JP5541090B2 - How to recover lead from lead-containing glass - Google Patents

How to recover lead from lead-containing glass Download PDF

Info

Publication number
JP5541090B2
JP5541090B2 JP2010243544A JP2010243544A JP5541090B2 JP 5541090 B2 JP5541090 B2 JP 5541090B2 JP 2010243544 A JP2010243544 A JP 2010243544A JP 2010243544 A JP2010243544 A JP 2010243544A JP 5541090 B2 JP5541090 B2 JP 5541090B2
Authority
JP
Japan
Prior art keywords
lead
containing glass
reducing agent
slag
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010243544A
Other languages
Japanese (ja)
Other versions
JP2012097288A (en
Inventor
光宏 多田
直 中村
武 内山
泰敏 平本
洋平 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2010243544A priority Critical patent/JP5541090B2/en
Publication of JP2012097288A publication Critical patent/JP2012097288A/en
Application granted granted Critical
Publication of JP5541090B2 publication Critical patent/JP5541090B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

この発明は、光学レンズやブラウン管に用いられる鉛含有ガラス等の廃棄物などの鉛含有ガラスから、鉛を分解、回収する方法に関する。   The present invention relates to a method for decomposing and recovering lead from lead-containing glass such as waste such as lead-containing glass used for optical lenses and cathode-ray tubes.

光学レンズやブラウン管に用いられる鉛含有ガラス中には、20重量%程度の酸化鉛が含まれている。ブラウン管ガラスとして用いた場合、使用済みのブラウン管テレビは解体され、ブラウン管ガラスの部分は、再溶解されブラウン管ガラスにリサイクルされてきた。しかし、近年、液晶テレビやプラズマテレビが普及してきたため、ブラウン管テレビの需要が減少し、ブラウン管ガラスにリサイクルすることが困難になってきている。鉛含有ガラスを廃棄する場合、従来セメント固化あるいは薬剤で処理して埋め立て処分する方法で処理されてきた。   Lead-containing glass used for optical lenses and cathode-ray tubes contains about 20% by weight of lead oxide. When used as a cathode ray tube glass, used cathode ray tube televisions have been dismantled, and a portion of the cathode ray tube glass has been redissolved and recycled to the cathode ray tube glass. However, in recent years, liquid crystal televisions and plasma televisions have become widespread, and the demand for cathode ray tube televisions has decreased, making it difficult to recycle them into cathode ray tube glass. In the case of discarding lead-containing glass, it has been conventionally treated by a method of solidifying cement or treating with chemicals and landfilling.

鉛含有ガラスの処理方法としては、還元溶融やオートクレーブ中でのアルコールによる抽出やEDTAによる抽出やハロゲン化して揮発分離する方法が検討されてきている。還元溶融に関しては、特許文献1及び非特許文献1に記載されているように、酸化鉛を高温で還元剤を用いて還元反応により鉛を分解、回収する方法が用いられている。   As processing methods for lead-containing glass, methods of reduction melting, extraction with alcohol in an autoclave, extraction with EDTA, halogenation and volatile separation have been studied. As for reductive melting, as described in Patent Document 1 and Non-Patent Document 1, a method is used in which lead oxide is decomposed and recovered by a reduction reaction using a reducing agent at a high temperature at a high temperature.

特許文献1に開示されている方法は、鉛含有ガラス切削屑に酸化ナトリウムを添加し、800℃以上で、スラグ成分のSiO/NaOの比を1.2〜3.0の範囲に調整し、コークス又は木炭等の炭素源を還元剤として混合し、加熱溶融処理する方法である。非特許文献1に開示されている方法は、ブラウン管ファンネルガラス粉末に、還元剤として小麦粉を加え、溶融助剤としてNaCOを加えて還元溶融する方法である。いずれも還元剤の粒径は示されていない。 In the method disclosed in Patent Document 1, sodium oxide is added to lead-containing glass cutting waste, and the ratio of SiO 2 / Na 2 O of the slag component is in the range of 1.2 to 3.0 at 800 ° C. or higher. It is a method of adjusting, mixing a carbon source such as coke or charcoal as a reducing agent, and subjecting it to heat melting treatment. The method disclosed in Non-Patent Document 1 is a method in which wheat flour is added as a reducing agent to a Braun tube funnel glass powder, and NaCO 3 is added as a melting aid to perform reduction melting. In either case, the particle size of the reducing agent is not shown.

