JP5546289B2 - Method and system for processing fine powder containing lead component and calcium component - Google Patents

Method and system for processing fine powder containing lead component and calcium component Download PDF

Info

Publication number
JP5546289B2
JP5546289B2 JP2010045431A JP2010045431A JP5546289B2 JP 5546289 B2 JP5546289 B2 JP 5546289B2 JP 2010045431 A JP2010045431 A JP 2010045431A JP 2010045431 A JP2010045431 A JP 2010045431A JP 5546289 B2 JP5546289 B2 JP 5546289B2
Authority
JP
Japan
Prior art keywords
component
slurry
lead
flotation
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010045431A
Other languages
Japanese (ja)
Other versions
JP2011179086A (en
Inventor
幸輝 一坪
弘樹 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2010045431A priority Critical patent/JP5546289B2/en
Publication of JP2011179086A publication Critical patent/JP2011179086A/en
Application granted granted Critical
Publication of JP5546289B2 publication Critical patent/JP5546289B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

本発明は、溶融飛灰、塩素バイパスダスト等の、鉛成分及びカルシウム成分を含む微粉末の処理方法並びに処理システムに関する。   The present invention relates to a processing method and a processing system for fine powder containing lead components and calcium components such as molten fly ash and chlorine bypass dust.

従来より、溶融飛灰等の微粉末から鉛等の有用成分を回収するための種々の技術が知られている。
例えば、カルシウム成分と塩素成分と有価金属成分とを含有する溶融飛灰から石膏を回収する方法において、前記溶融飛灰を塩酸含有水溶液でpH7〜10に調整して浸出処理することにより前記溶融飛灰から前記カルシウム成分の大部分及び前記塩素成分を浸出して浸出液を生成する浸出工程と、前記浸出工程で生成された浸出液から前記溶融飛灰中の前記カルシウム成分の残部及び前記有価金属成分を含有する固形分を分離する第1固液分離工程と、前記第1固液分離工程で前記固形分が除去された前記浸出液に硫酸を添加して反応させ石膏を沈殿させるとともに前記浸出液を石膏ろ液である塩酸含有水溶液とする反応工程と、前記反応工程で沈殿した前記石膏を前記塩酸含有水溶液から分離する第2固液分離工程と、前記第2固液分離工程で前記石膏が除去された前記塩酸含有水溶液の一部又は全部を前記浸出工程に戻す工程とを含む溶融飛灰からの石膏の回収方法が、提案されている(特許文献1)。
Conventionally, various techniques for recovering useful components such as lead from fine powder such as molten fly ash are known.
For example, in a method for recovering gypsum from molten fly ash containing a calcium component, a chlorine component, and a valuable metal component, the molten fly ash is adjusted to pH 7 to 10 with a hydrochloric acid-containing aqueous solution and leached to obtain the molten fly ash. A leaching step of leaching the majority of the calcium component and the chlorine component from the ash to produce a leachate; and a balance of the calcium component and the valuable metal component in the molten fly ash from the leachate produced in the leaching step A first solid-liquid separation step for separating the contained solid content, and adding and reacting sulfuric acid to the leachate from which the solid content has been removed in the first solid-liquid separation step to precipitate gypsum, A reaction step of forming a hydrochloric acid-containing aqueous solution, a second solid-liquid separation step of separating the gypsum precipitated in the reaction step from the hydrochloric acid-containing aqueous solution, and the second solid-liquid separation Method for recovering gypsum some or all of the hydrochloric acid-containing aqueous solution in which the gypsum has been removed from the molten fly ash and a step back to the leaching step in extent has been proposed (Patent Document 1).

特開2008−246398号公報JP 2008-246398 A

従来、溶融飛灰等の微粉末から鉛成分等の有用成分を回収するに際し、上述の特許文献1にも記載されているように、当該微粉末と水と塩酸を混合して、微粉末中のカルシウム成分、塩素成分等を溶出させた後、固液分離して、鉛成分等の有用成分を含む固形分と、カルシウム成分、塩素成分等を含む液分を得ることが行われている。
しかし、この場合、鉛成分のすべてを固形分中に含有させ、かつ、カルシウム成分のすべてを液分中に含有させることは、困難である。例えば、鉛成分の一部は、固形分中に残存せずに、液分中に溶出する。また、処理対象物である微粉末が硫酸成分(SO)を含む場合、固形分は、硫酸鉛のみならず、硫酸カルシウムも含む。
そこで、本発明は、鉛成分の回収率が高く、かつ、鉛成分とカルシウム成分を分別して回収することのできる、鉛成分及びカルシウム成分を含む微粉末の処理方法並びに処理システムを提供することを目的とする。
Conventionally, when recovering useful components such as lead components from fine powder such as molten fly ash, as described in Patent Document 1 above, the fine powder, water and hydrochloric acid are mixed, After the calcium component, chlorine component, and the like are eluted, solid-liquid separation is performed to obtain a solid component containing a useful component such as a lead component and a liquid component containing a calcium component, a chlorine component, and the like.
However, in this case, it is difficult to contain all of the lead component in the solid component and all of the calcium component in the solution component. For example, part of the lead component does not remain in the solid content but elutes in the liquid content. Also, if the fine powder is a processing object comprises a sulfate component (SO 3), solids not only lead sulfate, including calcium sulfate.
Therefore, the present invention provides a processing method and a processing system for a fine powder containing a lead component and a calcium component, which has a high recovery rate of the lead component and can separate and recover the lead component and the calcium component. Objective.

