin, the present inventor used sodium borohydride that is used for the reduction of ketones, aldehydes, nitriles, etc., but is generally not employed for the reduction of carbon-carbon double bonds, It has been found that if a benzylidene hydantoin compound is reduced under alkaline conditions in the presence of an inexpensive cobalt compound and a chelating agent, a benzylhydantoin compound can be obtained safely and industrially advantageously, and the present invention has been completed.

すなわち、本発明は、式(1)   That is, the present invention provides the formula (1)

Figure 0005546372
Figure 0005546372

(式中、R1、R2及びR3はそれぞれ独立して、水素原子、ハロゲン原子、ヒドロキシ基、アミノ基、アルキル基、アルコキシ基、アラルキル基、アリール基又は複素環基を示すか、R1〜R3の隣接する2個が一緒になって環を形成してもよい。)
で表されるベンジリデンヒダントイン化合物を、コバルト化合物及びキレート剤の存在下、アルカリ条件で水素化ホウ素ナトリウムを反応させることを特徴とする、式(2)
(Wherein R 1 , R 2 and R 3 each independently represents a hydrogen atom, a halogen atom, a hydroxy group, an amino group, an alkyl group, an alkoxy group, an aralkyl group, an aryl group or a heterocyclic group, or R Two adjacent ones of 1 to R 3 may be combined to form a ring.)
A benzylidene hydantoin compound represented by the formula (2) is reacted with sodium borohydride under alkaline conditions in the presence of a cobalt compound and a chelating agent:

Figure 0005546372
Figure 0005546372

(式中、R1、R2及びR3は前記と同じ)
で表されるベンジルヒダントイン化合物の製造法を提供するものである。
(Wherein R 1 , R 2 and R 3 are the same as above)
The manufacturing method of the benzyl hydantoin compound represented by these is provided.

本発明方法によれば、安価な原料を用い安全性の高い設備で工業的に有利にベンジルヒダントイン化合物が得られる。   According to the method of the present invention, a benzylhydantoin compound can be obtained industrially advantageously in a highly safe facility using inexpensive raw materials.

式(1)及び式(2)中、R1、R2及びR3はそれぞれ独立して、水素原子、ハロゲン原子、ヒドロキシ基、アミノ基、アルキル基、アルコキシ基、アラルキル基、アリール基又は複素環基式を示すか、R1〜R3の隣接する2個が一緒になって環を形成してもよい。ここで、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。また、アルキル基としては、炭素数1〜8の直鎖又は分岐鎖のアルキル基が挙げられ、具体的にはメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基等が挙げられる。アルコキシ基としては、炭素数1〜8の直鎖又は分岐鎖のアルコキシ基が挙げられ、具体的にはメトキシ基、エトキシ基、プロポキシ基、イソプロピルオキシ基等が挙げられる。アラルキル基としては、フェニル−C1-6アルキル基が挙げられ、具体的にはベンジル基、フェネチル基等が挙げられる。アリール基としては、炭素数6〜14のアリール基が挙げられ、具体的にはフェニル基、ナフチル基等が挙げられる。複素環式基としては、ピロリル基、チエニル基、フラニル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ピリジル基等が挙げられる。また、R1〜R3の隣接する2個が一緒になって形成する環としては、シクロアルカン環及び複素環が挙げられる。シクロアルカン環としては、炭素数5〜7のシクロアルカン環、具体的にはシクロペンタン環、シクロヘキサン環、シクロヘプタン環を挙げることができ、また複素環としてはピロール、チオフェン、フラン、イミダゾール、オキサゾール、チアゾール、ピリジン等が挙げられる。 In formula (1) and formula (2), R 1 , R 2 and R 3 are each independently a hydrogen atom, halogen atom, hydroxy group, amino group, alkyl group, alkoxy group, aralkyl group, aryl group or complex. The ring formula may be shown, or two adjacent R 1 to R 3 may be combined to form a ring. Here, examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. In addition, examples of the alkyl group include linear or branched alkyl groups having 1 to 8 carbon atoms, specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group. , Tert-butyl group and the like. As an alkoxy group, a C1-C8 linear or branched alkoxy group is mentioned, Specifically, a methoxy group, an ethoxy group, a propoxy group, an isopropyloxy group etc. are mentioned. Examples of the aralkyl group include a phenyl-C 1-6 alkyl group, and specific examples include a benzyl group and a phenethyl group. Examples of the aryl group include aryl groups having 6 to 14 carbon atoms, and specific examples include a phenyl group and a naphthyl group. Examples of the heterocyclic group include pyrrolyl group, thienyl group, furanyl group, imidazolyl group, oxazolyl group, thiazolyl group, pyridyl group and the like. Examples of the ring formed by combining two adjacent R 1 to R 3 include a cycloalkane ring and a heterocyclic ring. Examples of the cycloalkane ring include a cycloalkane ring having 5 to 7 carbon atoms, specifically, a cyclopentane ring, a cyclohexane ring, and a cycloheptane ring, and examples of the heterocyclic ring include pyrrole, thiophene, furan, imidazole, and oxazole. , Thiazole, pyridine and the like.

