JP5540676B2 - Carbon fiber precursor fiber, method for producing the same, and method for producing carbon fiber - Google Patents

Carbon fiber precursor fiber, method for producing the same, and method for producing carbon fiber Download PDF

Info

Publication number
JP5540676B2
JP5540676B2 JP2009279121A JP2009279121A JP5540676B2 JP 5540676 B2 JP5540676 B2 JP 5540676B2 JP 2009279121 A JP2009279121 A JP 2009279121A JP 2009279121 A JP2009279121 A JP 2009279121A JP 5540676 B2 JP5540676 B2 JP 5540676B2
Authority
JP
Japan
Prior art keywords
fiber
spinning
carbon fiber
coagulation bath
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009279121A
Other languages
Japanese (ja)
Other versions
JP2010255159A5 (en
JP2010255159A (en
Inventor
文彦 田中
大輔 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2009279121A priority Critical patent/JP5540676B2/en
Publication of JP2010255159A publication Critical patent/JP2010255159A/en
Publication of JP2010255159A5 publication Critical patent/JP2010255159A5/ja
Application granted granted Critical
Publication of JP5540676B2 publication Critical patent/JP5540676B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

本発明は、高性能かつ高品位な炭素繊維を効率よく大量に得るための炭素繊維前駆体繊維の製造方法および炭素繊維の製造方法に関するものである。   The present invention relates to a method for producing a carbon fiber precursor fiber and a method for producing a carbon fiber for efficiently obtaining a large amount of high-performance and high-quality carbon fibers.

炭素繊維は、他の繊維に比べて高い比強度および比弾性率を有するため、複合材料用補強繊維として、従来からのスポーツ用途や航空・宇宙用途に加え、自動車や土木・建築、圧力容器および風車ブレードなどの一般産業用途にも幅広く展開されつつあり、更なる生産性の向上と高性能化両立の要請が高い。   Since carbon fiber has higher specific strength and specific modulus than other fibers, it can be used as a reinforcing fiber for composite materials in addition to conventional sports applications, aerospace applications, automobiles, civil engineering / architecture, pressure vessels and Widely used in general industrial applications such as windmill blades, there is a strong demand for further improvements in productivity and higher performance.

炭素繊維の中で、最も広く利用されているポリアクリロニトリル(以下、PANと略記することがある)系炭素繊維は、その前駆体となるPAN系重合体からなる紡糸溶液を湿式紡糸、乾式紡糸または乾湿式紡糸して炭素繊維前駆体繊維(以下、前駆体繊維と略記することがある)を得た後、それを200〜400℃の温度の酸化性雰囲気下で加熱して耐炎化繊維へ転換し、少なくとも1000℃の温度の不活性雰囲気下で加熱して炭素化することによって工業的に製造されている。   Among the carbon fibers, the most widely used polyacrylonitrile (hereinafter sometimes abbreviated as PAN) carbon fiber is a wet spinning, dry spinning or spinning solution composed of a PAN polymer as its precursor. After carbon fiber precursor fiber (hereinafter may be abbreviated as precursor fiber) is obtained by dry and wet spinning, it is heated in an oxidizing atmosphere at a temperature of 200 to 400 ° C. to convert it into flame resistant fiber. However, it is produced industrially by heating and carbonizing in an inert atmosphere at a temperature of at least 1000 ° C.

PAN系炭素繊維の生産性向上は、炭素繊維前駆体繊維の紡糸、耐炎化あるいは炭素化のいずれの観点からも行われている。中でも炭素繊維前駆体繊維の生産性向上については、従来技術には次に示す問題があった。すなわち、炭素繊維前駆体繊維を得る際の紡糸においては、紡糸口金孔数とPAN系重合体溶液の特性に伴う凝固糸を引き取る限界速度(以下、可紡性とも記述することがある。)と、その凝固構造に伴う限界延伸倍率によって生産性が制限されている。すなわち、多フィラメントの炭素繊維前駆体繊維を得るに際し、引き取り速度と延伸倍率とで決まる最終的な紡糸速度がどれほど高められるかで、その生産性が制限されている。生産性を向上させるために紡糸速度を高めると延伸性低下が起こり、生産工程が不安定化しやすく、紡糸速度を下げると生産工程は安定化するものの生産性は低下するため、生産性の向上と生産工程の安定化の両立が困難であるという問題があった。   The improvement in the productivity of PAN-based carbon fibers has been performed from the viewpoints of spinning, flame resistance or carbonization of carbon fiber precursor fibers. Above all, with respect to the improvement of the productivity of the carbon fiber precursor fiber, the prior art has the following problems. That is, in spinning to obtain a carbon fiber precursor fiber, the number of spinneret holes and the critical speed (hereinafter also referred to as “spinnability”) for pulling the coagulated yarn associated with the characteristics of the PAN-based polymer solution. The productivity is limited by the limit draw ratio accompanying the solidified structure. That is, in obtaining a multifilament carbon fiber precursor fiber, the productivity is limited by how much the final spinning speed determined by the take-up speed and the draw ratio is increased. Increasing the spinning speed to improve productivity results in a decrease in stretchability, and the production process tends to become unstable.If the spinning speed is lowered, the production process stabilizes, but the productivity decreases. There was a problem that it was difficult to achieve both stabilization of the production process.

可紡性に大きな影響を与える要因として、紡糸方法がある。乾湿式紡糸法は、紡糸溶液が一旦空気中(エアギャップ)に吐出されてから凝固浴中に導かれるので、実質的な紡糸ドラフト率はエアギャップ内にある原液流で吸収され、可紡性が高いことから、生産性向上には優れた方法である。ただし、高速化していくと凝固浴中を高速で糸条が走行することによる液抵抗で発生した凝固張力に抗することができず、紡糸速度向上には限界があった。   There is a spinning method as a factor that greatly affects the spinnability. In the dry-wet spinning method, the spinning solution is once discharged into the air (air gap) and then introduced into the coagulation bath, so that the substantial spinning draft rate is absorbed by the raw liquid flow in the air gap and spinnable. Therefore, it is an excellent method for improving productivity. However, as the speed increased, it was impossible to withstand the coagulation tension generated by the liquid resistance caused by the yarn running in the coagulation bath at a high speed, and there was a limit to improving the spinning speed.

さらに、前駆体繊維の生産性向上だけでなく、前駆体繊維の製造エネルギー削減が必要である。凝固促進成分の少ない凝固浴条件では、製糸工程全般で使用する凝固促進成分の使用量低減につながり、凝固促進成分を溶媒と凝固促進成分の混合物から分離回収するためのエネルギーの削減ができる。しかしながら、凝固浴濃度が高いと凝固浴液の粘度が高くなり、粘度が高いほど凝固浴中を糸条が走行する際の口金中心部と口金真下への液流が速くなり、吐出が不安定となっていた。   Furthermore, not only the productivity improvement of a precursor fiber but the manufacturing energy reduction of a precursor fiber is required. Under the coagulation bath conditions with less coagulation accelerating component, the amount of coagulation accelerating component used in the whole spinning process is reduced, and energy for separating and recovering the coagulation accelerating component from the mixture of the solvent and the coagulation accelerating component can be reduced. However, if the concentration of the coagulation bath is high, the viscosity of the coagulation bath liquid increases. The higher the viscosity, the faster the liquid flow to the center of the base and just below the base when the yarn travels in the coagulation bath, resulting in unstable discharge. It was.

PAN系繊維において高速製糸するため、これまでいくつかの提案がなされている。本発明者らは、炭素繊維の生産コストを低減するため、特定の分子量分布を有するPAN系重合体を用いることで、紡糸速度を高め、かつ、紡糸ドラフト率を高めることができる技術を提案した(特許文献1参照)。しかしながら、高粘度の凝固浴液中、高速で糸条を引き取る際には、凝固浴液の流れが大きくなり、製糸工程中で毛羽を発生させることがあり、生産性向上の効果は限定的であった。また、高粘度の紡糸溶液を用い、特定のエアギャップを設けることによって紡糸ドラフト率を5〜50に設定する技術が提案されているが(特許文献2参照)、この提案は、羊毛様の優れた風合いと機械的性能を低下させることなく、湿熱特性を保持させようとしたものであり、実質的には紡糸口金の孔径を0.3mm、孔数36個、低粘度凝固浴液の条件としており、生産性を向上させようと多孔数、高粘度凝固浴液の条件で紡糸した場合には、安定に紡糸することは出来なかった。また、非穿孔部を有し、円環状の配列に穿孔された口金を用いることで口金直下の凝固浴液を整流することで均質な性能のアクリル繊維を得る技術が提案されているが(特許文献3参照)、低粘度凝固浴液で実験しており、かかる技術を用いても高粘度凝固浴液で高速紡糸をした場合には安定に紡糸することは出来なかった。   Several proposals have been made so far for high-speed yarn production in PAN-based fibers. In order to reduce the production cost of carbon fibers, the present inventors have proposed a technique that can increase the spinning speed and the spinning draft rate by using a PAN-based polymer having a specific molecular weight distribution. (See Patent Document 1). However, when the yarn is taken up at high speed in the high viscosity coagulation bath liquid, the flow of the coagulation bath liquid becomes large, and fluff may be generated during the yarn making process, and the effect of improving productivity is limited. there were. In addition, a technique has been proposed in which a spinning draft ratio is set to 5 to 50 by using a high-viscosity spinning solution and providing a specific air gap (see Patent Document 2). In order to maintain wet heat characteristics without deteriorating the texture and mechanical performance, the hole diameter of the spinneret is 0.3 mm, the number of holes is 36, and the conditions of the low viscosity coagulation bath liquid are Therefore, in order to improve productivity, when spinning was performed under the conditions of the number of pores and the high viscosity coagulation bath, stable spinning could not be achieved. In addition, a technique has been proposed in which a uniform performance acrylic fiber is obtained by rectifying the coagulation bath liquid directly under the base by using a base having a non-perforated portion and perforated in an annular array (patent) Experiments were conducted with a low-viscosity coagulation bath solution, and even when this technique was used, stable spinning could not be achieved when high-speed spinning was performed with a high-viscosity coagulation bath solution.

