JP5545043B2 - Residual stress measurement method - Google Patents

Residual stress measurement method Download PDF

Info

Publication number
JP5545043B2
JP5545043B2 JP2010127315A JP2010127315A JP5545043B2 JP 5545043 B2 JP5545043 B2 JP 5545043B2 JP 2010127315 A JP2010127315 A JP 2010127315A JP 2010127315 A JP2010127315 A JP 2010127315A JP 5545043 B2 JP5545043 B2 JP 5545043B2
Authority
JP
Japan
Prior art keywords
measured
test piece
residual stress
strain
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010127315A
Other languages
Japanese (ja)
Other versions
JP2011252811A (en
Inventor
岳郎 川村
正信 馬場
直人 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2010127315A priority Critical patent/JP5545043B2/en
Publication of JP2011252811A publication Critical patent/JP2011252811A/en
Application granted granted Critical
Publication of JP5545043B2 publication Critical patent/JP5545043B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、被測定物の残留応力を測定する方法に係り、特に、被測定物の表面の残留応力を測定する方法に関するものである。   The present invention relates to a method for measuring a residual stress of an object to be measured, and more particularly to a method for measuring a residual stress on the surface of the object to be measured.

例えば、ジェットエンジンのタービン翼は、結晶粒の粗い多結晶の鋳造材料や、一方向凝固材、単結晶材で製造される。このタービン翼では、特にディスクに嵌合されるダブテールの表面に引っ張りの残留応力が生じていると強度上の問題を生じる可能性がある。そこで、タービン翼の製造に当たっては、機械加工の工程を適切に管理するとともに、場合によっては、ダブテールの表面にショットピーニングを施工し確実に圧縮応力を与えるようにする必要がある。このように、製品の表面付近について、加工による残留応力が適正に与えられているかどうかを確認することは、製品強度を管理する上で非常に重要である。   For example, a turbine blade of a jet engine is manufactured from a polycrystalline casting material having coarse crystal grains, a unidirectionally solidified material, or a single crystal material. In this turbine blade, if a tensile residual stress is generated on the surface of the dovetail fitted to the disk, there is a possibility that a problem in strength occurs. Therefore, in manufacturing the turbine blade, it is necessary to appropriately manage the machining process and, depending on the case, to apply shot peening to the surface of the dovetail so as to reliably apply a compressive stress. As described above, it is very important in managing the strength of the product to confirm whether or not the residual stress due to the processing is appropriately given near the surface of the product.

そして、材料表面の残留応力を測定する方法として、応力開放法を利用した測定方法が提案されている。この測定方法では、被測定物の残留応力測定対象面に歪ゲージを貼付した状態で、被測定物のゲージ貼付面の表層を薄く剥離させ、このときの歪ゲージの出力変化から、被測定物の表面の残留応力を測定するというものである(例えば、特許文献1)。   As a method for measuring the residual stress on the material surface, a measurement method using a stress release method has been proposed. In this measurement method, with the strain gauge attached to the surface of the object to be measured for residual stress, the surface layer of the gauge application surface of the object to be measured is thinly peeled off, and the change in output of the strain gauge at this time indicates that the object to be measured is The surface residual stress is measured (for example, Patent Document 1).

特開平10−48069号公報JP 10-48069 A

しかしながら、上述した応力開放法を利用した測定方法によって、タービン翼のダブテールの表面付近に加工によって生じている残留応力を測定するのは、極めて困難である。その理由は、機械加工やショットピーニング等によりダブテール表面に与えられる残留応力のピークを含む主要な分布領域が、表面からわずか200〜300μm程度の深さの範囲内に限られる点にある。つまり、このような極めて薄い表層部分を被測定物から剥離させることが、既存の汎用加工技術では極めて困難なためである。   However, it is extremely difficult to measure the residual stress generated by machining near the surface of the dovetail of the turbine blade by the measurement method using the stress release method described above. The reason is that the main distribution region including the peak of the residual stress given to the dovetail surface by machining, shot peening or the like is limited to a depth of about 200 to 300 μm from the surface. That is, it is very difficult to peel off such an extremely thin surface layer portion from the object to be measured by the existing general-purpose processing technology.

仮に剥離させることができたとしても、剥離厚が200〜300μmよりも薄いとその取り扱いが極めて困難である。しかも、このような薄さの剥離厚であると、貼付した歪ゲージ自身の剛性が歪ゲージの出力に影響する可能性があるので、被測定物の残留応力を正しく反映した出力を歪ゲージに求めるには無理がある。   Even if it can be peeled off, if the peel thickness is thinner than 200 to 300 μm, it is extremely difficult to handle. In addition, if the peel thickness is such a thin thickness, the rigidity of the attached strain gauge itself may affect the output of the strain gauge, so the output that correctly reflects the residual stress of the object to be measured is applied to the strain gauge. It is impossible to ask.

このような応力開放法の問題点を解消し得る材料表面の応力測定方法として、非接触の測定法であるX線回折法(sinψ法)を挙げることができる。X線回折法は、被測定物に特定波長のX線を照射したときの回折角が、被測定物の応力に応じて、sinψ(ψ(プサイ);被測定物表面の法線と格子面法線とのなす角度)に対し直線的に変わることを利用した測定方法である。 As a method for measuring the stress on the surface of the material that can solve the problem of the stress release method, an X-ray diffraction method (sin 2 ψ method) which is a non-contact measurement method can be given. In the X-ray diffraction method, the diffraction angle when the object to be measured is irradiated with X-rays of a specific wavelength is determined according to the stress of the object to be measured, sin 2 ψ (ψ (psi)); This is a measurement method using the fact that it changes linearly with respect to the angle with the lattice plane normal.

X線回折法で被測定物の残留応力を測定する場合は、入射角を変えながら特定波長のX線を被測定物に照射し、ψ(プサイ)が異なる各結晶粒における回折角(2θ)を測定する。そして、測定した回折角(2θ)とsinψとの複数の組み合わせを最小二乗法により直線近似させる。この直線近似式の傾きを求めることで、被測定物の残留応力を求めることができる。 When measuring the residual stress of an object to be measured by the X-ray diffraction method, an X-ray having a specific wavelength is irradiated to the object to be measured while changing the incident angle, and the diffraction angle (2θ) at each crystal grain having a different ψ (psi). Measure. Then, a plurality of combinations of the measured diffraction angle (2θ) and sin 2 ψ are linearly approximated by the least square method. The residual stress of the object to be measured can be obtained by obtaining the slope of this linear approximation formula.

しかしながら、X線回折法は結晶粒の細かい多結晶材料の残留応力測定には向いているが、結晶粒の粗い(結晶粒径の大きい)材料で製造されるタービン翼の残留応力測定には向いていない。結晶粒の粗い材料では、X線が同時に多数の結晶粒には照射されないので、X線の入射角を変えても回折角(2θ)とsinψとの組み合わせを複数組得ることができないからである。 However, the X-ray diffraction method is suitable for the measurement of residual stress in polycrystalline materials with fine crystal grains, but it is suitable for the measurement of residual stress in turbine blades made of materials with coarse crystal grains (large crystal grain size). Not. In a material with coarse crystal grains, a large number of crystal grains are not simultaneously irradiated with X-rays. Therefore, even if the incident angle of X-rays is changed, a plurality of combinations of diffraction angles (2θ) and sin 2 ψ cannot be obtained. It is.

本発明は前記事情に鑑みなされたもので、本発明の目的は、ジェットエンジンのタービン翼のような結晶粒の粗い材料で製造された物品であっても、その表面層の浅い部分の残留応力を、その分布も含めて精度よく測定することができる残留応力測定方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a residual stress in a shallow portion of a surface layer of an article made of a material having coarse crystal grains such as a turbine blade of a jet engine. It is an object of the present invention to provide a residual stress measurement method capable of accurately measuring the stress including its distribution.

上記目的を達成するため、請求項1に記載した本発明の残留応力測定方法は、
被測定物の表面に与えられた残留応力を測定する方法であって、
前記被測定物の残留応力が与えられた部分を含めて該被測定物の表面側から切り出した試験片を、前記被測定物の表面に相当する被測定面側から段階的に層状に研磨しつつ、該被測定面と対向する前記試験片の裏面において歪を測定する測定ステップと、
前記試験片の層状の研磨と前記裏面において測定した歪との関係から、前記被測定物の表面に与えられた残留応力を解析する(例えば、有限要素法による)解析ステップと、
を含むことを特徴とする。
In order to achieve the above object, the residual stress measuring method of the present invention described in claim 1 is:
A method for measuring a residual stress applied to the surface of an object to be measured,
A test piece cut out from the surface side of the object to be measured including the portion to which the residual stress of the object to be measured is applied is polished in layers from the surface to be measured corresponding to the surface of the object to be measured. While measuring the strain on the back surface of the test piece facing the surface to be measured,
Analyzing the residual stress applied to the surface of the object to be measured (for example, by a finite element method) from the relationship between the layered polishing of the test piece and the strain measured on the back surface;
It is characterized by including.

請求項1に記載した本発明の残留応力測定方法によれば、被測定物の表面側から切り出した試験片の被測定面側を段階的に層状に研磨すると、被測定面に対向する裏面には、層状に研磨した後の試験片の被測定面側部分に与えられた残留応力に対応する歪が生じる。   According to the residual stress measuring method of the present invention as set forth in claim 1, when the surface to be measured of the test piece cut out from the surface side of the object to be measured is polished stepwise, the back surface opposite to the surface to be measured is formed. Causes a strain corresponding to the residual stress applied to the portion to be measured of the test piece after being layered.

したがって、試験片の被測定面側を層状に研磨しながら測定した試験片の裏面に生じる歪に基づいて、試験片の被測定面側、ひいては、被測定物の表面側に与えられた残留応力の深さ方向における分布を、FEM(有限要素法)等による解析モデルを用いて逆解析することで求めることができる。   Therefore, based on the strain generated on the back surface of the test piece measured while polishing the surface to be measured of the test piece in layers, the residual stress applied to the surface to be measured of the test piece and thus to the surface side of the object to be measured The depth distribution in the depth direction can be obtained by inverse analysis using an analysis model such as FEM (finite element method).

このように本発明の残留応力測定方法は、残留応力が与えられた試験片の被測定面側を研磨することでその深さ方向における残留応力の分布を求める測定方法であることから、X線回折法や従来の応力開放法では残留応力を測定できない、結晶粒の粗い材料で製造された物品のごく浅い表面層の残留応力であっても、精度よく測定することができ、かつ、深さ方向の残留応力分布も知ることができる。   Thus, the residual stress measurement method of the present invention is a measurement method for obtaining the distribution of residual stress in the depth direction by polishing the surface to be measured of the test piece to which the residual stress is applied. Residual stress cannot be measured by the diffraction method or the conventional stress relief method, even if it is the residual stress of a very shallow surface layer of an article made of a material with coarse grains, and the depth can be measured accurately. The residual stress distribution in the direction can also be known.

また、請求項1に記載した本発明の残留応力測定方法は、
前記解析ステップが、
前記試験片の解析モデルにおける前記被測定面側の温度又は線膨張係数(線膨張率)と、前記試験片の解析モデルにおける前記被測定面側及び裏面間の厚さとを調整することで、該被測定面側から前記解析モデルにおける前記試験片を段階的に層状に除去する前後の歪出力の変化を、前記試験片の被測定面を層状に研磨した時の前記測定ステップで測定した前記試験片の前記裏面における歪出力の変化の値に合わせ込み、前記解析モデルの前記被測定面側から段階的に除去する各層の温度又は線膨張係数を特定する特定ステップと、
前記特定ステップにより特定した前記温度又は線膨張係数を対応する各層に与えた全体解析モデルにより、前記試験片の深さ方向の残留応力分布を推定する推定ステップと、
を含むことを特徴とする。
Moreover, the residual stress measuring method of the present invention described in claim 1 is:
The analyzing step comprises:
By adjusting the temperature or linear expansion coefficient (linear expansion coefficient ) on the measured surface side in the analysis model of the test piece, and the thickness between the measured surface side and the back surface in the analysis model of the test piece , the change of the strain output before and after removing the stepwise layered the specimen in the analysis model from the measurement surface, and the surface to be measured of the test piece was measured by the measuring step when the polishing layer the In accordance with the value of the change in strain output on the back surface of the test piece, a specific step of specifying the temperature or linear expansion coefficient of each layer to be removed stepwise from the measured surface side of the analytical model;
An estimation step of estimating a residual stress distribution in the depth direction of the test piece by an overall analysis model given to each layer corresponding to the temperature or linear expansion coefficient specified by the specifying step;
It is characterized by including.

請求項1に記載した本発明の残留応力測定方法によれば、被測定面側から解析モデルを層状に除去することで、被測定面側に残留応力が与えられた状態の試験片を被測定面側から層状に研磨する状態を模擬することになる。 According to the residual stress measuring method of the present invention described in claim 1 , by removing the analysis model in layers from the surface to be measured, a test piece in a state where the residual stress is applied to the surface to be measured is measured. A state of polishing in layers from the surface side is simulated.

そして、解析モデルの被測定面側を層状に除去したときに解析モデルの裏面に生じる歪の値が、試験片の被測定面側の同じ位置の層を研磨したときに試験片の裏面に生じる歪の値と一致するように、解析モデルの被測定面側の温度又は線膨張係数を設定すると、その温度又は線膨張係数に応じて解析モデルの被測定面側に生じる膨張収縮が、試験片の被測定面側に与えられた残留応力、言い換えると、被測定物の表面側に与えられた残留応力に相当するものとなる。   Then, the strain value generated on the back surface of the analytical model when the measured surface side of the analytical model is removed in layers is generated on the back surface of the test piece when the layer at the same position on the measured surface side of the test piece is polished. When the temperature or linear expansion coefficient on the measured surface side of the analytical model is set so as to match the strain value, the expansion and contraction that occurs on the measured surface side of the analytical model in accordance with the temperature or linear expansion coefficient is the test piece. This corresponds to the residual stress applied to the surface to be measured, in other words, the residual stress applied to the surface of the object to be measured.

よって、試験片の被測定面側を層状に研磨したときに試験片の裏面側に生じた歪の値と一致する歪の値が、解析モデルの被測定面側を層状に除去したときに解析モデルの裏面側に生じるときの、解析モデルの被測定面側における温度又は線膨張係数を特定することで、試験片の被測定面側の研磨される層、ひいては、被測定物の表面側の研磨された層に与えられた残留応力を、解析により推定することができる。このため、結晶粒の粗い材料で製造された物品であっても、その表面層の残留応力を、その分布も含めて精度よく測定することができる。   Therefore, when the measured surface side of the test piece is polished in layers, the strain value that matches the strain value generated on the back side of the test piece is analyzed when the measured surface side of the analysis model is removed in layers. By identifying the temperature or linear expansion coefficient on the measured surface side of the analytical model when it occurs on the back side of the model, the layer to be polished on the measured surface side of the test piece, and hence the surface side of the measured object The residual stress applied to the polished layer can be estimated by analysis. For this reason, even if the article is made of a material having coarse crystal grains, the residual stress of the surface layer can be accurately measured including its distribution.

なお、請求項1に記載した本発明の残留応力測定方法における特定ステップで特定するパラメータを線膨張係数とする場合、試験片や解析モデルの材料異方性を考慮することで、試験片や解析モデルの伸び量を方向により変えることができる。そのため、試験片裏面の2軸方向の歪変化を2軸歪ゲージにより取得すれば、解析により深さ方向だけでなく面内のゲージ2軸方向の残留応力分布を推定することができる。
In addition, when the parameter specified in the specific step in the residual stress measurement method of the present invention described in claim 1 is a linear expansion coefficient, the test piece and the analysis are taken into consideration by considering the material anisotropy of the test piece and the analysis model. The amount of elongation of the model can be changed depending on the direction. Therefore, if the strain change in the biaxial direction on the back surface of the test piece is obtained by a biaxial strain gauge, the residual stress distribution in the in-plane gauge biaxial direction as well as the depth direction can be estimated by analysis.

本発明によれば、結晶粒の粗い材料で製造された物品であっても、その表面層の浅い部分の残留応力を、その分布も含めて精度よく測定することができる。   According to the present invention, even in an article made of a material having coarse crystal grains, the residual stress in the shallow portion of the surface layer can be accurately measured including its distribution.

本発明の一実施形態に係る残留応力測定方法における試験片の切り出し手順を示す説明図である。It is explanatory drawing which shows the cutout procedure of the test piece in the residual stress measuring method which concerns on one Embodiment of this invention. 図1の試験片を用いた残留応力の測定準備の手順を示す説明図である。It is explanatory drawing which shows the procedure of the measurement preparation of the residual stress using the test piece of FIG. 図1の試験片を用いた歪の測定ステップを示す説明図である。It is explanatory drawing which shows the measurement step of the distortion using the test piece of FIG. 図1の試験片に与えられた残留応力を試験片の厚さ方向における裏面からの位置との関係で示すグラフである。It is a graph which shows the residual stress given to the test piece of FIG. 1 by the relationship with the position from the back surface in the thickness direction of a test piece. 図3の測定ステップにおいて測定された試験片の歪と試験片の研磨厚さとの関係を示すグラフである。It is a graph which shows the relationship between the distortion | strain of the test piece measured in the measurement step of FIG. 3, and the grinding | polishing thickness of a test piece.

以下、本発明の実施形態について図面を参照しながら説明する。なお、以下の実施形態においては、ジェットエンジンのタービン翼のダブテール表面に与えられた残留応力を測定する場合を例に取って説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, a case where residual stress applied to the dovetail surface of a turbine blade of a jet engine is measured will be described as an example.

図1に示すタービン翼1のダブテール3(請求項中の被測定物に相当)は、結晶粒の粗い多結晶の鋳造材料や、一方向凝固材、単結晶材のような材料で製造される。このタービン翼1では、特にディスク(図示せず)に嵌合されるダブテール3の表面3aに引っ張りの残留応力が生じていると強度上の問題を生じる可能性がある。そこで、タービン翼1の製造に当たっては、機械加工の工程を適切に管理するとともに、場合によっては、ダブテール3の表面3aにショットピーニングを施工し確実に圧縮応力を与えている。   The dovetail 3 (corresponding to the object to be measured in the claims) of the turbine blade 1 shown in FIG. 1 is manufactured from a material such as a polycrystalline casting material with coarse crystal grains, a unidirectional solidified material, or a single crystal material. . In the turbine blade 1, in particular, if a tensile residual stress is generated on the surface 3 a of the dovetail 3 fitted to a disk (not shown), there may be a problem in strength. Therefore, when manufacturing the turbine blade 1, the machining process is appropriately managed, and in some cases, shot peening is applied to the surface 3 a of the dovetail 3 to reliably apply a compressive stress.

このようなダブテール3の表面3aに与えられた残留応力を測定する際には、まず、タービン翼1のダブテール3の表面3aから試験片5を切り出す。このとき、試験片5は、残留応力が与えられたダブテール3の表層部分を含むように、ワイヤカット(放電加工の一種)等の新たな残留応力が極力加わらない方法で、薄板状に切り出す。   When measuring the residual stress applied to the surface 3 a of the dovetail 3, first, the test piece 5 is cut out from the surface 3 a of the dovetail 3 of the turbine blade 1. At this time, the test piece 5 is cut into a thin plate shape by a method in which new residual stress such as wire cutting (a kind of electric discharge machining) is not applied as much as possible so as to include the surface layer portion of the dovetail 3 to which the residual stress is applied.

次に、切り出した試験片5のうち、ダブテール3の表面3aの一部である被測定面5aと対向する裏面5bに、歪ゲージ7を貼付する。そして、測定ステップに移行する。   Next, the strain gauge 7 is affixed to the back surface 5b facing the surface to be measured 5a which is a part of the surface 3a of the dovetail 3 in the cut out test piece 5. And it transfers to a measurement step.

測定ステップでは、図3に示すように、試験片5を被測定面5a側から、電解研磨等の新たな残留応力が極力加わらない方法で段階的に研磨する。そして、この研磨と並行して、歪ゲージ7の出力を用いて裏面5bの歪を測定する。   In the measurement step, as shown in FIG. 3, the test piece 5 is polished stepwise from the surface to be measured 5a by a method in which new residual stress such as electrolytic polishing is not applied as much as possible. In parallel with this polishing, the strain of the back surface 5b is measured using the output of the strain gauge 7.

図4のグラフに例示するように、試験片5(乃至ダブテール3)には、その被測定面5a(ダブテール3の表面3a)付近の表層部分(図中のY座標=2.5付近の部分)に、機械加工やショットピーニング等により与えられた残留応力が存在する。そのため、図3に示すように試験片5を被測定面5a側から層状に順次研磨すると、図5のグラフに示すように、試験片5の裏面5bの歪を表す歪ゲージ7の出力が、ε,ε,ε,…,εn−2 ,εn−1 ,εと順次変化する。 As illustrated in the graph of FIG. 4, the test piece 5 (or the dovetail 3) has a surface layer portion (a portion near the Y coordinate = 2.5 in the drawing) in the vicinity of the measured surface 5a (the surface 3a of the dovetail 3). ), There is a residual stress given by machining or shot peening. Therefore, when the test piece 5 is sequentially polished in layers from the measured surface 5a side as shown in FIG. 3, as shown in the graph of FIG. 5, the output of the strain gauge 7 representing the strain of the back surface 5b of the test piece 5 is ε 0 , ε 1 , ε 2 ,..., ε n−2 , ε n−1 , ε n sequentially change.