1〜R3の少なくとも1個がハロゲン原子であるベンジリデンヒダントイン化合物(1)を還元する目的で接触還元を採用した場合には、脱ハロゲン化が生じるが、本発明方法によれば脱ハロゲン化が生じないか、生じたとしてもわずかである。従って、このような化合物を原料とする場合には本発明方法は特に有用である。
本発明方法の基質としてより好ましくは、R1、R2及びR3のうち、2個が塩素原子又は臭素原子である場合であり、さらに好ましくはR1、R2及びR3のうちの2個が塩素原子又は臭素原子であり、かつ1個の塩素又は臭素が3位、他の1個の塩素又は臭素が4位である場合である。
When catalytic reduction is employed for the purpose of reducing the benzylidenehydantoin compound (1) in which at least one of R 1 to R 3 is a halogen atom, dehalogenation occurs, but according to the method of the present invention, dehalogenation occurs. Does not occur or little if any. Therefore, the method of the present invention is particularly useful when such a compound is used as a raw material.
More preferably, the substrate of the method of the present invention is a case where two of R 1 , R 2 and R 3 are chlorine atoms or bromine atoms, more preferably 2 of R 1 , R 2 and R 3. This is the case where one is a chlorine atom or a bromine atom, and one chlorine or bromine is in the 3rd position and the other one chlorine or bromine is in the 4th position.

原料化合物であるベンジリデンヒダントイン化合物(1)は、常法に従い、ベンズアルデヒド化合物とヒダントインを脱水縮合させることにより容易に製造することができる。脱水縮合反応は、例えばピペリジン、ピペラジン、モルホリン等の有機塩基、又は水酸化ナトリウム等の無機塩基を使用することができる。   The benzylidene hydantoin compound (1), which is a raw material compound, can be easily produced by dehydration condensation of a benzaldehyde compound and hydantoin according to a conventional method. In the dehydration condensation reaction, for example, an organic base such as piperidine, piperazine, morpholine, or an inorganic base such as sodium hydroxide can be used.

本発明に用いられる還元剤は、安価な水素化ホウ素ナトリウムであり、水素化ホウ素ナトリウムの使用量は、ベンジリデンヒダントイン化合物(1)1モルに対して0.3モル〜1モル程度でよいが、何らこれに限定されるものではない。水素化ホウ素ナトリウムは、溶媒に溶解して添加してもよいが、粉末状態でそのまま添加してもよい。   The reducing agent used in the present invention is inexpensive sodium borohydride, and the amount of sodium borohydride used may be about 0.3 mol to 1 mol with respect to 1 mol of the benzylidenehydantoin compound (1). It is not limited to this at all. Sodium borohydride may be added after being dissolved in a solvent, but may be added as it is in a powder state.

