JP5541273B2 - Production method of retardation plate - Google Patents

Production method of retardation plate Download PDF

Info

Publication number
JP5541273B2
JP5541273B2 JP2011284373A JP2011284373A JP5541273B2 JP 5541273 B2 JP5541273 B2 JP 5541273B2 JP 2011284373 A JP2011284373 A JP 2011284373A JP 2011284373 A JP2011284373 A JP 2011284373A JP 5541273 B2 JP5541273 B2 JP 5541273B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
layer
film
retardation
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011284373A
Other languages
Japanese (ja)
Other versions
JP2012073646A (en
Inventor
拓 波多野
公平 荒川
俊介 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Priority to JP2011284373A priority Critical patent/JP5541273B2/en
Publication of JP2012073646A publication Critical patent/JP2012073646A/en
Application granted granted Critical
Publication of JP5541273B2 publication Critical patent/JP5541273B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、位相差板の製造方法に関する。より詳しくは液晶表示装置の複屈折補償に好適な位相差板の製造方法に関する。   The present invention relates to a method of manufacturing a retardation plate. More specifically, the present invention relates to a method of manufacturing a retardation plate suitable for birefringence compensation of a liquid crystal display device.

液晶表示装置における、表示のコントラストを高め、色調を整えるためには、液晶表示装置に用いられる位相差板が、可視光領域の全ての入射光に対して、その機能が充分に発揮されること、すなわち、短波長の光におけるレターデーションが小さく、長波長の光におけるレターデーションが大きくなること、具体的には、波長450nmの光における入射角0度でのレターデーションR450、波長550nmの光における入射角0度でのレターデーションR550、および波長650nmの光における入射角0度でのレターデーションR650が、R450<R550<R650の関係を満たすことが求められている。 In order to increase the display contrast and adjust the color tone in a liquid crystal display device, the retardation plate used in the liquid crystal display device should fully function for all incident light in the visible light region. That is, the retardation in the short wavelength light is small and the retardation in the long wavelength light is large, specifically, the retardation R 450 at the incident angle of 0 degree in the light of wavelength 450 nm, the light of wavelength 550 nm. The retardation R 550 at an incident angle of 0 ° and the retardation R 650 at an incident angle of 0 ° for light having a wavelength of 650 nm are required to satisfy the relationship of R 450 <R 550 <R 650 .

450<R550<R650の関係を満たすフィルムとして、特許文献1には、位相差が大きい小アッベ数の延伸フィルムと、位相差が小さい大アッベ数の延伸フィルムとを、光軸が略直交するように貼り合わせてなる位相差板が開示されている。
特許文献2には、450nmにおけるレターデーションと波長550nmにおけるレターデーションとの比が1.00〜1.05の延伸フィルム、および450nmにおけるレターデーションと波長550nmにおけるレターデーションとの比が1.05〜1.20の延伸フィルムを貼り合わせてなる位相差板が記載されている。
この特許文献1や特許文献2では、貼り合わせ時に正確な軸合わせを要する。
As a film satisfying the relationship of R 450 <R 550 <R 650 , Patent Document 1 discloses that a stretched film having a small Abbe number having a large phase difference and a stretched film having a large Abbe number having a small phase difference have a substantially optical axis. A phase difference plate that is bonded so as to be orthogonal to each other is disclosed.
Patent Document 2 discloses a stretched film having a ratio of retardation at 450 nm to retardation at a wavelength of 550 nm of 1.00 to 1.05, and a ratio of retardation at 450 nm to retardation at a wavelength of 550 nm of 1.05. A retardation plate formed by laminating a stretched film of 1.20 is described.
In Patent Document 1 and Patent Document 2, accurate axis alignment is required at the time of bonding.

特許文献3および特許文献4には、正の固有複屈折を有する樹脂の層と負の固有複屈折を有する樹脂の層とからなる積層体を一軸延伸して、正の固有複屈折を有する樹脂の層および負の固有複屈折を有する樹脂の層の分子配向方向が平行になっている位相差板が記載されている。   Patent Document 3 and Patent Document 4 disclose a resin having positive intrinsic birefringence by uniaxially stretching a laminate composed of a resin layer having positive intrinsic birefringence and a resin layer having negative intrinsic birefringence. And a retardation plate in which the molecular orientation directions of the resin layer and the resin layer having negative intrinsic birefringence are parallel to each other.

また、液晶表示装置における、色調の角度依存性を小さくするために、入射角0度におけるレタデーションReと、入射角40度におけるレタデーションR40が、0.92≦R40/Re≦1.08の関係を満たす位相差板や、面内の遅相軸方向の屈折率nxと、それに面内で直交する方向の屈折率nyと、厚さ方向の屈折率nzとが、nx>nz>nyの関係を満たす位相差板が提案されている。 In order to reduce the angle dependency of the color tone in the liquid crystal display device, the retardation Re at an incident angle of 0 degrees and the retardation R 40 at an incident angle of 40 degrees satisfy 0.92 ≦ R 40 /Re≦1.08. and phase feedboard satisfying the relationship, the slow axis direction of the refractive indices n x in the plane, it and the refractive index n y in the direction perpendicular in the plane, and the refractive index n z in the thickness direction, n x> retardation plate satisfying the relation of n z> n y is proposed.

特許文献5には、ポリカーボネート樹脂のフィルムを一軸延伸し第一の異方性フィルムを得、一方でポリスチレン樹脂フィルムを一軸延伸し第二の異方性フィルムを得、第一の異方性フィルムと第二の異方性フィルムとを延伸方向が直角となるように重ね合わせることによって、nx>nz>nyの関係を満たす位相差板を得たことが記載されている。
また特許文献6には、ポリカーボネート樹脂のフィルムを一軸延伸し第一の異方性フィルムを得、一方でポリスチレン樹脂フィルムを一軸延伸し第二の異方性フィルムを得、第一の異方性フィルムと第二の異方性フィルムとを延伸方向が直角となるように重ね合わせることによって、(Re−Re40)/Re≦0.07となった位相差板を得たことが記載されている。
この特許文献5や特許文献6の製法は、貼り合わせ時に正確な軸合わせを要する。
In Patent Document 5, a polycarbonate resin film is uniaxially stretched to obtain a first anisotropic film, while a polystyrene resin film is uniaxially stretched to obtain a second anisotropic film. If by overlapping as stretching direction at right angles second and anisotropic film, it is described that to obtain a retardation plate satisfying the relation of n x> n z> n y .
In Patent Document 6, a polycarbonate resin film is uniaxially stretched to obtain a first anisotropic film, while a polystyrene resin film is uniaxially stretched to obtain a second anisotropic film. It is described that a retardation plate having (Re-Re 40 ) /Re≦0.07 was obtained by superimposing the film and the second anisotropic film so that the stretching direction was at right angles. Yes.
The manufacturing methods of Patent Document 5 and Patent Document 6 require accurate axis alignment at the time of bonding.

特許文献7には、樹脂フィルムを延伸処理する際に、その樹脂フィルムの片面又は両面に収縮性フィルムを接着して積層体を形成し、その積層体を加熱延伸処理して前記樹脂フィルムの延伸方向と直交する方向の収縮力を付与することによって、0<(nx−nz)/(nx−ny)<1の関係を満たす位相差板を得たことが記載されている。
特許文献7の製法は収縮力の正確な制御を要する。
In Patent Document 7, when a resin film is stretched, a shrinkable film is bonded to one or both sides of the resin film to form a laminate, and the laminate is heated and stretched to stretch the resin film. by imparting direction shrinkage force perpendicular to the direction, 0 <(n x -n z ) / (n x -n y) < can obtain a phase difference plate which satisfies the first relationship is described.
The manufacturing method of Patent Document 7 requires accurate control of contraction force.

特許文献8には、ポリカーボネート樹脂を溶融押出してロッド棒を得、該ロッド棒を輪切りして円板を得、該円板から直方形の板を切り出し、該直方形板を一軸延伸することによって、0.92≦Re40/Re≦1.08の位相差板を得たことが記載されている。 特許文献8の製法は広い面積の位相差板の製造が困難である。 In Patent Document 8, a polycarbonate resin is melt-extruded to obtain a rod rod, the rod rod is cut into round pieces to obtain a disc, a rectangular plate is cut out from the disc, and the rectangular plate is uniaxially stretched. , 0.92 ≦ Re 40 /Re≦1.08 is obtained. In the manufacturing method of Patent Document 8, it is difficult to manufacture a retardation plate having a large area.

特開平2−285304号公報JP-A-2-285304 特開平5−27119号公報Japanese Patent Laid-Open No. 5-27119 特開2002−40258号公報Japanese Patent Laid-Open No. 2002-40258 特開2002−156525号公報JP 2002-156525 A 特開平3−24502号公報Japanese Patent Laid-Open No. 3-24502 特開平3−141303号公報Japanese Patent Laid-Open No. 3-141303 特開平5−157911号公報JP-A-5-157911 特開平2−160204号公報JP-A-2-160204 WO2005/050300WO2005 / 050300

本発明の目的は、複数の層が分子配向軸が直交するように積層されてなる位相差板を、軸合わせの為の貼り合わせ工程を必要とすることなく、生産性よく製造する方法を提供する事である。
更に、本発明の目的は波長450nmの光における入射角0度でのレターデーションR450、波長550nmの光における入射角0度でのレターデーションR550、および波長650nmの光における入射角0度でのレターデーションR650が、R450<R550<R650の関係を満たす位相差板または面内遅相軸方向の屈折率nxと、遅相軸に面内で直交する方向の屈折率nyと、厚さ方向の屈折率nzとが、0<(nx−nz)/(nx−ny)<1の関係を満たす位相差板を、簡便に、広い面積で、精度良く製造する方法を提供することである。
An object of the present invention is to provide a method for producing a retardation plate having a plurality of layers laminated so that molecular orientation axes are orthogonal to each other without requiring a bonding step for axis alignment. Is to do.
Further, the object of the present invention is a retardation R 450 at an incident angle of 0 ° for light having a wavelength of 450 nm, a retardation R 550 at an incident angle of 0 ° for light having a wavelength of 550 nm, and an incident angle of 0 ° for light having a wavelength of 650 nm. retardation R 650 is, R 450 <R 550 <the refractive indices n x of the phase difference plate or plane slow axis direction satisfy the relationship of R 650, the refractive index in a direction perpendicular with the slow axis in the plane n of and y, the refractive index n z in the thickness direction, 0 <a (n x -n z) / ( n x -n y) < retarder satisfying 1 relationship, conveniently, a large area, the accuracy It is to provide a good manufacturing method.

本発明者は、前記目的を達成するために検討した結果、
熱可塑性樹脂Aと熱可塑性樹脂Bとを共押出または共流延して、熱可塑性樹脂Aの層と熱可塑性樹脂Bの層とを含む積層フィルムを得、該積層フィルムを少なくとも2回一軸延伸することによって、熱可塑性樹脂Aの層の分子配向軸と熱可塑性樹脂Bの層の分子配向軸とを略直角に交わらせると、R450<R550<R650の関係を満たす位相差板、または0<(nx−nz)/(nx−ny)<1の関係を満たす位相差板を、広い面積で、高精度で、容易に製造できることを見出した。本発明は、これらの知見に基づいてさらに検討を進め、完成するに至ったものである。
As a result of studies to achieve the above object, the present inventor,
The thermoplastic resin A and the thermoplastic resin B are co-extruded or co-cast to obtain a laminated film including the thermoplastic resin A layer and the thermoplastic resin B layer, and the laminated film is uniaxially stretched at least twice. Thus, when the molecular orientation axis of the layer of the thermoplastic resin A and the molecular orientation axis of the layer of the thermoplastic resin B intersect at substantially right angles, a retardation plate satisfying the relationship of R 450 <R 550 <R 650 , or 0 <a (n x -n z) / ( n x -n y) < retarder satisfying one relationship, in a large area, found that a high precision can be easily produced. The present invention has been further studied based on these findings and has been completed.