このような歪ゲージ7の出力変化Δε(ε−ε),Δε(ε−ε),…,Δεn−1 (εn−2 −εn−1 ),Δε(εn−1 −ε)は、研磨した試験片5の被測定面5a側の層の部分に与えられていた残留応力が研磨により開放されることに伴って、試験片5の裏面5bに生じる歪の量が変化することで生じる。したがって、試験片5を被測定面5a側から層状に順次研磨することで得られる歪ゲージ7の出力ε,ε,ε,…,εn−2 ,εn−1 ,εは、試験片5の研磨後の被測定面5a側の部分に与えられている残留応力に対応するものとなる。 Such output changes Δε 11 −ε 0 ), Δε 22 −ε 1 ),..., Δε n−1n−2 −ε n−1 ), Δε n ( ε n-1 −ε n ) is applied to the back surface 5b of the test piece 5 as the residual stress applied to the layer portion on the measured surface 5a side of the polished test piece 5 is released by polishing. This occurs when the amount of distortion that occurs changes. Therefore, the outputs ε 0 , ε 1 , ε 2 ,..., Ε n−2 , ε n−1 , ε n of the strain gauge 7 obtained by sequentially polishing the test piece 5 from the measured surface 5 a side in layers are This corresponds to the residual stress applied to the portion of the test piece 5 on the measured surface 5a side after polishing.

そこで、図3に示す手順で試験片5の被測定面5aを層状に研磨しつつ歪ゲージ7により測定した試験片5の裏面5bの歪の値から、試験片5の被測定面5a側に与えられている残留応力の分布を逆解析により求めることができる。   Therefore, from the strain value of the back surface 5b of the test piece 5 measured by the strain gauge 7 while polishing the measured surface 5a of the test piece 5 in layers in the procedure shown in FIG. The distribution of the given residual stress can be obtained by inverse analysis.

以下、残留応力の解析ステップについて説明する。本実施形態では、この解析には、試験片5を有限要素法(FEM)でモデリングして得た解析モデルを用いる。   The residual stress analysis step will be described below. In this embodiment, an analysis model obtained by modeling the test piece 5 by the finite element method (FEM) is used for this analysis.

上述した解析モデルは、試験片5と同一寸法同一材料で構成する。なお、ここでは説明を容易にするため、試験片5の被測定面5aを層状に、1層目(厚さt)、2層目(厚さt)、3層目(厚さt)の3段階で研磨して、歪ゲージ7の出力を測定したものとする。以下、解析の手順(ステップ)を説明する。 The analysis model described above is made of the same material as that of the test piece 5. Here, for ease of explanation, the surface 5a to be measured of the test piece 5 is layered, the first layer (thickness t 1 ), the second layer (thickness t 2 ), the third layer (thickness t 3 ) It is assumed that the output of the strain gauge 7 is measured by polishing in three stages. The analysis procedure (step) will be described below.

解析ステップの前半部分として、特定ステップを行う。なお、ここでは説明の簡単化のため、パラメータとして温度を用いるものとするが、温度の代わりに線膨張係数をパラメータとして用いることもできる。   A specific step is performed as the first half of the analysis step. Here, for simplification of description, temperature is used as a parameter, but a linear expansion coefficient can also be used as a parameter instead of temperature.

この特定ステップでは、まず、被測定面側と裏面との間の厚さがt+tである解析モデルの被測定面側の厚さtの部分を一律に温度T3に調整することで、解析モデルの被測定面側と対向する裏面の、試験片5の裏面5bの歪ゲージ7を貼着した箇所に対応する箇所(解析モデルのゲージ対応箇所)に、試験片5の3層目を除去した前後の歪変化Δεが現れる温度T3を、FEM解析を繰り返すことにより特定する(手順1)。具体的には、t+tである解析モデルにより計算されるゲージ対応箇所の歪が、Δεと一致するようにする。このとき、温度T3に調整する厚さtの部分を除く解析モデルの他の厚さtの部分は、例えば常温であるものとする。これにより、試験片5の被測定面5aの3層目を研磨した前後の、裏面5bに貼付した歪ゲージ7の出力変化を解析モデルにより再現する。 In this specific step, first, the thickness t 3 portion on the measurement surface side of the analysis model in which the thickness between the measurement surface side and the back surface is t 3 + t 0 is uniformly adjusted to the temperature T3. The third layer of the test piece 5 is placed at a position corresponding to the position where the strain gauge 7 is pasted on the back surface 5b of the test piece 5 on the back surface facing the measured surface side of the analysis model. the temperature T3 which appears strain changes [Delta] [epsilon] 3 before and after the removal of, identified by repeating the FEM analysis (step 1). Specifically, the strain corresponding to the gauge calculated by the analysis model of t 3 + t 0 is set to coincide with Δε 3 . At this time, another portion of the thickness t 0 of the analysis model excluding the portions of the thickness t 3 when adjusting the temperature T3 is assumed for example, room temperature. Thereby, the output change of the strain gauge 7 attached to the back surface 5b before and after the third layer of the measured surface 5a of the test piece 5 is polished is reproduced by the analysis model.