本発明の還元反応は、コバルト化合物及びキレート剤の存在下に行われる。コバルト化合物としては、塩化コバルト、硝酸コバルト、酢酸コバルト等が挙げられるが、硝酸コバルトが特に好ましい。またキレート剤としては、ジメチルグリオキシム、2,2’−ビピリジル、フェナントロリン等が挙げられるが、ジメチルグリオキシムが特に好ましい。なお、ここで述べたコバルト化合物とキレート剤は反応の基質、反応温度等により適宜組み合わせを変えることができる。コバルト化合物は、ベンジリデンヒダントイン化合物(1)1モルに対して、0.001〜0.05モル、さらに0.005〜0.03モル使用するのが好ましい。また、キレート剤は、ベンジリデンヒダントイン化合物(1)1モルに対して、0.01〜0.5モル、さらに0.03〜0.2モル使用するのが好ましい。なおコバルト化合物とキレート剤の基質に対する比率は、ここで述べたものに限定されるものではない。   The reduction reaction of the present invention is performed in the presence of a cobalt compound and a chelating agent. Examples of the cobalt compound include cobalt chloride, cobalt nitrate, and cobalt acetate, and cobalt nitrate is particularly preferable. Examples of the chelating agent include dimethylglyoxime, 2,2'-bipyridyl, phenanthroline and the like, and dimethylglyoxime is particularly preferable. Note that the combination of the cobalt compound and the chelating agent described herein can be appropriately changed depending on the substrate of the reaction, the reaction temperature, and the like. The cobalt compound is preferably used in an amount of 0.001 to 0.05 mol, more preferably 0.005 to 0.03 mol, per 1 mol of the benzylidenehydantoin compound (1). Moreover, it is preferable to use a chelating agent 0.01-0.5 mol with respect to 1 mol of benzylidene hydantoin compounds (1), Furthermore, 0.03-0.2 mol. In addition, the ratio with respect to the substrate of a cobalt compound and a chelating agent is not limited to what was described here.

本発明方法は、アルカリ条件下に行われる。アルカリ条件にするには、アルカリ性溶媒中、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム等の無機塩基又はトリエチルアミン、ジメチルアニリン等の有機塩基を含有する溶媒中で反応を行えばよい。反応溶媒としては、エタノール、メタノール等のアルコール溶媒、THF、ジオキサン等のエーテル溶媒、又は水が用いられ、このうち工業的観点よりメタノールが特に好ましい。好ましいpHは9〜11である。また、用いる溶媒の量は、ベンジリデンヒダントイン化合物(1)1重量部に対して3倍〜10倍(V/W)、さらに4倍〜6倍(V/W)が好ましい。なお、pH、基質に対する溶媒の量は、ここで述べる範囲に限定されるものではない。   The process according to the invention is carried out under alkaline conditions. In order to achieve alkaline conditions, the reaction may be carried out in an alkaline solvent, for example, a solvent containing an inorganic base such as sodium hydroxide, potassium hydroxide, sodium carbonate or sodium hydrogen carbonate or an organic base such as triethylamine or dimethylaniline. . As the reaction solvent, an alcohol solvent such as ethanol and methanol, an ether solvent such as THF and dioxane, or water is used, and methanol is particularly preferable from the industrial viewpoint. A preferred pH is 9-11. The amount of the solvent used is preferably 3 to 10 times (V / W), more preferably 4 to 6 times (V / W), relative to 1 part by weight of the benzylidene hydantoin compound (1). The pH and the amount of the solvent relative to the substrate are not limited to the ranges described here.

反応温度は、用いる溶媒によっても異なるが、30〜100℃、さらに50〜70℃、特に55〜65℃が好ましい。また反応時間は1時間〜12時間、工業的には3時間〜5時間が好ましい。   The reaction temperature varies depending on the solvent used, but is preferably 30 to 100 ° C, more preferably 50 to 70 ° C, and particularly preferably 55 to 65 ° C. The reaction time is preferably 1 hour to 12 hours, industrially 3 hours to 5 hours.