すなわち、本発明は以下の態様を含む。
〔1〕 正または負の固有複屈折を有する熱可塑性樹脂Aと、熱可塑性樹脂Aと同じ符号の固有複屈折を有する熱可塑性樹脂Bとを共押出または共流延して、熱可塑性樹脂Aの層と熱可塑性樹脂Bの層とを含む積層フィルムを得、 該積層フィルムをそれぞれ異なる温度で少なくとも2回一軸延伸することによって熱可塑性樹脂Aの層の分子配向軸と熱可塑性樹脂Bの層の分子配向軸とを略直角に交わらせることを含む、位相差板の製造方法。
〔2〕 熱可塑性樹脂Aの荷重たわみ温度TsAと、熱可塑性樹脂Bの荷重たわみ温度TsBとの差の絶対値が、5℃以上である、〔1〕に記載の位相差板の製造方法。
〔3〕 熱可塑性樹脂Aの荷重たわみ温度TsAと、熱可塑性樹脂Bの荷重たわみ温度TsBとの差の絶対値が、5〜40℃である、〔1〕に記載の位相差板の製造方法。
〔4〕 温度TsBにおける熱可塑性樹脂Aの破断伸度、および温度TsAにおける熱可塑性樹脂Bの破断伸度が共に、50%以上である、〔1〕〜〔3〕のいずれかひとつに記載の位相差板の製造方法。
That is, the present invention includes the following aspects.
[1] A thermoplastic resin A having a positive or negative intrinsic birefringence and a thermoplastic resin B having an intrinsic birefringence having the same sign as the thermoplastic resin A are coextruded or cast. And a layer of the thermoplastic resin B are obtained, and the laminated film is uniaxially stretched at least twice at different temperatures, whereby the molecular orientation axis of the layer of the thermoplastic resin A and the layer of the thermoplastic resin B are obtained. A method for producing a retardation plate, comprising crossing the molecular orientation axis of the substrate at substantially right angles.
[2] and the deflection temperature under load Ts A of the thermoplastic resin A, the absolute value of the difference between the deflection temperature under load Ts B of the thermoplastic resin B is at 5 ° C. or more, the production of the retardation plate according to [1] Method.
[3] and the deflection temperature under load Ts A of the thermoplastic resin A, the absolute value of the difference between the deflection temperature under load Ts B of the thermoplastic resin B is 5 to 40 ° C., the retardation film according to [1] Production method.
[4] elongation at break of the thermoplastic resin A at the temperature Ts B, and the temperature Ts A are both elongation at break of the thermoplastic resin B in, 50% or more, to any one of [1] to [3] The manufacturing method of the phase difference plate of description.

〔5〕 位相差板が、波長450nmの光における入射角0度でのレターデーションR450、波長550nmの光における入射角0度でのレターデーションR550、および波長650nmの光における入射角0度でのレターデーションR650が、R450<R550<R650の関係を満たすものである〔1〕〜〔4〕のいずれかひとつに記載の位相差板の製造方法。
〔6〕 熱可塑性樹脂Aおよび熱可塑性樹脂Bのいずれか一方のアッベ数が40以上であり、もう一方のアッベ数が30以下である〔1〕〜〔5〕のいずれかひとつに記載の位相差板の製造方法。
〔7〕 〔1〕〜〔6〕のいずれかひとつに記載の製造方法によって得られた位相差板。
[5] The retardation plate has a retardation R 450 at an incident angle of 0 ° for light having a wavelength of 450 nm, a retardation R 550 at an incident angle of 0 ° for light having a wavelength of 550 nm, and an incident angle of 0 ° for light having a wavelength of 650 nm. retardation R 650 is, R 450 <R 550 <method of manufacturing a retardation film according to any one of those satisfying the relationship of R 650 [1] to [4] in.
[6] The position according to any one of [1] to [5], wherein the Abbe number of any one of the thermoplastic resin A and the thermoplastic resin B is 40 or more and the other Abbe number is 30 or less. A method for producing a phase difference plate.
[7] A phase difference plate obtained by the production method according to any one of [1] to [6].

本発明の位相差板の製造方法によれば、波長450nmの光における入射角0度でのレターデーションR450、波長550nmの光における入射角0度でのレターデーションR550、および波長650nmの光における入射角0度でのレターデーションR650が、R450<R550<R650の関係を満たす位相差板または面内遅相軸方向の屈折率nxと、遅相軸に面内で直交する方向の屈折率nyと、厚さ方向の屈折率nzとが、0<(nx−nz)/(nx−ny)<1の関係を満たす位相差板を、簡便に、広い面積で、精度良く製造することができる。 According to the method for producing a retardation plate of the present invention, retardation R 450 at an incident angle of 0 ° in light having a wavelength of 450 nm, retardation R 550 at an incident angle of 0 ° in light having a wavelength of 550 nm, and light having a wavelength of 650 nm. retardation R 650 at an incident angle of 0 degrees in the orthogonal in R 450 <R 550 <the refractive indices n x of the phase difference plate or plane slow axis direction satisfy the relationship of R 650, plane to the slow axis the refractive index n y in the direction, the refractive index n z in the thickness direction, 0 <a (n x -n z) / ( n x -n y) < retarder satisfying 1 relationship, conveniently In a large area, it can be manufactured with high accuracy.

A層及びB層並びにA層とB層との積層体の位相差の温度依存性を示す図である。It is a figure which shows the temperature dependence of the phase difference of the laminated body of A layer, B layer, and A layer and B layer.

本発明の位相差板の製造方法は、熱可塑性樹脂Aと熱可塑性樹脂Bとを共押出または共流延して、熱可塑性樹脂Aの層と熱可塑性樹脂Bの層とを含む積層フィルムを得、
該積層フィルムを少なくとも2回一軸延伸することによって、熱可塑性樹脂Aの層の分子配向軸と熱可塑性樹脂Bの層の分子配向軸とを略直角に交わらせることを含むものである。
略直角とは、熱可塑性樹脂Aの層の分子が配向している方向と、熱可塑性樹脂Bの層の分子が配向している方向が成す角度がおよそ直角である事をさす。該角度は70度〜110度である事が好ましく、80度〜100度がより好ましく、85度〜95度が最も好ましい。
The method for producing a retardation plate of the present invention comprises a laminated film comprising a thermoplastic resin A layer and a thermoplastic resin B layer by co-extrusion or co-casting a thermoplastic resin A and a thermoplastic resin B. Get
This includes stretching the laminated film uniaxially at least twice so that the molecular orientation axis of the layer of the thermoplastic resin A and the molecular orientation axis of the layer of the thermoplastic resin B intersect at substantially right angles.
The term “substantially perpendicular” means that the angle between the direction in which the molecules of the layer of the thermoplastic resin A are oriented and the direction in which the molecules of the layer of the thermoplastic resin B are oriented is approximately a right angle. The angle is preferably 70 to 110 degrees, more preferably 80 to 100 degrees, and most preferably 85 to 95 degrees.

本発明に用いられる熱可塑性樹脂Aおよび熱可塑性樹脂Bは、正または負の固有複屈折を有する熱可塑性樹脂である。なお、正の固有複屈折とは、延伸方向の屈折率がそれに直交する方向の屈折率よりも大きくなることを意味し、負の固有複屈折とは、延伸方向の屈折率がそれに直交する方向の屈折率よりも小さくなることを意味する。固有複屈折は誘電率分布から計算することもできる。   The thermoplastic resin A and the thermoplastic resin B used in the present invention are thermoplastic resins having positive or negative intrinsic birefringence. The positive intrinsic birefringence means that the refractive index in the stretching direction is larger than the refractive index in the direction perpendicular thereto, and the negative intrinsic birefringence is the direction in which the refractive index in the stretching direction is perpendicular to it. It means that it becomes smaller than the refractive index. Intrinsic birefringence can also be calculated from the dielectric constant distribution.

正の固有複屈折を有する熱可塑性樹脂としては、ポリエチレン、ポリプロピレンなどのオレフィン樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル樹脂;ポリフェニレンサルファイドなどのポリアリーレンサルファイド樹脂;ポリビニルアルコール樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、セルロースエステル樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、ポリアリルサルホン樹脂、ポリ塩化ビニル樹脂、ノルボルネン樹脂、棒状液晶ポリマーなどが挙げられる。これらは、一種単独でまたは二種以上を組合せて使用してもよい。本発明においては、これらの中でも、位相差発現性、低温での延伸性、および他層との接着性の観点からポリカーボネート樹脂が好ましい。   Examples of thermoplastic resins having positive intrinsic birefringence include olefin resins such as polyethylene and polypropylene; polyester resins such as polyethylene terephthalate and polybutylene terephthalate; polyarylene sulfide resins such as polyphenylene sulfide; polyvinyl alcohol resins, polycarbonate resins, and polyarylate Examples include resins, cellulose ester resins, polyethersulfone resins, polysulfone resins, polyallyl sulfone resins, polyvinyl chloride resins, norbornene resins, and rod-like liquid crystal polymers. These may be used singly or in combination of two or more. In the present invention, among these, a polycarbonate resin is preferable from the viewpoint of retardation development, stretchability at low temperature, and adhesion to other layers.

負の固有複屈折を有する熱可塑性樹脂としては、スチレン又はスチレン誘導体の単独重合体または他のモノマーとの共重合体を含むポリスチレン樹脂;ポリアクリロニトリル樹脂、ポリメチルメタクリレート樹脂、あるいはこれらの多元共重合ポリマーなどが挙げられる。これらは、一種単独でまたは二種以上を組合せて使用してもよい。ポリスチレン樹脂に含まれる他のモノマーとしては、アクリロニトリル、無水マレイン酸、メチルメタクリレート、およびブタジエンが好ましいものとして挙げられる。本発明においては、これらの中でも、位相差発現性が高いという観点から、ポリスチレン樹脂が好ましく、さらに耐熱性が高いという点で、スチレン又はスチレン誘導体と無水マレイン酸との共重合体が特に好ましい。   Examples of the thermoplastic resin having negative intrinsic birefringence include polystyrene resins including homopolymers of styrene or styrene derivatives or copolymers with other monomers; polyacrylonitrile resins, polymethylmethacrylate resins, or multicomponent copolymers thereof. Examples thereof include polymers. These may be used singly or in combination of two or more. Examples of other monomers contained in the polystyrene resin include acrylonitrile, maleic anhydride, methyl methacrylate, and butadiene. In the present invention, among these, a polystyrene resin is preferable from the viewpoint of high retardation development, and a copolymer of styrene or a styrene derivative and maleic anhydride is particularly preferable from the viewpoint of high heat resistance.

前記熱可塑性樹脂の荷重たわみ温度Tsは、好ましくは80℃以上であり、より好ましくは110℃以上、特に好ましくは120℃以上である。荷重たわみ温度が前記下限値よりも低いと、配向緩和しやすくなる。   The deflection temperature under load Ts of the thermoplastic resin is preferably 80 ° C. or higher, more preferably 110 ° C. or higher, and particularly preferably 120 ° C. or higher. When the deflection temperature under load is lower than the lower limit, the orientation is easily relaxed.

熱可塑性樹脂Aの荷重たわみ温度TsAと、熱可塑性樹脂Bの荷重たわみ温度TsBとの差の絶対値は、好ましくは5℃以上であり、より好ましくは5〜40℃であり、特に好ましくは8〜20℃である。荷重たわみ温度の差が小さすぎると、位相差発現の温度依存性が小さくなる。荷重たわみ温度の差が大きすぎると、軟化点の高い熱可塑性樹脂の延伸がし難くなり、位相差板の平面性が低下しやすい。 A deflection temperature under load Ts A of the thermoplastic resin A, the absolute value of the difference between the deflection temperature under load Ts B of the thermoplastic resin B is preferably 5 ° C. or higher, more preferably 5 to 40 ° C., particularly preferably Is 8-20 ° C. If the difference in deflection temperature under load is too small, the temperature dependence of the phase difference expression becomes small. If the difference in deflection temperature under load is too large, it becomes difficult to stretch a thermoplastic resin having a high softening point, and the flatness of the retardation plate tends to be lowered.

温度TsBにおける熱可塑性樹脂Aの破断伸度、および温度TsAにおける熱可塑性樹脂Bの破断伸度が共に、50%以上であることが好ましく、80%以上であることが特に好ましい。破断伸度がこの範囲にある熱可塑性樹脂であれば延伸により安定的に位相差フィルムを作成することができる。破断伸度は、JIS K7127記載の試験片タイプ1Bの試験片を用いて、引張速度100mm/分によって求める。 Both the breaking elongation of the thermoplastic resin A at the temperature Ts B and the breaking elongation of the thermoplastic resin B at the temperature Ts A are both preferably 50% or more, and particularly preferably 80% or more. A thermoplastic film having a breaking elongation in this range can stably produce a retardation film by stretching. The elongation at break is determined at a tensile speed of 100 mm / min using a test piece type 1B test piece described in JIS K7127.

熱可塑性樹脂Aおよび/または熱可塑性樹脂Bには、1mm厚での全光線透過率80%以上を維持できるものであれば、配合剤が添加されていてもよい。
添加される配合剤は特に限定されず、例えば、滑剤;層状結晶化合物;無機微粒子;酸化防止剤、熱安定剤、光安定剤、耐候安定剤、紫外線吸収剤、近赤外線吸収剤などの安定剤;可塑剤;染料や顔料などの着色剤;帯電防止剤;などが挙げられる。配合剤の量は、本発明の目的を損なわない範囲で適宜定めることができる。特に滑剤や紫外線吸収剤を添加することで可撓性や耐候性を向上させることができるので好ましい。
A compounding agent may be added to the thermoplastic resin A and / or the thermoplastic resin B as long as the total light transmittance at 1 mm thickness can be maintained at 80% or more.
The compounding agent to be added is not particularly limited. For example, lubricants; layered crystal compounds; inorganic fine particles; stabilizers such as antioxidants, heat stabilizers, light stabilizers, weathering stabilizers, ultraviolet absorbers, and near infrared absorbers. Plasticizers; colorants such as dyes and pigments; antistatic agents; The amount of the compounding agent can be appropriately determined within a range not impairing the object of the present invention. In particular, it is preferable to add a lubricant or an ultraviolet absorber since flexibility and weather resistance can be improved.