すなわち、従来知られているいずれの方法でも生産性の向上は不十分であり、多孔数化、高濃度凝固浴条件においても高速で紡糸ができる方法が求められている。   That is, productivity improvement is insufficient with any of the conventionally known methods, and a method capable of spinning at high speed even under the conditions of increasing the number of pores and high concentration coagulation bath is required.

一方、耐炎化工程においては、耐炎化の進行を早めようと耐炎化温度を高めると温度が高いほど繊維強度は室温強度よりも低下し、かつ、発熱反応による繊維束への蓄熱により炉の雰囲気温度よりも繊維束内の温度が高まり、糸切れを引き起こしていた。そのため、耐炎化工程では耐炎化温度を高めることが困難であり、耐炎化速度を高めることが困難であった。本発明者らが提案した技術では、前駆体繊維表面が平滑すぎて、繊維束の集束性が高いために耐炎化反応の繊維束での蓄熱が起こりやすかった(特許文献1、4、5参照)。   On the other hand, in the flameproofing process, if the flameproofing temperature is increased so as to accelerate the progress of flameproofing, the higher the temperature, the lower the fiber strength, and the furnace atmosphere by heat storage in the fiber bundle due to exothermic reaction. The temperature in the fiber bundle was higher than the temperature, causing yarn breakage. Therefore, in the flameproofing process, it is difficult to increase the flameproofing temperature, and it is difficult to increase the flameproofing speed. In the technique proposed by the present inventors, the precursor fiber surface is too smooth and the fiber bundle is highly converging, so heat accumulation in the fiber bundle of the flameproofing reaction is likely to occur (see Patent Documents 1, 4, and 5). ).

特開2008−248219号公報JP 2008-248219 A 特開平11−107034号公報JP-A-11-107034 特開昭62−125009号公報Japanese Patent Laid-Open No. 62-125209 特開2009−270248号公報JP 2009-270248 A 国際公開第2009/057332号International Publication No. 2009/057332

本発明は、前記した従来技術が有する問題を解決すること、すなわち、多孔数の紡糸口金を用いて、高粘度の凝固浴液中を高速で紡糸しようとしても、安定して炭素繊維前駆体繊維を製造でき、かつ、短時間の耐炎化においても毛羽の発生が少なく、安定して炭素繊維を製造する方法を提案することを目的とする。   The present invention solves the above-mentioned problems of the prior art, that is, even if an attempt is made to spin in a high viscosity coagulation bath liquid at a high speed using a spinneret having a porous number, the carbon fiber precursor fiber is stably produced. An object of the present invention is to propose a method for producing carbon fiber stably with less generation of fluff even in a short period of flame resistance.

上記の目的を達成するために、本発明の炭素繊維用前駆体繊維の製造方法は次の構成を有するものである。
(1)繊維を構成するポリアクリロニトリル系重合体のZ平均分子量Mz(F)が60万〜200万であり、多分散度Mz(F)/Mw(F)(Mw(F)は、繊維を構成するポリアクリロニトリル系重合体の重量平均分子量を表す)が2〜5であり、原子間力顕微鏡で3μmの範囲で測定した自乗平均面粗さRmsが17〜40nmであり、単繊維繊度が0.3〜1.5dtexであり、下記(I)の方法に準じて測定される単繊維断面直径の変動係数が0〜5%である炭素繊維前駆体繊維。
(I)繊維軸に垂直に高さを合わせて前駆体繊維束を切断し、光学顕微鏡を用いて単繊維の断面形状の観察を行うに際し、測定倍率を最も細い単繊維が1mm程度となるよう倍率200〜400倍程度とし、得られた画像を6枚分画像解析することにより前駆体繊維の単繊維の断面積、および、その断面積から単繊維の断面の直径(繊維径)を求め、その直径の変動係数(単繊維断面直径の変動係数)を求める。
(2)RAMAN分光法により求められ、明細書で規定するR値が2.7〜3.0であり、単繊維強度が6〜9cN/dtexであり、原糸結晶配向度が91〜94%である、前記(1)に記載の炭素繊維前駆体繊維。
(3)真円度が0.85〜1である、前記(1)または(2)に記載の炭素繊維前駆体繊維。
(4)短径が75〜200mm、孔数3000〜30000個である紡糸口金を用い、凝固浴液の紡糸条件での凝固温度における粘度が7〜15mPa・sの条件で凝固浴液中を凝固糸が35〜200m/分の速度で走行するように乾湿式紡糸する炭素繊維前駆体繊維の製造方法であって、Z平均分子量(Mz(P))が80万〜600万で、多分散度(Mz(P)/Mw(P))(Mw(P)は、重量平均分子量を表す)が2.7〜10であるポリアクリロニトリル系重合体を含有する紡糸溶液を用い、紡糸ドラフトを5〜50とし、紡糸口金の最外孔からの吐出した紡糸溶液の紡糸口金面鉛直方向との角度を5〜15°とすることを特徴とする炭素繊維前駆体繊維の製造方法。
(5)前記紡糸溶液を凝固価が23〜40gである凝固浴条件の凝固浴中に吐出する、前記(4)に記載の炭素繊維前駆体繊維の製造方法。
(6)前記凝固糸の引き取りローラーからの合計延伸倍率が10〜20倍、前駆体繊維束の巻き取り速度が600〜2000m/分である、前記(4)または(5)に記載の炭素繊維前駆体繊維の製造方法。
(7)前記凝固糸の引き取り速度が50〜200m/分である、前記(4)〜(6)のいずれかに記載の炭素繊維前駆体繊維の製造方法。
(8)沈み込む前の凝固浴液面と紡糸口金との距離を5〜10mmに設定し、紡糸によって凝固浴液面が沈み込む深さを5〜20mmに制御する、前記(4)〜(7)のいずれかに記載の炭素繊維前駆体繊維の製造方法。
(9)前記(1)〜(3)のいずれかに記載の炭素繊維前駆体繊維、または、前記(4)〜(8)のいずれかに記載の製造方法によって得られた炭素繊維前駆体繊維を、200〜300℃の温度の空気中において耐炎化する耐炎化工程と、耐炎化工程で得られた繊維を、300〜800℃の温度の不活性雰囲気中において予備炭化する予備炭化工程と、予備炭化工程で得られた繊維を1,000〜3,000℃の温度の不活性雰囲気中において炭化する炭化工程を順次経て炭素繊維を得る炭素繊維の製造方法。
In order to achieve the above object, the method for producing a precursor fiber for carbon fiber of the present invention has the following configuration.
(1) The Z-average molecular weight Mz (F) of the polyacrylonitrile polymer constituting the fiber is 600,000 to 2,000,000, and the polydispersity Mz (F) / Mw (F) (Mw (F) The weight average molecular weight of the polyacrylonitrile-based polymer is 2 to 5, the root mean square roughness Rms measured in the range of 3 μm with an atomic force microscope is 17 to 40 nm, and the single fiber fineness is 0. A carbon fiber precursor fiber having a coefficient of variation of a single fiber cross-sectional diameter of 0 to 5%, which is 3 to 1.5 dtex and measured according to the method of (I) below .
(I) Cutting the precursor fiber bundle by adjusting the height perpendicular to the fiber axis, and observing the cross-sectional shape of the single fiber using an optical microscope, the single fiber having the thinnest measurement magnification is about 1 mm. The magnification is about 200 to 400 times, and the obtained image is subjected to image analysis for six sheets to determine the cross-sectional area of the single fiber of the precursor fiber, and the cross-sectional area (fiber diameter) of the single fiber from the cross-sectional area, The variation coefficient of the diameter (variation coefficient of the single fiber cross-sectional diameter) is obtained.
(2) R value determined by RAMAN spectroscopy and specified in the specification is 2.7 to 3.0, single fiber strength is 6 to 9 cN / dtex, and raw yarn crystal orientation is 91 to 94%. The carbon fiber precursor fiber according to (1) above.
(3) The carbon fiber precursor fiber according to (1) or (2), wherein the roundness is 0.85 to 1.
(4) Using a spinneret having a minor axis of 75 to 200 mm and a number of holes of 3000 to 30000, the coagulation bath solution is coagulated in a coagulation temperature at a coagulation temperature of 7 to 15 mPa · s under spinning conditions. A method for producing a carbon fiber precursor fiber that is dry and wet-spun so that the yarn travels at a speed of 35 to 200 m / min, wherein the Z average molecular weight (Mz (P)) is 800,000 to 6 million, and the polydispersity (Mz (P) / Mw (P)) (Mw (P) represents a weight average molecular weight) A spinning solution containing a polyacrylonitrile polymer having a weight average molecular weight of 2.7 to 10 is used. 50, and the angle of the spinning solution discharged from the outermost hole of the spinneret to the spinneret surface vertical direction is 5 to 15 °.
(5) The method for producing a carbon fiber precursor fiber according to (4), wherein the spinning solution is discharged into a coagulation bath under coagulation bath conditions having a coagulation value of 23 to 40 g.
(6) The carbon fiber according to (4) or (5), wherein the total draw ratio of the coagulated yarn from the take-up roller is 10 to 20 times, and the winding speed of the precursor fiber bundle is 600 to 2000 m / min. A method for producing precursor fibers.
(7) The method for producing a carbon fiber precursor fiber according to any one of (4) to (6), wherein a take-up speed of the coagulated yarn is 50 to 200 m / min.
(8) The distance between the coagulation bath liquid level before sinking and the spinneret is set to 5 to 10 mm, and the depth at which the coagulation bath liquid level sinks by spinning is controlled to 5 to 20 mm. The manufacturing method of the carbon fiber precursor fiber in any one of 7).
(9) The carbon fiber precursor fiber according to any one of (1) to (3) or the carbon fiber precursor fiber obtained by the production method according to any one of (4) to (8). A flameproofing step for flameproofing in air at a temperature of 200 to 300 ° C, a precarbonization step for precarbonizing the fiber obtained in the flameproofing step in an inert atmosphere at a temperature of 300 to 800 ° C, A method for producing carbon fibers, wherein carbon fibers are sequentially obtained through carbonization steps in which the fibers obtained in the preliminary carbonization step are carbonized in an inert atmosphere at a temperature of 1,000 to 3,000 ° C.