反応終了後は、EDTA、活性炭処理により触媒などを除去し、中和後析出したベンジルヒダントイン化合物(2)の結晶を採取すればよい。また必要に応じて、再結晶、洗浄、クロマトグラフィー等により精製してもよい。   After completion of the reaction, the catalyst and the like are removed by EDTA and activated carbon treatment, and the crystals of the benzylhydantoin compound (2) precipitated after neutralization may be collected. Moreover, you may refine | purify by recrystallization, washing | cleaning, chromatography, etc. as needed.

本発明方法によれば、安価な原材料を用いて、特殊な装置を用いることなく簡便な操作で、高収率で高純度のベンジルヒダントイン化合物(2)が製造できる。   According to the method of the present invention, a high yield and high purity benzylhydantoin compound (2) can be produced by a simple operation using an inexpensive raw material without using a special apparatus.

以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらによって何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.

実施例1
2Lの4口コルベン中に基質として5−(3,4−ジクロロベンジリデン)ヒダントイン 90g(0.35モル)、硝酸コバルト6水和物 1.53g(0.005モル)、ジメチルグリオキシム 4.05g(0.035モル)を入れ、メタノール 450mL、4%水酸化ナトリウム水溶液101.52g(0.101モル)を加える。溶液を60℃に加温し、水素化ホウ素ナトリウム 6.41g(0.16モル)を発泡に注意しながら3時間かけて加えた。逆相HPLC(高速液体クロマトグラフィー)法で原料消失を確認後、水450mLを加えた後、35%塩酸 29.6gを加えてpH3.5とした。析出した結晶をろ過、10%メタノール水溶液10mLで洗浄した。乾燥後、5−(3,4−ジクロロ)ベンジルヒダントイン 89.5gを得た。このものは逆相HPLC法による分析で96%の純度であった。(収率99%)
Example 1
90 g (0.35 mol) of 5- (3,4-dichlorobenzylidene) hydantoin, 1.53 g (0.005 mol) of cobalt nitrate hexahydrate, and 4.05 g of dimethylglyoxime as a substrate in 2 L of 4-neck colben (0.035 mol) is added, and 450 mL of methanol and 101.52 g (0.101 mol) of 4% aqueous sodium hydroxide are added. The solution was warmed to 60 ° C. and 6.41 g (0.16 mol) of sodium borohydride was added over 3 hours taking care of foaming. After confirming the disappearance of the raw material by reverse phase HPLC (high performance liquid chromatography), 450 mL of water was added, and 29.6 g of 35% hydrochloric acid was added to adjust the pH to 3.5. The precipitated crystals were filtered and washed with 10 mL of a 10% aqueous methanol solution. After drying, 89.5 g of 5- (3,4-dichloro) benzylhydantoin was obtained. This was 96% pure as analyzed by reverse phase HPLC. (Yield 99%)