滑剤としては、二酸化ケイ素、二酸化チタン、酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸ストロンチウムなどの無機粒子;ポリメチルアクリレート、ポリメチルメタクリレート、ポリアクリロニトリル、ポリスチレン、セルロースアセテート、セルロースアセテートプロピオネートなどの有機粒子が挙げられる。本発明では、滑剤としては有機粒子が好ましい。   As lubricant, inorganic particles such as silicon dioxide, titanium dioxide, magnesium oxide, calcium carbonate, magnesium carbonate, barium sulfate, strontium sulfate; polymethyl acrylate, polymethyl methacrylate, polyacrylonitrile, polystyrene, cellulose acetate, cellulose acetate propionate Organic particles such as In the present invention, organic particles are preferred as the lubricant.

紫外線吸収剤としては、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、アクリロニトリル系紫外線吸収剤、トリアジン系化合物、ニッケル錯塩系化合物、無機粉体などが挙げられる。好適な紫外線吸収剤としては、2,2’−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール)、2−(2’−ヒドロキシ−3’−tert−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾール、2,4−ジ−tert−ブチル−6−(5−クロロベンゾトリアゾール−2−イル)フェノール、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノンが挙げられ、特に好適なものとしては、2,2’−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール)が挙げられる。   UV absorbers include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone UV absorbers, benzotriazole UV absorbers, acrylonitrile UV absorbers, triazine compounds, nickel complex compounds, inorganic Examples include powder. Suitable ultraviolet absorbers include 2,2′-methylenebis (4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol), 2- (2 '-Hydroxy-3'-tert-butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2,4-di-tert-butyl-6- (5-chlorobenzotriazol-2-yl) phenol, 2 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, and particularly preferred is 2,2′-methylenebis (4- (1, 1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol).

(積層フィルム)
積層フィルムは、熱可塑性樹脂Aの層(A層)と熱可塑性樹脂Bの層(B層)とを含む。該積層フィルムは、熱可塑性樹脂Aと熱可塑性樹脂Bとを共押出または共流延して得ることができる。
製造効率や、フィルム中に溶剤などの揮発性成分を残留させないという観点から、共押出成形法が好ましい。共押出成形法の中でも、共押出Tダイ法が好ましい。共押出Tダイ法にはフィードブロック方式およびマルチマニホールド方式があるが、層Aの厚さのばらつきを少なくできる点でマルチマニホールド方式が特に好ましい。
(Laminated film)
The laminated film includes a layer of thermoplastic resin A (A layer) and a layer of thermoplastic resin B (B layer). The laminated film can be obtained by co-extrusion or co-casting the thermoplastic resin A and the thermoplastic resin B.
The coextrusion method is preferred from the standpoint of production efficiency and preventing volatile components such as solvents from remaining in the film. Among the coextrusion molding methods, the coextrusion T-die method is preferable. The coextrusion T-die method includes a feed block method and a multi-manifold method, and the multi-manifold method is particularly preferable in that variation in the thickness of the layer A can be reduced.

積層フィルムを得る方法として、共押出Tダイ法を採用する場合、Tダイを有する押出機における樹脂材料の溶融温度は、各樹脂材料に用いた熱可塑性樹脂のガラス転移温度(Tg)よりも80〜180℃高い温度にすることが好ましく、ガラス転移温度よりも100〜150℃高い温度にすることがより好ましい。押出機での溶融温度が過度に低いと、樹脂材料の流動性が不足するおそれがあり、逆に溶融温度が過度に高いと、樹脂が劣化する可能性がある。   When the co-extrusion T-die method is adopted as a method for obtaining a laminated film, the melting temperature of the resin material in the extruder having the T-die is 80 than the glass transition temperature (Tg) of the thermoplastic resin used for each resin material. The temperature is preferably higher by ˜180 ° C., more preferably higher by 100 to 150 ° C. than the glass transition temperature. If the melting temperature in the extruder is excessively low, the fluidity of the resin material may be insufficient. Conversely, if the melting temperature is excessively high, the resin may be deteriorated.

押出温度は、使用する熱可塑性樹脂に応じて適宜選択すればよい。押出機内の温度で、樹脂投入口はTg〜(Tg+100)℃、押出し機出口は(Tg+50)℃〜(Tg+170)℃、ダイス温度は(Tg+50)℃〜(Tg+170)℃とするのが好ましい。ここでTgは樹脂材料に用いた熱可塑性樹脂Aのガラス転移温度である。   What is necessary is just to select extrusion temperature suitably according to the thermoplastic resin to be used. The temperature inside the extruder is preferably Tg to (Tg + 100) ° C., the exit from the extruder is (Tg + 50) ° C. to (Tg + 170) ° C., and the die temperature is preferably (Tg + 50) ° C. to (Tg + 170) ° C. Here, Tg is the glass transition temperature of the thermoplastic resin A used for the resin material.

押出成形法ではダイスの開口部から押出されたシート状溶融樹脂材料を冷却ドラムに密着させる。溶融樹脂材料を冷却ドラムに密着させる方法は、特に制限されず、例えば、エアナイフ方式、バキュームボックス方式、静電密着方式などが挙げられる。   In the extrusion molding method, the sheet-like molten resin material extruded from the opening of the die is brought into close contact with the cooling drum. The method for bringing the molten resin material into close contact with the cooling drum is not particularly limited, and examples thereof include an air knife method, a vacuum box method, and an electrostatic contact method.

冷却ドラムの数は特に制限されないが、通常は2本以上である。また、冷却ドラムの配置方法としては、例えば、直線型、Z型、L型などが挙げられるが特に制限されない。またダイスの開口部から押出された溶融樹脂の冷却ドラムへの通し方も特に制限されない。   The number of cooling drums is not particularly limited, but is usually two or more. Examples of the arrangement method of the cooling drum include, but are not limited to, a linear type, a Z type, and an L type. Further, the way of passing the molten resin extruded from the opening of the die through the cooling drum is not particularly limited.

本発明においては、冷却ドラムの温度により、押出されたシート状樹脂材料の冷却ドラムへの密着具合が変化する。冷却ドラムの温度を上げると密着はよくなるが、温度を上げすぎるとシート状樹脂材料が冷却ドラムから剥がれずに、ドラムに巻きつく不具合が発生する恐れがある。そのため、冷却ドラム温度は、好ましくはダイスから押し出す熱可塑性樹脂Aのガラス転移温度をTgとすると、(Tg+30)℃以下、さらに好ましくは(Tg−5)℃〜(Tg−45)℃の範囲にする。そうすることにより滑りやキズなどの不具合を防止することができる。   In the present invention, the degree of adhesion of the extruded sheet-shaped resin material to the cooling drum varies depending on the temperature of the cooling drum. When the temperature of the cooling drum is raised, the adhesion is improved. However, when the temperature is raised too much, the sheet-like resin material is not peeled off from the cooling drum, and there is a possibility that a problem of winding around the drum may occur. Therefore, the cooling drum temperature is preferably (Tg + 30) ° C. or lower, more preferably (Tg-5) ° C. to (Tg−45) ° C., where Tg is the glass transition temperature of the thermoplastic resin A extruded from the die. To do. By doing so, problems such as slipping and scratches can be prevented.

また、フィルム中の残留溶剤の含有量を少なくすることが好ましい。そのための手段としては、(1)原料となる熱可塑性樹脂の残留溶剤を少なくする;(2)フィルムを成形する前に樹脂材料を予備乾燥する;などの手段が挙げられる。予備乾燥は、例えば樹脂材料をペレットなどの形態にして、熱風乾燥機などで行われる。乾燥温度は100℃以上が好ましく、乾燥時間は2時間以上が好ましい。予備乾燥を行うことにより、フィルム中の残留溶剤を低減させる事ができ、さらに押し出されたシート状樹脂材料の発泡を防ぐことができる。   Further, it is preferable to reduce the content of residual solvent in the film. Means for that purpose include (1) reducing the residual solvent of the thermoplastic resin used as a raw material; and (2) pre-drying the resin material before forming the film. The preliminary drying is performed by, for example, a hot air dryer or the like in the form of pellets or the like of the resin material. The drying temperature is preferably 100 ° C. or more, and the drying time is preferably 2 hours or more. By performing preliminary drying, the residual solvent in the film can be reduced, and foaming of the extruded sheet-shaped resin material can be prevented.

位相差板製造用の積層フィルムの総厚は、好ましくは10〜500μmであり、より好ましくは20〜200μmであり、特に好ましくは30〜150μmである。10μmより薄いと、十分な位相差を得難くなり機械的強度も弱くなる。500μmより厚いと、柔軟性が悪化し、ハンドリングに支障をきたす恐れがある。   The total thickness of the laminated film for producing the retardation film is preferably 10 to 500 μm, more preferably 20 to 200 μm, and particularly preferably 30 to 150 μm. When it is thinner than 10 μm, it is difficult to obtain a sufficient phase difference, and the mechanical strength is also weakened. When it is thicker than 500 μm, the flexibility is deteriorated, and handling may be hindered.

A層およびB層の厚さは、市販の接触式厚さ計を用いて、フィルムの総厚を測定し、次いで厚さ測定部分を切断し断面を光学顕微鏡で観察して、各層の厚さ比を求めて、その比率よりA層およびB層の厚さを計算する。以上の操作をフィルムのMD方向及びTD方向において一定間隔毎に行い、厚さの平均値およびばらつきを求めた。   The thicknesses of the A layer and the B layer were measured by measuring the total thickness of the film using a commercially available contact thickness gauge, then cutting the thickness measurement portion and observing the cross section with an optical microscope. The ratio is obtained, and the thicknesses of the A layer and the B layer are calculated from the ratio. The above operation was performed at regular intervals in the MD direction and TD direction of the film, and the average value and variation of the thickness were obtained.

なお、厚さのばらつきは、上記で測定した測定値の算術平均値Taveを基準とし、測定した厚さTの内の最大値をTmax、最小値をTminとして、以下の式から算出する。
厚さのばらつき(μm)=Tave−Tmin、及び
max−Tave のうちの大きい方。
The thickness variation is calculated from the following equation, with the arithmetic mean value T ave of the measured values measured above as a reference, the maximum value of the measured thickness T as T max and the minimum value as T min. To do.
Thickness variation (μm) = T ave −T min , and
The larger of T max -T ave .

A層およびB層の厚さのばらつきが全面で1μm以下であることにより、色調のばらつきが小さくなる。また、長期使用後の色調変化も均一となる。   When the variation in the thicknesses of the A layer and the B layer is 1 μm or less over the entire surface, the variation in color tone is reduced. Moreover, the color tone change after long-term use becomes uniform.

A層およびB層の厚さのばらつきを全面で1μm以下とするためには、(1)押出機内に目開きが20μm以下のポリマーフィルターを設ける;(2)ギヤポンプを5rpm以上で回転させる;(3)ダイス周りに囲い手段を配置する;(4)エアギャップを200mm以下とする;(5)フィルムを冷却ロール上にキャストする際にエッジピニングを行う;および(6)押出機として二軸押出機又はスクリュー形式がダブルフライト型の単軸押出機を用いる;を行う。   In order to make the variation in the thickness of the A layer and the B layer 1 μm or less over the entire surface, (1) a polymer filter having an opening of 20 μm or less is provided in the extruder; (2) the gear pump is rotated at 5 rpm or more; 3) An enclosure means is arranged around the die; (4) Air gap is 200 mm or less; (5) Edge pinning is performed when the film is cast on a cooling roll; and (6) Twin screw extrusion as an extruder. Use a double-flight type single screw extruder.

位相差板製造用の積層フィルムは、A層およびB層以外の層を有しても良い。例えばA層とB層とを接着する接着層、フィルムの滑り性を良くするマット層や、耐衝撃性ポリメタクリレート樹脂層などのハードコート層や、反射防止層、防汚層等が挙げられる。   The laminated film for producing the retardation film may have a layer other than the A layer and the B layer. Examples thereof include an adhesive layer for bonding the A layer and the B layer, a mat layer for improving the slipperiness of the film, a hard coat layer such as an impact-resistant polymethacrylate resin layer, an antireflection layer, and an antifouling layer.