本発明によれば、特定の分子量分布の大きなPAN系重合体溶液を用い、前駆体繊維の吐出・紡糸条件を調整することで、多孔数の紡糸口金を用いて、高粘度の凝固浴液中を高速で紡糸する際に随伴流が大きく、凝固浴液面変動が激しくとも、安定させて吐出させることができるため、その後の工程でも毛羽を発生させることなく、高品位な炭素繊維前駆体繊維を製造することができる。   According to the present invention, a PAN-based polymer solution having a large specific molecular weight distribution is used, and by adjusting the discharge and spinning conditions of the precursor fiber, a spinneret having a high number of pores is used to form a high viscosity coagulation bath liquid. High-quality carbon fiber precursor fibers can be stably discharged even when the coagulation bath has a large fluctuation in the liquid level of the coagulation bath. Can be manufactured.

また、高品位な炭素繊維前駆体繊維を用いることで焼成工程でも糸切れが少なく、毛羽が少なく高強度な炭素繊維を安定して製造することができる。   In addition, by using a high-quality carbon fiber precursor fiber, it is possible to stably produce a high-strength carbon fiber with less yarn breakage and less fluff even in the firing step.

さらに、適度な集束性を有し、単繊維断面直径の変動が少なく、結晶性の高い前駆体繊維を用いることで、高温で耐炎化しても毛羽の発生が極めて少なく、高速で大量に炭素繊維を製造することができる。   In addition, the use of precursor fibers with moderate bundling, small single fiber cross-sectional diameter, and high crystallinity results in very little fluff even when flame resistant at high temperatures, and a large amount of carbon fiber at high speed. Can be manufactured.

本発明は、特定の分子量分布を有するポリアクリロニトリル系重合体を含有する紡糸溶液と、該紡糸溶液に特化した吐出条件を採用することで随伴流が大きく、凝固浴液面変動が激しい厳しい条件下でもプロセス性が低下することなく、安定して製糸可能な、炭素繊維前駆体繊維を製造する方法を得られるものである。   The present invention adopts a spinning solution containing a polyacrylonitrile-based polymer having a specific molecular weight distribution, and a severe condition in which the accompanying flow is large and the coagulation bath liquid level fluctuation is severe by adopting discharge conditions specialized for the spinning solution. A process for producing a carbon fiber precursor fiber that can be stably produced without lowering the processability even under the above can be obtained.

なお、本発明では、重量平均分子量をMw、Z平均分子量をMz、数平均分子量をMnと略記し、繊維を構成する全PAN系重合体について示すときには添え字(F)を、紡糸溶液における全PAN系重合体について示すときには、添え字(P)を、付記するものとし、両者について共通の測定方法等についての説明の際には、添え字((F)または(P))は省略するものとする。なお、本発明において、各種分子量はゲルパーミエーションクロマトグラフ法(以下、GPC法と略記することがある)で測定され、ポリスチレン換算値で示すものとする。   In the present invention, the weight average molecular weight is abbreviated as Mw, the Z average molecular weight is abbreviated as Mz, the number average molecular weight is abbreviated as Mn, and when referring to all the PAN-based polymers constituting the fiber, the subscript (F) When referring to a PAN-based polymer, the subscript (P) is added, and in the description of the measurement method common to both, the subscript ((F) or (P)) is omitted. And In the present invention, various molecular weights are measured by a gel permeation chromatograph method (hereinafter sometimes abbreviated as GPC method), and are expressed in terms of polystyrene.

本発明で用いる紡糸溶液は、Z平均分子量Mz(P)と重量平均分子量Mw(P)との比であるMz(P)/Mw(P)が2.7以上であるPAN系重合体が溶媒に溶解されてなる。かかる分子量分布のPAN系重合体は分子量の大きな重合体成分を含んでいるので、本発明の効果が顕著に現れる。   In the spinning solution used in the present invention, a PAN-based polymer having a ratio of Z average molecular weight Mz (P) to weight average molecular weight Mw (P) of Mz (P) / Mw (P) of 2.7 or more is a solvent. It is dissolved in. Since the PAN-based polymer having such a molecular weight distribution contains a polymer component having a large molecular weight, the effects of the present invention are remarkably exhibited.

まず、本発明で好適に用いることができるPAN系重合体について説明する。本発明では、ゲルパーミエーションクロマトグラフ(以下、GPCと略記する。)法(測定法の詳細は後述する。)で測定されるZ平均分子量(以下、Mz(P)と略記する。)が80万〜600万であり、多分散度(Mz(P)/Mw(P))(Mw(P)は、重量平均分子量を表す。以下、Mw(P)と略記する。)が2.7〜10である。Mz(P)は、好ましくは200万〜600万であり、より好ましくは250万〜400万であり、さらに好ましくは250万〜320万である。また、多分散度(Mz(P)/Mw(P))は、好ましくは5〜8であり、より好ましくは5.5〜7である。   First, the PAN polymer that can be suitably used in the present invention will be described. In the present invention, the Z average molecular weight (hereinafter abbreviated as Mz (P)) measured by the gel permeation chromatograph (hereinafter abbreviated as GPC) method (the details of the measurement method will be described later) is 80. The polydispersity (Mz (P) / Mw (P)) (Mw (P) represents a weight average molecular weight, hereinafter abbreviated as Mw (P)) is 2.7 to 6,000,000. 10. Mz (P) is preferably 2 million to 6 million, more preferably 2.5 million to 4 million, and further preferably 2.5 million to 3.2 million. The polydispersity (Mz (P) / Mw (P)) is preferably 5 to 8, and more preferably 5.5 to 7.

GPC法により測定される平均分子量、及び、分子量の分布に関する指標について以下に説明する。   The index regarding the average molecular weight and molecular weight distribution measured by the GPC method will be described below.

GPC法により測定される平均分子量には、数平均分子量(以下、Mnと略記する)、重量平均分子量(Mw(P))、z平均分子量(Mz(P))、Z+1平均分子量(MZ+1(P))がある。Mnは、高分子化合物に含まれる低分子量物の寄与を敏感に受ける。これに対して、Mw(P)は、高分子量物の寄与をMnより敏感に受ける。Mz(P)は、高分子量物の寄与をMw(P)より敏感に受け、Z+1平均分子量(以下、MZ+1(P)と略記する)は、高分子量物の寄与をMz(P)より敏感に受ける。 The average molecular weight measured by the GPC method includes number average molecular weight (hereinafter abbreviated as Mn), weight average molecular weight (Mw (P)), z average molecular weight (Mz (P)), Z + 1 average molecular weight (M Z + 1 ( P)). Mn is sensitively influenced by the low molecular weight substances contained in the polymer compound. In contrast, Mw (P) is more sensitive to the contribution of high molecular weight than Mn. Mz (P) is more sensitive to the contribution of high molecular weight than Mw (P), and Z + 1 average molecular weight (hereinafter abbreviated as M Z + 1 (P)) is more sensitive to the contribution of high molecular weight than Mz (P). To receive.

GPC法により測定される平均分子量を用いて得られる分子量の分布に関する指標には、分子量分布(Mw(P)/Mn)や多分散度(Mz(P)/Mw(P)およびMZ+1(P)/Mw(P))があり、これらを用いることにより分子量の分布の状況を示すことができる。分子量分布(Mw(P)/Mn)が1であるとき単分散であり、分子量分布(Mw(P)/Mn)が1より大きくなるにつれて分子量の分布が低分子量側を中心にブロードになることを示すのに対して、多分散度(Mz(P)/Mw(P))は1より大きくなるにつれて、分子量の分布が高分子量側を中心にブロードになることを示す。また、多分散度(MZ+1(P)/Mw(P))も1より大きくなるにつれて、分子量の分布が高分子量側を中心にブロードになる。特に、多分散度(MZ+1(P)/Mw(P))は、Mw(P)の大きく異なる2種のポリマーを混合しているような場合には、顕著に大きくなる。ここで、GPC法により測定される分子量はポリスチレン換算の分子量を示す。 The molecular weight distribution obtained using the average molecular weight measured by the GPC method includes molecular weight distribution (Mw (P) / Mn), polydispersity (Mz (P) / Mw (P) and M Z + 1 (P ) / Mw (P)), and the use of these can indicate the distribution of molecular weight. When the molecular weight distribution (Mw (P) / Mn) is 1, it is monodisperse, and as the molecular weight distribution (Mw (P) / Mn) becomes larger than 1, the molecular weight distribution becomes broader around the low molecular weight side. In contrast, as the polydispersity (Mz (P) / Mw (P)) becomes larger than 1, the molecular weight distribution becomes broader around the high molecular weight side. Further, as the polydispersity (M Z + 1 (P) / Mw (P)) becomes larger than 1, the molecular weight distribution becomes broader around the high molecular weight side. In particular, the polydispersity (M Z + 1 (P) / Mw (P)) is remarkably increased when two types of polymers having significantly different Mw (P) are mixed. Here, the molecular weight measured by GPC method shows the molecular weight of polystyrene conversion.