特開平7−96264号公報JP-A-7-96264

稲野ら、「還元溶融による廃ブラウン管ガラスからの鉛分離」、北海道立工業試験場報告、No.304、P71〜77Inano et al., “Lead Separation from Waste CRT Glass by Reducing Melting”, Hokkaido Industrial Laboratory Report, No. 304, P71-77

溶融炉に鉛含有ガラスと還元剤を装入し、還元溶融する際に、10μm以下の小粒径還元剤を使用した場合、還元剤の添加量がC/Pbモル比で2を超えた部分で、還元反応が停滞し、金属鉛回収率が激減してしまうことがわかった。実プロセスでは、全体としてC/Pbモル比が1〜2になるように還元剤を添加したとしても、溶融炉内にC/Pbモル比が2より大きい局所領域が生じることがあり、このような局所領域で反応が停滞し、Pb濃度が低減しないことにより、高い金属鉛回収率が得られなかった。   When a lead-containing glass and a reducing agent are charged into a melting furnace and reduced and melted, when a small particle size reducing agent of 10 μm or less is used, the amount of the reducing agent added exceeds 2 in the C / Pb molar ratio. Thus, it was found that the reduction reaction stagnated and the metal lead recovery rate drastically decreased. In the actual process, even if the reducing agent is added so that the C / Pb molar ratio becomes 1 to 2 as a whole, a local region having a C / Pb molar ratio larger than 2 may be generated in the melting furnace. The reaction stagnated in such a local region and the Pb concentration was not reduced, so that a high metal lead recovery rate could not be obtained.

本発明の目的は、酸化鉛の還元反応を円滑に進行させ、金属鉛を高い収率で回収できる鉛含有ガラスからの鉛の回収方法を提供することにある。   An object of the present invention is to provide a method for recovering lead from lead-containing glass that allows the lead oxide reduction reaction to proceed smoothly and recovers metallic lead in a high yield.

鉛含有ガラス中の鉛は、酸化鉛PbOの形態で存在しており、これを還元雰囲気下で還元溶融すると化1または化2に従って、金属鉛Pbが生成し、生成した金属鉛は、溶融スラグ中を沈降する。   Lead in the lead-containing glass exists in the form of lead oxide PbO. When this is reduced and melted in a reducing atmosphere, metal lead Pb is generated according to chemical formula 1 or chemical formula 2, and the generated metal lead is molten slag. Settling inside.

Figure 0005541090
Figure 0005541090

Figure 0005541090
Figure 0005541090

このとき、鉛含有ガラス自体の融点は約1000℃と低いが、PbOが還元され除去されるとSiOが主体となり融点が1700℃近くに急激に上昇する。それにともない、粘性も急激に上昇する。本発明者らは、粒径が100μm以上の還元剤を添加すると、C/Pbモル比が2より大きい局所領域が生成しても反応が停滞することなく進行することを見出した。 At this time, the melting point of the lead-containing glass itself is as low as about 1000 ° C., but when PbO is reduced and removed, SiO 2 is the main component, and the melting point rapidly rises to near 1700 ° C. Along with this, the viscosity rises rapidly. The inventors have found that when a reducing agent having a particle size of 100 μm or more is added, the reaction proceeds without stagnation even when a local region having a C / Pb molar ratio of greater than 2 is formed.