本発明者は、上記課題を解決するために鋭意検討した結果、処理対象物である微粉末を含むスラリーに対して、硫化剤、塩酸の順に薬剤を添加することによって、鉛成分の回収率が高くなること、及び、鉛成分とカルシウム成分を分別して回収しうることを見出し、本発明を完成した。
すなわち、本発明は、以下の[1]〜[4]を提供するものである。
[1] (A)鉛成分及びカルシウム成分を含む微粉末と、水と、硫化剤を混合して、鉛硫化物を含むスラリーを得る鉛硫化物生成工程と、(B)上記スラリーと、塩酸を混合して、上記微粉末中のカルシウム成分を溶出させて、鉛硫化物及び溶出したカルシウム成分を含むスラリーを得るカルシウム成分溶出工程と、を含むことを特徴とする鉛成分及びカルシウム成分を含む微粉末の処理方法。
[2] (C)工程(B)で得られた上記スラリーに疎水化剤を加えて、上記鉛硫化物を疎水化させ、浮遊選鉱用スラリーを得る疎水化工程と、(D)上記浮遊選鉱用スラリーを浮遊選鉱処理して、鉛硫化物を含む浮鉱を得る浮遊選鉱工程と、を含む上記[1]に記載の鉛成分及びカルシウム成分を含む微粉末の処理方法。
[3] 上記微粉末が、溶融飛灰、焼却飛灰、及び塩素バイパスダストの中から選ばれる一種以上である上記[1]又は[2]に記載の鉛成分及びカルシウム成分を含む微粉末の処理方法。
[4] 鉛成分及びカルシウム成分を含む微粉末と、水と、硫化剤を混合して、鉛硫化物を含むスラリーを得るための混合槽と、上記混合槽で得られたスラリーと、塩酸を混合して、鉛硫化物及び溶出したカルシウム成分を含むスラリーを得るためのカルシウム成分溶出と、上記カルシウム成分溶出で得られスラリーに疎水化剤を加えて、上記鉛硫化物を疎水化させ、浮遊選鉱用スラリーを得るための疎水化反応槽と、上記浮遊選鉱用スラリーを浮遊選鉱処理して、鉛硫化物を含む浮鉱を得るための浮遊選鉱と、を含むことを特徴とする鉛成分及びカルシウム成分を含む微粉末の処理システム。
As a result of intensive studies to solve the above problems, the present inventor has added a chemical in the order of a sulfiding agent and hydrochloric acid to a slurry containing fine powder that is a processing target, thereby improving the lead component recovery rate. The present invention has been completed by finding that it is high and that the lead component and calcium component can be separated and recovered.
That is, the present invention provides the following [1] to [4].
[1] (A) A lead sulfide generation step of obtaining a slurry containing lead sulfide by mixing fine powder containing a lead component and a calcium component, water, and a sulfiding agent, (B) the slurry, and hydrochloric acid And a calcium component elution step of eluting the calcium component in the fine powder to obtain a slurry containing the lead sulfide and the eluted calcium component. Fine powder processing method.
[2] (C) Hydrophobizing step of adding a hydrophobizing agent to the slurry obtained in step (B) to hydrophobize the lead sulfide to obtain a slurry for flotation, (D) Flotation A method for treating fine powder containing a lead component and a calcium component according to the above [1], comprising a flotation step of subjecting the slurry for flotation to a flotation step including a lead sulfide.
[3] A fine powder containing a lead component and a calcium component according to [1] or [2], wherein the fine powder is at least one selected from molten fly ash, incinerated fly ash, and chlorine bypass dust. Processing method.
[4] and fine powder containing lead component and calcium components, and water, a mixture of a sulfurizing agent, and mixing tank to obtain a slurry containing lead sulfide, and the slurry obtained in the mixing tank, hydrochloride mixed and, in addition the calcium component dissolution tank to obtain a slurry containing lead sulfide and eluted calcium component, a hydrophobic agent to the slurry obtained in the above calcium component dissolution tank, hydrophobic the lead sulfide A hydrophobization reaction tank for obtaining a flotation slurry, and a flotation machine for flotation treatment of the flotation slurry to obtain a flotation containing lead sulfide. System for processing fine powder containing lead component and calcium component.

本発明によれば、硫化剤及び塩酸を加えた後の時点で、固体分として、高い回収率(例えば、98質量%以上)で鉛成分を回収することができる。
また、本発明によれば、このように高い回収率で回収された鉛成分を含む固体分に対して、例えば疎水化処理及び浮遊選鉱処理を行なうことによって、浮鉱として、鉛硫化物を含む固体分を回収することができる。この固体分は、高い品位で鉛成分を含み、カルシウム成分の含有率が小さいものである。この浮遊選鉱処理によって、高い回収率で鉛成分を回収することができる。
According to the present invention, the lead component can be recovered at a high recovery rate (for example, 98% by mass or more) as a solid content at the time after adding the sulfurizing agent and hydrochloric acid.
In addition, according to the present invention, lead sulfide is contained as a float by performing, for example, a hydrophobization process and a flotation process on the solid content including the lead component recovered at such a high recovery rate. Solids can be recovered. This solid content has a high quality, contains lead component, and has a small content of calcium component. By this flotation process, the lead component can be recovered at a high recovery rate.

本発明の微粉末の処理方法の一例を示すフロー図である。It is a flowchart which shows an example of the processing method of the fine powder of this invention. 本発明の微粉末の処理システムの一例を概念的に示す図である。It is a figure which shows notionally an example of the processing system of the fine powder of this invention.

まず、本発明の微粉末の処理方法について説明する。
本発明の微粉末の処理方法は、(A)鉛成分及びカルシウム成分を含む微粉末(例えば、溶融飛灰)と、水と、硫化剤(例えば、水硫化ソーダ)を混合して、鉛硫化物を含むスラリーを得る鉛硫化物生成工程と、(B)上記スラリーと、塩酸を混合して、上記微粉末中のカルシウム成分を溶出させて、鉛硫化物及び溶出したカルシウム成分を含むスラリーを得るカルシウム成分溶出工程と、を含むものである。
本発明の微粉末の処理方法は、上記工程(A)及び工程(B)に加えて、(C)工程(B)で得られた上記スラリーに疎水化剤(例えば、ザンセート)を加えて、上記鉛硫化物を疎水化させ、浮遊選鉱用スラリーを得る疎水化工程と、(D)上記浮遊選鉱用スラリーを浮遊選鉱処理して、鉛硫化物を含む浮鉱を得る浮遊選鉱工程と、を含むことができる。なお、図1は、工程(A)〜工程(D)を含む一例を示すものである。
以下、各工程について詳しく説明する。
First, the processing method of the fine powder of this invention is demonstrated.
The fine powder processing method of the present invention comprises (A) mixing a fine powder (for example, molten fly ash) containing a lead component and a calcium component, water, and a sulfiding agent (for example, sodium hydrosulfide) to lead sulfide. A lead sulfide generation step for obtaining a slurry containing a product, (B) a slurry containing lead sulfide and the eluted calcium component by mixing the slurry and hydrochloric acid to elute the calcium component in the fine powder. And a calcium component elution step to be obtained.
In the method for treating fine powder of the present invention, in addition to the steps (A) and (B), a hydrophobizing agent (eg, xanthate) is added to the slurry obtained in (C) step (B). Hydrophobizing the lead sulfide to obtain a flotation slurry, and (D) a flotation process to obtain a flotation containing lead sulfide by flotation treatment of the flotation slurry. Can be included. FIG. 1 shows an example including steps (A) to (D).
Hereinafter, each step will be described in detail.