参考例1
1Lのオートクレーブ中に基質として5−(3,4−ジクロロベンジリデン)ヒダントイン2.0g(0.0078モル)、ラネーニッケル1.0gを入れ、20%水酸化ナトリウム水溶液 3.1g(0.0155モル)、水 40mLを加えて溶解した。水素ガスを 7.1kgf/cm2封入し、溶液を50℃に昇温しその後水素添加を6時間行なった。反応液を1時間おきに逆相HPLC法で分析し、基質、目的とする生成物及び副生物の定量を行なったところ、表1の如き分析結果を得た。反応開始後、3時間で基質原料は消失し、目的とする5−(3,4−ジクロロベンジル)ヒダントインが生成するが、同時に塩素原子が脱離したと推定される複数の副生物が認められ、これらは時間の経過とともに増加することが観察された。この副生物のうち一つは逆相HPLC法により、2個の塩素原子が脱離した5−ベンジルヒダントインと同定され、このものは反応開始後3時間で9.4%、6時間で26.3%に増加した。また他の副生物は3位あるいは4位の塩素原子が脱離したものと推定される。
Reference example 1
In a 1 L autoclave, 2.0 g (0.0078 mol) of 5- (3,4-dichlorobenzylidene) hydantoin and 1.0 g of Raney nickel were placed as substrates, and a 20% aqueous sodium hydroxide solution 3.1 g (0.0155 mol). 40 mL of water was added and dissolved. Hydrogen gas was sealed at 7.1 kgf / cm 2 , the solution was heated to 50 ° C., and then hydrogenation was performed for 6 hours. The reaction solution was analyzed by reverse phase HPLC method every 1 hour, and the substrate, target product and by-products were quantified, and the analysis results as shown in Table 1 were obtained. After 3 hours from the start of the reaction, the substrate material disappears and the desired 5- (3,4-dichlorobenzyl) hydantoin is produced, but at the same time, several by-products presumed to have eliminated chlorine atoms were observed. These were observed to increase over time. One of the by-products was identified as 5-benzylhydantoin from which two chlorine atoms had been eliminated by reverse phase HPLC, which was 9.4% 3 hours after the start of the reaction and 26. Increased to 3%. In addition, other by-products are presumed that the chlorine atom at the 3- or 4-position has been eliminated.

Figure 0005546372
Figure 0005546372

実施例2
100mLの3口コルベン中に5−(4−ブロモベンジリデン)ヒダントイン5.00g(18.7ミリモル)、硝酸コバルト6水和物0.16g(0.55ミリモル)、ジメチルグリオキシム0.43g(3.7ミリモル)を入れ、メタノール25mL、4%水酸化ナトリウム水溶液5.6mL(5.6ミリモル)を加える。溶液を60℃に加温し、水素化ホウ素ナトリウム0.65g(17.2ミリモル)を発泡に注意しながら1時間かけて加えた。12時間後、濃縮しメタノール20mLを加え溶媒置換し析出した結晶をろ過、乾燥後、5−(4−ブロモ)ベンジルヒダントイン4.64gを得た。このものは逆相HPLC法による分析で95%の純度であった。(収率92%)
なお、反応液の逆相HPLC法において、臭素原子が脱離した5−ベンジルヒダントインの副生が観察されたが、このものの副生率は約1%に留まった。
Example 2
In 100 mL of 3-neck Kolben, 5.00 g (18.7 mmol) of 5- (4-bromobenzylidene) hydantoin, 0.16 g (0.55 mmol) of cobalt nitrate hexahydrate, 0.43 g of dimethylglyoxime (3 7 mmol), and 25 mL of methanol and 5.6 mL (5.6 mmol) of 4% aqueous sodium hydroxide solution are added. The solution was warmed to 60 ° C. and 0.65 g (17.2 mmol) of sodium borohydride was added over 1 hour taking care of foaming. After 12 hours, the mixture was concentrated, 20 mL of methanol was added, the solvent was replaced, and the precipitated crystals were filtered and dried to obtain 4.64 g of 5- (4-bromo) benzylhydantoin. This was 95% pure as analyzed by reverse phase HPLC. (Yield 92%)
Incidentally, in the reverse phase HPLC method of the reaction solution, a by-product of 5-benzylhydantoin from which bromine atoms were eliminated was observed, but the by-product rate of this product remained at about 1%.