すなわち、C/Pbモル比が低い(約2以下)ときは、時間あたりにCに接するPbイオンが少ないので、COやCOの発生速度はゆっくりであり、スラグ中の気泡の密度は低い(スラグの単位体積あたりの気泡の数は少ない)。すると、気泡同士の接触が少なくなるので、気泡はあまり大きく成長しないままスラグから排出される。CとPbイオンの反応もあまり阻害しない。したがって、金属鉛の生成反応は、CやPbイオンがほぼ消滅するまで進む。 That is, when the C / Pb molar ratio is low (about 2 or less), since there are few Pb ions contacting C per hour, the generation rate of CO and CO 2 is slow, and the density of bubbles in the slag is low ( The number of bubbles per unit volume of slag is small). Then, since there is less contact between the bubbles, the bubbles are discharged from the slag without growing too large. The reaction between C and Pb ions is not significantly inhibited. Therefore, the formation reaction of metallic lead proceeds until C and Pb ions are almost eliminated.

C/Pbモル比が高く(約2以上)、Cの粒径も大きい(約100μm以上)ときは、時間あたりにCに接するPbイオンが多くなるので、CO等の発生速度も速く、スラグ中の気泡の密度が高くなる。すると、気泡同士の接触も多くなり、気泡が大きく成長しやすい。しかし、Cの粒径が気泡に比べて十分に大きいので、気泡がCとPbイオンの接触反応に与える影響は小さい。したがって、Cがある程度小さくなって気泡の影響を受けるようになるまでは、金属鉛の生成反応は進む。   When the C / Pb molar ratio is high (about 2 or more) and the particle size of C is large (about 100 μm or more), the amount of Pb ions in contact with C per hour increases, so the generation rate of CO, etc. is fast and the slag The density of bubbles increases. Then, the contact between the bubbles increases, and the bubbles are likely to grow large. However, since the particle size of C is sufficiently larger than that of bubbles, the influence of bubbles on the contact reaction between C and Pb ions is small. Therefore, the reaction for producing metallic lead proceeds until C is reduced to some extent and is affected by bubbles.

C/Pbモル比が高く(約2以上)、Cの粒径は小さい(約100μm以下)ときは、Pbイオンが非常に多くなるので、CO等の発生速度も非常に速く、スラグ中の気泡の密度が非常に高くなる。すると、気泡同士の接触も非常に多く、気泡が非常に大きく成長しやすい。Cは、粒径が小さいので、大きく成長した気泡に付着したり、取り込まれたりする。そうなると、スラグ中に滞留する気泡が生じやすくなる(気泡の浮力が低下するから)。気泡が滞留することにより、スラグ中のNaイオンやCaイオンの拡散が悪くなる。すると、SiOが主体のスポットが生じ、そのスポットは、融点や粘度が高くなり、固まることもある。それによって、気泡や、Naイオン、Caイオンの滞留が増長される。これらの悪循環が生じると、スラグはCとPbイオンが接触反応できる状態ではなくなり、金属鉛の生成反応が停滞してしまう。 When the C / Pb molar ratio is high (about 2 or more) and the particle size of C is small (about 100 μm or less), Pb ions become very large. The density of becomes very high. Then, there are many contacts between the bubbles, and the bubbles are very large and tend to grow. Since C has a small particle size, it adheres to or is taken in by bubbles that have grown greatly. If it becomes so, it will become easy to produce the bubble which stays in slag (because the buoyancy of a bubble falls). When the bubbles stay, the diffusion of Na ions and Ca ions in the slag becomes worse. Then, a spot mainly composed of SiO 2 is generated, and the spot has a high melting point and viscosity and may be hardened. Thereby, the retention of bubbles, Na ions, and Ca ions is increased. When these vicious cycles occur, the slag is not in a state where C and Pb ions can contact each other, and the formation reaction of metallic lead is stagnated.

本発明は、これらの知見に基づいてなされたものであり、鉛含有ガラスと還元剤と融剤とを還元溶融し、前記鉛含有ガラスに含まれる酸化鉛を金属鉛として分離回収する方法であって、前記還元剤は主として粒径が100μm以上のものからなることを特徴とする鉛含有ガラスからの鉛回収方法を提供するものである。   The present invention has been made based on these findings, and is a method for reducing and melting lead-containing glass, a reducing agent and a flux, and separating and recovering lead oxide contained in the lead-containing glass as metallic lead. The reducing agent is mainly composed of a particle having a particle size of 100 μm or more, and provides a method for recovering lead from lead-containing glass.