[工程(A);鉛硫化物生成工程]
工程(A)は、鉛成分及びカルシウム成分を含む微粉末と、水と、硫化剤を混合して、鉛硫化物を含むスラリーを得る工程である。
本発明の処理対象となる微粉末としては、例えば、溶融飛灰、焼却飛灰、塩素バイパスダスト等が挙げられる。
硫化剤の例としては、水硫化ソーダ(NaSH)、硫化ソーダ(NaS)、硫化水素ガス(HS)等が挙げられる。
スラリー中に生成する鉛硫化物の例としては、硫化鉛(PbS)等が挙げられる。
水1リットル当りの鉛成分及びカルシウム成分を含む微粉末の質量は、好ましくは5〜300g/リットル、より好ましくは20〜250g/リットル、特に好ましくは50〜200g/リットルである。該値が5g/リットル未満では、微粉末の単位質量当たりの水量が大きくなり、処理の効率が低下する。該値が300g/リットルを超えると、工程(D)(浮遊選鉱工程)における鉛成分と他の成分(特に、カルシウム成分)の分離性能が低下する。
スラリーのpHは、特に限定されないが、例えば、8以上である。
[Step (A); lead sulfide generation step]
Step (A) is a step of obtaining a slurry containing lead sulfide by mixing fine powder containing a lead component and a calcium component, water, and a sulfiding agent.
Examples of the fine powder to be treated in the present invention include molten fly ash, incinerated fly ash, and chlorine bypass dust.
Examples of the sulfiding agent include sodium hydrosulfide (NaSH), sodium sulfide (Na 2 S), hydrogen sulfide gas (H 2 S), and the like.
Examples of the lead sulfide generated in the slurry include lead sulfide (PbS).
The mass of the fine powder containing a lead component and a calcium component per liter of water is preferably 5 to 300 g / liter, more preferably 20 to 250 g / liter, and particularly preferably 50 to 200 g / liter. When the value is less than 5 g / liter, the amount of water per unit mass of the fine powder becomes large, and the treatment efficiency is lowered. When this value exceeds 300 g / liter, the separation performance of the lead component and other components (particularly calcium component) in the step (D) (floating beneficiation step) is lowered.
Although the pH of a slurry is not specifically limited, For example, it is 8 or more.

[工程(B);カルシウム成分溶出工程]
工程(B)は、工程(B)で得られたスラリーと、塩酸を混合して、処理対象物である微粉末中のカルシウム成分を溶出させて、鉛硫化物及び溶出したカルシウム成分を含むスラリーを得る工程である。
塩酸の添加量は、特に限定されないが、好ましくは、スラリーのpHが2〜7の範囲内となる量である。該pHが2未満では、カルシウム成分、塩素成分等の溶出量の増大が頭打ちとなる一方、塩酸の添加量が大きくなり、薬剤コストが増大する。該pHが7を超えると、カルシウム成分、塩素成分等の溶出が不十分となり、工程(D)(浮遊選鉱工程)における鉛成分と他の成分(特に、カルシウム成分)の分離性能が低下する。
処理対象物である微粉末に含まれる鉛成分の全量(100質量%)に対する、工程(B)で得られるスラリー中の固体分に含まれる鉛成分の質量の割合は、通常、98質量%以上である。
[Step (B); Calcium component elution step]
In the step (B), the slurry obtained in the step (B) is mixed with hydrochloric acid to elute the calcium component in the fine powder which is the object to be treated, and the slurry containing lead sulfide and the eluted calcium component It is the process of obtaining.
The amount of hydrochloric acid added is not particularly limited, but is preferably such an amount that the pH of the slurry is in the range of 2-7. If the pH is less than 2, the increase in the elution amount of calcium component, chlorine component, etc. will reach a peak, while the addition amount of hydrochloric acid will increase and the drug cost will increase. When the pH exceeds 7, elution of calcium component, chlorine component and the like becomes insufficient, and the separation performance of the lead component and other components (particularly calcium component) in the step (D) (floating flotation step) is lowered.
The ratio of the mass of the lead component contained in the solid content in the slurry obtained in the step (B) to the total amount (100 mass%) of the lead component contained in the fine powder that is the object to be treated is usually 98% by mass or more. It is.

[工程(C);疎水化工程]
工程(C)は、工程(B)で得られたスラリーに疎水化剤を加えて、スラリー中の鉛硫化物を疎水化させ、浮遊選鉱用スラリーを得る工程である。
工程(C)(疎水化工程)は、工程(D)(浮遊選鉱工程)の前処理として、疎水化剤を加えて、鉛硫化物の粒子を疎水化させるものである。
浮遊選鉱とは、疎水性の表面を有する粒子及び親水性の表面を有する粒子を含む水中にガスを供給して、このガスからなる泡の表面に、疎水性の表面を有する粒子を付着させ、該粒子が付着している泡を、水中で浮力により浮上させることによって、沈鉱である親水性の表面を有する粒子と、浮鉱である疎水性の表面を有する粒子とに分離するものである。
なお、通常、粒子の表面の疎水性及び親水性を人為的に調節して、分離性能を高めるために、捕収剤と呼ばれる種々の化学薬剤が用いられる。従来知られている個々の捕収剤は、粒子の種類によってその効果(適否)が異なることが知られている。
工程(C)では、鉛硫化物と他の成分(硫酸カルシウム等)を分離させるために、鉛硫化物の粒子の表面の疎水性を高めるための捕収剤である疎水化剤を用いる。
疎水化剤の好ましい例として、ザンセートが挙げられる。鉛硫化物は、ザンセートによって疎水性を高められた後、泡の表面に付着して、水中を浮上し、浮鉱となる。
[Step (C); Hydrophobization step]
Step (C) is a step of adding a hydrophobizing agent to the slurry obtained in step (B) to hydrophobize lead sulfide in the slurry to obtain a slurry for flotation.
In the step (C) (hydrophobization step), as a pretreatment of the step (D) (floating beneficiation step), a hydrophobizing agent is added to hydrophobize the lead sulfide particles.
Flotation is the supply of gas into water containing particles having a hydrophobic surface and particles having a hydrophilic surface, and the particles having a hydrophobic surface are attached to the surface of the foam made of this gas. The bubbles to which the particles are attached are separated into particles having a hydrophilic surface that is a deposit and particles having a hydrophobic surface that is a float by lifting the bubbles by buoyancy in water. .
Usually, various chemical agents called collection agents are used in order to artificially adjust the hydrophobicity and hydrophilicity of the surface of the particles to enhance the separation performance. It is known that conventionally known individual collectors have different effects (propriety) depending on the type of particles.
In the step (C), in order to separate the lead sulfide from other components (such as calcium sulfate), a hydrophobizing agent that is a collection agent for increasing the hydrophobicity of the surface of the lead sulfide particles is used.
A preferred example of the hydrophobizing agent is xanthate. After the lead sulfide is made hydrophobic by xanthate, it adheres to the surface of the foam and floats in the water to become a float.