参考例2
1Lのオートクレーブ中に5−(4−ブロモベンジリデン)ヒダントイン2.0g(0.0075モル)、ラネーニッケル1.0gを入れ、20%水酸化ナトリウム水溶液 2.99g(0.0150モル)、水 40mLを加えて溶解した。水素ガスを7.1kgf/cm2封入し、溶液を50℃に昇温しその後水素添加を6時間行なった。反応液を1時間おきに(5時間目を除く)逆相HPLC法で分析し、基質、目的とする生成物及び副生物の定量を行なったところ、表2の如き分析結果を得た。反応開始後、3時間で基質は消失し、目的とする5−(4−ブロモベンジル)ヒダントインが生成するが、同時に臭素原子が脱離したと推定される副生物が認められ、これらは時間の経過とともに増加することが観察された。この副生物は逆相HPLC法により、臭素原子が脱離した5−ベンジリデンヒダントインと同定された。反応開始後、1時間で原料が5.0%残存し、目的とする5−(4−ブロモベンジル)ヒダントインの比率は38.9%、臭素原子が脱離した5−ベンジルヒダントインは55.3%副生していることが観察された。
Reference example 2
In a 1 L autoclave, 2.0 g (0.0075 mol) of 5- (4-bromobenzylidene) hydantoin and 1.0 g of Raney nickel were added, 2.99 g (0.0150 mol) of 20% aqueous sodium hydroxide solution and 40 mL of water were added. In addition, it was dissolved. Hydrogen gas was sealed at 7.1 kgf / cm 2 , the solution was heated to 50 ° C., and then hydrogenation was performed for 6 hours. The reaction solution was analyzed every 1 hour (excluding the 5th hour) by the reverse phase HPLC method, and the substrate, the desired product and by-products were quantified, and the analysis results shown in Table 2 were obtained. The substrate disappears in 3 hours after the start of the reaction, and the desired 5- (4-bromobenzyl) hydantoin is produced, but at the same time, a by-product presumed that the bromine atom has been eliminated is observed. It was observed to increase over time. This by-product was identified as 5-benzylidenehydantoin from which a bromine atom was eliminated by reverse-phase HPLC. After starting the reaction, 5.0% of the raw material remains in 1 hour, the ratio of the desired 5- (4-bromobenzyl) hydantoin is 38.9%, and 5-benzylhydantoin from which bromine atoms are eliminated is 55.3. % By-product was observed.

Figure 0005546372
Figure 0005546372

以上の実施例及び参考例に示したように、従来の接触還元法では副反応のため目的物を得ることが困難であった反応において、本発明の方法により高純度の目的物を高収率で得ることが可能となった。
すなわち、ベンゼン環上に塩素原子、臭素原子等のハロゲンを有するベンジリデンヒダントイン化合物の還元反応において、接触還元法では、本来の炭素−炭素二重結合への水素添加反応が進行する一方で、時間とともにハロゲンが脱離する現象が生じてしまう。5−(3,4−ジクロロベンジリデン)ヒダントインでは、原料がほぼ消失する時点で既に塩素原子が脱離した副生物が10%程度生じ、時間とともに更に増大する。一方、5−(4−ブロモベンジリデン)ヒダントインでは、この傾向は更に顕著で、接触還元開始後、わずか1時間で目的とする還元体の生成率が約40%に対し臭素原子が脱離した副生物は約55%生じていることが確認された。
これに対し、本発明の方法によれば、5−(3,4−ジクロロベンジリデン)ヒダントインでは、目的とする還元体のみがほぼ定量的に得られることがわかった。また5−(4−ブロモベンジリデン)ヒダントインでは臭素原子が脱離した副生物が生じるものの、その生成率はごくわずかに抑えられ、精製工程等により目的物を純度よく得ることが可能である。
As shown in the above Examples and Reference Examples, in the reaction in which it was difficult to obtain the target product due to side reactions in the conventional catalytic reduction method, the high purity target product was obtained in a high yield by the method of the present invention. It became possible to get in.
That is, in the reduction reaction of a benzylidenehydantoin compound having a halogen such as a chlorine atom or a bromine atom on the benzene ring, the catalytic reduction method proceeds with a hydrogenation reaction to the original carbon-carbon double bond, but with time. The phenomenon of halogen elimination occurs. In 5- (3,4-dichlorobenzylidene) hydantoin, about 10% of by-products from which chlorine atoms have already been eliminated are generated at the time when the raw material almost disappears, and further increases with time. On the other hand, with 5- (4-bromobenzylidene) hydantoin, this tendency is even more pronounced, and in only 1 hour after the start of catalytic reduction, the yield of the desired reductant is about 40% while the bromine atom has been eliminated. It was confirmed that about 55% of organisms were generated.
On the other hand, according to the method of the present invention, it was found that with 5- (3,4-dichlorobenzylidene) hydantoin, only the desired reductant can be obtained almost quantitatively. Further, although 5- (4-bromobenzylidene) hydantoin produces a by-product from which a bromine atom is eliminated, its production rate is suppressed to a very low level, and the target product can be obtained with high purity by a purification step or the like.