本発明により、廃ブラウン管ガラスのような鉛含有ガラスから、鉛を高収率で回収することができる。   According to the present invention, lead can be recovered in high yield from lead-containing glass such as waste cathode ray tube glass.

本発明の方法を実施する装置の一例を示す図である。It is a figure which shows an example of the apparatus which implements the method of this invention. その内部の状態を示す図である。It is a figure which shows the internal state. 各種粒径の炭素質還元剤の投入量と鉛回収量の関係を示すグラフである。It is a graph which shows the relationship between the input amount of the carbonaceous reducing agent of various particle sizes, and the amount of lead recovery.

本発明で処理される鉛含有ガラスは、光学レンズやブラウン管に使用されるものであり、鉛を酸化鉛として10〜40重量%程度、通常20重量%程度含んでいるものである。これを通常は破砕してから、鉛の回収に供される。   The lead-containing glass treated in the present invention is used for an optical lens or a cathode ray tube and contains about 10 to 40% by weight, usually about 20% by weight of lead as lead oxide. This is usually crushed before being used for lead recovery.

この鉛含有ガラス中の酸化鉛の還元に使用される還元剤は、黒鉛、小麦粉の造粒物、コークス、木炭等の炭素質、金属鉄、アルミニウム、カルシウム等を使用することができる。還元剤の使用量は、鉛含有ガラス中の酸化鉛に対するモル比で1〜4程度、好ましくは、1〜2程度が適当である。   As the reducing agent used for reducing lead oxide in the lead-containing glass, carbonaceous materials such as graphite, granulated granule, coke, charcoal, metallic iron, aluminum, calcium, and the like can be used. The amount of the reducing agent used is about 1 to 4, and preferably about 1 to 2 in terms of molar ratio to lead oxide in the lead-containing glass.

本発明は、この還元剤に粒径の大きなものを用いるところに特徴がある。   The present invention is characterized in that a reducing agent having a large particle size is used.

還元剤として黒鉛を用い、その粒径を変えて金属鉛の回収率への影響を調べた結果を図3に示す。この実験は、原料に、ブラウン管を解体して得た、酸化鉛の含有量が20重量%のガラスを粒径10mm以下に破砕して用い、還元剤としては、粉末黒鉛及び粒状黒鉛を篩い分けして得た、目開き20μmの篩下(JIS Z8901に記載された光散乱法による平均粒径:10μm)と、目開き100μmの篩上かつ目開き200μmの篩下と、目開き1mmの篩上かつ目開き2mmの篩下の3種の粒度の黒鉛を用いた。融剤は炭酸ナトリウムを40kg/hの量で用いた。これらを電気抵抗式溶融炉に投入し、4時間溶融し、底部に集まった金属鉛の量を測定して金属鉛の回収率を求めたものである。これらの結果から、還元剤が粉末の場合は還元剤/Pbのモル比が2以上になると金属鉛の回収率が低下してしまうが、粒径が大きいと還元剤の量を増しても反応が進行することがわかる。還元剤の粒径は100μm以上、好ましくは200μm以上、より好ましくは500μm以上、さらに好ましくは1mm以上である。粒径の上限は特に制限されないが、耐火物に炭素質を用いたり、炭素電極を用いる場合を除き、実用的観点から200mm程度まで、通常10mm程度までである。また、実際の操業においては、溶融炉に投入される際などに粒径が大きな還元剤が破壊されて微粒(100μm未満)になることが起こりうる。投入された還元剤の中で微粒の還元剤の割合は、好ましくは10重量%以下であり、より好ましくは5重量%以下である。   FIG. 3 shows the results of examining the influence on the recovery rate of metallic lead by using graphite as a reducing agent and changing the particle size. In this experiment, glass with a lead oxide content of 20% by weight obtained by disassembling a cathode ray tube as a raw material was crushed to a particle size of 10 mm or less, and powdered graphite and granular graphite were sieved as reducing agents. Obtained under a sieve having an aperture of 20 μm (average particle diameter by light scattering method described in JIS Z8901: 10 μm), a sieve having an aperture of 100 μm and an aperture of 200 μm, and a sieve having an aperture of 1 mm Three types of graphite particles having an upper size and a sieve size of 2 mm were used. As the flux, sodium carbonate was used in an amount of 40 kg / h. These were put into an electric resistance melting furnace, melted for 4 hours, and the amount of metallic lead collected at the bottom was measured to determine the recovery rate of metallic lead. From these results, when the reducing agent is powder, when the reducing agent / Pb molar ratio is 2 or more, the recovery rate of metallic lead is reduced. However, if the particle size is large, the reaction can be achieved even if the amount of reducing agent is increased. Can be seen to progress. The particle size of the reducing agent is 100 μm or more, preferably 200 μm or more, more preferably 500 μm or more, and even more preferably 1 mm or more. The upper limit of the particle size is not particularly limited, but is about 200 mm, and usually about 10 mm from a practical viewpoint, except when carbonaceous material is used for the refractory or when a carbon electrode is used. In actual operation, it is possible that a reducing agent having a large particle diameter is destroyed and becomes fine particles (less than 100 μm) when it is put into a melting furnace. The proportion of the fine reducing agent in the reducing agent added is preferably 10% by weight or less, more preferably 5% by weight or less.

融剤の種類は限定されないが、ナトリウム系融剤、カルシウム系融剤などを用いることができる。ナトリウム系融剤の例としては、NaCO、NaHCO、NaOH等、カルシウム系融剤の例としては、CaO、CaCO、Ca(OH)、カルシウムアルミネート等を挙げることができる。融剤の添加量はナトリウム系融剤では、ガラス中Siとの重量比で、SiO/NaO=1.2〜3(Ca系融剤では、重量比で、CaO/SiO=0.3〜1.2かつCaO/Al=0.3〜4である。 Although the kind of flux is not limited, a sodium-type flux, a calcium-type flux, etc. can be used. Examples of the sodium-based flux include Na 2 CO 3 , NaHCO 3 , and NaOH, and examples of the calcium-based flux include CaO, CaCO 3 , Ca (OH) 2 , and calcium aluminate. The addition amount of the flux is SiO 2 / Na 2 O = 1.2 to 3 by weight ratio with Si in the glass in the case of sodium flux (CaO / SiO 2 = 0 by weight in the case of Ca flux). 3 to 1.2 and CaO / Al 2 O 3 = 0.3 to 4.

鉛含有ガラスと還元剤と融剤を含有する混合物を加熱する炉は、スラグを溶融できる温度まで加熱できるものであるか、還元して生成した鉛蒸気を捕集するために密閉構造である必要がある。このような加熱炉としては、電気抵抗式溶融炉、アーク炉、誘導加熱炉、溶鉱炉等を挙げることができる。   The furnace that heats the mixture containing lead-containing glass, reducing agent, and flux must be capable of heating to a temperature at which the slag can be melted, or must have a sealed structure to collect the lead vapor generated by reduction. There is. Examples of such a heating furnace include an electric resistance melting furnace, an arc furnace, an induction heating furnace, and a blast furnace.

この加熱炉に、鉛含有ガラスと還元剤と融剤を投入して還元溶融を行う。投入は、それぞれを別の投入口から投入してもよく、あるいは予め混合しておいた混合物を投入しても良い。炉内は、反応したCO、COガスにより還元雰囲気となるが、窒素等の不活性ガスを吹き込んで、還元雰囲気を保ってもよい。 In this heating furnace, lead-containing glass, a reducing agent, and a flux are charged to perform reduction melting. As for the charging, each may be charged from a separate charging port, or a mixture that has been mixed in advance may be charged. The inside of the furnace is reduced by the reacted CO and CO 2 gas, but an inert gas such as nitrogen may be blown to keep the reducing atmosphere.

炉内の温度は、スラグの溶融状態を保てる温度、例えば1200〜1600℃、とすると、2〜4時間程度で鉛を金属鉛として底部に分層させることが出来る。   If the temperature in the furnace is a temperature at which the molten state of the slag can be maintained, for example, 1200 to 1600 ° C., the lead can be separated into the bottom as metal lead in about 2 to 4 hours.

一方、この酸化鉛の還元は連続運転とすることができ、その場合、スラグ中の鉛(酸化鉛を含む)含量が所定値以下になるように管理しながら、鉛含有ガラス、還元剤、融剤を連続あるいは断続的に投入し、生成した溶融状態の鉛とスラグを連続あるいは断続的に抜き出していけばよい。   On the other hand, the reduction of this lead oxide can be performed continuously, in which case the lead-containing glass, reducing agent, and melt are controlled while controlling the lead (including lead oxide) content in the slag to be a predetermined value or less. It is only necessary to continuously or intermittently add the agent and to continuously or intermittently extract the generated lead and slag in the molten state.

本発明の方法では、還元された鉛は大部分がスラグ層に遮蔽されて底部に溜まるが、一部は蒸気として蒸発する。   In the method of the present invention, most of the reduced lead is shielded by the slag layer and accumulates at the bottom, but part of it is evaporated as vapor.

還元剤として炭素質を用いた場合には、鉛含有ガラス中の酸化鉛を還元して生じた一酸化炭素をバーナで燃焼させるとともに、鉛蒸気を酸化鉛に変えて分離回収することができる。この場合、この燃焼を行う後燃焼炉と、生じた酸化鉛を捕集する捕集装置と、必要によりその間に燃焼排ガスを冷却する冷却装置を設ける。捕集装置には、バグフィルタ、サイクロン、電気集塵機、湿式スクラバー、ベンチュリースクラバー、スプレー塔、充填塔等を用いることができる。   When carbonaceous is used as the reducing agent, carbon monoxide generated by reducing lead oxide in the lead-containing glass can be burned with a burner, and lead vapor can be changed to lead oxide and separated and recovered. In this case, a post-combustion furnace for performing this combustion, a collecting device for collecting the generated lead oxide, and a cooling device for cooling the combustion exhaust gas as needed are provided. A bag filter, a cyclone, an electric dust collector, a wet scrubber, a venturi scrubber, a spray tower, a packed tower, or the like can be used as the collection device.

本発明の方法で、分離された鉛は、そのまま、あるいはさらに精製して金属鉛として利用できる。   The lead separated by the method of the present invention can be used as metallic lead as it is or after further purification.

スラグは、ガラス製品の原料として用いることができる。カルシウム系融剤を使用した場合は、道路用建設資材として用いることも可能である。   Slag can be used as a raw material for glass products. When a calcium-based flux is used, it can be used as a road construction material.

図1、2に示す装置で鉛含有ガラスから鉛の回収を行った。   Lead was recovered from the lead-containing glass with the apparatus shown in FIGS.

鉛含有ガラスはブラウン管を解体して得たガラスを粒径50mm以下に破砕して用いた。還元剤には粒径5mmのコークスをC/PbO=1となる量で用いた。融剤としては、粒径1mmの炭酸ナトリウムを鉛含有ガラス重量の50%になる量で用いた。   As the lead-containing glass, glass obtained by disassembling the cathode ray tube was crushed to a particle size of 50 mm or less. Coke having a particle diameter of 5 mm was used as the reducing agent in such an amount that C / PbO = 1. As the flux, sodium carbonate having a particle size of 1 mm was used in an amount that would be 50% of the weight of the lead-containing glass.

これらの混合物を電気抵抗式溶融炉に40kg/hで投入し、1100〜1600℃に加熱して溶融した。その結果表面の投入した原料と副資材の未反応物によるスラグからなるカバー層、その下のスラグ層と底部の金属鉛層の各溶融層が形成された。反応はカバー層、スラグ−カバー層間、電極−カバー層間および電極−スラグ層間で起ったが、主に電極−スラグ層間で起った。スラグ層は1〜4時間毎に100kgを排出し、金属鉛は1〜4時間毎に7kgを取り出した。   These mixtures were charged into an electric resistance melting furnace at 40 kg / h and heated to 1100-1600 ° C. to melt. As a result, a cover layer made of slag formed from the raw material charged on the surface and unreacted materials of the auxiliary material, and a molten layer of the slag layer below and the metal lead layer at the bottom were formed. The reaction occurred between the cover layer, the slag-cover layer, the electrode-cover layer and the electrode-slag layer, but mainly occurred between the electrode-slag layer. 100 kg of the slag layer was discharged every 1 to 4 hours, and 7 kg of metal lead was taken out every 1 to 4 hours.