ザンセートとは、−OC(=S)−Sの化学構造を有するキサントゲン酸塩をいう。ザンセートの例としては、R−OC(=S)−S(式中、Rは炭素数1〜20(好ましくは2〜5)のアルキル基、MはNa、K等のアルカリ金属またはNH等を表す。)の一般式で表される化合物が挙げられる。
ザンセートの使用量は、例えば、本発明の処理対象物である微粉末中の鉛成分の通常の含有率から推測して定めることができる。具体的には、ザンセート/Pbのモル比が、好ましくは0.01以上、より好ましくは0.03以上、さらに好ましくは0.04以上となる量のザンセートを添加することが望ましい。該値が0.01未満では、鉛硫化物を浮鉱として十分に浮上させることが困難となる。
ザンセートの使用量の上限値は、特に限定されないが、薬剤コストの削減等の観点から、ザンセート/Pbのモル比が、好ましくは1.0以下、より好ましくは0.5以下、さらに好ましくは0.2以下となる量であることが望ましい。
The xanthates, -OC (= S) -S - refers to xanthate having the chemical structure. Examples of xanthate include R—OC (═S) —S M + (wherein R is an alkyl group having 1 to 20 carbon atoms (preferably 2 to 5), M is an alkali metal such as Na or K, or A compound represented by the general formula of NH 4 and the like).
The amount of xanthate used can be determined by estimating from the normal content of the lead component in the fine powder that is the object to be treated of the present invention, for example. Specifically, it is desirable to add xanthate in such an amount that the molar ratio of xanthate / Pb is preferably 0.01 or more, more preferably 0.03 or more, and even more preferably 0.04 or more. When the value is less than 0.01, it is difficult to sufficiently float the lead sulfide as a float.
The upper limit of the amount of xanthate used is not particularly limited, but from the viewpoint of reducing drug costs, the xanthate / Pb molar ratio is preferably 1.0 or less, more preferably 0.5 or less, and even more preferably 0. It is desirable that the amount be 2 or less.

スラリーに起泡剤を加えることもできる。起泡剤を用いることによって、浮遊選鉱における浮鉱の浮上を促進することができる。起泡剤は、通常、鉛硫化物を疎水化した後に添加される。
起泡剤の例としては、メチルイソブチルカルビノール(MIBC;4−メチル−2−ペンタノール)、メチルイソブチルケトン、パイン油、エチレングリコール、プロピレングリコールメチルエーテル、クレゾール酸等が挙げられる。起泡剤として、前記の例示物の他に、例えば、炭素数6〜8の鎖状の炭化水素基(アルキル基等)や炭素数10〜15の環状の炭化水素基(芳香族基、シクロアルキル基等)等の疎水性基、及び、水酸基、カルボキシル基等の親水性基を有する化合物も、使用することができる。
起泡剤の添加量は、スラリー1リットルに対して、好ましくは5〜100mgである。
なお、本発明において、起泡剤の添加は必須ではなく、任意である。
A foaming agent can also be added to the slurry. By using a foaming agent, it is possible to promote floating of the ore in the flotation. The foaming agent is usually added after hydrophobizing lead sulfide.
Examples of the foaming agent include methyl isobutyl carbinol (MIBC; 4-methyl-2-pentanol), methyl isobutyl ketone, pine oil, ethylene glycol, propylene glycol methyl ether, cresolic acid and the like. As the foaming agent, in addition to the above-mentioned examples, for example, a chain hydrocarbon group having 6 to 8 carbon atoms (such as an alkyl group) or a cyclic hydrocarbon group having 10 to 15 carbon atoms (aromatic group, cyclohexane) A compound having a hydrophobic group such as an alkyl group or the like and a hydrophilic group such as a hydroxyl group or a carboxyl group can also be used.
The amount of the foaming agent added is preferably 5 to 100 mg with respect to 1 liter of the slurry.
In addition, in this invention, addition of a foaming agent is not essential and is arbitrary.

[工程(D);浮遊選鉱工程]
工程(D)は、工程(C)で得られた浮遊選鉱用スラリーを浮遊選鉱処理して、鉛硫化物を含む浮鉱を得る工程である。
浮遊選鉱を行う手段としては、ファーレンワルド型浮選機(FW型浮選機)、MS型浮選機、フェジャーグレン型浮選機、アジテヤ型浮選機、ワーマン型浮選機等の浮選機が挙げられる。
浮鉱は、スラリーの液中の上部領域(特に液面付近)に存在する固体分を回収することによって、スラリーの他の成分(液分、沈鉱)から分離することができる。
浮鉱は、鉛(Pb)の分配率(換言すれば、浮鉱中のPbと沈鉱中のPbの合計量中の浮鉱中のPbの質量割合)が大きいので、鉛成分及びカルシウム成分を含有する微粉末に由来する鉛含有物質として分離回収することができる。
浮遊選鉱処理の回数は、1回でもよいし、複数回でもよいが、処理対象物である微粉末からの鉛成分の回収率を高める観点から、好ましくは2回以上、より好ましくは3回以上である。ただし、該回数は、処理コストの観点から、好ましくは5回以下である。
なお、処理対象物である微粉末中にPbが多く含まれ、かつCaの量が少ない場合(例えば、後述の実施例における飛灰Dを用いる場合)には、工程(B)で得られたスラリーを固液分離するだけで、鉛の品位が高い鉛含有固形分を得ることができ、工程(C)以降の工程を省略することができる。
浮遊選鉱処理を2回以上行なう場合、各回の前の時点で、疎水化剤を添加することが望ましい。つまり、工程(C)と工程(D)の一連の操作を繰り返すことが望ましい。
[Process (D): Flotation process]
Step (D) is a step of obtaining a floatation containing lead sulfide by subjecting the slurry for floatation ore obtained in step (C) to a floatation treatment.
As a means of flotation, the Fahrenwald type flotation machine (FW type flotation machine), MS type flotation machine, Fegergren type flotation machine, agitaya type flotation machine, Worman type flotation machine, etc. There is a selection machine.
Flotation can be separated from other components of the slurry (liquid content, sedimentation) by recovering the solid content present in the upper region (particularly near the liquid surface) of the slurry liquid.
Float has a high lead (Pb) distribution ratio (in other words, the mass ratio of Pb in the float in the total amount of Pb in the float and Pb in the deposit), and therefore contains lead and calcium components. Can be separated and recovered as a lead-containing substance derived from fine powder.
The number of times of the flotation process may be one or more, but from the viewpoint of increasing the recovery rate of the lead component from the fine powder that is the object to be processed, it is preferably two times or more, more preferably three times or more. It is. However, the number of times is preferably 5 times or less from the viewpoint of processing cost.
In addition, when Pb was contained abundantly in the fine powder which is a process target object, and the quantity of Ca was small (for example, when using fly ash D in the below-mentioned Example), it was obtained at the process (B). Only by solid-liquid separation of the slurry, a lead-containing solid content with high lead quality can be obtained, and the steps after the step (C) can be omitted.
When the flotation process is performed twice or more, it is desirable to add a hydrophobizing agent at a point before each time. That is, it is desirable to repeat a series of operations of the step (C) and the step (D).