Claims (6)

式(1)
Figure 0005546372
(式中、R1、R2及びR3はそれぞれ独立して、水素原子、ハロゲン原子、ヒドロキシ基、アミノ基、アルキル基、アルコキシ基、アラルキル基、アリール基又は複素環基を示すか、R1〜R3の隣接する2個が一緒になって環を形成してもよい。)
で表されるベンジリデンヒダントイン化合物に、コバルト化合物及びキレート剤の存在下、アルカリ条件で水素化ホウ素ナトリウムを反応させることを特徴とする、式(2)
Figure 0005546372
(式中、R1、R2及びR3は前記と同じ)
で表されるベンジルヒダントイン化合物の製造法。
Formula (1)
Figure 0005546372
(Wherein R 1 , R 2 and R 3 each independently represents a hydrogen atom, a halogen atom, a hydroxy group, an amino group, an alkyl group, an alkoxy group, an aralkyl group, an aryl group or a heterocyclic group, or R Two adjacent ones of 1 to R 3 may be combined to form a ring.)
A benzylidene hydantoin compound represented by the formula (2) is reacted with sodium borohydride under alkaline conditions in the presence of a cobalt compound and a chelating agent:
Figure 0005546372
(Wherein R 1 , R 2 and R 3 are the same as above)
The manufacturing method of the benzylhydantoin compound represented by these.
コバルト化合物が、塩化コバルト又は硝酸コバルトであり、キレート剤がジメチルグリオキシム、2,2’−ビピリジル又はフェナントロリンである請求項1記載の製造法。   The process according to claim 1, wherein the cobalt compound is cobalt chloride or cobalt nitrate and the chelating agent is dimethylglyoxime, 2,2'-bipyridyl or phenanthroline. アルカリ条件が、アルカリ性溶媒である請求項1又は2記載の製造法。   The production method according to claim 1 or 2, wherein the alkaline condition is an alkaline solvent. 1、R2及びR3のうち、少なくとも1個がハロゲン原子である請求項1〜3のいずれか1項記載の製造法。 The production method according to claim 1, wherein at least one of R 1 , R 2 and R 3 is a halogen atom. 1、R2及びR3のうち、2個が塩素原子又は臭素原子である請求項1〜3のいずれか1項記載の製造法。 The production method according to claim 1 , wherein two of R 1 , R 2 and R 3 are chlorine atoms or bromine atoms. 1、R2及びR3のうち、2個が塩素原子又は臭素原子であり、かつ1個の塩素又は臭素が3位、他の1個の塩素又は臭素が4位である請求項1〜3のいずれか1項記載の製造法。 2. Of R 1 , R 2 and R 3 , two are chlorine or bromine atoms, one chlorine or bromine is at the 3-position, and the other one chlorine or bromine is at the 4-position. 4. The production method according to any one of 3 above.
JP2010148818A 2010-06-30 2010-06-30 Process for producing benzylhydantoin compounds Expired - Fee Related JP5546372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010148818A JP5546372B2 (en) 2010-06-30 2010-06-30 Process for producing benzylhydantoin compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010148818A JP5546372B2 (en) 2010-06-30 2010-06-30 Process for producing benzylhydantoin compounds