本発明のPAN系重合体を用いることにより、かかる重合体を含む紡糸溶液を湿式紡糸、乾式紡糸または乾湿式紡糸して炭素繊維前駆体繊維を得る場合の生産性の向上と安定化の両立を図りつつ、毛羽立ちの少ない高品位な炭素繊維前駆体繊維を製造することができるメカニズムは、必ずしも明らかではないが、次のように考えられる。乾式紡糸または乾湿式紡糸では、口金孔直後から凝固されるまでの間でPAN系重合体が伸長変形する際に、紡糸溶液内ではPAN系重合体の超高分子量物と高分子量物が絡み合い、超高分子量物を中心に絡み合い間の分子鎖が緊張することで伸長粘度の急激な増大、すなわち、歪み硬化がおこる。この、口金孔直後から凝固されるまでの間でのPAN系重合体溶液の細化に伴い細化部分の伸長粘度が高くなり、流動安定化するため紡糸速度を高め、かつ、紡糸ドラフト率を高めることができる。紡糸溶液状態では、凝固しなくても、数10m/分で曳き上げ巻き取りでき、溶液紡糸では考えられないほど高い曳糸性が得られるという特に顕著な効果が得られるが、湿式紡糸、乾式紡糸または乾湿式紡糸して凝固された以降の繊維においても同様に、伸長粘度の増大が起こり、延伸性が向上するため、毛羽の発生が抑制される。   By using the PAN-based polymer of the present invention, it is possible to achieve both improvement in productivity and stabilization when a carbon fiber precursor fiber is obtained by wet spinning, dry spinning or dry-wet spinning of a spinning solution containing such a polymer. A mechanism that can produce a high-quality carbon fiber precursor fiber with less fuzzing is not necessarily clear, but is considered as follows. In dry spinning or dry-wet spinning, when the PAN polymer is stretched and deformed immediately after the mouthpiece hole is solidified, the ultra high molecular weight product and the high molecular weight product of the PAN polymer are entangled in the spinning solution, When the molecular chain between the entangled molecules is tensioned around an ultrahigh molecular weight substance, a rapid increase in elongational viscosity, that is, strain hardening occurs. As the PAN-based polymer solution is thinned immediately after the die hole is solidified, the elongational viscosity of the thinned portion is increased, the spinning speed is increased to stabilize the flow, and the spinning draft rate is increased. Can be increased. In the spinning solution state, even if it does not coagulate, it can be wound up and wound at several tens of meters / minute, and a particularly remarkable effect is obtained that a spinnability that is unthinkable in solution spinning can be obtained. Similarly, in the fibers after spinning or dry-wet spinning and coagulating, the elongational viscosity is increased and the stretchability is improved, so that the generation of fluff is suppressed.

そのため、多分散度(Mz(P)/Mw(P))が大きいほど好ましく、Mz(P)が80万〜600万の範囲であれば、多分散度(Mz(P)/Mw(P))が2.7以上において、充分な歪み硬化が生じPAN系重合体を含む紡糸溶液の吐出安定性向上度合が充分となる。また、多分散度(Mz(P)/Mw(P))が、大きすぎる場合、歪み硬化が強すぎて、PAN系重合体を含む紡糸溶液の吐出安定性向上効果が低下する場合があるが、Mz(P)が80万〜600万の範囲で、多分散度(Mz(P)/Mw(P))が、10以下であると、PAN系重合体を含む紡糸溶液の吐出安定性向上度合は充分となる。また、多分散度(Mz(P)/Mw(P))が2.7〜10の範囲において、Mz(P)が80万未満では、前駆体繊維の強度が不足する場合があり、Mz(P)が600万より大きいと吐出が困難となる場合がある。   Therefore, it is preferable that the polydispersity (Mz (P) / Mw (P)) is large. If Mz (P) is in the range of 800,000 to 6 million, the polydispersity (Mz (P) / Mw (P)) ) Of 2.7 or more, sufficient strain hardening occurs, and the degree of improvement in the discharge stability of the spinning solution containing the PAN polymer is sufficient. Further, when the polydispersity (Mz (P) / Mw (P)) is too large, strain hardening is too strong, and the discharge stability improvement effect of the spinning solution containing the PAN-based polymer may be reduced. When the Mz (P) is in the range of 800,000 to 6 million and the polydispersity (Mz (P) / Mw (P)) is 10 or less, the ejection stability of the spinning solution containing the PAN polymer is improved. The degree is sufficient. Further, when the polydispersity (Mz (P) / Mw (P)) is in the range of 2.7 to 10, if the Mz (P) is less than 800,000, the strength of the precursor fiber may be insufficient, and Mz (P If P) is larger than 6 million, it may be difficult to discharge.

また、Mw(P)/Mn(P)は、小さいほど炭素繊維の構造欠陥となりやすい低分子成分の含有量が少ないため、小さいほど好ましく、Mz(P)/Mw(P)よりもMw(P)/Mn(P)が小さいことが好ましい。すなわち、高分子量側にも、低分子量側にもブロードであっても、吐出安定性低下は少ないが、低分子量側はなるべくシャープであることが好ましく、Mz(P)/Mw(P)がMw(P)/Mn(P)に対して、1.5倍以上であることが好ましく、更には1.8倍以上であることがより好ましい。本発明者らの検討によると、通常、アクリロニトリル(以下、ANと略記する)の重合でよく行われている、水系懸濁、溶液法などのラジカル重合においては、分子量分布として低分子量側に裾を引いているため、Mw(P)/MnがMz(P)/Mw(P)よりも大きくなる。そのため、重合開始剤の種類と割合や逐次添加など、特殊な条件で重合を行うか、一般的なラジカル重合を用いる場合、2種以上のPAN系重合体を混合する方法があり、重合体を混合する方法が簡便である。混合する種類は、少ないほど簡便であり、吐出安定性の観点からも2種で十分なことが多い。   Further, the smaller Mw (P) / Mn (P) is, the smaller the content of low molecular components that are likely to be structural defects of the carbon fiber. Therefore, the smaller the Mw (P) / Mn (P), the more preferable Mw (P) / Mw (P). ) / Mn (P) is preferably small. That is, even if the molecular weight side is broad and the low molecular weight side is broad, the drop in ejection stability is small, but the low molecular weight side is preferably as sharp as possible, and Mz (P) / Mw (P) is Mw. It is preferably 1.5 times or more, and more preferably 1.8 times or more with respect to (P) / Mn (P). According to the study by the present inventors, in radical polymerization such as aqueous suspension or solution method, which is usually performed in the polymerization of acrylonitrile (hereinafter abbreviated as AN), the molecular weight distribution has a lower molecular weight side. Therefore, Mw (P) / Mn becomes larger than Mz (P) / Mw (P). Therefore, when performing polymerization under special conditions such as the type and ratio of the polymerization initiator and sequential addition, or when using general radical polymerization, there is a method of mixing two or more PAN-based polymers. The method of mixing is simple. The smaller the number of types to be mixed, the easier and the two types are often sufficient from the viewpoint of ejection stability.

混合する重合体のMw(P)は、Mw(P)の大きいPAN系重合体をA成分とし、Mw(P)の小さいPAN系重合体をB成分とすると、A成分のMw(P)は好ましくは100万〜1500万であり、より好ましくは100万〜500万であり、B成分のMw(P)は5万〜90万であることが好ましい。A成分とB成分のMw(P)の差が大きいほど、混合された重合体のMz(P)/Mw(P)が大きくなる傾向があるため好ましい態様であるが、A成分のMw(P)が1500万より大きいときはA成分の生産性は低下する場合があり、B成分のMw(P)が15万未満のときは前駆体繊維の強度が不足する場合があり、Mz(P)/Mw(P)は10以下とすることが現実的である。   The Mw (P) of the polymer to be mixed is a PAN-based polymer having a large Mw (P) as the A component, and a PAN-based polymer having a small Mw (P) as the B component, and the Mw (P) of the A component is It is preferably 1 million to 15 million, more preferably 1 million to 5 million, and Mw (P) of the B component is preferably 50,000 to 900,000. This is a preferred embodiment because the larger the difference between the Mw (P) of the A component and the B component, the greater the Mz (P) / Mw (P) of the mixed polymer. ) Is greater than 15 million, the productivity of the A component may decrease, and when the Mw (P) of the B component is less than 150,000, the strength of the precursor fiber may be insufficient, and Mz (P) It is realistic that / Mw (P) is 10 or less.

具体的には、A成分とB成分の重量平均分子量の比は、4〜45であることが好ましく、20〜45であることがより好ましい。   Specifically, the ratio of the weight average molecular weight of the A component and the B component is preferably 4 to 45, and more preferably 20 to 45.