工程(D)によって得られる浮鉱中の鉛成分の品位(浮鉱の乾燥質量中の鉛成分のPb換算含有量の割合(%))は、浮遊選鉱処理の回数が1回目の場合で例えば35質量%以上、2回目の場合で例えば25質量%以上である。
浮遊選鉱処理の前の時点におけるスラリー中の固体分に含まれる鉛成分の全量(100質量%)に対する、浮鉱に含まれる鉛成分の質量の割合(浮鉱としての鉛成分の回収率)は、浮遊選鉱処理の回数が1回目の場合で例えば30質量%以上、回数が3回目の場合で例えば70質量%以上(1〜3回の累計)である。
The quality of the lead component in the float ore obtained by the step (D) (the ratio (%) of the Pb equivalent content of the lead component in the dry mass of the float ore) is, for example, when the number of times of the flotation treatment is 1st In the case of 35 mass% or more and the 2nd time, it is 25 mass% or more, for example.
The ratio of the mass of the lead component contained in the floatation (recovery rate of the lead component as the floatation) to the total amount (100% by mass) of the lead component contained in the solid content in the slurry at the time before the flotation treatment is When the number of times of the flotation process is the first time, for example, it is 30% by mass or more.

次に、本発明の微粉末の処理システムの一例を説明する。
図2中、本発明の微粉末の処理システムは、図1に示す処理方法に対応する処理システムであって、処理対象物である微粉末と、水と、硫化剤を混合して、鉛硫化物を含むスラリーを得るための混合槽1と、混合槽1で得られた硫化物を含むスラリーと、塩酸を混合して、微粉末に含まれる塩素成分の溶出を促すためのカルシウム成分溶出槽5と、鉛硫化物及び溶出したカルシウム成分を含むスラリーに、疎水化剤を加えて、スラリー中の鉛硫化物を疎水化するための疎水化反応槽8と、疎水化反応槽8で得られたスラリーを導入して浮遊選鉱処理を行なうための浮遊選鉱機11を備えている。
なお、浮遊選鉱処理を2回以上行なう場合、浮遊選鉱機11は、複数、直列に配置される。この場合、2回目の浮遊選鉱処理を行なう浮遊選鉱機以降の各装置の前流側の地点にて、疎水化剤供給手段9と同様の疎水化剤供給手段によって、疎水化剤が供給される。
混合槽1、カルシウム成分溶出槽5、及び疎水化反応槽8は、各々、スラリーを撹拌するための撹拌翼を備えている。
Next, an example of the fine powder processing system of the present invention will be described.
In FIG. 2, the processing system for fine powder of the present invention is a processing system corresponding to the processing method shown in FIG. 1, wherein the fine powder as a processing object, water, and a sulfiding agent are mixed to lead sulfide. Mixing tank 1 for obtaining a slurry containing substances, a slurry containing sulfide obtained in the mixing tank 1, and a calcium component elution tank for promoting the elution of chlorine components contained in fine powder by mixing hydrochloric acid 5 and a hydrophobizing reaction tank 8 for hydrophobizing lead sulfide in the slurry by adding a hydrophobizing agent to the slurry containing lead sulfide and the eluted calcium component, and obtained in the hydrophobizing reaction tank 8 In addition, a flotation machine 11 for carrying out the flotation process by introducing the slurry is provided.
In the case where the flotation process is performed twice or more, a plurality of flotation machines 11 are arranged in series. In this case, the hydrophobizing agent is supplied by the hydrophobizing agent supplying means similar to the hydrophobizing agent supplying means 9 at a point on the upstream side of each device after the flotation machine that performs the second flotation processing. .
The mixing tank 1, the calcium component elution tank 5, and the hydrophobization reaction tank 8 are each provided with a stirring blade for stirring the slurry.

混合槽1には、処理対象物である微粉末を供給するための微粉末供給手段2(例えば、微粉末の貯留槽及び流通路を有するもの)と、水を供給するための水供給手段3(例えば、水道管等の水の流通路)と、硫化剤を供給するための硫化剤供給手段4(例えば、硫化剤の貯留槽及び流通路を有するもの)が接続されている。
カルシウム成分溶出槽5には、塩酸を供給するための塩酸供給手段6(例えば、塩酸の貯留槽及び流通路を有するもの)が接続されている。
疎水化反応槽8には、疎水化剤供給手段9(例えば、疎水化剤の貯留槽及び流通路を有するもの)が接続されている。
なお、カルシウム成分溶出槽5と疎水化反応槽8の各々には、pH測定手段(pH計)7,10が設けられている。pH測定手段7とpH測定手段10は、必ずしも両方設ける必要はなく、いずれか一方のみを設けてもよい。
混合槽1、カルシウム成分溶出槽5、疎水化反応槽8、及び浮遊選鉱機11の相互間には、各々、スラリーが混合槽1から浮遊選鉱機11まで一方向に流通するように、スラリーの流通路(例えば、ポンプ及び管路)が設けられている。
なお、本発明の処理システムは、疎水化反応槽8から浮遊選鉱機11までの流通路の途中に、起泡剤を供給するための起泡剤供給手段(図示略;例えば、起泡剤の貯留槽及び流通路を有するもの)を備えていてもよい。
本発明においては、連続式とバッチ式のいずれの処理システムを採用してもよいが、処理効率の観点からは、連続式の処理システムが好ましい。
The mixing tank 1 has a fine powder supply means 2 (for example, having a fine powder storage tank and a flow passage) for supplying fine powder as a processing object, and a water supply means 3 for supplying water. (For example, a water flow passage such as a water pipe) and a sulfiding agent supply means 4 (for example, having a sulfiding agent storage tank and a flow passage) for supplying a sulfiding agent are connected.
The calcium component elution tank 5 is connected to hydrochloric acid supply means 6 (for example, having a hydrochloric acid storage tank and a flow passage) for supplying hydrochloric acid.
The hydrophobizing reaction tank 8 is connected with a hydrophobizing agent supply means 9 (for example, having a hydrophobizing agent storage tank and a flow passage).
Each of the calcium component elution tank 5 and the hydrophobization reaction tank 8 is provided with pH measuring means (pH meters) 7 and 10. Both the pH measuring means 7 and the pH measuring means 10 are not necessarily provided, and only one of them may be provided.
Between the mixing tank 1, the calcium component elution tank 5, the hydrophobization reaction tank 8, and the flotation separator 11, each of the slurry is circulated in one direction from the mixing tank 1 to the flotation separator 11. Flow passages (eg, pumps and conduits) are provided.
The treatment system of the present invention is provided with a foaming agent supply means (not shown; for example, foaming agent) for supplying a foaming agent in the middle of the flow path from the hydrophobization reactor 8 to the flotation separator 11. A storage tank and a flow passage).
In the present invention, either a continuous processing system or a batch processing system may be adopted, but a continuous processing system is preferable from the viewpoint of processing efficiency.