Publications (2)

Publication Number Publication Date
JP2012012319A JP2012012319A (en) 2012-01-19
JP5546372B2 true JP5546372B2 (en) 2014-07-09

Family

ID=45599186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010148818A Expired - Fee Related JP5546372B2 (en) 2010-06-30 2010-06-30 Process for producing benzylhydantoin compounds

Country Status (1)

Country Link
JP (1) JP5546372B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684735A (en) * 1985-07-01 1987-08-04 Stauffer Chemical Company Promotion of raney nickel hydrogenation catalyst
JPS6317864A (en) * 1986-07-11 1988-01-25 Mitsui Toatsu Chem Inc Production of hydantoins
JP2001158775A (en) * 1999-09-20 2001-06-12 Mitsubishi Chemicals Corp Method for producing 5-(substituted naphthylmethyl) hydantoin
ES2156574B1 (en) * 1999-11-18 2002-02-01 Vita Invest Sa NEW DERIVATIVES OF TIAZOLIDINDIONA AS ANTIDIABETIC AGENTS
GB2413795A (en) * 2004-05-05 2005-11-09 Cipla Ltd Process for the preparation of rosiglitazone

Also Published As

Publication number Publication date
JP2012012319A (en) 2012-01-19

Similar Documents

Publication Publication Date Title
JP5244149B2 (en) Optically active quaternary ammonium salt having axial asymmetry and method for producing α-amino acid and derivatives thereof using the same
KR101821090B1 (en) Process for manufacture of n-acylbiphenyl alanine
CA2093723C (en) Process for the preparation of a biphenyl derivative
JP5234901B2 (en) Method for producing asymmetric catalyst Michael reaction product
JP2019194203A (en) Novel method for preparing febuxostat
CN110003011B (en) Preparation method of nitroolefin derivative by taking nitrate as nitro source
CN111875515A (en) Method for generating amide by catalyzing primary amine with metal complex
JP5689321B2 (en) Process for producing 2-amino-4-trifluoromethylpyridines
JP2008056615A (en) Vinylethynylaryl carboxylic acid, method for producing the same, and method for producing heat cross-linking compound by using the same
JP5546372B2 (en) Process for producing benzylhydantoin compounds
JP6999112B2 (en) 2,5-Bis (aminomethyl) furan dihalogenated hydrogen salt and its production method, and 2,5-bis (aminomethyl) furan production method.
JP5168830B2 (en) Method for producing tetrahydropyran-4-one compound
JPWO2005121111A1 (en) Method for producing 3-aminomethyltetrahydrofuran derivative
JP4779109B2 (en) Optically active amino acid derivative having axial asymmetry and method for producing optically active compound using the amino acid derivative as an asymmetric catalyst
CN101565362A (en) Method for synthesizing propionoin from propionaldehyde
Zang et al. An efficient one‐pot synthesis of pyrazolone derivatives promoted by acidic ionic liquid
JP2010132593A (en) Method for producing 4-alkylresorcinol
JP5197063B2 (en) Process for producing methyl 2-bromo-3- {4- [2- (5-ethyl-2-pyridyl) ethoxy] phenyl} propionate
CN110590641B (en) Green preparation method of 3-hydroxyisoindole-1-ketone series compounds
CN110016010B (en) Preparation method of thiophenecarboxaldehyde compound
JP4526801B2 (en) Method for producing heterocyclic compound
JP6764158B2 (en) Method for producing carbonyl compound
JP2009013091A (en) Production method of pioglitazone hydrochloride
JP4568824B2 (en) Method for producing diarylsulfonic acid derivative
JP5773308B2 (en) Photoresponsive catalyst

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20130116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140513

R150 Certificate of patent or registration of utility model

Ref document number: 5546372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees