JP5544153B2 - Electrolytic extraction of zinc - Google Patents

Electrolytic extraction of zinc Download PDF

Info

Publication number
JP5544153B2
JP5544153B2 JP2009277394A JP2009277394A JP5544153B2 JP 5544153 B2 JP5544153 B2 JP 5544153B2 JP 2009277394 A JP2009277394 A JP 2009277394A JP 2009277394 A JP2009277394 A JP 2009277394A JP 5544153 B2 JP5544153 B2 JP 5544153B2
Authority
JP
Japan
Prior art keywords
strontium
zinc
concentration
electrolytic
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009277394A
Other languages
Japanese (ja)
Other versions
JP2011117053A (en
Inventor
大 松浦
太郎 愛知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metals and Mining Co Ltd
Original Assignee
Dowa Metals and Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metals and Mining Co Ltd filed Critical Dowa Metals and Mining Co Ltd
Priority to JP2009277394A priority Critical patent/JP5544153B2/en
Publication of JP2011117053A publication Critical patent/JP2011117053A/en
Application granted granted Critical
Publication of JP5544153B2 publication Critical patent/JP5544153B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、亜鉛の電解採取方法に関し、特に、鉛を含むアノードを使用して硫酸亜鉛を含む電解液から亜鉛を電解採取する方法に関する。   The present invention relates to a method for electrowinning zinc, and more particularly, to a method for electrowinning zinc from an electrolyte containing zinc sulfate using an anode containing lead.

従来、アノードとして硫酸に不溶な鉛板または鉛−銀合金板を使用して、硫酸亜鉛を含む電解液から亜鉛をカソード上に析出または付着させて、亜鉛を電解採取する方法が知られている。   2. Description of the Related Art Conventionally, there has been known a method of electrolytically collecting zinc by using a lead plate or a lead-silver alloy plate insoluble in sulfuric acid as an anode, and depositing or depositing zinc on an anode from an electrolyte containing zinc sulfate. .

しかし、このような亜鉛の電解採取方法では、アノードから電解液中に少量の鉛イオンが移行して、その一部がカソード上に析出または付着して電着亜鉛に混入する。   However, in such a zinc electrowinning method, a small amount of lead ions migrates from the anode into the electrolytic solution, and some of them are deposited or deposited on the cathode and mixed into the electrodeposited zinc.

このような電着亜鉛中に混入する鉛の量を低減させるために、電解液に炭酸ストロンチウムなどの添加剤を少量添加して、電解液中の鉛イオンなどを吸着させて除去する方法が知られている(例えば、特許文献1参照)。また、アノードとして鉛を含まないDSE電極(寸法安定電極)を使用して、高純度亜鉛を電解採取する方法も知られている(例えば、特許文献2参照)。   In order to reduce the amount of lead mixed in such electrodeposited zinc, a method is known in which a small amount of an additive such as strontium carbonate is added to the electrolytic solution to adsorb and remove lead ions and the like in the electrolytic solution. (For example, refer to Patent Document 1). In addition, a method of electrolytically collecting high-purity zinc using a DSE electrode (dimension stable electrode) that does not contain lead as an anode is also known (see, for example, Patent Document 2).

特開平9−20989号公報(段落番号0002−0007)JP-A-9-20989 (paragraph numbers 0002-0007) 特開平10−46274号公報(段落番号0020)JP 10-46274 A (paragraph number 0020)

しかし、電解液に炭酸ストロンチウムを添加する方法では、炭酸ストロンチウムの水への溶解度が非常に低いため、電解液中にストロンチウムを均一に分散させることができず、カソード上の電着亜鉛中の鉛の品位をさらに低減させるのは困難である。また、比較的高価なDSE電極を使用せずに、安価な鉛板や(1〜3質量%の銀を含む)鉛−銀合金板を使用して、カソード上の電着亜鉛中の鉛の品位をさらに低減させることが望まれている。   However, in the method of adding strontium carbonate to the electrolyte, the solubility of strontium carbonate in water is very low, so strontium cannot be uniformly dispersed in the electrolyte and lead in the electrodeposited zinc on the cathode It is difficult to further reduce the quality. Moreover, without using a relatively expensive DSE electrode, an inexpensive lead plate or a lead-silver alloy plate (containing 1 to 3% by mass of silver) can be used. It is desired to further reduce the quality.

したがって、本発明は、このような従来の問題点に鑑み、鉛の品位が極めて低い亜鉛を安価に電解採取することができる、亜鉛の電解採取方法を提供することを目的とする。   Therefore, in view of such a conventional problem, an object of the present invention is to provide a zinc electrowinning method capable of electrowinning zinc with extremely low lead quality at low cost.

本発明者らは、上記課題を解決するために鋭意研究した結果、鉛を含むアノードを使用して硫酸亜鉛を含む電解液から亜鉛を電解採取する方法において、ストロンチウムイオンを含む水溶液を電解液に添加した後に亜鉛の電解採取を行うことにより、鉛の品位が極めて低い亜鉛を安価に電解採取することができることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the present inventors have found that an aqueous solution containing strontium ions is used as an electrolytic solution in a method of electrowinning zinc from an electrolytic solution containing zinc sulfate using an anode containing lead. By performing electrowinning of zinc after the addition, it has been found that zinc with extremely low lead quality can be electrowinned at low cost, and the present invention has been completed.

すなわち、本発明による亜鉛の電解採取方法は、鉛を含むアノードを使用して、硫酸亜鉛を含む電解液から亜鉛を電解採取する方法において、ストロンチウムイオンを含む水溶液を電解液に添加した後に亜鉛の電解採取を行うことを特徴とする。この亜鉛の電解採取方法において、ストロンチウムイオンを含む水溶液が、水に二酸化硫黄ガスを吹き込み且つ炭酸ストロンチウムを添加することによって、炭酸ストロンチウムを溶解させた水溶液であるのが好ましい。あるいは、ストロンチウムイオンを含む水溶液が、水に二酸化硫黄ガスを吹き込み且つ過剰の炭酸ストロンチウムを添加することによって、炭酸ストロンチウムの一部を溶解させるとともに残りを懸濁させた懸濁液でもよい。あるいは、ストロンチウムイオンを含む水溶液が、水に硫化水素ガスを吹き込み且つ水酸化ストロンチウムを添加することによって、水酸化ストロンチウムを溶解させた水溶液でもよい。また、電解採取後の電解液中の全ストロンチウム濃度が50mg/L以上であるのが好ましい。   That is, the zinc electrowinning method according to the present invention is a method of electrowinning zinc from an electrolyte containing zinc sulfate using an anode containing lead, and after adding an aqueous solution containing strontium ions to the electrolyte, Electrolytic collection is performed. In this zinc electrowinning method, the aqueous solution containing strontium ions is preferably an aqueous solution in which strontium carbonate is dissolved by blowing sulfur dioxide gas into water and adding strontium carbonate. Alternatively, the aqueous solution containing strontium ions may be a suspension in which a part of strontium carbonate is dissolved and the rest is suspended by blowing sulfur dioxide gas into water and adding excess strontium carbonate. Alternatively, the aqueous solution containing strontium ions may be an aqueous solution in which strontium hydroxide is dissolved by blowing hydrogen sulfide gas into water and adding strontium hydroxide. Moreover, it is preferable that the total strontium concentration in the electrolytic solution after electrolytic collection is 50 mg / L or more.

また、本発明による亜鉛の電解採取用電解液は、硫酸亜鉛とストロンチウムイオンを含む電解液において、ストロンチウムイオン濃度が16mg/Lより高いことを特徴とする。この亜鉛の電解採取用電解液において、全ストロンチウム濃度が50mg/L以上であるのが好ましい。   Moreover, the electrolytic solution for electrowinning zinc according to the present invention is characterized in that the concentration of strontium ions is higher than 16 mg / L in an electrolytic solution containing zinc sulfate and strontium ions. In the electrolytic solution for zinc electrowinning, the total strontium concentration is preferably 50 mg / L or more.

本発明によれば、鉛の品位が極めて低い亜鉛を安価に電解採取することができる。   According to the present invention, zinc with extremely low lead quality can be electrolytically collected at low cost.

電解尾液に炭酸ストロンチウムを添加して撹拌した際の撹拌時間と電解尾液中のストロンチウムイオン濃度との関係を示す図である。It is a figure which shows the relationship between the stirring time at the time of adding and stirring strontium carbonate to an electrolytic tail liquid, and the strontium ion concentration in an electrolytic tail liquid. 実施例1〜4および比較例1〜2において電解後の電解液中の全ストロンチウム濃度と電着亜鉛中の鉛の品位との関係を示す図である。In Examples 1-4 and Comparative Examples 1-2, it is a figure which shows the relationship between the total strontium density | concentration in the electrolyte solution after electrolysis, and the quality of the lead in electrodeposited zinc. 実施例5〜7において電解後の電解液中の全ストロンチウム濃度と電力原単位との関係を示す図である。It is a figure which shows the relationship between the total strontium density | concentration in the electrolyte solution after electrolysis in Example 5-7, and an electric power basic unit. 実施例5〜7において電解後の電解液中の全ストロンチウム濃度と電着亜鉛中の鉛の品位との関係を示す図である。In Examples 5-7, it is a figure which shows the relationship between the total strontium density | concentration in the electrolyte solution after electrolysis, and the quality of the lead in electrodeposited zinc.

本発明による亜鉛の電解採取方法の実施の形態では、鉛を含むアノードを使用して、硫酸亜鉛を含む電解液から亜鉛を電解採取する方法において、ストロンチウムイオンを含む水溶液を電解液に添加した後に亜鉛の電解採取を行う。   In an embodiment of the zinc electrowinning method according to the present invention, in the method of electrowinning zinc from an electrolyte containing zinc sulfate using an anode containing lead, an aqueous solution containing strontium ions is added to the electrolyte. Perform zinc electrowinning.

本実施の形態の亜鉛の電解採取方法では、水に二酸化硫黄ガスを吹き込み且つ炭酸ストロンチウムを添加して、炭酸ストロンチウムを溶解させることによって、ストロンチウムイオンを含む水溶液を作製することができる。例えば、純水に二酸化硫黄ガスを吹き込みながら炭酸ストロンチウム粉末を添加したり、純水に炭酸ストロンチウムを添加して二酸化硫黄ガスを吹き込むことによって、炭酸ストロンチウムを溶解させて、ストロンチウムイオンを含む水溶液(炭酸ストロンチウムが過剰の二酸化硫黄ガスに溶解した水溶液)を作製することができる。   In the zinc electrowinning method of this embodiment, an aqueous solution containing strontium ions can be prepared by blowing sulfur dioxide gas into water and adding strontium carbonate to dissolve strontium carbonate. For example, by adding strontium carbonate powder while blowing sulfur dioxide gas into pure water, or adding strontium carbonate to pure water and blowing sulfur dioxide gas, strontium carbonate is dissolved and an aqueous solution containing strontium ions (carbonic acid carbonate). An aqueous solution in which strontium is dissolved in an excess of sulfur dioxide gas can be produced.

なお、炭酸ストロンチウム粉末は、二酸化硫黄ガスを吹き込んでpHが(例えば1.5程度まで)下がったことを確認した後に添加するのが好ましい。このように純水に二酸化硫黄ガスを吹き込みながら炭酸ストロンチウム粉末を添加して、炭酸ストロンチウムを溶解させることによって、ストロンチウムイオン(Sr2+)濃度が2.6〜2.8g/Lの高濃度のストロンチウムイオンを含む水溶液を作製することができる。 The strontium carbonate powder is preferably added after it is confirmed that the pH has dropped (for example, to about 1.5) by blowing in sulfur dioxide gas. By adding strontium carbonate powder while blowing sulfur dioxide gas into pure water and dissolving strontium carbonate in this way, strontium ions (Sr 2+ ) concentration of 2.6 to 2.8 g / L high concentration strontium An aqueous solution containing ions can be prepared.

一方、硫酸亜鉛を含む電解液として亜鉛製錬工程で得られた電解尾液を用意し、それぞれ180rpm、300rpmおよび600rpmで撹拌しながら40℃の電解尾液に炭酸ストロンチウム粉末0.1g/Lを1時間で20回に分けて添加したところ、撹拌時間に対する電解尾液中のストロンチウムイオン濃度は図1に示すようになり、電解尾液に炭酸ストロンチウム粉末を添加した場合には最大16mg/Lで過飽和になることがわかった。なお、40℃の純水への炭酸ストロンチウムの溶解度は10mg/L程度であり、通常の方法で炭酸ストロンチウム粉末を電解液に添加しても、電解液中のストロンチウムイオン濃度を16mg/Lより高くすることができない。   On the other hand, an electrolytic tail solution obtained in the zinc smelting process was prepared as an electrolytic solution containing zinc sulfate, and 0.1 g / L of strontium carbonate powder was added to the electrolytic tail solution at 40 ° C. while stirring at 180 rpm, 300 rpm and 600 rpm, respectively. When it was added 20 times in 1 hour, the strontium ion concentration in the electrolytic tail solution with respect to the stirring time was as shown in FIG. 1, and when strontium carbonate powder was added to the electrolytic tail solution, the maximum was 16 mg / L. It turned out to be supersaturated. The solubility of strontium carbonate in pure water at 40 ° C. is about 10 mg / L. Even when strontium carbonate powder is added to the electrolyte by a usual method, the strontium ion concentration in the electrolyte is higher than 16 mg / L. Can not do it.

したがって、本実施の形態の亜鉛の電解採取方法では、作製したストロンチウムイオン濃度が2.6〜2.8g/Lの高濃度のストロンチウム水溶液を1体積%より多く電解液に添加すれば、電解液中のストロンチウムイオン濃度を26〜28mg/Lより多くすることができ、2体積%以上電解液に添加すれば、電解液中のストロンチウムイオン濃度を52〜56mg/L以上にすることができ、炭酸ストロンチウム粉末を電解液に添加する場合(この場合のストロンチウムイオン濃度は最大16mg/L)と比べて、電解液中のストロンチウムイオン濃度を極めて高くすることができる。また、本実施の形態の亜鉛の電解採取方法では、高濃度のストロンチウムイオンを含む水溶液を電解液に添加することにより、ストロンチウムイオンを電解液中に均一に分散させることができ、ストロンチウムによるPb共沈効果を電解液全体にわたって発揮させて、カソード上の電着亜鉛中のPb品位を数ppmまで低減させることができる。   Therefore, in the zinc electrowinning method of the present embodiment, if the strontium aqueous solution having a strontium ion concentration of 2.6 to 2.8 g / L is added in an amount of more than 1% by volume, the electrolyte solution The concentration of strontium ions in the electrolyte can be increased from 26 to 28 mg / L, and when added to the electrolyte by 2% by volume or more, the concentration of strontium ions in the electrolyte can be increased from 52 to 56 mg / L. Compared with the case where strontium powder is added to the electrolytic solution (the maximum strontium ion concentration in this case is 16 mg / L), the strontium ion concentration in the electrolytic solution can be made extremely high. In addition, in the zinc electrowinning method of the present embodiment, by adding an aqueous solution containing a high concentration of strontium ions to the electrolyte, the strontium ions can be uniformly dispersed in the electrolyte, and Pb co-generation with strontium is possible. The precipitation effect can be exerted over the entire electrolyte, and the Pb quality in the electrodeposited zinc on the cathode can be reduced to several ppm.

また、本実施の形態の亜鉛の電解採取方法では、電解採取後の電解液中の全ストロンチウム濃度が50mg/L以上になるようにするのが好ましい。このような電解採取後の電解液中の全ストロンチウム濃度にするためには、例えば、ストロンチウムイオン濃度が2.6〜2.8g/Lの水溶液を2体積%以上電解液に添加すればよい。   In the zinc electrowinning method of the present embodiment, it is preferable that the total strontium concentration in the electrolytic solution after electrowinning is 50 mg / L or more. In order to obtain such a total strontium concentration in the electrolytic solution after electrolytic collection, for example, an aqueous solution having a strontium ion concentration of 2.6 to 2.8 g / L may be added to the electrolytic solution in an amount of 2% by volume or more.

また、本実施の形態の亜鉛の電解採取方法では、純水に二酸化硫黄ガスを吹き込み且つ過剰の炭酸ストロンチウム粉末を添加することにより、炭酸ストロンチウムの一部を溶解させるとともに溶け残りを懸濁させた懸濁液として、ストロンチウムイオンを含む水溶液を作製してもよい。このようにすれば、ストロンチウムイオンを含む水溶液の電解液への添加量を少なくすることができる。この場合でも、高濃度のストロンチウムイオンを含む水溶液を電解液に添加することにより、カソード上の電着亜鉛中のPb品位を数ppmまで低減させることができる。   Further, in the zinc electrowinning method of the present embodiment, sulfur dioxide gas was blown into pure water and excess strontium carbonate powder was added to dissolve part of the strontium carbonate and suspend the undissolved residue. An aqueous solution containing strontium ions may be prepared as a suspension. If it does in this way, the addition amount to the electrolyte solution of the aqueous solution containing strontium ion can be decreased. Even in this case, the quality of Pb in the electrodeposited zinc on the cathode can be reduced to several ppm by adding an aqueous solution containing a high concentration of strontium ions to the electrolyte.

また、本実施の形態の亜鉛の電解採取方法では、純水に硫化水素ガスを吹き込み且つ水酸化ストロンチウムを添加して、水酸化ストロンチウムを溶解させることによって、ストロンチウムイオンを含む水溶液を作製してもよい。このように純水に硫化水素ガスを吹き込み且つ水酸化ストロンチウムを添加して、水酸化ストロンチウムを溶解させることによって、ストロンチウムイオン濃度が30g/Lの極めて高濃度のストロンチウムイオンを含む水溶液を得ることができる。また、極めて高濃度のストロンチウムイオンを含む水溶液を得ることができるので、ストロンチウムイオンを含む水溶液の電解液への添加量を少なくすることができる。この場合でも、極めて高濃度のストロンチウムイオンを含む水溶液を電解液に添加することにより、カソード上の電着亜鉛中のPb品位を数ppmまで低減させることができる。   In the zinc electrowinning method of the present embodiment, an aqueous solution containing strontium ions can be prepared by blowing hydrogen sulfide gas into pure water and adding strontium hydroxide to dissolve strontium hydroxide. Good. Thus, by blowing hydrogen sulfide gas into pure water and adding strontium hydroxide to dissolve strontium hydroxide, an aqueous solution containing a very high concentration of strontium ions having a strontium ion concentration of 30 g / L can be obtained. it can. In addition, since an aqueous solution containing a very high concentration of strontium ions can be obtained, the amount of the aqueous solution containing strontium ions added to the electrolyte can be reduced. Even in this case, the Pb quality in the electrodeposited zinc on the cathode can be reduced to several ppm by adding an aqueous solution containing a very high concentration of strontium ions to the electrolyte.

以下、本発明による亜鉛の電解採取方法の実施例について詳細に説明する。   Hereinafter, examples of the zinc electrowinning method according to the present invention will be described in detail.

[実施例1]
硫酸亜鉛を含む電解液として、亜鉛製錬工程で得られた電解尾液(Zn:65g/L、FA:170g/L、全Pb:0.1mg/L)をろ過した電解液を用意した。また、純水に200mL/分の流量でSOガスを吹き込みながら、40℃においてバッフル付きの二段タービンによって400rpmで10分間撹拌し、炭酸ストロンチウム5g/Lを添加してさらに30分間撹拌し、得られた水溶液を吸引ろ過して、ストロンチウムイオン濃度が2.58g/Lのストロンチウム含有水溶液を用意した。このストロンチウム含有水溶液20mLを電解液0.98Lに添加して、電解採取用電解液1Lを得た。この電解液を使用し、アノードとしてPb−Ag板、カソードとしてAl板を使用し、極間距離を25mmとし、43℃において電流密度700A/mで2時間電解採取を行った。なお、この電解採取は、ストロンチウム含有水溶液を電解液に添加した直後(3分以内)に開始した。
[Example 1]
As an electrolytic solution containing zinc sulfate, an electrolytic solution obtained by filtering the electrolytic tail solution (Zn: 65 g / L, FA: 170 g / L, total Pb: 0.1 mg / L) obtained in the zinc smelting process was prepared. Further, while blowing pure water 200 mL / min flow rate with SO 2 gas, and stirred for 10 minutes at 400rpm by a two-stage turbine baffled at 40 ° C., and stirred for further 30 minutes with the addition of strontium carbonate 5 g / L, The obtained aqueous solution was subjected to suction filtration to prepare a strontium-containing aqueous solution having a strontium ion concentration of 2.58 g / L. 20 mL of this strontium-containing aqueous solution was added to 0.98 L of electrolytic solution to obtain 1 L of electrolytic solution for electrolytic collection. Using this electrolytic solution, a Pb—Ag plate was used as the anode, an Al plate was used as the cathode, the distance between the electrodes was 25 mm, and electrowinning was performed at 43 ° C. at a current density of 700 A / m 2 for 2 hours. This electrolytic collection was started immediately after the strontium-containing aqueous solution was added to the electrolytic solution (within 3 minutes).

電解後の電解液の一部を採取し、0.2μmのフィルタでろ過した後、ポーラログラフィを用いた測定装置(Yanaco社製のPOLAROGRAPHIC ANALYZER P−1100)によりPb2+イオン濃度を測定し、ICPによりSr2+イオン濃度を測定した。その結果、電解後の電解液中のPb2+イオン濃度は検出限界以下(<0.1mg/L)であり、Sr2+イオン濃度は36mg/Lであった。また、電解後の電解液の一部をろ過しないで測定した(電解液中に固体として存在するPbも含めた)全Pb濃度は0.6mg/Lであり、(電解液中に固体として存在するSrも含めた)全Sr濃度は57.1mg/Lであった。また、得られた電着亜鉛中のPb品位は4.0ppmであり、亜鉛の電着量は5.34gであった。また、電流効率は89.8%、平均槽電圧は3.25V、電力原単位は2968(kwh/t−Zn)であった。 A part of the electrolytic solution after electrolysis was collected and filtered with a 0.2 μm filter, and then the Pb 2+ ion concentration was measured with a polarographic measurement device (POLAROGRAPHIC ANALYZER P-1100 manufactured by Yanaco), and ICP Was used to measure the Sr 2+ ion concentration. As a result, the Pb 2+ ion concentration in the electrolytic solution after electrolysis was below the detection limit (<0.1 mg / L), and the Sr 2+ ion concentration was 36 mg / L. Moreover, the total Pb concentration (including Pb present as a solid in the electrolytic solution) measured without filtering a part of the electrolytic solution after electrolysis was 0.6 mg / L, and existed as a solid in the electrolytic solution. The total Sr concentration (including Sr) was 57.1 mg / L. In addition, the Pb quality in the obtained electrodeposited zinc was 4.0 ppm, and the amount of zinc electrodeposited was 5.34 g. The current efficiency was 89.8%, the average cell voltage was 3.25 V, and the power consumption was 2968 (kwh / t-Zn).

[実施例2]
実施例1と同じ電解液0.97Lに実施例1と同じストロンチウム含有水溶液30mLを添加して得られた電解採取用電解液1Lを使用した以外は、実施例1と同様の方法により電解採取を行った後、実施例1と同様の方法により電解液中のPb2+イオン濃度、Sr2+イオン濃度、全Pb濃度、全Sr濃度を測定した。
[Example 2]
Electrolytic collection was carried out in the same manner as in Example 1 except that 1 L of electrolytic solution for electrowinning obtained by adding 30 mL of the same strontium-containing aqueous solution as in Example 1 to 0.97 L of the same electrolytic solution as in Example 1 was used. Then, the Pb 2+ ion concentration, Sr 2+ ion concentration, total Pb concentration, and total Sr concentration in the electrolytic solution were measured by the same method as in Example 1.

その結果、電解後の電解液中のPb2+イオン濃度は検出限界以下(<0.1mg/L)、Sr2+イオン濃度は33.3mg/L、全Pb濃度は0.6mg/L、全Sr濃度は74.6mg/Lであった。また、得られた電着亜鉛中のPb品位は1.5ppmであり、亜鉛の電着量は5.54gであった。また、電流効率は93.1%、平均槽電圧は3.25V、電力原単位は2863(kwh/t−Zn)であった。 As a result, the Pb 2+ ion concentration in the electrolytic solution after electrolysis is below the detection limit (<0.1 mg / L), the Sr 2+ ion concentration is 33.3 mg / L, the total Pb concentration is 0.6 mg / L, and the total Sr The concentration was 74.6 mg / L. Moreover, the Pb quality in the obtained electrodeposited zinc was 1.5 ppm, and the electrodeposition amount of zinc was 5.54 g. The current efficiency was 93.1%, the average cell voltage was 3.25 V, and the power consumption was 2863 (kwh / t-Zn).

[実施例3]
実施例1と同じ電解液0.96Lに実施例1と同じストロンチウム含有水溶液40mLを添加して得られた電解採取用電解液1Lを使用した以外は、実施例1と同様の方法により電解採取を行った後、実施例1と同様の方法により電解液中のPb2+イオン濃度、Sr2+イオン濃度、全Pb濃度、全Sr濃度を測定した。
[Example 3]
Electrolytic collection was performed in the same manner as in Example 1, except that 1L of electrolytic solution for electrolytic collection obtained by adding 40 mL of the same strontium-containing aqueous solution as in Example 1 to 0.96L of the same electrolytic solution as in Example 1 was used. Then, the Pb 2+ ion concentration, Sr 2+ ion concentration, total Pb concentration, and total Sr concentration in the electrolytic solution were measured by the same method as in Example 1.

その結果、電解後の電解液中のPb2+イオン濃度は0.1mg/L、Sr2+イオン濃度は30.1mg/L、全Pb濃度は0.7mg/L、全Sr濃度は93.0mg/Lであった。また、得られた電着亜鉛中のPb品位は1.9ppmであり、亜鉛の電着量は5.25gであった。また、電流効率は88.3%、平均槽電圧は3.21V、電力原単位は2987(kwh/t−Zn)であった。 As a result, the Pb 2+ ion concentration in the electrolytic solution after electrolysis was 0.1 mg / L, the Sr 2+ ion concentration was 30.1 mg / L, the total Pb concentration was 0.7 mg / L, and the total Sr concentration was 93.0 mg / L. L. Moreover, Pb quality in the obtained electrodeposited zinc was 1.9 ppm, and the electrodeposition amount of zinc was 5.25 g. Moreover, the current efficiency was 88.3%, the average cell voltage was 3.21 V, and the electric power consumption was 2987 (kwh / t-Zn).

[実施例4]
実施例1と同じ電解液0.95Lに実施例1と同じストロンチウム含有水溶液50mLを添加して得られた電解採取用電解液1Lを使用した以外は、実施例1と同様の方法により電解採取を行った後、実施例1と同様の方法により電解液中のPb2+イオン濃度、Sr2+イオン濃度、全Pb濃度、全Sr濃度を測定した。
[Example 4]
Electrolytic collection was carried out in the same manner as in Example 1, except that 1 L of electrolytic solution for electrolytic collection obtained by adding 50 mL of the same strontium-containing aqueous solution as in Example 1 to 0.95 L of the same electrolytic solution as in Example 1 was used. Then, the Pb 2+ ion concentration, Sr 2+ ion concentration, total Pb concentration, and total Sr concentration in the electrolytic solution were measured by the same method as in Example 1.

その結果、電解後の電解液中のPb2+イオン濃度は検出限界以下(<0.1mg/L)、Sr2+イオン濃度は24.6mg/L、全Pb濃度は0.6mg/L、全Sr濃度は116.7mg/Lであった。また、得られた電着亜鉛中のPb品位は3ppmであり、亜鉛の電着量は5.27gであった。また、電流効率は88.6%、平均槽電圧は3.23V、電力原単位は2988(kwh/t−Zn)であった。 As a result, the Pb 2+ ion concentration in the electrolytic solution after electrolysis is below the detection limit (<0.1 mg / L), the Sr 2+ ion concentration is 24.6 mg / L, the total Pb concentration is 0.6 mg / L, and the total Sr The concentration was 116.7 mg / L. Moreover, the Pb quality in the obtained electrodeposited zinc was 3 ppm, and the electrodeposition amount of zinc was 5.27 g. Moreover, the current efficiency was 88.6%, the average cell voltage was 3.23 V, and the electric power consumption was 2988 (kwh / t-Zn).

[比較例1]
実施例1と同じ電解液1Lにストロンチウム含有水溶液を添加しないで電解採取用電解液として使用した以外は、実施例1と同様の方法により電解採取を行った後、実施例1と同様の方法により電解液中のPb2+イオン濃度、Sr2+イオン濃度、全Pb濃度を測定した。
[Comparative Example 1]
Except for using as an electrolytic solution for electrolytic collection without adding a strontium-containing aqueous solution to 1 L of the same electrolytic solution as in Example 1, after performing electrolytic collection by the same method as in Example 1, by the same method as in Example 1. Pb 2+ ion concentration, Sr 2+ ion concentration, and total Pb concentration in the electrolyte were measured.

その結果、電解後の電解液中のPb2+イオン濃度は0.2mg/L、Sr2+イオン濃度は12.4mg/L、全Pb濃度は1.1mg/Lであった。また、得られた電着亜鉛中のPb品位は29.0ppmであり、亜鉛の電着量は5.39gであった。また、電流効率は90.6%、平均槽電圧は3.23V、電力原単位は2927(kwh/t−Zn)であった。 As a result, the Pb 2+ ion concentration in the electrolytic solution after electrolysis was 0.2 mg / L, the Sr 2+ ion concentration was 12.4 mg / L, and the total Pb concentration was 1.1 mg / L. Moreover, the Pb quality in the obtained electrodeposited zinc was 29.0 ppm, and the electrodeposition amount of zinc was 5.39 g. Moreover, the current efficiency was 90.6%, the average cell voltage was 3.23 V, and the electric power consumption was 2927 (kwh / t-Zn).

[比較例2]
実施例1と同じ電解液1Lに炭酸ストロンチウム0.085gを添加した後、42℃においてスターラーで10分間撹拌して、全ストロンチウム濃度が約60mg/Lの電解採取用電解液1Lを得た。この電解液を使用して、実施例1と同様の方法により電解採取を行った後、実施例1と同様の方法により電解液中のPb2+イオン濃度、Sr2+イオン濃度、全Pb濃度、全Sr濃度を測定した。
[Comparative Example 2]
After adding 0.085 g of strontium carbonate to 1 L of the same electrolyte as in Example 1, the mixture was stirred with a stirrer at 42 ° C. for 10 minutes to obtain 1 L of an electrowinning electrolyte having a total strontium concentration of about 60 mg / L. Using this electrolytic solution, the electrolytic collection was performed by the same method as in Example 1, and then the Pb 2+ ion concentration, Sr 2+ ion concentration, total Pb concentration, Sr concentration was measured.

その結果、電解後の電解液中のPb2+イオン濃度は0.1mg/L、Sr2+イオン濃度は14.2mg/L、全Pb濃度は0.8mg/L、全Sr濃度は44.2mg/Lであった。また、得られた電着亜鉛中のPb品位は11.6ppmであり、亜鉛の電着量は5.57gであった。また、電流効率は93.6%、平均槽電圧は3.21V、電力原単位は2814(kwh/t−Zn)であった。 As a result, the Pb 2+ ion concentration in the electrolytic solution after electrolysis was 0.1 mg / L, the Sr 2+ ion concentration was 14.2 mg / L, the total Pb concentration was 0.8 mg / L, and the total Sr concentration was 44.2 mg / L. L. Moreover, Pb quality in the obtained electrodeposited zinc was 11.6 ppm, and the electrodeposition amount of zinc was 5.57 g. Moreover, the current efficiency was 93.6%, the average cell voltage was 3.21 V, and the electric power consumption was 2814 (kwh / t-Zn).

[比較例3]
実施例1と同じ電解液0.98LにSO溶液(純水に過剰の二酸化硫黄ガスを吹き込んで作製した溶液を10mL分取して純水で100mLに希釈した溶液)20mLを添加して得られた電解採取用電解液1Lを使用した以外は、実施例1と同様の方法により電解採取を行った後、実施例1と同様の方法により電解液中のPb2+イオン濃度、Sr2+イオン濃度、全Pb濃度を測定した。
[Comparative Example 3]
Obtained by adding 20 mL of SO 2 solution (solution prepared by blowing excess sulfur dioxide gas into pure water and diluting to 100 mL with pure water) to 0.98 L of the same electrolytic solution as in Example 1. Except for using the obtained electrolytic solution 1L for electrolytic collection, after performing electrolytic collection by the same method as in Example 1, Pb 2+ ion concentration and Sr 2+ ion concentration in the electrolytic solution by the same method as in Example 1 The total Pb concentration was measured.

その結果、電解後の電解液中のPb2+イオン濃度は0.5mg/L、Sr2+イオン濃度は13.2mg/L、全Pb濃度は1.3mg/Lであった。また、得られた電着亜鉛中のPb品位は30.1ppmであり、亜鉛の電着量は5.67gであった。また、電流効率は95.3%、平均槽電圧は3.19V、電力原単位は2746(kwh/t−Zn)であった。 As a result, the Pb 2+ ion concentration in the electrolytic solution after electrolysis was 0.5 mg / L, the Sr 2+ ion concentration was 13.2 mg / L, and the total Pb concentration was 1.3 mg / L. Moreover, Pb quality in the obtained electrodeposited zinc was 30.1 ppm, and the electrodeposition amount of zinc was 5.67 g. The current efficiency was 95.3%, the average cell voltage was 3.19 V, and the power consumption was 2746 (kwh / t-Zn).

[比較例4]
実施例1と同じ電解液0.98Lに(純水に炭酸ストロンチウム0.085gを添加した)炭酸ストロンチウムリパルプ液(Sr2+イオン濃度10mg/L)20mLを添加した後、42℃においてスターラーで10分間撹拌して、全Sr濃度が約60mg/Lの電解採取用電解液1Lを得た。この電解液を使用して、実施例1と同様の方法により電解採取を行った後、実施例1と同様の方法により電解液中のPb2+イオン濃度、Sr2+イオン濃度、全Pb濃度、全Sr濃度を測定した。
[Comparative Example 4]
After adding 20 mL of strontium carbonate repulp solution (Sr 2+ ion concentration 10 mg / L) (in which 0.085 g of strontium carbonate was added to pure water) to 0.98 L of the same electrolytic solution as in Example 1, 10 times with a stirrer at 42 ° C. The mixture was stirred for 1 minute to obtain 1 L of an electrolytic solution for electrowinning having a total Sr concentration of about 60 mg / L. Using this electrolytic solution, the electrolytic collection was performed by the same method as in Example 1, and then the Pb 2+ ion concentration, Sr 2+ ion concentration, total Pb concentration, Sr concentration was measured.

その結果、電解後の電解液中のPb2+イオン濃度は0.1mg/L、Sr2+イオン濃度は14.2mg/L、全Pb濃度は1.1mg/L、全Sr濃度は45.4mg/Lであった。また、得られた電着亜鉛中のPb品位は16.9ppmであり、亜鉛の電着量は5.45gであった。また、電流効率は91.6%、平均槽電圧は3.17V、電力原単位は2838(kwh/t−Zn)であった。 As a result, the Pb 2+ ion concentration in the electrolytic solution after electrolysis was 0.1 mg / L, the Sr 2+ ion concentration was 14.2 mg / L, the total Pb concentration was 1.1 mg / L, and the total Sr concentration was 45.4 mg / L. L. Moreover, Pb quality in the obtained electrodeposited zinc was 16.9 ppm, and the electrodeposition amount of zinc was 5.45 g. The current efficiency was 91.6%, the average cell voltage was 3.17 V, and the power consumption was 2838 (kwh / t-Zn).