[実施例1]
以下、実施例及び比較例により本発明を説明する。なお、以下の「%」は、特に断らない限り、質量基準である。
[鉛成分及びカルシウム成分を含有する微粉末の用意]
処理対象物である鉛成分及びカルシウム成分を含有する微粉末として、下記の表1に示す成分組成を有する3種の溶融飛灰(飛灰A〜飛灰D)を用意した。なお、表1中、3質量%以下の含有率で含まれる成分は、省略した。
[Example 1]
Hereinafter, the present invention will be described with reference to examples and comparative examples. The following “%” is based on mass unless otherwise specified.
[Preparation of fine powder containing lead and calcium components]
Three types of molten fly ash (fly ash A to fly ash D) having the component composition shown in Table 1 below were prepared as fine powders containing a lead component and a calcium component, which are treatment objects. In Table 1, components included at a content of 3% by mass or less were omitted.

Figure 0005546289
Figure 0005546289

[実施例1]
「飛灰A」130g及び蒸留水1300ミリリットルを混合槽に投入し、撹拌して、均一なスラリーを得た。このスラリーに硫化剤として、水硫化ソーダ/鉛のモル比が1.0である量の水硫化ソーダ水溶液(濃度:10%)を加えて、撹拌し、鉛硫化物を含むスラリーを得た。
次いで、このスラリーに塩酸(濃度:36%)を加えて撹拌し、液性をpH3.0に調整した。pH調整後のスラリーを、吸引ろ過器を用いて固液分離し、鉛硫化物を含む固体分と、液分を得た。
[実施例2]
「飛灰A」に代えて「飛灰B」を用いた以外は実施例1と同様にして実験した。
[実施例3]
「飛灰A」に代えて「飛灰C」を用いた以外は実施例1と同様にして実験した。
[実施例4]
「飛灰A」に代えて「飛灰D」を用いた以外は実施例1と同様にして実験した。
[Example 1]
130 g of “fly ash A” and 1300 ml of distilled water were put into a mixing tank and stirred to obtain a uniform slurry. An aqueous sodium hydrosulfide solution (concentration: 10%) having a molar ratio of sodium hydrosulfide / lead of 1.0 was added as a sulfiding agent to this slurry and stirred to obtain a slurry containing lead sulfide.
Next, hydrochloric acid (concentration: 36%) was added to the slurry and stirred to adjust the liquidity to pH 3.0. The slurry after pH adjustment was subjected to solid-liquid separation using a suction filter to obtain a solid component containing lead sulfide and a liquid component.
[Example 2]
An experiment was conducted in the same manner as in Example 1 except that “fly ash B” was used instead of “fly ash A”.
[Example 3]
An experiment was conducted in the same manner as in Example 1 except that “fly ash C” was used instead of “fly ash A”.
[Example 4]
An experiment was conducted in the same manner as in Example 1 except that “fly ash D” was used instead of “fly ash A”.

[比較例1]
「飛灰A」130g及び蒸留水1300ミリリットルを混合槽に投入し、撹拌して、均一なスラリーを得た。このスラリーに塩酸(濃度:36%)を加えて撹拌し、液性をpH3.0に調整した。得られたスラリーを、吸引ろ過器を用いて固液分離し、液分を得た。
次いで、この液分に硫化剤として、水硫化ソーダ/鉛のモル比が1.0である量の水硫化ソーダ水溶液(濃度:10%)を加えて、撹拌し、鉛硫化物を含むスラリーを得た。
得られたスラリーを、吸引ろ過器を用いて固液分離し、鉛硫化物を含む固体分と、液分を得た。
[比較例2]
「飛灰A」に代えて「飛灰B」を用いた以外は比較例1と同様にして実験した。
[比較例3]
「飛灰A」に代えて「飛灰C」を用いた以外は比較例1と同様にして実験した。
[比較例4]
「飛灰A」に代えて「飛灰D」を用いた以外は比較例1と同様にして実験した。
[Comparative Example 1]
130 g of “fly ash A” and 1300 ml of distilled water were put into a mixing tank and stirred to obtain a uniform slurry. Hydrochloric acid (concentration: 36%) was added to the slurry and stirred to adjust the liquidity to pH 3.0. The obtained slurry was subjected to solid-liquid separation using a suction filter to obtain a liquid component.
Next, a sodium hydrosulfide aqueous solution (concentration: 10%) having a molar ratio of sodium hydrosulfide / lead of 1.0 is added to this liquid as a sulfiding agent, and stirred to prepare a slurry containing lead sulfide. Obtained.
The obtained slurry was subjected to solid-liquid separation using a suction filter to obtain a solid component containing lead sulfide and a liquid component.
[Comparative Example 2]
An experiment was conducted in the same manner as in Comparative Example 1 except that “fly ash B” was used instead of “fly ash A”.
[Comparative Example 3]
An experiment was conducted in the same manner as in Comparative Example 1 except that “fly ash C” was used instead of “fly ash A”.
[Comparative Example 4]
An experiment was conducted in the same manner as in Comparative Example 1 except that “fly ash D” was used instead of “fly ash A”.