また、A成分とB成分の重量比は、0.003〜0.3であることが好ましく、0.005〜0.2であることがより好ましく、0.01〜0.1であることが更に好ましい。A成分とB成分の重量比が0.003未満では、歪み硬化が不足することがあり、また0.3より大きいときは重合体溶液の吐出粘度が上がりすぎて吐出困難となることがある。   The weight ratio of the A component and the B component is preferably 0.003 to 0.3, more preferably 0.005 to 0.2, and 0.01 to 0.1. Further preferred. When the weight ratio of the A component to the B component is less than 0.003, strain hardening may be insufficient, and when it is greater than 0.3, the discharge viscosity of the polymer solution may increase so that the discharge may become difficult.

A成分とB成分の重合体を混合する場合、両重合体を混合してから溶媒で希釈する方法、重合体それぞれを溶媒に希釈したもの同士を混合する方法、溶解しにくい高分子量物であるA成分を溶媒に希釈した後にB成分を混合溶解する方法、および高分子量物であるA成分を溶媒に希釈したものとB成分を構成する単量体を混合して単量体を溶液重合することにより混合する方法などを採用することができる。混合には、混合槽で攪拌する方法やギヤポンプなどで定量してスタティックミキサーで混合する方法、二軸押出機を用いる方法などが好ましく採用できる。高分子量物を均一に溶解させる観点から、高分子量物であるA成分を初めに溶解する方法が好ましい。特に、炭素繊維前駆体製造用とする場合には、高分子量物であるA成分の溶解状態が極めて重要であり、わずかであっても未溶解物が存在していた場合には異物として認識され、炭素繊維内部にボイドを形成することがある。   When mixing the polymer of component A and component B, a method of mixing both polymers and then diluting with a solvent, a method of mixing each of the polymers diluted in a solvent, and a high molecular weight material that is difficult to dissolve A method in which the B component is mixed and dissolved after diluting the A component in the solvent, and a solution in which the monomer constituting the B component is mixed with a solution obtained by diluting the high molecular weight A component in the solvent. It is possible to employ a mixing method. For mixing, a method of stirring in a mixing tank, a method of quantifying with a gear pump or the like and mixing with a static mixer, a method of using a twin screw extruder, or the like can be preferably employed. From the viewpoint of uniformly dissolving the high molecular weight product, a method of first dissolving the component A which is a high molecular weight product is preferable. In particular, in the case of producing a carbon fiber precursor, the dissolved state of the high molecular weight component A is extremely important, and even if a slight amount of undissolved material exists, it is recognized as a foreign substance. Voids may be formed inside the carbon fiber.

具体的には、A成分の溶媒に対する重合体濃度、すなわちA成分と溶媒のみからなる溶液を仮想したときの、その溶液中におけるA成分の重合体濃度を好ましくは0.1〜5重量%になるようにした後、B成分を混合する、あるいは、B成分を構成する単量体を混合して重合する。上記のA成分の重合体濃度は、より好ましくは0.3〜3重量%であり、さらに好ましくは0.5〜2重量%である。上記のA成分の重合体濃度は、より具体的には、重合体の集合状態として、重合体がわずかに重なり合った準希薄溶液とすることが好ましく、B成分を混合する、あるいは、B成分を構成する単量体を混合して重合する際に、混合状態が均一となりやすいため、孤立鎖の状態となる希薄溶液とすることが更に好ましい態様である。希薄溶液となる濃度は、重合体の分子量と溶媒に対する重合体の溶解性によって決まる分子内排除体積によって決まるとみられるため、一概には決められないが、本発明においては概ね前記範囲にすることにより凝集して異物となることが少ない。上記の重合体濃度が5重量%を超える場合は、A成分の未溶解物が存在することがあり、0.1重量%未満の場合は、分子量にもよるが希薄溶液となっているため効果が飽和していることが多い。   Specifically, the polymer concentration of the component A with respect to the solvent, that is, when assuming a solution consisting only of the component A and the solvent, the polymer concentration of the component A in the solution is preferably 0.1 to 5% by weight. Then, the B component is mixed, or the monomers constituting the B component are mixed and polymerized. The polymer concentration of the component A is more preferably 0.3 to 3% by weight, and further preferably 0.5 to 2% by weight. More specifically, the polymer concentration of the component A is preferably a quasi-dilute solution in which the polymers are slightly overlapped as an aggregate state of the polymer, and the component B is mixed or the component B is mixed. When the constituent monomers are mixed and polymerized, the mixed state is likely to be uniform, so that a dilute solution that is in an isolated chain state is a more preferable embodiment. The concentration of the dilute solution is considered to be determined by the intramolecular exclusion volume determined by the polymer molecular weight and the solubility of the polymer in the solvent. Less likely to agglomerate and become foreign matter. When the polymer concentration exceeds 5% by weight, an undissolved product of component A may be present. When the polymer concentration is less than 0.1% by weight, it is effective because it is a dilute solution depending on the molecular weight. Is often saturated.

上記のように、A成分の溶媒に対する重合体濃度を好ましくは0.1〜5重量%になるようにした後、それにB成分を混合溶解する方法でもかまわないが、工程省略の観点から高分子量物を溶媒に希釈したものとB成分を構成する単量体を混合して単量体を溶液重合することにより混合する方法を採用する方が好ましい。   As described above, the polymer concentration with respect to the solvent of the component A is preferably 0.1 to 5% by weight, and then the method of mixing and dissolving the component B may be used. It is preferable to employ a method of mixing a product obtained by diluting a product with a solvent and a monomer constituting the component B and mixing the monomers by solution polymerization.

A成分の溶媒に対する重合体濃度を0.1〜5重量%になるようにする方法としては、希釈による方法でも重合による方法でも構わない。希釈する場合は、均一に希釈できるまで撹拌することが重要であり、希釈温度としては50〜120℃が好ましく、希釈時間は希釈温度や希釈前濃度によって異なるため、適宜設定すればよい。希釈温度が50℃未満の場合は、希釈に時間がかかることがあり、120℃を超える場合は、A成分が変質する恐れがある。また、重合体の重なり合いを希釈する工程を減らし、均一に混合する観点から、前記のA成分の製造から前記のB成分の混合開始、あるいは、B成分を構成する単量体の重合開始までの間、A成分の溶媒に対する重合体濃度を0.1〜5重量%の範囲に制御することが好ましい。具体的には、A成分を溶液重合により製造する際に、重合体濃度が5重量%以下で重合を停止させ、それにB成分を混合する、あるいは、B成分を構成する単量体を混合しその単量体を重合する方法である。通常、溶媒に対する仕込み単量体の割合が少ないと、溶液重合により高分子量物を製造ことは困難なことが多いため仕込み単量体の割合を多くするが、上記のA成分の重合体濃度が5重量%以下の段階では、重合率が低く、未反応単量体が多く残存していることになる。未反応単量体を揮発除去してから、B成分を混合してもかまわないが、工程省略の観点からその未反応単量体を用いてB成分を溶液重合することが好ましい。   The method for adjusting the polymer concentration of the component A to the solvent to 0.1 to 5% by weight may be a method using dilution or a method using polymerization. When diluting, it is important to stir until it can be diluted uniformly, and the dilution temperature is preferably 50 to 120 ° C. The dilution time varies depending on the dilution temperature and the concentration before dilution, and may be appropriately set. When the dilution temperature is less than 50 ° C, it may take time to dilute, and when it exceeds 120 ° C, the component A may be altered. In addition, from the viewpoint of reducing the process of diluting the overlapping of the polymers and mixing them uniformly, from the production of the A component to the start of mixing of the B component, or the polymerization of the monomer constituting the B component. Meanwhile, the polymer concentration with respect to the solvent of the component A is preferably controlled in the range of 0.1 to 5% by weight. Specifically, when the component A is produced by solution polymerization, the polymerization is stopped when the polymer concentration is 5% by weight or less, and the component B is mixed therewith, or the monomer constituting the component B is mixed. This is a method of polymerizing the monomer. Usually, when the ratio of the charged monomer to the solvent is small, it is often difficult to produce a high molecular weight product by solution polymerization, so the ratio of the charged monomer is increased. At the stage of 5% by weight or less, the polymerization rate is low and a large amount of unreacted monomer remains. The B component may be mixed after removing the unreacted monomer by volatilization, but from the viewpoint of omitting the process, it is preferable to solution polymerize the B component using the unreacted monomer.

本発明で好適に用いられるA成分としては、PANと相溶性を有することが望ましく、相溶性の観点からPAN系重合体であることが好ましい。組成としては、ANが好ましくは93〜100モル%であり、ANと共重合可能な単量体を7モル%以下なら共重合させてもよいが、共重合成分の連鎖移動定数がANより小さく、必要とするMw(P)を得にくい場合は、共重合成分の量をなるべく減らすことが好ましい。   The component A preferably used in the present invention desirably has compatibility with PAN, and is preferably a PAN-based polymer from the viewpoint of compatibility. As the composition, AN is preferably 93 to 100 mol%, and copolymerization may be carried out if the monomer copolymerizable with AN is 7 mol% or less, but the chain transfer constant of the copolymerization component is smaller than AN. When it is difficult to obtain the required Mw (P), it is preferable to reduce the amount of the copolymer component as much as possible.

ANと共重合可能な単量体としては、例えば、アクリル酸、メタクリル酸、イタコン酸およびそれらアルカリ金属塩、アンモニウム塩および低級アルキルエステル類、アクリルアミドおよびその誘導体、アリルスルホン酸、メタリルスルホン酸およびそれらの塩類またはアルキルエステル類などを用いることができる。また、A成分は実質的に直鎖状のPANであることが好ましく、多官能のビニル基を有する単量体などを用いないことが好ましい。分岐や架橋構造は、簡便には、ゲルパーミエーションクロマトグラフ法−多角度光散乱光度(GPC―MALLS)法で求められる分子量と回転半径の関係が直鎖状PANのその関係と同一かどうかで判断できる。共有結合や水素結合、イオン結合による架橋構造を有するものは分子量の割に回転半径が小さくなる傾向を示し、本発明では、直鎖状PANに含めない。   Examples of monomers copolymerizable with AN include acrylic acid, methacrylic acid, itaconic acid and their alkali metal salts, ammonium salts and lower alkyl esters, acrylamide and its derivatives, allyl sulfonic acid, methallyl sulfonic acid and Those salts or alkyl esters can be used. Moreover, it is preferable that A component is substantially linear PAN, and it is preferable not to use the monomer etc. which have a polyfunctional vinyl group. The branching and cross-linking structure is simply determined by whether the relationship between the molecular weight and the radius of rotation obtained by the gel permeation chromatography method-multi-angle light scattering photometry (GPC-MALLS) method is the same as that of linear PAN. I can judge. Those having a crosslinked structure by a covalent bond, a hydrogen bond, or an ionic bond tend to have a smaller radius of rotation than the molecular weight, and are not included in the linear PAN in the present invention.

A成分であるPAN系重合体を製造するための重合方法としては、溶液重合法、懸濁重合法および乳化重合法などから選択することができるが、ANや共重合成分を均一に重合する目的からは、溶液重合法を用いることが好ましい。溶液重合法を用いて重合する場合、溶媒としては、例えば、塩化亜鉛水溶液、ジメチルスルホキシド、ジメチルホルムアミドおよびジメチルアセトアミドなどPANが可溶な溶媒が好適に用いられる。必要とするMw(P)を得にくい場合は、連鎖移動定数の大きい溶媒、すなわち、塩化亜鉛水溶液による溶液重合法、あるいは水による懸濁重合法も好適に用いられる。   The polymerization method for producing the PAN-based polymer as component A can be selected from a solution polymerization method, a suspension polymerization method, an emulsion polymerization method, etc., and the purpose of uniformly polymerizing AN and copolymer components It is preferable to use a solution polymerization method. In the case of polymerizing using the solution polymerization method, as the solvent, for example, a solvent in which PAN is soluble, such as an aqueous zinc chloride solution, dimethyl sulfoxide, dimethylformamide, and dimethylacetamide, is preferably used. When it is difficult to obtain the required Mw (P), a solvent having a large chain transfer constant, that is, a solution polymerization method using a zinc chloride aqueous solution or a suspension polymerization method using water is also preferably used.

本発明で好適に用いられるB成分であるPAN系重合体の組成としては、ANが好ましくは93〜100モル%であり、ANと共重合可能な単量体を7モル%以下なら共重合させてもよいが、共重合成分量が多くなるほど耐炎化工程で共重合部分での熱分解による分子断裂が顕著となり、得られる炭素繊維の引張強度が低下する。   As the composition of the PAN-based polymer, which is the B component suitably used in the present invention, AN is preferably 93 to 100 mol%, and a monomer copolymerizable with AN is copolymerized if it is 7 mol% or less. However, as the amount of the copolymerization component increases, molecular breakage due to thermal decomposition at the copolymerization portion becomes more prominent in the flameproofing step, and the tensile strength of the resulting carbon fiber decreases.

ANと共重合可能な単量体としては、耐炎化を促進する観点から、例えば、アクリル酸、メタクリル酸、イタコン酸およびそれらアルカリ金属塩、アンモニウム塩および低級アルキルエステル類、アクリルアミドおよびその誘導体、アリルスルホン酸、メタリルスルホン酸およびそれらの塩類またはアルキルエステル類などを用いることができる。   Examples of the monomer copolymerizable with AN include, for example, acrylic acid, methacrylic acid, itaconic acid and alkali metal salts thereof, ammonium salts and lower alkyl esters, acrylamide and derivatives thereof, allyl, from the viewpoint of promoting flame resistance. Sulfonic acid, methallylsulfonic acid and their salts or alkyl esters can be used.

B成分であるPAN系重合体を製造するための重合方法としては、溶液重合法、懸濁重合法および乳化重合法などから選択することができるが、ANや共重合成分を均一に重合する目的からは、溶液重合法を用いることが好ましい。溶液重合法を用いて重合する場合、溶媒としては、例えば、塩化亜鉛水溶液、ジメチルスルホキシド、ジメチルホルムアミドおよびジメチルアセトアミドなどPANが可溶な溶媒が好適に用いられる。中でも、PANの溶解性の観点から、ジメチルスルホキシドを用いることが好ましい。これらの重合に用いる原料は、全て濾過精度1μm以下のフィルター濾材を通した後に用いることが好ましい。   The polymerization method for producing the B component PAN-based polymer can be selected from a solution polymerization method, a suspension polymerization method, an emulsion polymerization method, and the like. It is preferable to use a solution polymerization method. In the case of polymerizing using the solution polymerization method, as the solvent, for example, a solvent in which PAN is soluble, such as an aqueous zinc chloride solution, dimethyl sulfoxide, dimethylformamide, and dimethylacetamide, is preferably used. Among these, dimethyl sulfoxide is preferably used from the viewpoint of PAN solubility. The raw materials used for these polymerizations are preferably used after passing through a filter medium having a filtration accuracy of 1 μm or less.

前記したPAN系重合体を、ジメチルスルホキシド、ジメチルホルムアミドおよびジメチルアセトアミドなどPAN系重合体が可溶な溶媒に溶解し、紡糸溶液とする。溶液重合を用いる場合、重合に用いられる溶媒と紡糸溶媒を同じものにしておくと、得られたPAN系重合体を分離し紡糸溶媒に再溶解する工程が不要となる。   The aforementioned PAN-based polymer is dissolved in a solvent in which the PAN-based polymer is soluble, such as dimethyl sulfoxide, dimethylformamide, and dimethylacetamide, to obtain a spinning solution. In the case of using solution polymerization, if the solvent used for polymerization and the spinning solvent are the same, a step of separating the obtained PAN-based polymer and re-dissolving in the spinning solvent becomes unnecessary.

紡糸溶液における重合体濃度は、5〜30重量%の範囲であることが好ましく、14〜25重量%であることがより好ましく、18〜23重量%であることが最も好ましい。重合体濃度が5重量%未満では溶媒使用量が多くなり、口金単孔からの紡糸溶液の吐出量が増加し、紡糸条件設定上、紡糸ドラフトを高めにくいことがある。一方、重合体濃度が30重量%を超えると絡み合いが多くなることで絡み合い間分子量が低下し、可紡性が低下することがある。紡糸溶液の重合体濃度は、使用する溶媒量により調製することができる。   The polymer concentration in the spinning solution is preferably in the range of 5 to 30% by weight, more preferably 14 to 25% by weight, and most preferably 18 to 23% by weight. If the polymer concentration is less than 5% by weight, the amount of solvent used increases, and the amount of spinning solution discharged from the single die hole increases, which may make it difficult to increase the spinning draft in setting spinning conditions. On the other hand, when the polymer concentration exceeds 30% by weight, the entanglement increases, the molecular weight between the entanglements decreases, and the spinnability may decrease. The polymer concentration of the spinning solution can be adjusted according to the amount of solvent used.

本発明において重合体濃度とは、PAN系重合体の溶液中に含まれるPAN系重合体の重量%である。具体的には、PAN系重合体の溶液を計量した後、PAN系重合体を溶解せずかつPAN系重合体溶液に用いる溶媒と相溶性のあるものに、計量したPAN系重合体溶液を脱溶媒させた後、PAN系重合体を計量する。重合体濃度は、脱溶媒後のPAN系重合体の重量を、脱溶媒する前のPAN系重合体の溶液の重量で割ることにより算出する。   In the present invention, the polymer concentration is the weight percent of the PAN polymer contained in the PAN polymer solution. Specifically, after weighing the PAN-based polymer solution, the measured PAN-based polymer solution is removed to a solvent that does not dissolve the PAN-based polymer and is compatible with the solvent used for the PAN-based polymer solution. After solvent, the PAN polymer is weighed. The polymer concentration is calculated by dividing the weight of the PAN polymer after desolvation by the weight of the PAN polymer solution before desolvation.

また、45℃の温度における紡糸溶液の粘度は、15〜200Pa・sの範囲であることが好ましく、より好ましくは20〜150Pa・sの範囲であることがより好ましく、30〜100Pa・sの範囲であることが最も好ましい。溶液粘度が15Pa・s未満では、紡糸糸条の賦形性が低下するため、口金から出た糸条を引き取る速度、すなわち可紡性が低下する傾向を示す。また、溶液粘度は200Pa・sを超えると絡み合いが多くなり、分子量低下しやすくなる傾向を示す。紡糸溶液の粘度は、重量平均分子量と重合体濃度、溶媒の種類により制御することができる。   Further, the viscosity of the spinning solution at a temperature of 45 ° C. is preferably in the range of 15 to 200 Pa · s, more preferably in the range of 20 to 150 Pa · s, and more preferably in the range of 30 to 100 Pa · s. Most preferably. When the solution viscosity is less than 15 Pa · s, since the formability of the spun yarn is lowered, the speed at which the yarn taken out from the die is taken, that is, the spinnability tends to be lowered. Further, when the solution viscosity exceeds 200 Pa · s, the entanglement increases and the molecular weight tends to decrease. The viscosity of the spinning solution can be controlled by the weight average molecular weight, the polymer concentration, and the type of solvent.

45℃の温度におけるPAN系重合体溶液の粘度は、B型粘度計により測定することができる。具体的には、ビーカーに入れたPAN系重合体溶液を、45℃の温度に温度調節された温水浴に浸して調温した後、B型粘度計として、例えば、(株)東京計器製B8L型粘度計を用い、ローターNo.4を使用し、PAN系重合体溶液の粘度が0〜100Pa・sの範囲はローター回転数6r.p.m.で測定し、またそのPAN系重合体溶液の粘度が100〜1000Pa・sの範囲はローター回転数0.6r.p.m.で測定する。   The viscosity of the PAN polymer solution at a temperature of 45 ° C. can be measured with a B-type viscometer. Specifically, the PAN-based polymer solution placed in a beaker is immersed in a hot water bath adjusted to a temperature of 45 ° C. to adjust the temperature, and as a B-type viscometer, for example, B8L manufactured by Tokyo Keiki Co., Ltd. Using a viscometer, rotor No. 4 is used, and the viscosity of the PAN polymer solution is in the range of 0 to 100 Pa · s. p. m. The viscosity of the PAN-based polymer solution is in the range of 100 to 1000 Pa · s. p. m. Measure with

さらにこの重合体溶液を濾過精度が0.5〜10μmのフィルターを用いて濾過して用いることが好ましい。   Furthermore, it is preferable to use this polymer solution after filtration using a filter having a filtration accuracy of 0.5 to 10 μm.

本発明では、上述のようにして得た紡糸溶液を、乾湿式紡糸法により紡糸することにより、炭素繊維前駆体繊維を製造する。   In the present invention, a carbon fiber precursor fiber is produced by spinning the spinning solution obtained as described above by a dry and wet spinning method.

生産性向上に必要な紡糸口金の形状や孔数のときに高速で凝固糸条を走行させる吐出条件および、凝固浴条件を見出し、本発明に到達した。   The present inventors have found the discharge conditions for running the coagulated yarn at a high speed when the shape and the number of holes of the spinneret necessary for improving the productivity and the coagulation bath conditions have been reached.

本発明において、口金の孔数は、3000〜30000個である。孔数が3000個より少ない場合、生産性が低下し、そのような状態では本発明の効果が得にくい。一方、孔数が30000個を超える場合には、口金が大きくなりすぎて本発明の凝固浴液の整流が困難となることがある。   In the present invention, the number of holes in the die is 3000 to 30000. When the number of holes is less than 3000, productivity is lowered, and in such a state, it is difficult to obtain the effect of the present invention. On the other hand, when the number of holes exceeds 30000, the die becomes too large, and it may be difficult to rectify the coagulation bath liquid of the present invention.

口金孔の配置は円形、矩形、環状形のいずれでもかまわないが、矩形では長径と短径があり、短径が小さいほど吐出角度を小さくできるので好ましく、75〜200mmであり、好ましくは75〜175mmである。ここで口金径とは口金孔のある部分の長さを示し、短径とは、円形の口金であれば最外部にある孔の外接円の直径であり、環状であれば環の幅を示す。口金の外周部から最も遠い部分に凝固浴液を供給するのに必要な距離に比例しており、口金短径が200mmを超えると吐出条件を調整しても凝固浴液の口金中心部への流れが大きすぎて吐出角度が大きくなり、口金短径が75mm未満では、口金形状を横長にしすぎる必要があり、生産性が低下する。   The base hole may be arranged in any of a circular shape, a rectangular shape, and an annular shape. However, the rectangular shape has a major axis and a minor axis, and the smaller the minor axis, the smaller the discharge angle, which is preferably 75 to 200 mm, and preferably 75 to 200 mm. 175 mm. Here, the diameter of the base indicates the length of the part having the base hole, and the short diameter indicates the diameter of the circumscribed circle of the outermost hole in the case of a circular base, and indicates the width of the ring in the case of an annular shape. . It is proportional to the distance required to supply the coagulation bath liquid to the part farthest from the outer peripheral part of the die. When the short diameter of the die exceeds 200 mm, the coagulation bath liquid is fed to the center of the die even if the discharge conditions are adjusted. If the flow is too large and the discharge angle becomes large and the short axis of the die is less than 75 mm, the die shape needs to be too long, and the productivity is lowered.

本発明において、口金孔は、その孔形状が、断面積の割に吐出速度を増加させないために円形であることが好ましく、孔形状が円形である場合、口金孔の最小の孔径は、0.18mm〜0.35mmであることが好ましく、0.25〜0.3mmであることがより好ましい。かかる孔径が0.18mm未満であると吐出線速度が大きく、紡糸ドラフトを高めることが困難となることが多く、また、0.35mmを超えると紡糸ドラフトを高めすぎることが必要となり、吐出が不安定となることがある。吐出線速度は口金孔径により変化するため、紡糸ドラフトを制御するために有効である。また、重合体溶液の単孔吐出量によっても適正な孔径が変化するが、概ね上記範囲内にすることが好ましい。   In the present invention, the die hole is preferably circular so that the hole shape does not increase the discharge speed relative to the cross-sectional area. When the hole shape is circular, the minimum hole diameter of the die hole is 0. It is preferably 18 mm to 0.35 mm, and more preferably 0.25 to 0.3 mm. When the hole diameter is less than 0.18 mm, the discharge linear velocity is high, and it is often difficult to increase the spinning draft. When the hole diameter exceeds 0.35 mm, it is necessary to increase the spinning draft too much, and the discharge is not effective. May be stable. Since the discharge linear velocity changes depending on the diameter of the die hole, it is effective for controlling the spinning draft. Moreover, although an appropriate hole diameter changes also with the single hole discharge amount of a polymer solution, it is preferable to make it into the said range in general.

本発明において口金孔の孔径は、紡糸口金面を顕微鏡観察することにより測定することができる。   In the present invention, the hole diameter of the nozzle hole can be measured by observing the spinneret surface with a microscope.

また、紡糸口金の平均孔径(D)と平均孔長(L)の比であるL/Dの最大値が1〜3であることが好ましい。L/Dが1未満であると吐出が安定しないことがあるが、L/Dは大きいほど剪断印加時間が長くなり、分子量低下が発生しやすいのでL/Dが3以下であることが好ましい。孔径に対してはL/Dの影響は小さく、外周部分は孔長を長くするなどの手段も活用でき、最小値よりも平均的な値が全体の特性を決めるため、平均値を用いる。   Moreover, it is preferable that the maximum value of L / D which is a ratio of the average hole diameter (D) and average hole length (L) of a spinneret is 1-3. When L / D is less than 1, ejection may not be stable, but as L / D is larger, the shear application time becomes longer and molecular weight is more likely to decrease, so L / D is preferably 3 or less. The influence of L / D is small on the hole diameter, and means such as increasing the hole length at the outer peripheral portion can be used. Since the average value determines the overall characteristics rather than the minimum value, the average value is used.

吐出直後の紡糸溶液のふくらみ、いわゆるバラス効果を抑制するためには、最小孔径を経た後に徐々に孔を広げる逆テーパー加工をすることも好ましい。紡糸口金孔に紡糸溶液が導入される際に伸長流動における伸長歪みを低減するためにテーパー加工やそれを段階的に行うことや角をなくすことをすることが、本発明で用いる伸長粘度の歪み硬化の強い紡糸溶液との組み合わせで効果を発揮する。すなわち、口金からの吐出直後の伸長領域で歪み硬化させ、吐出前に伸長粘度を増大させて凝固張力を増加させないために有効である。   In order to suppress the swelling of the spinning solution immediately after discharge, that is, the so-called ballast effect, it is also preferable to perform reverse taper processing to gradually widen the hole after passing through the minimum hole diameter. When the spinning solution is introduced into the spinneret hole, it is possible to taper processing, to perform it stepwise, or to eliminate the corners in order to reduce the elongation strain in the elongation flow, and the elongation viscosity distortion used in the present invention. Effective in combination with a hardened spinning solution. That is, it is effective for strain hardening in the extension region immediately after discharge from the die and increasing the extension viscosity before discharge to increase the coagulation tension.

紡糸口金の最外孔からの吐出した紡糸溶液の紡糸口金面鉛直方向との角度(以下、吐出角度と記述することもある)が5〜15°である。紡糸口金から吐出した糸条は紡糸ガイドで折り返され、適度に集束されて駆動ローラーで引き取られる。その糸条は周辺部分の凝固浴液を随伴させて走行されるので口金直下では凝固浴液が不足しがちになる。そのため口金周辺部分から口金直下、特に中心部に向かって凝固浴液が流れ込む。その凝固浴液の流れのため、糸条が急速に集束され吐出角度が大きくなることがある。吐出角度が大きくなった場合、孔ピッチに対して口金直下の液面での単繊維間ピッチは狭くなり、単繊維間の接着を起こしやすくなる。吐出角度は15°を超えると単繊維間の接着が起こり、工程通過性が低下し、吐出角度が5°未満では糸条を集束しきれずに糸条の走行が不安定になる。   The angle of the spinning solution discharged from the outermost hole of the spinneret with the spinneret surface vertical direction (hereinafter also referred to as a discharge angle) is 5 to 15 °. The yarn discharged from the spinneret is folded back by a spinning guide, properly converged, and taken up by a driving roller. Since the yarn travels with the coagulation bath liquid in the peripheral portion, the coagulation bath liquid tends to be insufficient immediately below the base. Therefore, the coagulation bath liquid flows from the periphery of the base directly below the base, particularly toward the center. Due to the flow of the coagulation bath liquid, the yarns may be rapidly focused and the discharge angle may be increased. When the discharge angle increases, the pitch between the single fibers at the liquid level immediately below the mouthpiece is narrower than the hole pitch, and adhesion between the single fibers is likely to occur. If the discharge angle exceeds 15 °, adhesion between the single fibers occurs, process passability decreases, and if the discharge angle is less than 5 °, the yarn cannot be converged and the running of the yarn becomes unstable.