後燃焼炉でCOガスを燃焼し、バグフィルタで除塵することにより、煙突からはCOガスも鉛及び鉛化合物も排出されない。   By burning the CO gas in the post-combustion furnace and removing the dust with the bag filter, neither CO gas nor lead and lead compounds are discharged from the chimney.

排出したスラグは、水砕により水冷またはパン上で徐冷して凝固させた。   The discharged slag was solidified by water cooling or slow cooling on a pan.

得られた金属鉛は、98%の純度で、スラグ中の鉛濃度は、0.1%以下であった。このとき金属鉛回収率は、60%であった。
同様の試験を還元剤として、平均粒径10μmのコークスを用いて実施したところ、金属鉛回収率は、50%であった。
The obtained metallic lead was 98% pure, and the lead concentration in the slag was 0.1% or less. At this time, the metal lead recovery rate was 60%.
When the same test was carried out using a coke having an average particle size of 10 μm as a reducing agent, the metal lead recovery rate was 50%.

本発明により、鉛含有ガラスから有害な鉛を高効率で回収できるので、特に、大量に廃棄が予想されるブラウン管を廃棄物処理することが出来る。   According to the present invention, harmful lead can be recovered from lead-containing glass with high efficiency, and in particular, cathode ray tubes that are expected to be disposed of in large quantities can be treated as waste.

Claims (2)

鉛含有ガラスと還元剤と融剤とを1100〜1600℃で還元溶融し、前記鉛含有ガラスに含まれる酸化鉛を金属鉛として分離回収する方法であって、前記還元剤に、粒径が100μm以上のものを主とし100μm未満の微粒の割合が10重量%以下のものを選択して用いることを特徴とする鉛含有ガラスからの鉛回収方法。 A method of reducing and melting lead-containing glass, a reducing agent and a flux at 1100 to 1600 ° C., and separating and recovering lead oxide contained in the lead-containing glass as metallic lead, wherein the reducing agent has a particle size of 100 μm. A method for recovering lead from lead-containing glass, wherein the above-mentioned materials are mainly used and the proportion of fine particles of less than 100 μm is 10% by weight or less . 前記還元剤が、炭素質であることを特徴とする請求項1に記載の鉛含有ガラスからの鉛回収方法。 The method for recovering lead from lead-containing glass according to claim 1, wherein the reducing agent is carbonaceous.
JP2010243544A 2010-10-29 2010-10-29 How to recover lead from lead-containing glass Active JP5541090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010243544A JP5541090B2 (en) 2010-10-29 2010-10-29 How to recover lead from lead-containing glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010243544A JP5541090B2 (en) 2010-10-29 2010-10-29 How to recover lead from lead-containing glass

Publications (2)

Publication Number Publication Date
JP2012097288A JP2012097288A (en) 2012-05-24
JP5541090B2 true JP5541090B2 (en) 2014-07-09

Family

ID=46389541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010243544A Active JP5541090B2 (en) 2010-10-29 2010-10-29 How to recover lead from lead-containing glass

Country Status (1)

Country Link
JP (1) JP5541090B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104593609A (en) * 2015-02-06 2015-05-06 郑州振中电熔新材料有限公司 Method and equipment for separating lead from lead-containing waste glass
CN105779769A (en) * 2015-01-13 2016-07-20 松下知识产权经营株式会社 Method and device of separating lead from lead glass