位相差板製造用の積層フィルムは、全光線透過率が85%以上であることが好ましい。85%未満であると光学部材に適さなくなる。上記光線透過率は、JIS K0115に準拠して、分光光度計(日本分光社製、紫外可視近赤外分光光度計「V−570」)を用いて測定した。   The laminated film for producing the retardation plate preferably has a total light transmittance of 85% or more. If it is less than 85%, it is not suitable for an optical member. The light transmittance was measured using a spectrophotometer (manufactured by JASCO Corporation, ultraviolet-visible near-infrared spectrophotometer “V-570”) in accordance with JIS K0115.

位相差板製造用の積層フィルムのヘイズは好ましくは5%以下、より好ましくは3%以下、特に好ましくは1%以下である。ヘイズが高いと、表示画像の鮮明性が低下傾向になる。ここで、ヘイズは、JIS K7361−1997に準拠して、日本電色工業社製「濁度計 NDH−300A」を用いて、5箇所測定し、それから求めた平均値である。   The haze of the laminated film for producing the retardation plate is preferably 5% or less, more preferably 3% or less, and particularly preferably 1% or less. If the haze is high, the sharpness of the displayed image tends to decrease. Here, the haze is an average value obtained by measuring five points using a “turbidimeter NDH-300A” manufactured by Nippon Denshoku Industries Co., Ltd. according to JIS K7361-1997.

位相差板製造用の積層フィルムは、ΔYIが5以下であることが好ましく、3以下であることがより好ましい。このΔYIが上記範囲にあると、着色がなく視認性がよくなる。ΔYIはASTM E313に準拠して、日本電色工業社製「分光色差計 SE2000」を用いて測定する。同様の測定を五回行い、その算術平均値にして求める。   In the laminated film for producing the retardation film, ΔYI is preferably 5 or less, and more preferably 3 or less. When this ΔYI is in the above range, there is no coloring and visibility is improved. ΔYI is measured using “Spectral Color Difference Meter SE2000” manufactured by Nippon Denshoku Industries Co., Ltd. according to ASTM E313. The same measurement is performed five times, and the arithmetic average value is obtained.

位相差板製造用の積層フィルムは、JIS鉛筆硬度でHまたはそれ以上の硬さを有することが好ましい。このJIS鉛筆硬度の調整は、樹脂の種類の変更や、樹脂層厚の変更などによって行うことができる。JIS鉛筆硬度は、JIS K5600−5−4に準拠して、各種硬度の鉛筆を45度傾けて、上から500g重の荷重を掛けてフィルム表面を引っ掻き、傷が付きはじめる鉛筆の硬さである。   The laminated film for producing a retardation film preferably has a JIS pencil hardness of H or higher. This JIS pencil hardness can be adjusted by changing the type of resin, changing the resin layer thickness, or the like. JIS pencil hardness is the hardness of a pencil that begins to scratch, scratching the film surface by tilting a pencil of various hardnesses by 45 degrees and applying a load of 500 g weight from the top in accordance with JIS K5600-5-4. .

位相差板製造用の積層フィルムの外表面は、MD方向に伸びる不規則に生じる線状凹部や線状凸部(いわゆるダイライン)を実質的に有さず、平坦であることが好ましい。ここで、「不規則に生じる線状凹部や線状凸部を実質的に有さず、平坦」とは、仮に線状凹部や線状凸部が形成されたとしても、深さが50nm未満もしくは幅が500nmより大きい線状凹部、および高さが50nm未満もしくは幅が500nmより大きい線状凸部であることである。より好ましくは、深さが30nm未満もしくは幅が700nmより大きい線状凹部であり、高さが30nm未満もしくは幅が700nmより大きい線状凸部である。このような構成とすることにより、線状凹部や線状凸部での光の屈折等に基づく、光の干渉や光漏れの発生を防止でき、光学性能を向上できる。なお、不規則に生じるとは、意図しない位置に意図しない寸法、形状等で形成されるということである。   It is preferable that the outer surface of the laminated film for producing the retardation plate is substantially flat without having irregularly formed linear recesses or linear projections (so-called die lines) extending in the MD direction. Here, “the surface is substantially free of irregularly formed linear recesses and linear protrusions and is flat” means that the depth is less than 50 nm even if linear recesses and linear protrusions are formed. Or it is a linear recessed part with a width larger than 500 nm, and a linear convex part with a height less than 50 nm or a width larger than 500 nm. More preferably, it is a linear concave part having a depth of less than 30 nm or a width of more than 700 nm, and a linear convex part having a height of less than 30 nm or a width of more than 700 nm. By adopting such a configuration, it is possible to prevent the occurrence of light interference and light leakage based on the light refraction at the linear concave portions or the linear convex portions, and the optical performance can be improved. In addition, irregularly occurring means that it is formed with an unintended size, shape, or the like at an unintended position.

上述した線状凹部の深さや、線状凸部の高さ、及びこれらの幅は、次に述べる方法で求めることができる。位相差板製造用の積層フィルムに光を照射して、透過光をスクリーンに映し、スクリーン上に現れる光の明又は暗の縞の有る部分(この部分は線状凹部の深さ及び線状凸部の高さが大きい部分である。)を30mm角で切り出す。切り出したフィルム片の表面を三次元表面構造解析顕微鏡(視野領域5mm×7mm)を用いて観察し、これを3次元画像に変換し、この3次元画像から断面プロファイルを求める。断面プロファイルは視野領域で1mm間隔で求める。   The depth of the linear concave portion described above, the height of the linear convex portion, and the width thereof can be obtained by the following method. Light is applied to the laminated film for producing the phase difference plate, the transmitted light is projected on the screen, and the portion with bright or dark stripes of light appearing on the screen (this portion is the depth of the linear recess and the linear projection) This is a portion having a large height.) Is cut out at 30 mm square. The surface of the cut film piece is observed using a three-dimensional surface structure analysis microscope (field region 5 mm × 7 mm), converted into a three-dimensional image, and a cross-sectional profile is obtained from the three-dimensional image. The cross-sectional profile is obtained at 1 mm intervals in the visual field region.

この断面プロファイルに、平均線を引き、この平均線から線状凹部の底までの長さが線状凹部深さ、また平均線から線状凸部の頂までの長さが線状凸部高さとなる。平均線とプロファイルとの交点間の距離が幅となる。これら線状凹部深さ及び線状凸部高さの測定値からそれぞれ最大値を求め、その最大値を示した線状凹部又は線状凸部の幅をそれぞれ求める。以上から求められた線状凹部深さ及び線状凸部高さの最大値、その最大値を示した線状凹部の幅及び線状凸部の幅を、そのフィルムの線状凹部の深さ、線状凸部の高さ及びそれらの幅とする。   In this cross-sectional profile, an average line is drawn, the length from the average line to the bottom of the linear recess is the depth of the linear recess, and the length from the average line to the top of the linear projection is the height of the linear protrusion It becomes. The distance between the intersection of the average line and the profile is the width. The maximum values are obtained from the measured values of the linear concave portion depth and the linear convex portion height, respectively, and the width of the linear concave portion or the linear convex portion showing the maximum value is obtained. The maximum value of the linear recess depth and the height of the linear convex portion obtained from the above, the width of the linear concave portion and the width of the linear convex portion showing the maximum value, the depth of the linear concave portion of the film Let the height of the linear protrusions and their widths.

積層フィルムを延伸する前に、積層フィルムを予め加熱する工程(予熱工程)を設けても良い。積層フィルムを加熱する手段としては、オーブン型加熱装置、ラジエーション加熱装置、又は液体中に浸すことなどが挙げられる。中でもオーブン型加熱装置が好ましい。予熱工程における加熱温度は、通常、延伸温度−40℃〜延伸温度+20℃、好ましくは延伸温度−30℃〜延伸温度+15℃である。延伸温度は、加熱装置の設定温度を意味する。   Before stretching the laminated film, a step of preheating the laminated film (preheating step) may be provided. Examples of means for heating the laminated film include an oven-type heating device, a radiation heating device, or immersion in a liquid. Of these, an oven-type heating device is preferable. The heating temperature in the preheating step is usually stretching temperature −40 ° C. to stretching temperature + 20 ° C., preferably stretching temperature −30 ° C. to stretching temperature + 15 ° C. The stretching temperature means the set temperature of the heating device.

本発明における、波長450nmの光における入射角0度でのレターデーションR450、波長550nmの光における入射角0度でのレターデーションR550、および波長650nmの光における入射角0度でのレターデーションR650が、R450<R550<R650の関係を満たす位相差板〔1〕の製造方法では、熱可塑性樹脂Aとして正または負の固有複屈折を有するものを用い、熱可塑性樹脂Bとして熱可塑性樹脂Aと同符号の固有複屈折を有するものを用いることが好ましい。熱可塑性樹脂Aの層および熱可塑性樹脂Bの層は、それぞれ1層または2層以上有していてもよい。 In the present invention, retardation R 450 at an incident angle of 0 ° for light having a wavelength of 450 nm, retardation R 550 at an incident angle of 0 ° for light having a wavelength of 550 nm, and retardation at an incident angle of 0 ° for light having a wavelength of 650 nm. R 650 is, in the manufacturing method of the R 450 <retardation plate satisfying the relation of R 550 <R 650 (1), using the one having a positive or negative intrinsic birefringence as thermoplastic resin a, thermoplastic resin B It is preferable to use a material having the same birefringence as that of the thermoplastic resin A. The layer of the thermoplastic resin A and the layer of the thermoplastic resin B may each have one layer or two or more layers.

位相差板〔1〕の製造方法では、熱可塑性樹脂Aまたは熱可塑性樹脂Bのうち、一方のアッベ数が40以上であるのが好ましく、もう一方のアッベ数が30以下であるのが好ましい。
ここで、アッベ数とは、光の波長の違いによる屈折率の違い(分散)の現れやすさをしめすもので、下記式で表される。
νD=(nD−1)/(nF−nC
ここで、νDはアッベ数。、nC、nD、nFは、それぞれC線(波長656nm)、D線(589nm)波長およびF線(波長486nm)に対する屈折率である。
In the method of producing the retardation plate [1], it is preferable that one of the thermoplastic resins A and B has an Abbe number of 40 or more, and the other Abbe number is 30 or less.
Here, the Abbe number indicates how easily the difference (dispersion) in refractive index due to the difference in the wavelength of light appears, and is expressed by the following equation.
ν D = (n D −1) / (n F −n C )
Where ν D is the Abbe number. , N C , n D , and n F are refractive indexes for the C-line (wavelength 656 nm), D-line (589 nm) wavelength, and F-line (wavelength 486 nm), respectively.

位相差板〔1〕製造用の積層フィルムは、一軸延伸方向をX軸、一軸延伸方向に対してフィルム面内で直交する方向をY軸、およびフィルム厚さ方向をZ軸としたときに、フィルム面に垂直に入射しかつ電気ベクトルの振動面がXZ面にある直線偏光の、フィルム面に垂直に入射しかつ電気ベクトルの振動面がYZ面にある直線偏光に対する位相が、いずれの延伸温度T1およびT2においても、X軸方向に一軸延伸したときには遅れるかまたは進むかの一方になるものであることが好ましい。   When the laminated film for production of the retardation film [1] is the uniaxial stretching direction as the X axis, the direction perpendicular to the uniaxial stretching direction in the film plane as the Y axis, and the film thickness direction as the Z axis, The phase of the linearly polarized light that is perpendicularly incident on the film surface and the vibration plane of the electric vector is in the XZ plane, and the phase of the linearly polarized light that is perpendicularly incident on the film surface and the vibration plane of the electric vector is in the YZ plane is any stretch temperature. Also in T1 and T2, it is preferable that it is either delayed or advanced when uniaxially stretched in the X-axis direction.

位相差板〔1〕製造用の積層フィルムは、低い温度TLにおける延伸で、荷重たわみ温度の高い樹脂が発現する位相差の絶対値が荷重たわみ温度の低い樹脂が発現する位相差の絶対値よりも小さくなり、高い温度THにおける延伸で、荷重たわみ温度の低い樹脂が発現する位相差の絶対値が荷重たわみ温度の高い樹脂が発現する位相差の絶対値よりも小さくなるように、両樹脂層の厚さを調整することが好ましい。位相差板〔1〕製造用の積層フィルムは、位相差が大きく現れる樹脂層が延伸温度に依存するフィルムである。なお、温度T1は、THまたはTLのいずれか一方の温度であり、温度T2は、T1とは異なるTHまたはTLのいずれか一方の温度である。 Retardation plate [1] The laminated film for production is an absolute value of a phase difference expressed by a resin having a low deflection temperature under the condition that a resin having a high deflection temperature is developed by stretching at a low temperature TL . In order that the absolute value of the phase difference developed by the resin having a low load deflection temperature is smaller than the absolute value of the phase difference developed by the resin having a high load deflection temperature by stretching at a high temperature T H. It is preferable to adjust the thickness of the resin layer. The laminated film for producing the retardation film [1] is a film in which the resin layer in which the retardation is large depends on the stretching temperature. The temperature T1 is either T H or T L , and the temperature T2 is either T H or T L that is different from T1.