[比較例5]
実施例1と同じ電解液0.98LにSO溶液(純水に過剰の二酸化硫黄ガスを吹き込んで作製した溶液を10mL分取して純水で100mLに希釈した溶液)20mLを添加するとともに炭酸ストロンチウム0.085gを添加して、全Sr濃度が約60mg/Lの電解採取用電解液1Lを得た。この電解液を使用して、実施例1と同様の方法により電解採取を行った後、実施例1と同様の方法により電解液中のPb2+イオン濃度、Sr2+イオン濃度、全Pb濃度、全Sr濃度を測定した。
[Comparative Example 5]
20 mL of an SO 2 solution (a solution prepared by blowing excess sulfur dioxide gas into pure water and taking 10 mL of the solution diluted to 100 mL with pure water) was added to 0.98 L of the same electrolytic solution as in Example 1 and carbonic acid was added. 0.085 g of strontium was added to obtain 1 L of an electrolytic solution for electrowinning having a total Sr concentration of about 60 mg / L. Using this electrolytic solution, the electrolytic collection was performed by the same method as in Example 1, and then the Pb 2+ ion concentration, Sr 2+ ion concentration, total Pb concentration, Sr concentration was measured.

その結果、電解後の電解液中のPb2+イオン濃度は0.1mg/L、Sr2+イオン濃度は13.7mg/L、全Pb濃度は0.8mg/L、全Sr濃度は47.0mg/Lであった。また、得られた電着亜鉛中のPb品位は12.9ppmであり、亜鉛の電着量は5.35gであった。また、電流効率は89.9%、平均槽電圧は3.20V、電力原単位は2914(kwh/t−Zn)であった。 As a result, the Pb 2+ ion concentration in the electrolytic solution after electrolysis was 0.1 mg / L, the Sr 2+ ion concentration was 13.7 mg / L, the total Pb concentration was 0.8 mg / L, and the total Sr concentration was 47.0 mg / L. L. Moreover, Pb quality in the obtained electrodeposited zinc was 12.9 ppm, and the electrodeposition amount of zinc was 5.35 g. Moreover, the current efficiency was 89.9%, the average cell voltage was 3.20 V, and the electric power consumption was 2914 (kwh / t-Zn).

実施例1〜4および比較例1〜5の結果を表1および表2に示し、実施例1〜4および比較例1〜2の電解後の電解液中の全Sr濃度とカソードの電着亜鉛中のPb品位との関係を図2に示す。   The results of Examples 1 to 4 and Comparative Examples 1 to 5 are shown in Tables 1 and 2, and the total Sr concentration in the electrolytic solutions after electrolysis of Examples 1 to 4 and Comparative Examples 1 to 2 and the electrodeposited zinc of the cathode The relationship with the Pb quality in the middle is shown in FIG.

Figure 0005544153
Figure 0005544153

Figure 0005544153
Figure 0005544153

[実施例5]
硫酸亜鉛を含む電解液として、亜鉛製錬工程で得られた電解尾液(Zn:65g/L、FA:170g/L、全Pb:0.1mg/L)をろ過した電解液を用意した。また、純水1Lに200mL/分の流量でSOガスを吹き込みながら、40℃においてバッフル付きの二段タービンによって400rpmで10分間撹拌し、炭酸ストロンチウム5g/Lを添加してさらに30分間撹拌し、得られた炭酸ストロンチウムの懸濁液(溶解した炭酸ストロンチウムと溶け残りの炭酸ストロンチウムを含む懸濁液)を5Cのろ紙で吸引ろ過して、溶け残りの炭酸ストロンチウムを除去したストロンチウム含有水溶液を用意した。このストロンチウム含有水溶液を電解液に添加して、電解採取用電解液0.95Lを得た。なお、ストロンチウム含有水溶液の添加量を変えて、種々のストロンチウム濃度の電解採取用電解液を得た。これらの電解液を使用し、アノードとして電極面積35cmのPb−Ag板、カソードとして電極面積35cmのAl板を使用し、極間距離を25mmとし、43℃において電流密度700A/mで2時間電解採取を行った。なお、この電解採取は、ストロンチウム含有水溶液を電解液に添加した直後(3分以内)に開始した。
[Example 5]
As an electrolytic solution containing zinc sulfate, an electrolytic solution obtained by filtering the electrolytic tail solution (Zn: 65 g / L, FA: 170 g / L, total Pb: 0.1 mg / L) obtained in the zinc smelting process was prepared. Further, while blowing SO 2 gas at a flow rate of 200 mL / min into 1 L of pure water, stirring was performed at 400 rpm for 10 minutes at 40 ° C. with a baffled two-stage turbine, 5 g / L of strontium carbonate was added, and stirring was further performed for 30 minutes. The obtained strontium carbonate suspension (suspension containing dissolved strontium carbonate and undissolved strontium carbonate) was suction filtered with 5C filter paper to prepare a strontium-containing aqueous solution from which undissolved strontium carbonate was removed. did. This strontium-containing aqueous solution was added to the electrolytic solution to obtain 0.95 L of an electrolytic solution for electrolytic collection. In addition, electrolytic solutions for electrowinning with various strontium concentrations were obtained by changing the addition amount of the strontium-containing aqueous solution. Using these electrolytes, a Pb-Ag plate with an electrode area of 35 cm 2 was used as the anode, an Al plate with an electrode area of 35 cm 2 was used as the cathode, the distance between the electrodes was 25 mm, and the current density was 700 A / m 2 at 43 ° C. Electrolytic collection was performed for 2 hours. This electrolytic collection was started immediately after the strontium-containing aqueous solution was added to the electrolytic solution (within 3 minutes).

[実施例6]
実施例5で得られた炭酸ストロンチウムの懸濁液を吸引ろ過しないで、溶け残りの炭酸ストロンチウムを含むストロンチウム含有水溶液を用意し、このストロンチウム含有水溶液を実施例5と同様の電解液に添加して、電解採取用電解液0.95Lを得た。なお、ストロンチウム含有水溶液のパルプ濃度および添加量を変えて、種々のストロンチウム濃度の電解採取用電解液を得た。これらの電解液を使用して、実施例5と同様の方法により電解採取を行った。
[Example 6]
A strontium-containing aqueous solution containing undissolved strontium carbonate was prepared without suction filtration of the strontium carbonate suspension obtained in Example 5, and this strontium-containing aqueous solution was added to the same electrolyte as in Example 5. As a result, 0.95 L of an electrolytic solution for electrolytic collection was obtained. In addition, the electrolytic solution for electrowinning of various strontium concentrations was obtained by changing the pulp concentration and the amount of strontium-containing aqueous solution. Using these electrolytic solutions, electrolytic collection was performed in the same manner as in Example 5.