次に、被測定面と裏面との間の厚さがt+t+tである解析モデルの厚さtの部分を一律に温度T2に調整することで、解析モデルのゲージ対応箇所に、試験片5の2層目を除去した前後の歪変化Δεが現れる温度T2を、FEM解析を繰り返すことにより特定する(手順2)。具体的には、t+t+tである解析モデルにより計算されるゲージ対応箇所の歪と、前記手順1で特定した、解析モデル(被測定面側と裏面との間の厚さがt+tである解析モデル)の同箇所の歪との差が、Δεと一致するようにする。このとき、いずれのモデルでもtの部分の温度は手順1で特定した温度T3、tの部分の温度は手順2で特定した温度T2とする。これにより、試験片5の被測定面5aの2層目を研磨した前後の、裏面5bに貼付した歪ゲージ7の出力変化を解析モデルにより再現する。 Next, the thickness t 2 portion of the analytical model in which the thickness between the measured surface and the back surface is t 2 + t 3 + t 0 is uniformly adjusted to the temperature T2, so that the gauge corresponding portion of the analytical model is obtained. , the temperature T2 of strain change [Delta] [epsilon] 2 before and after removal of the second layer appears in the test piece 5 is specified by repeating the FEM analysis (Step 2). Specifically, the strain corresponding to the gauge calculated by the analysis model of t 2 + t 3 + t 0 and the analysis model (the thickness between the measured surface side and the back surface is t ( Analysis model of 3 + t 0 ) is set so that the difference from the strain at the same position matches Δε 2 . At this time, the temperature of the portion of the t 3 at any model temperature of T3, t 2 parts identified in step 1 and the temperature T2 identified in Step 2. Thereby, the output change of the strain gauge 7 attached to the back surface 5b before and after the second layer of the measured surface 5a of the test piece 5 is polished is reproduced by the analysis model.

続いて、被測定面と裏面と厚さtの部分を一律に温度T1に調整することで、解析モデルのゲージ対応箇所に、試験片5の1層目を除去した前後の歪変化Δεが現れる温度T1を、FEM解析を繰り返すことにより特定する(手順3)。具体的には、t+t+t+tである解析モデルにより計算されるゲージ対応箇所の歪と、前記手順2で特定した、解析モデル(被測定面側と裏面との間の厚さがt+t+tである解析モデル)の同箇所の歪との差が、Δεと一致するようにする。これにより、試験片5の被測定面5aの3層目を研磨した前後の、裏面5bに貼付した歪ゲージ7の出力変化を解析モデルにより再現する。 Subsequently, the strain change Δε 1 before and after the first layer of the test piece 5 is removed at the gauge corresponding portion of the analysis model by uniformly adjusting the surface to be measured, the back surface, and the thickness t 1 to the temperature T1. Is identified by repeating the FEM analysis (procedure 3). Specifically, the strain corresponding to the gauge calculated by the analysis model of t 1 + t 2 + t 3 + t 0 and the analysis model (thickness between the measured surface side and the back surface) specified in the procedure 2 above. The difference between the strain at the same location in the analysis model in which t 2 + t 3 + t 0 is equal to Δε 1 . Thereby, the output change of the strain gauge 7 attached to the back surface 5b before and after the third layer of the measured surface 5a of the test piece 5 is polished is reproduced by the analysis model.

以上により、各層毎の温度設定が完了した後、解析モデルの被測定面側の厚さt,t,tの各部分について、前記手順1〜3で特定した各温度T3,T2,T1をそれぞれ与えた全体FEMモデルにより、解析を実施する(手順4)。この解析のアウトプットとして得られる応力分布(図4がその一例である)が、試験片5の被測定面5a側に生じている残留応力分布である。 As described above, after the temperature setting for each layer is completed, the temperatures T3, T2, and T2 specified in the steps 1 to 3 are measured for the portions of the thickness t 1 , t 2 , t 3 on the measured surface side of the analysis model. An analysis is performed using the entire FEM model given T1 (procedure 4). The stress distribution obtained as an output of this analysis (FIG. 4 is an example) is the residual stress distribution generated on the measured surface 5a side of the test piece 5.

前記手順4の解析で得られるのは試験片状態の応力状態であるが、さらに実機状態(タービン翼1のダブテール3)の応力分布を知るためには、試験片モデルを実機製品モデルに組み込んで解析モデルを再構築して(タービン翼1のダブテール3に対応する解析モデルを構築し)解析し、応力分布を求めればよい。   The analysis of the procedure 4 can obtain the stress state in the test piece state, but in order to know the stress distribution in the actual machine state (the dovetail 3 of the turbine blade 1), the test piece model is incorporated into the actual product model. The stress distribution may be obtained by reconstructing the analysis model (constructing an analysis model corresponding to the dovetail 3 of the turbine blade 1) and analyzing the analysis model.

温度に代えて線膨張係数をパラメータとして用いる場合は、前記手順1〜3において温度T3,T2,T1をそれぞれ求める代わりに、手順1〜3でそれぞれ説明した条件を満たす3つの線膨張係数を求めればよい。そして、前記手順4において、前記手順1〜3で求めた3つの線膨張係数を与えた全体FEMモデルにより、解析を実施すればよい。パラメータを線膨張係数とする場合は、試験片5や解析モデルの材料異方性を考慮することで、解析モデルの伸び量を方向により変えることができる。そのため、試験片5の裏面の2軸方向の歪変化を2軸歪ゲージにより取得すれば、深さ方向だけでなく面内のゲージ2軸方向の残留応力分布を推定することができる。   When the linear expansion coefficient is used as a parameter instead of the temperature, three linear expansion coefficients satisfying the conditions described in steps 1 to 3 can be obtained instead of obtaining the temperatures T3, T2 and T1 in steps 1 to 3, respectively. That's fine. And in the said procedure 4, what is necessary is just to implement an analysis with the whole FEM model which gave three linear expansion coefficients calculated | required by the said procedures 1-3. When the parameter is a linear expansion coefficient, the elongation amount of the analysis model can be changed depending on the direction by considering the material anisotropy of the test piece 5 and the analysis model. Therefore, if the strain change in the biaxial direction on the back surface of the test piece 5 is acquired by a biaxial strain gauge, the residual stress distribution in the in-plane gauge biaxial direction as well as the depth direction can be estimated.