本発明における、面内遅相軸方向の屈折率nxと、遅相軸に面内で直交する方向の屈折率nyと、厚さ方向の屈折率nzとが、0<(nx−nz)/(nx−ny)<1の関係を満たす位相差板〔2〕の製造方法では、熱可塑性樹脂Aとして正または負の固有複屈折を有するものを用い、熱可塑性樹脂Bとして熱可塑性樹脂Aと異符号の固有複屈折を有するものを用いることが好ましい。熱可塑性樹脂Aの層および熱可塑性樹脂Bの層は、それぞれ1層または2層以上有していてもよい。 In the present invention, the refractive indices n x of the in-plane slow axis direction, a refractive index n y in orthogonal directions slow axis in the plane, the refractive index n z in the thickness direction, 0 <(n x -n z) / (n x in -n y) <method of manufacturing a phase difference plate which satisfies the first relationship (2), with one having a positive or negative intrinsic birefringence as thermoplastic resin a, thermoplastic resin It is preferable to use a material having intrinsic birefringence with a different sign from thermoplastic resin A as B. The layer of the thermoplastic resin A and the layer of the thermoplastic resin B may each have one layer or two or more layers.

位相差板〔2〕製造用の積層フィルムは、一軸延伸方向をX軸、一軸延伸方向に対してフィルム面内で直交する方向をY軸、およびフィルム厚さ方向をZ軸としたときに、フィルム面に垂直に入射しかつ電気ベクトルの振動面がXZ面にある直線偏光の、フィルム面に垂直に入射しかつ電気ベクトルの振動面がYZ面にある直線偏光に対する位相が、
温度T1でX軸方向に一軸延伸したときには遅れ、
温度T1とは異なる温度T2でX軸方向に一軸延伸したときには進む、ものであることが好ましい。
When the laminated film for production of the retardation plate [2] is the uniaxial stretching direction as the X axis, the direction perpendicular to the uniaxial stretching direction in the film plane as the Y axis, and the film thickness direction as the Z axis, The phase of the linearly polarized light that is perpendicularly incident on the film surface and the vibration plane of the electric vector is in the XZ plane, and the phase of the linearly polarized light that is perpendicularly incident on the film surface and the vibration plane of the electric vector is in the YZ plane
Delayed when uniaxially stretched in the X-axis direction at temperature T1,
It is preferable to proceed when uniaxial stretching is performed in the X-axis direction at a temperature T2 different from the temperature T1.

一軸延伸によってX軸に遅相軸が現れるフィルムでは、振動面がXZ面にある直線偏光は、振動面がYZ面にある直線偏光に対して位相が遅れる。逆に一軸延伸によってX軸に進相軸が現れるフィルムでは、振動面がXZ面にある直線偏光は、振動面がYZ面にある直線偏光に対して位相が進む。
位相差板〔2〕製造用の積層フィルムは、遅相軸または進相軸の現れる方向が延伸温度に依存するフィルムである。
In a film in which a slow axis appears in the X axis by uniaxial stretching, the phase of linearly polarized light whose vibration plane is in the XZ plane is delayed from the phase of linearly polarized light whose vibration plane is in the YZ plane. Conversely, in a film in which a fast axis appears on the X axis by uniaxial stretching, the phase of linearly polarized light whose vibration plane is in the XZ plane advances with respect to linear polarization whose vibration plane is in the YZ plane.
The laminated film for production of the retardation film [2] is a film in which the direction in which the slow axis or the fast axis appears depends on the stretching temperature.

位相差は、延伸方向であるX軸方向の屈折率nXと延伸方向に直交する方向であるY軸方向の屈折率nYとの差(=nX−nY)に厚さdを乗じて求められる値である。A層とB層とを積層したときの位相差は、A層の位相差とB層の位相差との和になる。高い温度THおよび低い温度TLにおける延伸によって、A層とB層とからなる積層体の位相差の符号が逆になるようにするために、低い温度TLにおける延伸で、荷重たわみ温度の高い樹脂が発現する位相差の絶対値が荷重たわみ温度の低い樹脂が発現する位相差の絶対値よりも小さくなり、高い温度THにおける延伸で、荷重たわみ温度の低い樹脂が発現する位相差の絶対値が荷重たわみ温度の高い樹脂が発現する位相差の絶対値よりも小さくなるように、両樹脂層の厚さを調整することが好ましい。このように、一軸延伸によってA層およびB層のそれぞれに発現するX軸方向の屈折率nXとY軸方向の屈折率nYとの差と、A層の厚さの総和と、B層の厚さの総和とを、調整することで、フィルム面に垂直に入射しかつ電気ベクトルの振動面がXZ面にある直線偏光の、フィルム面に垂直に入射しかつ電気ベクトルの振動面がYZ面にある直線偏光に対する位相が、温度T1でX軸方向に一軸延伸したときには遅れ、温度T1とは異なる温度T2でX軸方向に一軸延伸したときには進むフィルムを得ることができる。なお、温度T1は、THまたはTLのいずれか一方の温度であり、温度T2は、T1とは異なるTHまたはTLのいずれか一方の温度である。 Phase difference, multiplied by the thickness d to the difference between the refractive index n Y in a direction orthogonal to the stretching direction and a refractive index n X in the X-axis direction is a stretching direction Y-axis direction (= n X -n Y) This is the value obtained by The phase difference when the A layer and the B layer are laminated is the sum of the phase difference of the A layer and the phase difference of the B layer. By stretching at high temperature T H and low temperature T L, the sign of the phase difference of the laminate comprising the A layer and the B layer in order to be reversed, at a stretching at low temperature T L, the deflection temperature under load high resin becomes smaller than the absolute value of the phase difference absolute value of the phase difference is expressed low resins heat deflection temperature expressed in stretching at high temperature T H, the phase difference lower deflection temperature under load resin is expressed It is preferable to adjust the thicknesses of both resin layers so that the absolute value is smaller than the absolute value of the phase difference developed by the resin having a high deflection temperature under load. Thus, the difference between the refractive index n Y in refractive index n X and Y-axis direction of the X-axis direction expressed in each of the A and B layers by uniaxial stretching, the sum of the thickness of the A layer, B layer By adjusting the total thickness of the linearly polarized light that is incident perpendicular to the film surface and whose electric vector vibration surface is in the XZ plane, the electric vector vibration surface is perpendicular to the film surface and the electric vector vibration surface is YZ. It is possible to obtain a film in which the phase with respect to the linearly polarized light on the surface is delayed when uniaxially stretched in the X-axis direction at the temperature T1 and advances when uniaxially stretched in the X-axis direction at a temperature T2 different from the temperature T1. The temperature T1 is either T H or T L , and the temperature T2 is either T H or T L that is different from T1.

図1は、位相差板〔2〕製造用の積層フィルムのA層(荷重たわみ温度が高い熱可塑性樹脂Aの層)およびB層(荷重たわみ温度が低い熱可塑性樹脂Bの層)をそれぞれ延伸したときの位相差の温度依存性と、位相差板〔2〕製造用の積層フィルム(A層+B層)を延伸したときの位相差の温度依存性を示すものである。温度Tbにおける延伸ではA層によって発現するプラスの位相差に比べB層によって発現するマイナスの位相差の方が大きいので、A層+B層ではマイナスの位相差Δを発現することになる。一方温度Taにおける延伸ではA層によって発現するプラスの位相差に比べB層によって発現するマイナスの位相差の方が小さいので、A層+B層ではプラスの位相差Δを発現することになる。   FIG. 1 shows stretching of layer A (layer of thermoplastic resin A having a high deflection temperature under load) and layer B (layer of thermoplastic resin B having a low deflection temperature under load) of a retardation film [2] for production. 2 shows the temperature dependence of the retardation when the film is laminated, and the temperature dependence of the retardation when the laminated film (A layer + B layer) for production of the retardation plate [2] is stretched. In the stretching at the temperature Tb, the negative phase difference expressed by the B layer is larger than the positive phase difference expressed by the A layer, so that a negative phase difference Δ is expressed in the A layer + B layer. On the other hand, in the stretching at the temperature Ta, the negative phase difference expressed by the B layer is smaller than the positive phase difference expressed by the A layer, so that a positive phase difference Δ is expressed in the A layer + B layer.

例えば、A層がポリカーボネート系樹脂であり、B層がスチレン−無水マレイン酸共重合体である場合は、A層の厚さの総和と、B層の厚さの総和との比は、1:5〜1:15であることが好ましく、1:5〜1:10であることがより好ましい。A層が厚くなり過ぎても、B層が厚くなり過ぎても、位相差発現の温度依存性が小さくなる。   For example, when the A layer is a polycarbonate resin and the B layer is a styrene-maleic anhydride copolymer, the ratio of the total thickness of the A layer to the total thickness of the B layer is 1: 5 to 1:15 is preferable, and 1: 5 to 1:10 is more preferable. Even if the A layer becomes too thick or the B layer becomes too thick, the temperature dependence of the retardation development becomes small.

(延伸処理)
本発明においては、次に、前記位相差板製造用の積層フィルムを少なくとも2回一軸延伸する。各回における延伸温度は異なる温度とすることが好ましい。また延伸方向は、各回で異なる方向にする。そして、熱可塑性樹脂Aの層の分子配向軸と、熱可塑性樹脂Bの層の分子配向軸とを略直角に交わらせる。
(Extension process)
Next, in the present invention, the laminated film for producing the retardation plate is uniaxially stretched at least twice. It is preferable that the stretching temperature in each round is a different temperature. The stretching direction is different in each time. Then, the molecular orientation axis of the layer of the thermoplastic resin A and the molecular orientation axis of the layer of the thermoplastic resin B are crossed at substantially right angles.

第一回目の一軸延伸では、温度T1またはT2のいずれかの温度で一軸延伸する。
位相差板〔1〕製造用の積層フィルムでは、いずれの温度で延伸しても、フィルム面に垂直に入射しかつ電気ベクトルの振動面がXZ面にある直線偏光の、フィルム面に垂直に入射しかつ電気ベクトルの振動面がYZ面にある直線偏光に対する位相が遅れるかまたは進むかの一方になる。
位相差板〔2〕製造用の積層フィルムでは、温度T1で延伸すると、フィルム面に垂直に入射しかつ電気ベクトルの振動面がXZ面にある直線偏光の、フィルム面に垂直に入射しかつ電気ベクトルの振動面がYZ面にある直線偏光に対する位相が遅れる。一方、温度T2で一軸延伸したときにはフィルム面に垂直に入射しかつ電気ベクトルの振動面がXZ面にある直線偏光の、フィルム面に垂直に入射しかつ電気ベクトルの振動面がYZ面にある直線偏光に対する位相が進む。
In the first uniaxial stretching, uniaxial stretching is performed at either temperature T1 or T2.
Retardation plate [1] In the laminated film for manufacturing, even if it is stretched at any temperature, it is incident perpendicularly to the film surface and the linearly polarized light whose electric vector vibration plane is in the XZ plane is incident perpendicularly to the film surface. In addition, the phase of the electric vector vibration plane is delayed or advanced with respect to the linearly polarized light in the YZ plane.
In the laminated film for production of the retardation plate [2], when stretched at the temperature T1, it is incident perpendicularly to the film surface and is incident on the film surface perpendicularly to the film surface and the electric vector vibration surface is incident on the XZ plane. The phase with respect to linearly polarized light whose vector vibration plane is in the YZ plane is delayed. On the other hand, when the film is uniaxially stretched at the temperature T2, the linearly polarized light is incident on the film surface perpendicularly and the vibration surface of the electric vector is in the XZ plane, and the straight line is incident perpendicularly on the film surface and the vibration surface of the electric vector is on the YZ surface The phase for polarized light advances.

熱可塑性樹脂Aとして、正の固有複屈折率を有するものを用い、熱可塑性樹脂Bとして、負の固有複屈折率を有するものを用いる場合において、TsA>TsBであるとき、温度T1は、好ましくはTsB+3℃以上かつTsA+5℃以下であり、より好ましくはTsB+5℃以上かつTsA+3℃以下である。また温度T2は、好ましくはTsB+3℃以下であり、より好ましくはTsB以下である。第一回目の一軸延伸においては温度T1で行うことが好ましい。
TsB>TsAであるとき、温度T2は、好ましくはTsA+3℃以上かつTsB+5℃以下であり、より好ましくはTsA+5℃以上かつTsB+3℃以下である。また温度T1は、好ましくはTsA+3℃以下であり、より好ましくはTsA以下である。第一回目の一軸延伸においては温度T2で行うことが好ましい。
In the case where a thermoplastic resin A having a positive intrinsic birefringence is used and a thermoplastic resin B having a negative intrinsic birefringence is used, when Ts A > Ts B , the temperature T1 is It is preferably Ts B + 3 ° C. or more and Ts A + 5 ° C. or less, more preferably Ts B + 5 ° C. or more and Ts A + 3 ° C. or less. The temperature T2 is preferably Ts B + 3 ° C. or lower, more preferably Ts B or lower. The first uniaxial stretching is preferably performed at a temperature T1.
When Ts B > Ts A , the temperature T2 is preferably Ts A + 3 ° C. or higher and Ts B + 5 ° C. or lower, more preferably Ts A + 5 ° C. or higher and Ts B + 3 ° C. or lower. Further, the temperature T1 is preferably Ts A + 3 ° C. or less, more preferably Ts A or less. The first uniaxial stretching is preferably performed at a temperature T2.