実施例1〜4及び比較例1〜4で得られた各固体分に含まれる鉛硫化物の量を定量し、飛灰に含まれている鉛成分の全量からの鉛成分の回収率(%)を求めた。
結果を表2に示す。表2から、実施例1〜4における鉛成分の回収率は、98.8%以上であり、非常に高いことがわかる。一方、比較例1〜4における鉛成分の回収率は、33.6%以下であり、実施例1〜4に比べて低いことがわかる。
The amount of lead sulfide contained in each solid component obtained in Examples 1 to 4 and Comparative Examples 1 to 4 was quantified, and the recovery rate of lead component from the total amount of lead component contained in fly ash (% )
The results are shown in Table 2. Table 2 shows that the recovery rate of the lead component in Examples 1 to 4 is 98.8% or more, which is very high. On the other hand, the recovery rate of the lead component in Comparative Examples 1 to 4 is 33.6% or less, which is lower than those in Examples 1 to 4.

Figure 0005546289
Figure 0005546289

[実施例5]
最後に固液分離を行なわない以外は実施例1と同様にして、液性をpH3.0に調整したスラリーを得た。
このスラリーに疎水化剤としてザンセート水溶液(濃度:5%)を加えて、15分間撹拌した。ザンセートの添加量は、ザンセート/鉛のモル比が0.04となる量であった。次に、このスラリーを1段目の浮遊選鉱機に導き、20分間、浮遊選鉱処理を行なった。処理後、浮遊選鉱機から、浮鉱を含むスラリー部分、及び、沈鉱を含むスラリー部分を回収した。このうち、浮鉱を含むスラリー部分中の鉛硫化物の量を定量し、鉛成分の回収率及び品位を算出した。
一方、1段目の浮遊選鉱機から回収した沈鉱を含むスラリー部分に、ザンセート水溶液(濃度:5%)を加えて、15分間撹拌した。ザンセートの添加量は、ザンセート/鉛のモル比が0.04となる量であった。次に、このスラリー部分を2段目の浮遊選鉱機に導き、10分間、浮遊選鉱処理を行なった。処理後、浮遊選鉱機から、浮鉱を含むスラリー部分、及び、沈鉱を含むスラリー部分を回収した。このうち、浮鉱を含むスラリー部分中の鉛硫化物の量を定量し、鉛成分の回収率及び品位を算出した。
一方、2段目の浮遊選鉱機から回収した沈鉱を含むスラリー部分に、ザンセート水溶液(濃度:5%)を加えて、15分間撹拌した。ザンセートの添加量は、ザンセート/鉛のモル比が0.04となる量であった。次に、このスラリー部分を3段目の浮遊選鉱機に導き、10分間、浮遊選鉱処理を行なった。処理後、浮遊選鉱機から、浮鉱を含むスラリー部分、及び、沈鉱を含むスラリー部分を回収した。このうち、浮鉱を含むスラリー部分中の鉛硫化物の量を定量し、鉛成分の回収率及び品位を算出した。
[実施例6〜8]
飛灰の種類を表3に示すものに変えた以外は実施例5と同様にして、実験した。
以上の結果を表3に示す。表3から、3回の浮遊選鉱を行なうことによって、73%以上の回収率で鉛成分を回収しうることがわかる。また、鉛成分の品位が、1〜3回目のすべてにおいて32%以上であることもわかる。
[Example 5]
Finally, a slurry whose liquidity was adjusted to pH 3.0 was obtained in the same manner as in Example 1 except that solid-liquid separation was not performed.
A xanthate aqueous solution (concentration: 5%) was added as a hydrophobizing agent to the slurry, and the mixture was stirred for 15 minutes. The amount of xanthate added was such that the xanthate / lead molar ratio was 0.04. Next, this slurry was guided to the first stage flotation beneficiator and subjected to flotation treatment for 20 minutes. After the treatment, the slurry portion containing the floatation and the slurry portion containing the sedimentation were recovered from the floatation machine. Among these, the amount of lead sulfide in the slurry portion containing floatation was quantified, and the recovery rate and quality of the lead component were calculated.
On the other hand, an aqueous xanthate solution (concentration: 5%) was added to the slurry portion containing the sediment recovered from the first stage of the floatation separator and stirred for 15 minutes. The amount of xanthate added was such that the xanthate / lead molar ratio was 0.04. Next, this slurry portion was guided to a second stage flotation machine and subjected to flotation treatment for 10 minutes. After the treatment, the slurry portion containing the floatation and the slurry portion containing the sedimentation were recovered from the floatation machine. Among these, the amount of lead sulfide in the slurry portion containing floatation was quantified, and the recovery rate and quality of the lead component were calculated.
On the other hand, an aqueous xanthate solution (concentration: 5%) was added to the slurry portion containing the sediment recovered from the second stage floatation separator, and stirred for 15 minutes. The amount of xanthate added was such that the xanthate / lead molar ratio was 0.04. Next, this slurry portion was guided to a third stage flotation machine and subjected to flotation treatment for 10 minutes. After the treatment, the slurry portion containing the floatation and the slurry portion containing the sedimentation were recovered from the floatation machine. Among these, the amount of lead sulfide in the slurry portion containing floatation was quantified, and the recovery rate and quality of the lead component were calculated.
[Examples 6 to 8]
An experiment was conducted in the same manner as in Example 5 except that the type of fly ash was changed to that shown in Table 3.
The above results are shown in Table 3. From Table 3, it can be seen that the lead component can be recovered at a recovery rate of 73% or more by performing the flotation three times. Moreover, it turns out that the quality of a lead component is 32% or more in all 1-3 times.

Figure 0005546289
Figure 0005546289

1 混合槽
2 微粉末供給手段
3 水供給手段
4 硫化剤供給手段
5 カルシウム成分溶出槽
6 塩酸供給手段
7 pH計
8 疎水化反応槽
9 疎水化剤供給手段
10 pH計
11 浮遊選鉱機
DESCRIPTION OF SYMBOLS 1 Mixing tank 2 Fine powder supply means 3 Water supply means 4 Sulfide supply means 5 Calcium component elution tank 6 Hydrochloric acid supply means 7 pH meter 8 Hydrophobization reaction tank 9 Hydrophobizing agent supply means 10 pH meter 11 Flotation beneficiator

Claims (4)