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6088250B2 (en) * 2013-01-11 2017-03-01 国立大学法人福井大学 Method for recovering lead from lead-containing glass
JP6307180B2 (en) * 2017-01-07 2018-04-04 国立大学法人福井大学 Method for recovering lead from lead-containing glass
CN108728663A (en) * 2017-04-17 2018-11-02 西部矿业股份有限公司 A kind of method of pyrogenic attack CRT flint glass recycling lead
CN108751672A (en) * 2018-07-25 2018-11-06 广东新生环保科技股份有限公司 A kind of flint glass retracting device and its method
CN113737003A (en) * 2021-10-20 2021-12-03 辽宁石油化工大学 Method for treating waste lead-containing glass by microwave thermal smelting
CN115418494B (en) * 2022-09-06 2024-01-19 湖南水口山有色金属集团有限公司 Method for recycling lead in CRT lead-containing glass by fuming furnace

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH597351A5 (en) * 1975-01-08 1978-03-31 Andres M Liniger
JPH0796264A (en) * 1993-09-29 1995-04-11 Nkk Corp Removal of lead from lead glass cut refuse
EP0896955A1 (en) * 1997-08-12 1999-02-17 Von Roll Umwelttechnik AG Method and apparatus for the reduction of metal in a glass or slagmelt
JP2002105546A (en) * 2000-09-26 2002-04-10 Shin Kobe Electric Mach Co Ltd Manufacturing method for obtaining lead or lead alloy from lead compound

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105779769A (en) * 2015-01-13 2016-07-20 松下知识产权经营株式会社 Method and device of separating lead from lead glass
CN105779769B (en) * 2015-01-13 2017-10-27 松下知识产权经营株式会社 The separation method and separator of lead are separated from lead glass
CN104593609A (en) * 2015-02-06 2015-05-06 郑州振中电熔新材料有限公司 Method and equipment for separating lead from lead-containing waste glass
CN104593609B (en) * 2015-02-06 2016-08-24 郑州振中电熔新材料有限公司 Method and equipment for separating lead from lead-containing waste glass

Also Published As

Publication number Publication date
JP2012097288A (en) 2012-05-24

Similar Documents

Publication Publication Date Title
JP5541090B2 (en) How to recover lead from lead-containing glass
Tian et al. Recent development of recycling lead from scrap CRTs: A technological review
CN106636678B (en) A kind of method that arsenic-containing material direct-reduction roasting prepares arsenic
JP5482619B2 (en) How to recover lead from lead-containing glass
JP6044001B2 (en) Method for separating heavy metals from glass
KR101711363B1 (en) Apparatus and method for recycling black dross of aluminium scrap
JP4966560B2 (en) Manufacturing method of high purity silicon
NO175299B (en) Process for continuous refining of silicon
JP2020532425A (en) Methods for refining waste materials or industrial by-products containing chlorine
JP6088250B2 (en) Method for recovering lead from lead-containing glass
WO2011040988A1 (en) Treatment of bauxite residue and spent pot lining
EA017908B1 (en) GeClAND/OR SiClRECOVERY PROCESS FROM OPTICAL FIBERS OR GLASSY RESIDUES AND PROCESS FOR PRODUCING SiClFROM SiORICH MATERIALS
Kuang et al. Co-treatment of spent carbon anode and copper slag for reuse and the solidification of the constituent fluorine and heavy metals
JP2012239945A (en) Lead removal method for lead containing glass
CN106517209A (en) Method for treating spent cathodes of spent potlinings of aluminum electrolysis cells
WO2020175350A1 (en) Method for treating waste electronic substrate
JP3615076B2 (en) Equipment and method for recovering phosphorus from waste
JPWO2018168472A1 (en) Method of producing metallic manganese
WO2008117044A2 (en) Method for treating spent pot liner
JP4393915B2 (en) Method for treating substances containing zinc, lead and chlorine
JP2006274433A (en) Method for recovering noble metal from waste brick
JP6622627B2 (en) Method for recovering rare metal from rare metal-containing glass
JP3825603B2 (en) Zinc enrichment method for steelmaking dust
JP2014094366A (en) Method of separating heavy metal from glass
JP6511503B1 (en) Method for treating objects to be treated containing organic halides and heavy metals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140421

R150 Certificate of patent or registration of utility model

Ref document number: 5541090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350