第一回目の一軸延伸は、従来公知の方法で行うことができる。例えば、ロール間の周速の差を利用して縦方向に一軸延伸する方法や、テンターを用いて横方向に一軸延伸する方法等が挙げられる。縦方向に一軸延伸する方法としては、ロール間でのIR加熱方式や、フロート方式等が挙げられる。光学的な均一性が高い位相差板が得られる点からフロート方式が好適である。横方向に一軸延伸する方法としては、テンター法が挙げられる。   The first uniaxial stretching can be performed by a conventionally known method. For example, a method of uniaxially stretching in the longitudinal direction using a difference in peripheral speed between rolls, a method of uniaxially stretching in the lateral direction using a tenter, and the like can be mentioned. Examples of the method of uniaxially stretching in the longitudinal direction include an IR heating method between rolls and a float method. The float method is preferable because a retardation plate with high optical uniformity can be obtained. An example of a method of uniaxially stretching in the transverse direction is a tenter method.

延伸ムラや厚さムラを小さくするために、延伸ゾーンにおいてフィルム巾方向に温度差がつくようにすることができる。延伸ゾーンにおいてフィルム巾方向に温度差をつけるには、温風ノズルの開度を巾方向で調整したり、IRヒーターを巾方向に並べて加熱制御したりするなど公知の手法を用いることができる。   In order to reduce stretching unevenness and thickness unevenness, it is possible to make a temperature difference in the film width direction in the stretching zone. In order to create a temperature difference in the film width direction in the stretching zone, a known method such as adjusting the opening degree of the hot air nozzle in the width direction or controlling the heating by arranging IR heaters in the width direction can be used.

次に、前記第一回目の一軸延伸における温度とは異なる温度T2またはT1で、前記一軸延伸の方向と直交する方向に第二回目の一軸延伸する。第二回目の一軸延伸においてはTsA>TsBであるとき温度T2で行うことが好ましく、TsB>TsAであるとき温度T1で行うことが好ましい。第二回目の一軸延伸では、第一回目の一軸延伸で採用できる方法がそのまま適用できる。第二回目の一軸延伸は、第一回目の一軸延伸の延伸倍率よりも小さい延伸倍率で行うことが好ましい。 Next, the second uniaxial stretching is performed at a temperature T2 or T1 different from the temperature in the first uniaxial stretching in a direction orthogonal to the direction of the uniaxial stretching. The second uniaxial stretching is preferably performed at temperature T2 when Ts A > Ts B , and is preferably performed at temperature T1 when Ts B > Ts A. In the second uniaxial stretching, a method that can be adopted in the first uniaxial stretching can be applied as it is. The second uniaxial stretching is preferably performed at a stretching ratio smaller than the stretching ratio of the first uniaxial stretching.

熱可塑性樹脂Aの層の分子配向軸および熱可塑性樹脂Bの層の分子配向軸の方向は、次のようにして確認することができる。エリプソメトリを用い、位相差板の面内で屈折率が最大となる方向を求め、熱可塑性樹脂の固有複屈折値の符号との関係から以下の条件に従い配向軸を判断する。
熱可塑性樹脂の固有複屈折が正の場合:配向軸は、面内で屈折率が最大となる方向。
熱可塑性樹脂の固有複屈折が負の場合:配向軸は、面内で屈折率が最大となる方向と直交する方向。
The directions of the molecular orientation axis of the thermoplastic resin A layer and the molecular orientation axis of the thermoplastic resin B layer can be confirmed as follows. Using ellipsometry, the direction in which the refractive index is maximized in the plane of the retardation film is obtained, and the orientation axis is determined according to the following conditions from the relationship with the sign of the intrinsic birefringence value of the thermoplastic resin.
When the intrinsic birefringence of the thermoplastic resin is positive: the orientation axis is the direction in which the refractive index is maximum in the plane.
When the intrinsic birefringence of the thermoplastic resin is negative: the orientation axis is a direction orthogonal to the direction in which the refractive index is maximum in the plane.

第一回目の一軸延伸および/または第二回目の一軸延伸の後に、延伸したフィルムを固定処理しても良い。固定処理における温度は、通常、室温〜延伸温度+30℃、好ましくは延伸温度−40℃〜延伸温度+20℃である。   After the first uniaxial stretching and / or the second uniaxial stretching, the stretched film may be fixed. The temperature in the fixing treatment is usually room temperature to stretching temperature + 30 ° C., preferably stretching temperature−40 ° C. to stretching temperature + 20 ° C.

本発明の位相差板の製造方法によって、位相差板〔1〕製造用の積層フィルムを用いた場合には、波長450nmの光における入射角0度でのレターデーションR450、波長550nmの光における入射角0度でのレターデーションR550、および波長650nmの光における入射角0度でのレターデーションR650が、R450<R550<R650の関係を満たす位相差板〔1〕が得られる。また、位相差板〔2〕製造用の積層フィルムを用いた場合には、面内遅相軸方向の屈折率nxと、遅相軸に面内で直交する方向の屈折率nyと、厚さ方向の屈折率nzとが、0<(nx−nz)/(nx−ny)<1の関係を満たす位相差板〔2〕が得られる。 When the laminated film for producing the retardation plate [1] is used according to the method for producing a retardation plate of the present invention, the retardation R 450 at an incident angle of 0 degree in light having a wavelength of 450 nm and in light having a wavelength of 550 nm are used. A retardation plate [1] is obtained in which retardation R 550 at an incident angle of 0 ° and retardation R 650 at an incident angle of 0 ° for light having a wavelength of 650 nm satisfy the relationship of R 450 <R 550 <R 650. . In the case of using the laminated film of the retardation plate (2) for production, and the refractive indices n x of the in-plane slow axis direction, a refractive index n y in orthogonal directions in-plane to the slow axis, the thickness direction of the refractive index n z is 0 <is (n x -n z) / ( n x -n y) < retarder satisfying one relationship (2) is obtained.

本発明の製造方法によって得られる位相差板は、そのレターデーションR550が、50〜400nmであることが好ましく、100〜350nmであることがより好ましい。レターデーションR450、R550およびR650は、平行ニコル回転法[王子計測機器社製、KOBRA−WR]を用いて測定した値である。屈折率nx、nz、およびnyは、エリプソメトリによって波長550nmにおいて測定した値である。 The retardation plate 550 obtained by the production method of the present invention preferably has a retardation R 550 of 50 to 400 nm, and more preferably 100 to 350 nm. Retardations R 450 , R 550 and R 650 are values measured using the parallel Nicol rotation method [manufactured by Oji Scientific Instruments, KOBRA-WR]. Refractive index n x, n z, and n y are values measured at a wavelength of 550nm by ellipsometry.

本発明の製造方法によって得られた位相差板は、60℃、90%RH、100時間の熱処理によって、縦方向および横方向において、好ましくは0.5%以下、より好ましくは0.3%以下の収縮率を有する。収縮率がこの範囲を超えると、高温・高湿環境下で使用した際に、収縮応力によって位相差板の変形、表示装置からの剥離が生じる。   The retardation plate obtained by the production method of the present invention is preferably 0.5% or less, more preferably 0.3% or less in the longitudinal and transverse directions by heat treatment at 60 ° C. and 90% RH for 100 hours. The shrinkage rate is When the shrinkage rate exceeds this range, the retardation plate is deformed and peeled off from the display device due to the shrinkage stress when used in a high temperature / high humidity environment.

本発明の製造方法によって得られた位相差板は、複屈折の高度な補償が可能なので、それ単独であるいは他の部材と組み合わせて、液晶表示装置、有機EL表示装置、プラズマ表示装置、FED(電界放出)表示装置、SED(表面電界)表示装置などに適用することができる。   Since the retardation plate obtained by the manufacturing method of the present invention can highly compensate birefringence, the liquid crystal display device, the organic EL display device, the plasma display device, the FED (single or in combination with other members) The present invention can be applied to field emission) display devices, SED (surface electric field) display devices, and the like.

液晶表示装置は、光入射側偏光板と液晶セルと光出射側偏光板がこの順で配置された液晶パネルを備えるものである。本発明の製造方法によって得られた位相差板を液晶セルと光入射側偏光板との間および/または液晶セルと光出射側偏光板との間に配置することで液晶表示装置の視認性を大幅に向上させることができる。液晶セルの駆動方式としては、インプレーンスイッチング(IPS)モード、バーチカルアラインメント(VA)モード、マルチドメインバーチカルアラインメント(MVA)モード、コンティニュアスピンホイールアラインメント(CPA)モード、ハイブリッドアラインメントネマチック(HAN)モード、ツイステッドネマチック(TN)モード、スーパーツイステッドネマチック(STN)モード、オプチカルコンペンセイテッドベンド(OCB)モードなどが挙げられる。   The liquid crystal display device includes a liquid crystal panel in which a light incident side polarizing plate, a liquid crystal cell, and a light emitting side polarizing plate are arranged in this order. The retardation plate obtained by the production method of the present invention is disposed between the liquid crystal cell and the light incident side polarizing plate and / or between the liquid crystal cell and the light emitting side polarizing plate, thereby improving the visibility of the liquid crystal display device. It can be greatly improved. Liquid crystal cell driving methods include in-plane switching (IPS) mode, vertical alignment (VA) mode, multi-domain vertical alignment (MVA) mode, continuous spin wheel alignment (CPA) mode, hybrid alignment nematic (HAN) mode, Examples include twisted nematic (TN) mode, super twisted nematic (STN) mode, and optically compensated bend (OCB) mode.

本発明の製造方法によって得られた位相差板は液晶セルまたは偏光板に貼り合わせてもよい。該位相差板を偏光板の両面に貼り合わせてもよいし、片面にのみ貼り合わせてもよい。また該位相差板を2枚以上用いてもよい。貼り合わせには公知の接着剤を用い得る。
偏光板は、偏光子とその両面に貼り合わせられた保護フィルムとからなるものである。該保護フィルムに代えて、本発明の製造方法によって得られた位相差板を偏光子に直接貼り合わせて位相差板を保護フィルムとして用いることもできる。保護フィルムが省略されるので液晶表示装置を薄くすることができる。
The retardation plate obtained by the production method of the present invention may be bonded to a liquid crystal cell or a polarizing plate. The retardation plate may be bonded to both sides of the polarizing plate, or may be bonded only to one side. Two or more retardation plates may be used. A known adhesive can be used for bonding.
A polarizing plate consists of a polarizer and the protective film bonded together on both surfaces. Instead of the protective film, the retardation plate obtained by the production method of the present invention can be directly bonded to a polarizer to use the retardation plate as a protective film. Since the protective film is omitted, the liquid crystal display device can be thinned.

実施例を示しながら、本発明をさらに詳細に説明するが、本発明は以下の実施例のみに限定されるものではない。なお部及び%は特に断りのない限り重量基準である。   The present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples. Parts and% are based on weight unless otherwise specified.

(配向軸の測定)
高速分光エリプソメトリ(J.A.Woollam社製、製品名「M−2000U」)を用い、面内で屈折率が最大となる方向を求め、下記に示す固有複屈折値の符号との関係から配向軸を決定した。
固有複屈折が正の場合:配向軸は、面内で屈折率が最大となる方向
固有複屈折が負の場合:配向軸は、面内で屈折率が最大となる方向と直交する方向
なお、測定は、温度20℃±2℃、相対湿度60±5%の条件下で行い、面内で最大となる屈折率は、入射角度55度、60度および65度の3点における、波長領域400〜1000nmのスペクトルから算出したデータから、波長550nmにおける値とした。
(Measurement of orientation axis)
Using high-speed spectroscopic ellipsometry (manufactured by JA Woollam, product name “M-2000U”), the direction in which the refractive index is maximized in the plane is obtained, and from the relationship with the sign of the intrinsic birefringence value shown below. The orientation axis was determined.
When the intrinsic birefringence is positive: the orientation axis is the direction in which the refractive index is maximum in the plane. When the intrinsic birefringence is negative: the orientation axis is the direction orthogonal to the direction in which the refractive index is maximum in the plane. The measurement is performed under conditions of a temperature of 20 ° C. ± 2 ° C. and a relative humidity of 60 ± 5%, and the refractive index that is maximum in the plane is the wavelength region 400 at three points of incident angles of 55 degrees, 60 degrees, and 65 degrees. A value at a wavelength of 550 nm was determined from data calculated from a spectrum of ˜1000 nm.