(A) 鉛成分及びカルシウム成分を含む微粉末と、水と、硫化剤を混合して、鉛硫化物を含むスラリーを得る鉛硫化物生成工程と、
(B) 上記スラリーと、塩酸を混合して、上記微粉末中のカルシウム成分を溶出させて、鉛硫化物及び溶出したカルシウム成分を含むスラリーを得るカルシウム成分溶出工程と、
を含むことを特徴とする鉛成分及びカルシウム成分を含む微粉末の処理方法。
(A) a lead sulfide generation step of obtaining a slurry containing lead sulfide by mixing a fine powder containing a lead component and a calcium component, water, and a sulfiding agent;
(B) A calcium component elution step of mixing the slurry and hydrochloric acid to elute the calcium component in the fine powder to obtain a slurry containing lead sulfide and the eluted calcium component;
The processing method of the fine powder containing the lead component and calcium component characterized by including these.
(C) 工程(B)で得られた上記スラリーに疎水化剤を加えて、上記鉛硫化物を疎水化させ、浮遊選鉱用スラリーを得る疎水化工程と、
(D) 上記浮遊選鉱用スラリーを浮遊選鉱処理して、鉛硫化物を含む浮鉱を得る浮遊選鉱工程と、
を含む請求項1に記載の鉛成分及びカルシウム成分を含む微粉末の処理方法。
(C) A hydrophobizing step of adding a hydrophobizing agent to the slurry obtained in step (B) to hydrophobize the lead sulfide to obtain a slurry for flotation,
(D) Flotation process of obtaining the flotation containing lead sulfide by flotation treatment of the slurry for flotation,
The processing method of the fine powder containing the lead component and calcium component of Claim 1 containing this.
上記微粉末が、溶融飛灰、焼却飛灰、及び塩素バイパスダストの中から選ばれる一種以上である請求項1又は2に記載の鉛成分及びカルシウム成分を含む微粉末の処理方法。   The method for processing a fine powder containing a lead component and a calcium component according to claim 1 or 2, wherein the fine powder is at least one selected from molten fly ash, incinerated fly ash, and chlorine bypass dust. 鉛成分及びカルシウム成分を含む微粉末と、水と、硫化剤を混合して、鉛硫化物を含むスラリーを得るための混合槽と、
上記混合槽で得られたスラリーと、塩酸を混合して、鉛硫化物及び溶出したカルシウム成分を含むスラリーを得るためのカルシウム成分溶出と、
上記カルシウム成分溶出で得られスラリーに疎水化剤を加えて、上記鉛硫化物を疎水化させ、浮遊選鉱用スラリーを得るための疎水化反応槽と、
上記浮遊選鉱用スラリーを浮遊選鉱処理して、鉛硫化物を含む浮鉱を得るための浮遊選鉱と、
を含むことを特徴とする鉛成分及びカルシウム成分を含む微粉末の処理システム。
A mixing tank for mixing a fine powder containing a lead component and a calcium component, water, and a sulfurizing agent to obtain a slurry containing lead sulfide;
Calcium component elution tank for obtaining slurry containing lead sulfide and eluted calcium component by mixing slurry obtained in the mixing tank and hydrochloric acid,
Adding hydrophobizing agent to the slurry obtained in the above calcium component dissolution tank, the lead sulfide is hydrophobic, and the hydrophobic reaction vessel to obtain a flotation slurry,
A flotation machine for obtaining a flotation containing lead sulfide by flotation treatment of the slurry for flotation;
A processing system for fine powder containing a lead component and a calcium component.
JP2010045431A 2010-03-02 2010-03-02 Method and system for processing fine powder containing lead component and calcium component Active JP5546289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010045431A JP5546289B2 (en) 2010-03-02 2010-03-02 Method and system for processing fine powder containing lead component and calcium component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010045431A JP5546289B2 (en) 2010-03-02 2010-03-02 Method and system for processing fine powder containing lead component and calcium component

Publications (2)

Publication Number Publication Date
JP2011179086A JP2011179086A (en) 2011-09-15
JP5546289B2 true JP5546289B2 (en) 2014-07-09

Family

ID=44690905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010045431A Active JP5546289B2 (en) 2010-03-02 2010-03-02 Method and system for processing fine powder containing lead component and calcium component

Country Status (1)

Country Link
JP (1) JP5546289B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5790388B2 (en) * 2011-10-07 2015-10-07 新日鐵住金株式会社 Separation method of steel slag by hydrochloric acid solution
JP7153600B2 (en) * 2019-03-29 2022-10-14 Jx金属株式会社 Method for removing calcium from ore and method for recovering metal
JP7153599B2 (en) * 2019-03-29 2022-10-14 Jx金属株式会社 Ore processing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3306471B2 (en) * 1999-07-07 2002-07-24 住友大阪セメント株式会社 Treatment method of exhaust gas from cement kiln
JP3766908B2 (en) * 2001-11-16 2006-04-19 太平洋セメント株式会社 Waste disposal method
JP3773467B2 (en) * 2002-05-07 2006-05-10 太平洋セメント株式会社 Method for treating substances containing calcium and heavy metals
JP5025537B2 (en) * 2008-03-21 2012-09-12 太平洋セメント株式会社 Method for treating fine powder containing calcium component and lead component

Also Published As

Publication number Publication date
JP2011179086A (en) 2011-09-15

Similar Documents

Publication Publication Date Title
JP4737395B2 (en) Method for treating fine powder containing calcium component and lead component
JP5088724B2 (en) Method for treating fine powder containing calcium component and lead component
CN111683755B (en) Cellulose-based derivatives as mineral enrichment chemical aids in froth flotation
CN102274799B (en) Composite medicine for effective magnetic separation and recovery pyrite concentrate from flotation tailings
JP5546289B2 (en) Method and system for processing fine powder containing lead component and calcium component
JP4579211B2 (en) Processing method and processing system for fine powder containing calcium component and lead component
JP5046306B2 (en) Processing method and processing system for fine powder containing calcium component and lead component
CN107427841A (en) The inhibitor of ore floatation
JP5528130B2 (en) Processing method and processing system for fine powder containing calcium component and lead component
EA020534B1 (en) Processing nickel bearing sulphides
JP2008093567A (en) Method for treating particulate containing calcium component and lead component and system for the same
JP5455392B2 (en) Treatment method of chlorine bypass dust
JP2008110288A (en) Treatment method of micropowder containing calcium component and lead component
JP2008093510A (en) Method and system for treating fine powder containig calcium component and lead component
JP6430330B2 (en) Beneficiation method
EP2242586B1 (en) Processing nickel bearing sulphides
JP2009219965A (en) Treatment method of fine powder containing calcium component and lead component and treatment system
JP5541658B2 (en) Flotation processing method
JP5063630B2 (en) Chlorine bypass dust treatment method and treatment system
JP2010234171A (en) Flotation treatment method
JP5025537B2 (en) Method for treating fine powder containing calcium component and lead component
JP2008093491A (en) Method and system for treating fine powder containing calcium component and lead component
JP2008127681A (en) Processing method of micropowder containing calcium component and lead component
EP3015558B1 (en) Production method for low-sulfur iron ore
CN112403683A (en) P-Ph-SO2Use of generic compounds in mineral flotation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140513

R150 Certificate of patent or registration of utility model

Ref document number: 5546289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250