以上に説明したFEM解析により、試験片5の被測定面5aを層状に研磨したときの歪ゲージ7の出力から、試験片5を切り出したダブテール3の表面3a側に与えられた残留応力を推定することができる。   From the FEM analysis described above, the residual stress applied to the surface 3a side of the dovetail 3 from which the test piece 5 is cut out is estimated from the output of the strain gauge 7 when the measured surface 5a of the test piece 5 is polished in layers. can do.

以上に説明したように、本実施形態の残留応力測定方法は、残留応力が与えられたダブテール3の表面3aから切り出した試験片5の被測定面5a側を研磨することで、その深さ方向(試験片5の被測定面5aから裏面5bに向かう方向)における残留応力の分布を求める測定方法である。したがって、X線法や応力開放法では残留応力を測定できない、結晶粒の粗い材料で製造された物品の表面層の残留応力であっても、精度よく測定することができ、かつ、深さ方向の残留応力分布も知ることができる。また、歪計測の精度にもよるが、研磨量を細かくすることで、求める残留応力の分布の推定精度を任意に上げることができる。   As described above, the residual stress measurement method according to the present embodiment polishes the measured surface 5a side of the test piece 5 cut out from the surface 3a of the dovetail 3 to which the residual stress is applied, and thereby the depth direction of the test piece 5 is polished. This is a measurement method for obtaining the distribution of residual stress in the direction from the measured surface 5a to the back surface 5b of the test piece 5. Therefore, the residual stress cannot be measured by the X-ray method or the stress release method, and even the residual stress of the surface layer of an article made of a material having coarse crystal grains can be accurately measured, and the depth direction It is also possible to know the residual stress distribution. Moreover, although it depends on the accuracy of strain measurement, the estimation accuracy of the distribution of the residual stress to be obtained can be arbitrarily increased by reducing the polishing amount.

なお、本実施形態では、試験片5の残留応力のモデリングにFEM解析によるモデルを用いる場合について説明したが、解析はFEM以外の他の方法によって行ってもよい。   In the present embodiment, the case where a model by FEM analysis is used for modeling the residual stress of the test piece 5 has been described, but the analysis may be performed by a method other than FEM.

即ち、本発明は、表面に応力が与えられた被測定物の表面側から切り出した試験片を、被測定物の表面に相当する被測定面側から段階的に層状に研磨しつつ、被測定面と対向する試験片の裏面において測定した歪と、研磨した層の試験片における位置や研磨厚さとの関係から、被測定物の表面に与えられた残留応力を解析することを、要旨とするものである。   That is, the present invention is to measure a test piece cut out from the surface side of an object to be measured whose surface is stressed while stepwise polishing in layers from the surface to be measured corresponding to the surface of the object to be measured. The gist is to analyze the residual stress applied to the surface of the object to be measured from the relationship between the strain measured on the back surface of the test piece facing the surface and the position and polishing thickness of the polished layer on the test piece. Is.

そして、本実施形態では、結晶粒の粗い多結晶材や、一方向凝固材、単結晶材のような鋳造材料で製造されたタービン翼1のダブテール3の表面3aにおいて、機械加工やショットピーニング等により与えられた残留応力を測定する場合を例に取って説明した。しかし、本発明は、材料や結晶構造を問わず、被測定物の表面に与えられた残留応力を測定する場合に広く適用可能である。   In this embodiment, machining, shot peening, etc. are performed on the surface 3a of the dovetail 3 of the turbine blade 1 manufactured from a cast material such as a polycrystalline material having coarse crystal grains, a unidirectionally solidified material, or a single crystal material. The case where the residual stress given by is measured is described as an example. However, the present invention is widely applicable when measuring the residual stress applied to the surface of the object to be measured regardless of the material or crystal structure.

1 タービン翼
3 ダブテール
3a 表面
5 試験片
5a 被測定面
5b 裏面
7 歪ゲージ
1 Turbine blade 3 Dovetail 3a Surface 5 Test piece 5a Surface to be measured 5b Back surface 7 Strain gauge

Claims (1)