(透明フィルムの膜厚)
フィルムをエポキシ樹脂に包埋したのち、ミクロトーム(大和工業社製、製品名「RUB−2100」)を用いてスライスし、走査電子顕微鏡を用いて断面を観察し、測定した。
(Thickness of transparent film)
After embedding the film in an epoxy resin, it was sliced using a microtome (manufactured by Yamato Kogyo Co., Ltd., product name “RUB-2100”), and the cross section was observed and measured using a scanning electron microscope.

(屈折率)
屈折率nx、nz、およびnyは、分光エリプソメトリ(J.A.Woollam社製、製品名「M−2000U」)を用い、温度20℃±2℃、相対湿度60±5%の条件下で行い、屈折率は、入射角度55,60,65度の3点における、波長領域400〜1000nmのスペクトルから算出したデータから、波長550nmにおける値とした。
(Refractive index)
Refractive index n x, n z, and n y are spectroscopic ellipsometry using (J.A.Woollam Co., product name "M-2000 U"), the temperature 20 ° C. ± 2 ° C., a relative humidity of 60 ± 5% of the Under the conditions, the refractive index was a value at a wavelength of 550 nm from data calculated from spectra in a wavelength region of 400 to 1000 nm at three points of incident angles 55, 60, and 65 degrees.

(光線透過率)
JIS K0115に準拠して、分光光度計(日本分光社製、紫外可視近赤外分光光度計「V−570」)を用いて測定した。
(Light transmittance)
Based on JIS K0115, it measured using the spectrophotometer (The JASCO company make, ultraviolet visible near-infrared spectrophotometer "V-570").

(荷重たわみ温度)
樹脂の荷重たわみ温度はJISK6717−2に準拠して試験片を作成し、測定した。
(Load deflection temperature)
The deflection temperature under load of the resin was measured by preparing a test piece in accordance with JIS K6717-2.

(レターデーション、遅相軸角度)
平行ニコル回転法(王子計測機器社製、KOBRA−WR)を用いて各波長におけるレターデーション、およびフィルム長手方向に対する遅相軸の角度を測定した。同様の測定を、位相差板の幅方向に等間隔で10点測定し、平均値を算出した。
(Retardation, slow axis angle)
The retardation at each wavelength and the angle of the slow axis with respect to the film longitudinal direction were measured using a parallel Nicol rotation method (manufactured by Oji Scientific Instruments, KOBRA-WR). The same measurement was performed at 10 points at equal intervals in the width direction of the retardation plate, and an average value was calculated.

(アッベ数)
アッベ屈折計(アタゴ社製、DR−M2)を用い、温度20℃±2℃、相対湿度60±5%の条件下で測定した。
(Abbe number)
An Abbe refractometer (manufactured by Atago Co., Ltd., DR-M2) was used, and measurement was performed under conditions of a temperature of 20 ° C. ± 2 ° C. and a relative humidity of 60 ± 5%.

製造例1
二種三層の共押出成形用のフィルム成形装置を準備し、ポリカーボネート樹脂(旭化成社製、ワンダーライトPC−110、荷重たわみ温度145度、固有複屈折が正、アッベ数30)のペレットを、ダブルフライト型のスクリューを備えた一方の一軸押出機に投入して、溶融させた。
ノルボルネン系重合体樹脂(日本ゼオン社製、ZEONOR1420R、荷重たわみ温度136℃、固有複屈折が正、アッベ数56)のペレットをダブルフライト型のスクリューを備えたもう一方の一軸押出機に投入して、溶融させた。
Production Example 1
Prepare a film forming apparatus for coextrusion molding of two types and three layers, and pellets of polycarbonate resin (manufactured by Asahi Kasei Co., Ltd., Wonderlight PC-110, deflection temperature under load 145 degrees, intrinsic birefringence is positive, Abbe number 30), It was charged into one single screw extruder equipped with a double flight type screw and melted.
A pellet of norbornene polymer resin (ZEONOR1420R, manufactured by Nippon Zeon Co., Ltd., deflection temperature under load 136 ° C, intrinsic birefringence is positive, Abbe number 56) is put into another single screw extruder equipped with a double flight type screw. And melted.

接着剤としてスチレン−エチレン−ブチレン−スチレンブロック共重合体(SEBS)をダブルフライト型のスクリューを備えた一方の一軸押出機に投入して、溶融させた。
溶融された260℃のポリカーボネート樹脂を目開き10μmのリーフディスク形状のポリマーフィルターを通してマルチマニホールドダイ(ダイスリップの表面粗さRa:0.1μm)の一方のマニホールドに、溶融された260℃のノルボルネン系重合体樹脂を目開き10μmのリーフディスク形状のポリマーフィルターを通してもう一方のマニホールドにそれぞれ供給した。また接着剤層用のマニホールドに、溶融された260℃のSEBSを目開き10μmのリーフディスク形状のポリマーフィルターを通して供給した。
Styrene-ethylene-butylene-styrene block copolymer (SEBS) as an adhesive was charged into one uniaxial extruder equipped with a double flight type screw and melted.
A molten 260 ° C. polycarbonate resin is passed through a polymer filter in the form of a leaf disk having a mesh size of 10 μm, and into one manifold of a multi-manifold die (die slip surface roughness Ra: 0.1 μm). The polymer resin was supplied to the other manifold through a leaf disk-shaped polymer filter having an opening of 10 μm. Further, molten 260 ° C. SEBS was supplied to the adhesive layer manifold through a leaf disk-shaped polymer filter having an opening of 10 μm.

ポリカーボネート樹脂、ノルボルネン系重合体樹脂およびSEBSを該マルチマニホールドダイから260℃で同時に押し出しフィルム状にした。該フィルム状溶融樹脂を表面温度130℃に調整された冷却ロールにキャストし、次いで表面温度50℃に調整された2本の冷却ロール間に通して、ポリカーボネート樹脂層(A層:20μm)とSEBS層(5μm)とノルボルネン系重合体樹脂層(B層:160μm)からなる幅1350mmで且つ厚さ185μmの積層フィルム1を得た。   Polycarbonate resin, norbornene polymer resin and SEBS were simultaneously extruded from the multi-manifold die at 260 ° C. to form a film. The film-like molten resin was cast on a cooling roll adjusted to a surface temperature of 130 ° C., and then passed between two cooling rolls adjusted to a surface temperature of 50 ° C. to obtain a polycarbonate resin layer (A layer: 20 μm) and SEBS A laminated film 1 having a width of 1350 mm and a thickness of 185 μm comprising a layer (5 μm) and a norbornene polymer resin layer (B layer: 160 μm) was obtained.

実施例1
製造例1で得られた積層フィルム1を縦一軸延伸機に供給し、延伸温度145℃、延伸倍率1.5で縦方向に延伸した。続いて、延伸されたフィルムをテンター延伸機に供給し、延伸温度125℃、延伸倍率1.25で横方向に延伸して、位相差板1を得た。
位相差板1のA層の屈折率をエリプソメトリで測定したところ、A層の配向軸がフィルムの長手方向に対して略平行に存在している事を確認し、同様にしてB層の屈折率をエリプソメトリで測定したところ、B層の配向軸がフィルムの長手方向に対して略直交する方向に存在している事を確認した。R450<R550<R650の関係を示すものであった。評価結果を表1に示す。
Example 1
The laminated film 1 obtained in Production Example 1 was supplied to a longitudinal uniaxial stretching machine and stretched in the longitudinal direction at a stretching temperature of 145 ° C. and a stretching ratio of 1.5. Subsequently, the stretched film was supplied to a tenter stretching machine, and stretched in the transverse direction at a stretching temperature of 125 ° C. and a stretching ratio of 1.25, whereby the retardation film 1 was obtained.
When the refractive index of the A layer of the phase difference plate 1 was measured by ellipsometry, it was confirmed that the orientation axis of the A layer was substantially parallel to the longitudinal direction of the film. When the ratio was measured by ellipsometry, it was confirmed that the orientation axis of the B layer was present in a direction substantially perpendicular to the longitudinal direction of the film. R 450 <R 550 <was indicative of the relationship between the R 650. The evaluation results are shown in Table 1.

比較例1
実施例1において横方向延伸温度を145℃に変更した以外は実施例1と同様にして位相差板2を得た。
位相差板2のA層の屈折率をエリプソメトリで測定したところ、A層の配向軸がフィルムの長手方向に対して略平行に存在している事を確認し、同様にしてB層の屈折率をエリプソメトリで測定したところ、B層の配向軸がフィルムの長手方向に対して略平行に存在している事を確認した。R450>R550>R650の関係を示すものであった。評価結果を表1に示す。
Comparative Example 1
To obtain a phase difference plate 2 except for changing the sideways direction extending Shin temperature 145 ° C. In Example 1 in the same manner as in Example 1.
When the refractive index of the A layer of the phase difference plate 2 was measured by ellipsometry, it was confirmed that the orientation axis of the A layer was substantially parallel to the longitudinal direction of the film. When the ratio was measured by ellipsometry, it was confirmed that the orientation axis of the B layer was substantially parallel to the longitudinal direction of the film. The relationship of R 450 > R 550 > R 650 was shown. The evaluation results are shown in Table 1.

Figure 0005541273
Figure 0005541273

表1に示すように、同符号の固有複屈折を有する熱可塑性樹脂Aと熱可塑性樹脂Bとを共押出または共流延して、熱可塑性樹脂Aの層と熱可塑性樹脂Bの層とを含む積層フィルムを得、該積層フィルムを少なくとも2回一軸延伸することによって熱可塑性樹脂A層の分子配向軸と熱可塑性樹脂B層の分子配向軸とを略直角に交わらせることによって、波長450nmの光における入射角0度でのレターデーションR450、波長550nmの光における入射角0度でのレターデーションR550、および波長650nmの光における入射角0度でのレターデーションR650が、R450<R550<R650の関係を満たす広い面積の位相差板を容易に高精度で得ることができる。 As shown in Table 1, a thermoplastic resin A and a thermoplastic resin B having the same birefringence with the same sign are coextruded or co-cast to obtain a layer of the thermoplastic resin A and a layer of the thermoplastic resin B. By obtaining a laminated film including the above and uniaxially stretching the laminated film at least twice, the molecular orientation axis of the thermoplastic resin A layer and the molecular orientation axis of the thermoplastic resin B layer are crossed at a substantially right angle to obtain a wavelength of 450 nm. A retardation R 450 at an incident angle of 0 degree in light, a retardation R 550 at an incident angle of 0 degree in light having a wavelength of 550 nm, and a retardation R 650 at an incident angle of 0 degree in light having a wavelength of 650 nm are R 450 < A wide-area retardation plate satisfying the relationship of R 550 <R 650 can be easily obtained with high accuracy.

製造例2
二種二層の共押出成形用のフィルム成形装置を準備し、ポリカーボネート樹脂(旭化成社製、ワンダーライトPC−110、荷重たわみ温度145度)のペレットを、ダブルフライト型のスクリューを備えた一方の一軸押出機に投入して、溶融させた。
スチレン−無水マレイン酸共重合体樹脂(NovaChemicals社製、DylarkD332、荷重たわみ温度135℃、固有複屈折が負、アッベ数31)のペレットをダブルフライト型のスクリューを備えたもう一方の一軸押出機に投入して、溶融させた。
溶融された260℃のポリカーボネート樹脂を目開き10μmのリーフディスク形状のポリマーフィルターを通してマルチマニホールドダイ(ダイスリップの表面粗さRa:0.1μm)の一方のマニホールドに、溶融された260℃のスチレン−無水マレイン酸共重合体樹脂を目開き10μmのリーフディスク形状のポリマーフィルターを通してもう一方のマニホールドにそれぞれ供給した。
Production Example 2
A film forming apparatus for two-type two-layer coextrusion molding was prepared, and a pellet of polycarbonate resin (manufactured by Asahi Kasei Co., Ltd., Wonderlite PC-110, deflection temperature under load of 145 degrees) was placed on one side equipped with a double flight type screw. It was put into a single screw extruder and melted.
Pellets of styrene-maleic anhydride copolymer resin (manufactured by Nova Chemicals, Dylark D332, deflection temperature under load, 135 ° C., negative intrinsic birefringence, Abbe number 31) are put into another single screw extruder equipped with a double flight type screw. It was charged and melted.
Melted 260 ° C. styrene-polycarbonate resin is passed through a polymer filter in the form of a leaf disk having a mesh size of 10 μm to one manifold of a multi-manifold die (die slip surface roughness Ra: 0.1 μm). The maleic anhydride copolymer resin was supplied to the other manifold through a leaf disk-shaped polymer filter having an opening of 10 μm.