ストロンチウム含有水溶液の添加量を5mLとした場合の電解後の電解液中の(Sr2+イオンと固体として存在するSrを含む)全Sr濃度は51.8mg/Lであり、得られた電着亜鉛中のPb品位は7.7ppm、電力原単位は2864(kwh/t−Zn)であった。また、ストロンチウム含有水溶液の添加量を10mLとした場合の電解後の電解液中の(Sr2+イオンと固体として存在するSrを含む)全Sr濃度は54.10mg/Lであり、得られた電着亜鉛中のPb品位は8.9ppm、電力原単位は2864(kwh/t−Zn)であった。 When the addition amount of the strontium-containing aqueous solution is 5 mL, the total Sr concentration (including Sr 2+ ions and Sr present as a solid) in the electrolytic solution after electrolysis is 51.8 mg / L, and the obtained electrodeposited zinc Among them, the Pb quality was 7.7 ppm, and the electric power consumption was 2864 (kwh / t-Zn). In addition, the total Sr concentration (including Sr 2+ ions and Sr present as a solid) in the electrolytic solution after electrolysis when the addition amount of the strontium-containing aqueous solution was 10 mL was 54.10 mg / L. The Pb quality in the zinc deposit was 8.9 ppm, and the power consumption was 2864 (kwh / t-Zn).

[実施例7]
硫酸亜鉛を含む電解液として、亜鉛製錬工程で得られた電解尾液(Zn:65g/L、FA:170g/L、全Pb:0.1mg/L)をろ過した電解液を用意した。また、純水300mLに水酸化ストロンチウム30gを添加してリパルプした後、200mL/分の流量でHSガスを吹き込みながら、40℃においてバッフル付きの二段タービンによって400rpmで30分間撹拌した後、得られた水溶液を5Cのろ紙で吸引ろ過して、ストロンチウム含有水溶液を用意した。なお、吸引ろ過による残渣は殆どなく、ストロンチウム含有水溶液中の全Sr濃度は30.3g/Lであった。このストロンチウム含有水溶液を電解液に添加して、電解採取用電解液0.95Lを得た。ストロンチウム含有水溶液を電解液に添加すると局部的に白色の析出物が生じ、撹拌すると液の赤色がなくなって白濁した。XRD測定の結果、析出物はSrSOであり、それ以外のピークは見当たらなかった。なお、ストロンチウム含有水溶液の添加量を変えて、種々のストロンチウム濃度の電解採取用電解液を得た。これらの電解液を使用して、実施例5と同様の方法により電解採取を行った。
[Example 7]
As an electrolytic solution containing zinc sulfate, an electrolytic solution obtained by filtering the electrolytic tail solution (Zn: 65 g / L, FA: 170 g / L, total Pb: 0.1 mg / L) obtained in the zinc smelting process was prepared. Moreover, after adding 30 g of strontium hydroxide to 300 mL of pure water and repulping, the mixture was stirred at 400 rpm for 30 minutes by a two-stage turbine with a baffle at 40 ° C. while blowing H 2 S gas at a flow rate of 200 mL / min. The obtained aqueous solution was suction filtered with 5C filter paper to prepare a strontium-containing aqueous solution. In addition, there was almost no residue by suction filtration and the total Sr density | concentration in strontium containing aqueous solution was 30.3 g / L. This strontium-containing aqueous solution was added to the electrolytic solution to obtain 0.95 L of an electrolytic solution for electrolytic collection. When a strontium-containing aqueous solution was added to the electrolytic solution, a white precipitate was locally generated, and when stirred, the liquid became red and clouded. As a result of XRD measurement, the precipitate was SrSO 4 , and no other peak was found. In addition, electrolytic solutions for electrowinning with various strontium concentrations were obtained by changing the addition amount of the strontium-containing aqueous solution. Using these electrolytic solutions, electrolytic collection was performed in the same manner as in Example 5.

ストロンチウム含有水溶液の添加量を2mLとした場合の電解後の電解液中の(Sr2+イオンと固体として存在するSrを含む)全Sr濃度は53.9mg/Lであり、得られた電着亜鉛中のPb品位は5.1ppm、電流効率は81.9%、電力原単位は3259(kwh/t−Zn)であった。また、ストロンチウム含有水溶液の添加量を3mLとした場合の電解後の電解液中の(Sr2+イオンと固体として存在するSrを含む)全Sr濃度は90.12mg/Lであり、得られた電着亜鉛中のPb品位は3.0ppm、電流効率は84.6%、電力原単位は3163(kwh/t−Zn)であった。 When the addition amount of the strontium-containing aqueous solution is 2 mL, the total Sr concentration (including Sr 2+ ions and Sr present as a solid) in the electrolytic solution after electrolysis is 53.9 mg / L, and the obtained electrodeposited zinc Among them, the Pb quality was 5.1 ppm, the current efficiency was 81.9%, and the power consumption was 3259 (kwh / t-Zn). The total Sr concentration (including Sr 2+ ions and Sr present as a solid) in the electrolytic solution after electrolysis when the addition amount of the strontium-containing aqueous solution was 3 mL was 90.12 mg / L. The Pb quality in the zinc deposit was 3.0 ppm, the current efficiency was 84.6%, and the power consumption was 3163 (kwh / t-Zn).

実施例5〜7の電解後の電解液中の全Sr濃度と電力原単位との関係を図3に示し、全Sr濃度とカソードの電着亜鉛中のPb品位との関係を図4に示す。   FIG. 3 shows the relationship between the total Sr concentration in the electrolytic solution after electrolysis of Examples 5 to 7 and the electric power consumption, and FIG. 4 shows the relationship between the total Sr concentration and the Pb quality in the electrodeposited zinc of the cathode. .

図3に示すように、SOガスを吹き込みながら炭酸ストロンチウムを溶解させ且つ溶け残りの炭酸ストロンチウムを含むストロンチウム含有水溶液(炭酸ストロンチウムの懸濁液)を電解尾液に添加した電解液を使用して電解採取した場合(実施例6)では、炭酸ストロンチウムの懸濁液の添加量によらず電力原単位が殆ど等しく、また、SOガスを吹き込みながら炭酸ストロンチウムを溶解させ且つ溶け残りの炭酸ストロンチウムを除去したストロンチウム含有水溶液を電解尾液に添加した電解液を使用して電解採取した場合(実施例5)と比べて、電力原単位が100kwh/t−Zn程度向上した。 As shown in FIG. 3, by using an electrolytic solution in which strontium carbonate is dissolved while blowing SO 2 gas and a strontium-containing aqueous solution (suspension of strontium carbonate) containing undissolved strontium carbonate is added to the electrolytic tail solution. In the case of electrolytic collection (Example 6), the power unit is almost equal regardless of the amount of strontium carbonate suspension added, and strontium carbonate is dissolved while blowing SO 2 gas, and the remaining strontium carbonate is dissolved. Compared with the case where the electrolytic solution obtained by adding the removed strontium-containing aqueous solution to the electrolytic tail solution was used for electrowinning (Example 5), the power unit was improved by about 100 kwh / t-Zn.