被測定物の表面に与えられた残留応力を測定する方法であって、
前記被測定物の残留応力が与えられた部分を含めて該被測定物の表面側から切り出した試験片を、前記被測定物の表面に相当する被測定面側から段階的に層状に研磨しつつ、該被測定面と対向する前記試験片の裏面において歪を測定する測定ステップと、
前記試験片の層状の研磨と前記裏面において測定した歪との関係から、前記被測定物の表面に与えられた残留応力を解析する解析ステップと、
を含み、
前記解析ステップは、
前記試験片の解析モデルにおける前記被測定面側の温度又は線膨張係数と、前記試験片の解析モデルにおける前記被測定面側及び裏面間の厚さとを調整することで、該被測定面側から前記解析モデルにおける前記試験片を段階的に層状に除去する前後の歪出力の変化を、前記試験片の被測定面を層状に研磨した時の前記測定ステップで測定した前記試験片の前記裏面における歪出力の変化の値に合わせ込み、前記解析モデルの前記被測定面側から段階的に除去する各層の温度又は線膨張係数を特定する特定ステップと、
前記特定ステップにより特定した前記温度又は線膨張係数を対応する各層に与えた全体解析モデルにより、前記試験片の深さ方向の残留応力分布を推定する推定ステップとを含む、
ことを特徴とする残留応力測定方法。
A method for measuring a residual stress applied to the surface of an object to be measured,
A test piece cut out from the surface side of the object to be measured including the portion to which the residual stress of the object to be measured is applied is polished in layers from the surface to be measured corresponding to the surface of the object to be measured. While measuring the strain on the back surface of the test piece facing the surface to be measured,
From the relationship between the layered polishing of the test piece and the strain measured on the back surface, an analysis step for analyzing the residual stress applied to the surface of the object to be measured ;
Including
The analysis step includes
By adjusting the temperature or linear expansion coefficient on the measurement surface side in the analysis model of the test piece and the thickness between the measurement surface side and the back surface in the analysis model of the test piece, from the measurement surface side The change in strain output before and after removing the test piece in layers in the analysis model stepwise is measured in the measurement step when the measured surface of the test piece is polished in layers. A specific step of adjusting the value of change in strain output and specifying the temperature or linear expansion coefficient of each layer to be removed stepwise from the measured surface side of the analytical model;
An estimation step of estimating a residual stress distribution in the depth direction of the test piece by an overall analysis model given to each layer corresponding to the temperature or linear expansion coefficient specified in the specifying step,
Residual Stress Measurement how, characterized in that.
JP2010127315A 2010-06-02 2010-06-02 Residual stress measurement method Active JP5545043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010127315A JP5545043B2 (en) 2010-06-02 2010-06-02 Residual stress measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010127315A JP5545043B2 (en) 2010-06-02 2010-06-02 Residual stress measurement method

Publications (2)

Publication Number Publication Date
JP2011252811A JP2011252811A (en) 2011-12-15
JP5545043B2 true JP5545043B2 (en) 2014-07-09

Family

ID=45416857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010127315A Active JP5545043B2 (en) 2010-06-02 2010-06-02 Residual stress measurement method

Country Status (1)

Country Link
JP (1) JP5545043B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016125985A (en) * 2015-01-08 2016-07-11 いすゞ自動車株式会社 Method for measuring internal residual stress in induction hardening member

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5955301B2 (en) 2013-11-14 2016-07-20 株式会社神戸製鋼所 Residual stress calculation method
CN114247762B (en) * 2021-12-30 2023-06-20 中国兵器工业第五九研究所 Plate frame piece finish machining method based on internal texture distribution uniformity of pre-stretching aluminum plate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61172023A (en) * 1985-01-25 1986-08-02 Sumitomo Metal Ind Ltd Method for measuring residual stress-imparing depth
JPS6432134A (en) * 1987-07-29 1989-02-02 Kawasaki Steel Co Residual stress measuring method for coating material
JP3932855B2 (en) * 2001-10-19 2007-06-20 株式会社日立製作所 Residual stress prediction method and apparatus
JP2008058179A (en) * 2006-08-31 2008-03-13 Tokyo Institute Of Technology Method of evaluating residual stress

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016125985A (en) * 2015-01-08 2016-07-11 いすゞ自動車株式会社 Method for measuring internal residual stress in induction hardening member

Also Published As

Publication number Publication date
JP2011252811A (en) 2011-12-15

Similar Documents

Publication Publication Date Title
Mishurova et al. The influence of the support structure on residual stress and distortion in SLM Inconel 718 parts
Czabaj et al. Comparison of intralaminar and interlaminar mode I fracture toughnesses of a unidirectional IM7/8552 carbon/epoxy composite
Patil et al. Modelling and simulation of effect of ultrasonic vibrations on machining of Ti6Al4V
Esmaeilzare et al. Investigation of subsurface damages and surface roughness in grinding process of Zerodur® glass–ceramic
US8645086B1 (en) Stress function calibration method
JP5545043B2 (en) Residual stress measurement method
EP1582278B1 (en) Forging die with locating means
CN102494997B (en) Detection method for interface bonding strength of particle reinforced metal matrix composite material
Feng et al. Prediction of grinding force in microgrinding of ceramic materials by cohesive zone-based finite element method
JP5403256B2 (en) Apparatus and method for evaluating fatigue strength of polycrystalline metal materials
WO2006008554A1 (en) Method of determining residual stress within an object
CN111207869A (en) Additive product residual stress testing method
US10598556B2 (en) Method for in-situ markers for thermal mechanical structural health monitoring
CN117434098A (en) Comprehensive characterization method for interface micro-nano scale residual stress of continuous silicon carbide fiber reinforced titanium-based composite material
Wang Influences of sample preparation on the indentation size effect and nanoindentation pop-in on nickel
Abadias et al. Stress in physical vapor deposited thin films: Measurement methods and selected examples
JP2015222207A (en) Evaluation method and evaluation apparatus of structure
Klingbeil et al. Measurement of residual stresses in parts created by shape deposition manufacturing
US9857319B2 (en) Method of measuring depth of damage of wafer
Marciszko et al. Problem of elastic anisotropy and stacking faults in stress analysis using multireflection grazing-incidence X-ray diffraction
Ahmed et al. Assessment of stress relaxation experiments on diamond coatings analyzed by digital image correlation and micro-Raman spectroscopy
CN112050978A (en) Ti for cartridge receiver2X-ray residual stress testing method for AlNb alloy
McCann et al. Use of birefringence to determine redistribution layer stresses to create design guidelines to prevent glass cracking
Zhang et al. Synchrotron X-ray diffraction analysis of bending strains in magnesium alloy AZ31B processed by Severe Plastic Deformation
Dumontet et al. Determination of the X-Ray Elastic Constants of the Ti-6Al-4V Processed by Powder Bed-Laser Beam Melting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

R151 Written notification of patent or utility model registration

Ref document number: 5545043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250