ポリカーボネート樹脂およびスチレン−無水マレイン酸共重合体樹脂を該マルチマニホールドダイから260℃で同時に押し出しフィルム状にした。該フィルム状溶融樹脂を表面温度130℃に調整された冷却ロールにキャストし、次いで表面温度50℃に調整された2本の冷却ロール間に通して、ポリカーボネート樹脂層(A層:20μm)とスチレン−無水マレイン酸共重合体樹脂層(B層:160μm)からなる幅1350mmで且つ厚さ180μmの積層フィルム2を得た。   A polycarbonate resin and a styrene-maleic anhydride copolymer resin were simultaneously extruded from the multi-manifold die at 260 ° C. to form a film. The film-like molten resin was cast on a cooling roll adjusted to a surface temperature of 130 ° C., and then passed between two cooling rolls adjusted to a surface temperature of 50 ° C. to obtain a polycarbonate resin layer (A layer: 20 μm) and styrene. -A laminated film 2 having a width of 1350 mm and a thickness of 180 µm composed of a maleic anhydride copolymer resin layer (B layer: 160 µm) was obtained.

製造例3
DylarkD332に代えてポリスチレン樹脂(日本ポリスチレン社製、HF44、荷重たわみ温度73℃、固有複屈折が負、アッベ数31)を用い、A層の厚さを80μm、B層の厚さを80μmにした以外は製造例2と同様にしてポリカーボネート樹脂層(A層:80μm)とポリスチレン樹脂層(B層:80μm)からなる幅1350mmで且つ厚さ160μmの積層フィルム3を得た。

Production Example 3
Polystyrene resin instead DylarkD332 80 [mu] m thickness (Japan Polystyrene Inc., HF44, a deflection temperature under load 73 ° C., intrinsic birefringence is negative, A Tsu base number 31) with, 80 [mu] m thickness of the A layer, B layer A laminated film 3 having a width of 1350 mm and a thickness of 160 μm composed of a polycarbonate resin layer (A layer: 80 μm) and a polystyrene resin layer (B layer: 80 μm) was obtained in the same manner as in Production Example 2 except for the above.

参考例1
実施例1で用いた積層フィルム1に代えて積層フィルム2を用いた以外は実施例1と同様にして位相差板3を得た。
位相差板3のA層の屈折率をエリプソメトリで測定したところ、A層の配向軸がフィルムの長手方向に対して略平行に存在している事を確認し、同様にしてB層の屈折率をエリプソメトリで測定したところ、B層の配向軸がフィルムの長手方向に対して略直交する方向に存在している事を確認した。(nx−nz)/(nx−ny)は0.6849であった。評価結果を表2に示す。
Reference example 1
A retardation film 3 was obtained in the same manner as in Example 1 except that the laminated film 2 was used instead of the laminated film 1 used in Example 1.
When the refractive index of the A layer of the phase difference plate 3 was measured by ellipsometry, it was confirmed that the orientation axis of the A layer was substantially parallel to the longitudinal direction of the film. When the ratio was measured by ellipsometry, it was confirmed that the orientation axis of the B layer was present in a direction substantially perpendicular to the longitudinal direction of the film. (N x -n z) / ( n x -n y) was 0.6849. The evaluation results are shown in Table 2.

比較例2
実施例1で用いた積層フィルム1に代えて積層フィルム3を用い、横方向延伸温度を70℃に変えた以外は実施例1と同様にして位相差板4を得た。
位相差板4のA層の屈折率をエリプソメトリで測定したところ、A層の配向軸がフィルムの長手方向に対して略直交する方向に存在している事を確認し、同様にしてB層の屈折率をエリプソメトリで測定したところ、B層の配向軸がフィルムの長手方向に対して略直交する方向に存在している事を確認した。(nx−nz)/(nx−ny)は2.3815であった。評価結果を表2に示す。
Comparative Example 2
A retardation film 4 was obtained in the same manner as in Example 1 except that the laminated film 3 was used in place of the laminated film 1 used in Example 1 and the transverse stretching temperature was changed to 70 ° C.
When the refractive index of the A layer of the phase difference plate 4 was measured by ellipsometry, it was confirmed that the orientation axis of the A layer was present in a direction substantially perpendicular to the longitudinal direction of the film. Was measured by ellipsometry, and it was confirmed that the orientation axis of the B layer was present in a direction substantially perpendicular to the longitudinal direction of the film. (N x -n z) / ( n x -n y) was 2.3815. The evaluation results are shown in Table 2.

Figure 0005541273
Figure 0005541273

表2に示すように、異符号の固有複屈折を有する熱可塑性樹脂Aと熱可塑性樹脂Bとを共押出または共流延して、熱可塑性樹脂Aの層と熱可塑性樹脂Bの層とを含む積層フィルムを得、該積層フィルムを少なくとも2回一軸延伸することによって熱可塑性樹脂A層の分子配向軸と熱可塑性樹脂B層の分子配向軸とを略直角に交わらせることによって、面内遅相軸方向の屈折率nxと、遅相軸に面内で直交する方向の屈折率nyと、厚さ方向の屈折率nzとが、0<(nx−nz)/(nx−ny)<1の関係を満たす広い面積の位相差板を容易に高精度で得ることができる。 As shown in Table 2, a thermoplastic resin A and a thermoplastic resin B having inherent birefringence with different signs are coextruded or co-cast to obtain a layer of the thermoplastic resin A and a layer of the thermoplastic resin B. A laminated film including the obtained film is obtained, and the laminated film is uniaxially stretched at least twice so that the molecular orientation axis of the thermoplastic resin A layer and the molecular orientation axis of the thermoplastic resin B layer intersect each other at substantially right angles. the refractive indices n x a axis direction, the refractive index n y in orthogonal directions slow axis in the plane, the refractive index n z in the thickness direction, 0 <(n x -n z ) / (n x -n y) <1 for a phase difference plate having a large area which satisfies a relation can be obtained easily at high precision.

Claims (6)

正または負の固有複屈折を有し且つ荷重たわみ温度がTs A である熱可塑性樹脂Aと、熱可塑性樹脂Aと同じ符号の固有複屈折を有し且つ荷重たわみ温度がTs B であ(ただし、Ts A とTs B との差の絶対値が5℃以上である。)熱可塑性樹脂Bとを共押出または共流延して、熱可塑性樹脂Aの層と熱可塑性樹脂Bの層とを含む積層フィルムを得、
該積層フィルムをそれぞれ異なる温度で少なくとも2回一軸延伸することによって熱可塑性樹脂Aの層の分子配向軸と熱可塑性樹脂Bの層の分子配向軸とを略直角に交わらせることを含む、位相差板の製造方法。
And the thermoplastic resin A positive or negative intrinsic birefringence chromatic and and a deflection temperature under load Ru Ts A der, thermoplastic resin A have a intrinsic birefringence of same sign as and deflection temperature under load Ru der Ts B (However, the absolute value of the difference between Ts A and Ts B is 5 ° C. or more.) The thermoplastic resin B and the thermoplastic resin B layer are coextruded or co-extruded. A laminated film containing
The phase difference comprising crossing the molecular orientation axis of the layer of the thermoplastic resin A and the molecular orientation axis of the layer of the thermoplastic resin substantially perpendicularly by stretching the laminated film uniaxially at least twice at different temperatures. A manufacturing method of a board.
第二回目の一軸延伸の方向が第一回目の一軸延伸の方向に直交する、請求項1に記載の位相差板の製造方法。 The method for producing a retardation film according to claim 1 , wherein the direction of the second uniaxial stretching is orthogonal to the direction of the first uniaxial stretching . 熱可塑性樹脂Aの荷重たわみ温度TsAと、熱可塑性樹脂Bの荷重たわみ温度TsBとの差の絶対値が、5〜40℃である、請求項1に記載の位相差板の製造方法。 A deflection temperature under load Ts A of the thermoplastic resin A, the absolute value of the difference between the deflection temperature under load Ts B of the thermoplastic resin B is 5 to 40 ° C., method for producing a retardation plate according to claim 1. 温度TsBにおける熱可塑性樹脂Aの破断伸度、および温度TsAにおける熱可塑性樹脂Bの破断伸度が共に、50%以上である、請求項1〜3のいずれかひとつに記載の位相差板の製造方法。 The retardation plate according to any one of claims 1 to 3, wherein the breaking elongation of the thermoplastic resin A at the temperature Ts B and the breaking elongation of the thermoplastic resin B at the temperature Ts A are both 50% or more. Manufacturing method. 位相差板が、波長450nmの光における入射角0度でのレターデーションR450、波長550nmの光における入射角0度でのレターデーションR550、および波長650nmの光における入射角0度でのレターデーションR650が、R450<R550<R650の関係を満たすものである請求項1〜4のいずれかひとつに記載の位相差板の製造方法。 The retardation plate has a retardation R 450 at an incident angle of 0 ° for light having a wavelength of 450 nm, a retardation R 550 at an incident angle of 0 ° for light having a wavelength of 550 nm, and a letter at an incident angle of 0 ° for light having a wavelength of 650 nm. Deshon R 650 is, R 450 <R 550 <method of manufacturing a retardation film according to any one of claims 1 to 4 satisfy the relation of R 650. 熱可塑性樹脂Aおよび熱可塑性樹脂Bのいずれか一方のアッベ数が40以上であり、もう一方のアッベ数が30以下である請求項1〜5のいずれかひとつに記載の位相差板の製造方法。   The method for producing a retardation plate according to any one of claims 1 to 5, wherein the Abbe number of one of the thermoplastic resin A and the thermoplastic resin B is 40 or more and the other Abbe number is 30 or less. .
JP2011284373A 2011-12-26 2011-12-26 Production method of retardation plate Active JP5541273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011284373A JP5541273B2 (en) 2011-12-26 2011-12-26 Production method of retardation plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011284373A JP5541273B2 (en) 2011-12-26 2011-12-26 Production method of retardation plate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008033781A Division JP5104373B2 (en) 2008-02-14 2008-02-14 Production method of retardation plate

Publications (2)

Publication Number Publication Date
JP2012073646A JP2012073646A (en) 2012-04-12
JP5541273B2 true JP5541273B2 (en) 2014-07-09

Family

ID=46169789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011284373A Active JP5541273B2 (en) 2011-12-26 2011-12-26 Production method of retardation plate

Country Status (1)

Country Link
JP (1) JP5541273B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6275961B2 (en) * 2013-06-26 2018-02-07 富士フイルム株式会社 Optical film and display device
WO2021085031A1 (en) 2019-10-29 2021-05-06 日本ゼオン株式会社 Retardation film, production method therefor, and circular polarizer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527119A (en) * 1991-07-17 1993-02-05 Nitto Denko Corp Phase difference plate and elliptical polarizing plate and liquid crystal display device
JPH05164919A (en) * 1991-12-19 1993-06-29 Sumitomo Bakelite Co Ltd Phase difference film
JP2002267843A (en) * 2001-03-12 2002-09-18 Fuji Photo Film Co Ltd Substrate for display device
JP4586326B2 (en) * 2002-10-11 2010-11-24 日本ゼオン株式会社 Optical laminate and method for producing the same
JPWO2005050300A1 (en) * 2003-11-21 2007-08-23 日本ゼオン株式会社 Liquid crystal display
JP2006208655A (en) * 2005-01-27 2006-08-10 Teijin Ltd Optical lamination film
JP2006309029A (en) * 2005-04-28 2006-11-09 Kaneka Corp Method for manufacturing phase difference compensation film

Also Published As

Publication number Publication date
JP2012073646A (en) 2012-04-12

Similar Documents

Publication Publication Date Title
JP5104373B2 (en) Production method of retardation plate
JP5104374B2 (en) Production method of retardation plate
JP5585747B1 (en) Laminated retardation film and method for producing the same
JP5104439B2 (en) Retardation plate
JP5263069B2 (en) Retardation plate manufacturing method, retardation plate, and liquid crystal display device
JP4998648B2 (en) Retardation plate manufacturing method, retardation plate, and liquid crystal display device
WO2015072486A1 (en) Method for producing retardation film
JP6131620B2 (en) Laminated retardation film and method for producing laminated retardation film
JP5541273B2 (en) Production method of retardation plate
WO2013133102A1 (en) Retarder manufacturing method
JP5282821B2 (en) Production method of retardation plate
JP6251959B2 (en) Method for producing retardation film
JP2013200408A (en) Retardation plate and manufacturing method of the same
JP5240103B2 (en) Laminated retardation plate, retardation plate manufacturing film, and manufacturing method of laminated retardation plate using the same
JP2013011725A (en) Bi-layered film and manufacturing method for the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140421

R150 Certificate of patent or registration of utility model

Ref document number: 5541273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250