図4に示すように、実施例5、実施例6および実施例7(HSガスを吹き込みながら水酸化ストロンチウムを溶解させ且つ溶け残りの水酸化ストロンチウムを除去したストロンチウム含有水溶液を電解尾液に添加した電解液を使用して電解採取した場合)のいずれも、電解後の電解液中の全Sr濃度の増加とともにカソードの電着亜鉛中のPb品位が減少する傾向があった。また、懸濁の有無によるPb品位の違いはほとんど見られなかった。 As shown in FIG. 4, Example 5, Example 6 and Example 7 (the strontium-containing aqueous solution in which strontium hydroxide was dissolved while H 2 S gas was blown and the remaining strontium hydroxide was removed was used as the electrolytic tail solution. In all cases where the electrolysis was performed using the added electrolyte, the Pb quality in the electrodeposited zinc of the cathode tended to decrease as the total Sr concentration in the electrolyte after electrolysis increased. Moreover, the difference of Pb quality by the presence or absence of suspension was hardly seen.

Claims (7)

鉛を含むアノードを使用して、硫酸亜鉛を含む電解液から亜鉛を電解採取する方法において、ストロンチウムイオンを含む水溶液を電解液に添加した後に亜鉛の電解採取を行うことを特徴とする、亜鉛の電解採取方法。 In a method for electrowinning zinc from an electrolyte containing zinc sulfate using an anode containing lead, the zinc is electrowinned after adding an aqueous solution containing strontium ions to the electrolyte. Electrolytic collection method. 前記ストロンチウムイオンを含む水溶液が、水に二酸化硫黄ガスを吹き込み且つ炭酸ストロンチウムを添加することによって、炭酸ストロンチウムを溶解させた水溶液であることを特徴とする、請求項1に記載の亜鉛の電解採取方法。 2. The method of electrowinning zinc according to claim 1, wherein the aqueous solution containing strontium ions is an aqueous solution in which strontium carbonate is dissolved by blowing sulfur dioxide gas into water and adding strontium carbonate. 3. . 前記ストロンチウムイオンを含む水溶液が、水に二酸化硫黄ガスを吹き込み且つ過剰の炭酸ストロンチウムを添加することによって、炭酸ストロンチウムの一部を溶解させるとともに残りを懸濁させた懸濁液であることを特徴とする、請求項1に記載の亜鉛の電解採取方法。 The aqueous solution containing strontium ions is a suspension in which a part of strontium carbonate is dissolved and the rest is suspended by blowing sulfur dioxide gas into water and adding excess strontium carbonate. The zinc electrowinning method according to claim 1. 前記ストロンチウムイオンを含む水溶液が、水に硫化水素ガスを吹き込み且つ水酸化ストロンチウムを添加することによって、水酸化ストロンチウムを溶解させた水溶液であることを特徴とする、請求項1に記載の亜鉛の電解採取方法。 2. The zinc electrolysis according to claim 1, wherein the aqueous solution containing strontium ions is an aqueous solution in which strontium hydroxide is dissolved by blowing hydrogen sulfide gas into water and adding strontium hydroxide. Collection method. 前記電解採取後の電解液中の全ストロンチウム濃度が50mg/L以上であることを特徴とする、請求項1乃至4のいずれかに記載の亜鉛の電解採取方法。 5. The zinc electrowinning method according to claim 1, wherein the total strontium concentration in the electrolytic solution after the electrowinning is 50 mg / L or more. 硫酸亜鉛とストロンチウムイオンを含む電解液において、ストロンチウムイオン濃度が16mg/Lより高いことを特徴とする、亜鉛の電解採取用電解液。 An electrolyte for zinc electrowinning, wherein the electrolyte contains zinc sulfate and strontium ions, and the strontium ion concentration is higher than 16 mg / L. 全ストロンチウム濃度が50mg/L以上であることを特徴とする、請求項6に記載の亜鉛の電解採取用電解液。
The electrolytic solution for electrolytic collection of zinc according to claim 6, wherein the total strontium concentration is 50 mg / L or more.
JP2009277394A 2009-12-07 2009-12-07 Electrolytic extraction of zinc Active JP5544153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009277394A JP5544153B2 (en) 2009-12-07 2009-12-07 Electrolytic extraction of zinc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009277394A JP5544153B2 (en) 2009-12-07 2009-12-07 Electrolytic extraction of zinc

Publications (2)

Publication Number Publication Date
JP2011117053A JP2011117053A (en) 2011-06-16
JP5544153B2 true JP5544153B2 (en) 2014-07-09

Family

ID=44282707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009277394A Active JP5544153B2 (en) 2009-12-07 2009-12-07 Electrolytic extraction of zinc

Country Status (1)

Country Link
JP (1) JP5544153B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013021507A1 (en) * 2011-08-05 2013-02-14 Dowaメタルマイン株式会社 Method for electrowinning nonferrous metal
JP2013049877A (en) * 2011-08-30 2013-03-14 Dowa Metals & Mining Co Ltd Electrowinning method for non-ferrous metal
KR101503750B1 (en) 2013-10-01 2015-03-24 주식회사 동산에스엔알 Recovery Method of Zinc(Zn)
KR200480082Y1 (en) * 2014-09-24 2016-04-11 김석수 Lead plate for electrolysis in the zinc smelting

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825698A (en) * 1971-08-09 1973-04-03
JPS5318170B2 (en) * 1973-07-21 1978-06-13
JP3423823B2 (en) * 1995-06-30 2003-07-07 同和鉱業株式会社 Zinc electrolysis method for controlling Pb quality in electric zinc using Pb automatic analyzer

Also Published As

Publication number Publication date
JP2011117053A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
JP6271964B2 (en) Method for recovering metal from cathode material for lithium ion battery
JP5544153B2 (en) Electrolytic extraction of zinc
KR20120041403A (en) Valuable metal recovery method from waste solder
JP2012167304A (en) Electrowinning method for metal manganese
JP2009035778A (en) Method for recovering tin
JP2016186115A (en) Method for electrolytic extraction of metal
JP2013076109A (en) Method for producing metal manganese by electrowinning
JP5077788B2 (en) Method for recovering battery electrode material
CA1064856A (en) Purification of nickel electrolyte by electrolytic oxidation
RU2423557C2 (en) Procedure for production of high and nano dispersed powder of metals or alloys
JP4515804B2 (en) Method for recovering metallic indium by electrowinning
CN103590071A (en) Method for enhancing gold precipitation grade in gold electrorefining process
KR101397743B1 (en) Method for manufacturing high-purity nickel
AU2004217809B2 (en) Method for copper electrowinning in hydrochloric solution
KR101766607B1 (en) High purity cobalt chloride and manufacturing method therefor
JPS6133918B2 (en)
WO2003083178A1 (en) Process for the preparation of zinc dithionite
RU2815375C1 (en) Method for decopperization of sulfuric acid solutions of copper electrolyte production
CN114517309B (en) Nickel supplementing and decoppering method in nickel electrolysis production system
WO2013031790A1 (en) Electrowinning method for non-ferrous metal
WO2012039214A1 (en) Method for electrowinning of non-iron metal
JP5525879B2 (en) Nonferrous metal electrowinning
CN216639668U (en) Electrolytic device for preparing high-purity gallium
RU2505613C2 (en) Method for electrochemical extraction of lead from lead/acid wastes of accumulator batteries
WO2013021507A1 (en) Method for electrowinning nonferrous metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140512

R150 Certificate of patent or registration of utility model

Ref document number: 5544153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250