本発明で重要なことは、紡糸溶液の紡糸ドラフトは5〜50の範囲とすることである。ここで紡糸ドラフトとは、紡糸糸条(フィラメント)が口金を離れて最初に接触する駆動源を持ったローラーの表面速度(凝固糸の巻き取り速度)を、口金からの吐出線速度で割った値をいう。紡糸ドラフトは伸長歪みと比例しており、強い歪みを掛け伸長粘度を高めることで凝固浴液の流れによって紡糸溶液の口金孔からの吐出角度が大きくなることを抑制することができる。従来の重合体溶液は、歪みを掛けると伸長粘度が低下する、あるいは、ほぼ一定であるという性質であったが、本発明の重合体溶液は歪みを掛けると伸長粘度が向上するという性質を示すために吐出角度を低下させることにおいて好ましい結果を与えるものである。紡糸ドラフトが5未満では、望む前駆体繊維の繊度を得るために口金孔径を小さくせざるを得ないことがあり、剪断速度を低下させる観点からは紡糸ドラフトが50以下で十分である。吐出量を変更し、吐出線速度を変更することで容易に紡糸ドラフトを変更することができるため、吐出線速度を変更して吐出角度を確認しながら本発明の吐出角度になるように調整すればよい。吐出量は、生産量に関係するので必要な生産量になるように、最終的には吐出量を固定して紡糸口金孔径を変更することで設定の紡糸ドラフトを得ればよい。   What is important in the present invention is that the spinning draft of the spinning solution is in the range of 5-50. Here, the spinning draft is obtained by dividing the surface speed of the roller (the winding speed of the coagulated yarn) having a driving source with which the spun yarn (filament) first comes out of contact with the base by the discharge linear speed from the base. Value. The spinning draft is proportional to the elongation strain, and it is possible to suppress an increase in the discharge angle of the spinning solution from the nozzle hole due to the flow of the coagulating bath liquid by applying a strong strain and increasing the elongation viscosity. The conventional polymer solution has the property that the elongational viscosity decreases or is almost constant when strain is applied, but the polymer solution of the present invention exhibits the property that the elongational viscosity improves when strained. Therefore, a preferable result is given in reducing the discharge angle. If the spinning draft is less than 5, the diameter of the die hole may have to be reduced in order to obtain the desired fineness of the precursor fiber, and a spinning draft of 50 or less is sufficient from the viewpoint of reducing the shear rate. Since the spinning draft can be easily changed by changing the discharge amount and changing the discharge linear velocity, change the discharge linear velocity and check the discharge angle to adjust it to the discharge angle of the present invention. That's fine. Since the discharge amount is related to the production amount, the set spinning draft may be obtained by finally fixing the discharge amount and changing the diameter of the spinneret so that the required production amount is obtained.

沈み込む前の凝固浴液面と紡糸口金との距離(以下、エアギャップ高さ(Ha)と記述することもある)を5〜10mmとすることが好ましい。Haが5mm未満のとき、紡糸溶液の変形が急激になりすぎて紡糸溶液が破断しやすくなることがあり、Haが10mmを超えるときは歪み速度が小さくなりすぎて紡糸溶液が破断しやすくなることがある。   The distance between the coagulation bath liquid surface before sinking and the spinneret (hereinafter sometimes referred to as air gap height (Ha)) is preferably 5 to 10 mm. When Ha is less than 5 mm, the deformation of the spinning solution may become too rapid and the spinning solution may break easily. When Ha exceeds 10 mm, the strain rate becomes too small and the spinning solution tends to break. There is.

口金直下の凝固浴液面が糸条の走行によって沈み込む深さを5〜20mmに制御することが好ましい。一般的に凝固浴液面を沈み込ませることは吐出の不安定化につながることが多く、行われることはまれであるが、本発明で用いる紡糸溶液では吐出は安定しており、本発明の条件により随伴流を強め、凝固張力を低減することで沈み込み深さは大きくなるが、紡糸工程は安定化させることができる。口金周辺部と口金直下の液面に高低差があることで凝固浴液の流れが安定化し、吐出も安定する。沈み込み深さが5mm未満では、工程安定性が不足し、20mmを超える場合には、液面までの間に紡糸溶液が破断しやすくなることがある。沈み込み深さは凝固浴液の粘度、糸条の走行速度、口金の孔ピッチで制御できる。   It is preferable to control the depth at which the coagulation bath liquid level just below the die sinks as the yarn travels to 5 to 20 mm. In general, sinking the coagulation bath liquid level often leads to instability of discharge and is rarely performed, but the discharge is stable in the spinning solution used in the present invention. By increasing the accompanying flow depending on the conditions and reducing the solidification tension, the sinking depth increases, but the spinning process can be stabilized. The difference in height between the peripheral part of the base and the liquid level just below the base stabilizes the flow of the coagulation bath liquid and stabilizes the discharge. If the submerged depth is less than 5 mm, the process stability is insufficient, and if it exceeds 20 mm, the spinning solution may be easily broken before reaching the liquid level. The sinking depth can be controlled by the viscosity of the coagulating bath liquid, the running speed of the yarn, and the hole pitch of the die.

生産性を高め、短時間で耐炎化を行うのに適した前駆体繊維を得る観点からは、凝固糸の引き取り速度を35〜200m/分にし、好ましくは50〜200m/分とし、より好ましくは85〜150m/分とする。凝固糸の引き取り速度が35m/分未満の場合には前駆体繊維の表面凹凸が小さくなり、凝固糸の引き取り速度が200m/分を超える場合には前駆体繊維の単繊維断面直径の変動係数が大きくなる。吐出線速度が低い場合には、紡糸ドラフトを高めることにより目的とする生産性を達成することができる。   From the viewpoint of improving the productivity and obtaining a precursor fiber suitable for flame resistance in a short time, the take-up speed of the coagulated yarn is 35 to 200 m / min, preferably 50 to 200 m / min, more preferably 85 to 150 m / min. When the take-up speed of the coagulated yarn is less than 35 m / min, the surface unevenness of the precursor fiber becomes small, and when the take-up speed of the coagulated yarn exceeds 200 m / min, the variation coefficient of the single fiber cross-sectional diameter of the precursor fiber is increased. growing. When the discharge linear velocity is low, the target productivity can be achieved by increasing the spinning draft.

本発明において用いられる凝固浴には、PAN系重合体溶液で溶媒として用いたジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、塩化亜鉛水溶液、およびチオ硫酸ナトリウム水溶液などのPAN系重合体の溶媒と、いわゆる凝固促進成分の混合物が用いられる。凝固促進成分としては、前記のPAN系重合体を溶解せず、かつPAN系重合体溶液に用いた溶媒と相溶性があるものが好ましい。凝固促進成分としては、具体的には、水、メタノール、エタノールおよびアセトンなどが挙げられるが、回収する必要がないことと安全性の面、凝固に必要な凝固促進成分の量が少ないことから水を使用することが最も好ましい。   The coagulation bath used in the present invention includes a PAN polymer solvent such as dimethyl sulfoxide, dimethylformamide, dimethylacetamide, zinc chloride aqueous solution, and sodium thiosulfate aqueous solution used as a solvent in the PAN polymer solution, and so-called coagulation. A mixture of facilitating ingredients is used. As the coagulation accelerating component, those which do not dissolve the PAN-based polymer and are compatible with the solvent used in the PAN-based polymer solution are preferable. Specific examples of the coagulation accelerating component include water, methanol, ethanol, and acetone. However, water does not need to be recovered, and in terms of safety, the amount of coagulation accelerating component necessary for coagulation is small. Most preferably, is used.

本発明において、凝固浴液の凝固価を23〜40gとすることが好ましく、より好ましくは29〜40gであり、より好ましくは30〜35gである。本発明において凝固価とは、紡糸に用いる溶媒50ccに対して紡糸に用いる重合体を1重量%溶解した溶液に凝固浴液を徐々に滴下し、沈殿生成を開始して溶液が透明から白濁に変化する凝固浴液量(g)と定義する。試験において温度は、25℃に調整する。凝固浴液そのものを滴下すると希釈されすぎて白濁が薄く、白濁開始点の判定が困難になることがあるので、凝固浴液中の凝固促進成分のみを滴下して求めた白濁点から、その必要凝固促進成分量を含む凝固浴液量に換算して凝固価とすることができる。両者の値が異なった場合は、後者を凝固価とする。   In the present invention, the coagulation value of the coagulation bath liquid is preferably 23 to 40 g, more preferably 29 to 40 g, and more preferably 30 to 35 g. In the present invention, the coagulation value means that a coagulation bath solution is gradually added dropwise to a solution in which 1% by weight of a polymer used for spinning is dissolved in 50 cc of a solvent used for spinning to start precipitation, and the solution turns from transparent to cloudy. It is defined as the amount of coagulation bath solution (g) that changes. In the test, the temperature is adjusted to 25 ° C. If the coagulation bath liquid itself is added dropwise, it may be too diluted and white turbidity may be difficult, and it may be difficult to determine the starting point of the white turbidity. It can be set as the coagulation value in terms of the amount of coagulation bath liquid containing the amount of coagulation promoting component. If the two values are different, the latter is regarded as the coagulation value.

凝固価は、重合体の分子量や共重合組成、重合体溶液の濃度、溶媒種類および凝固促進成分種類、および溶媒濃度によっても変わり、紡糸条件に合わせてそれぞれ測定する必要があるが、特に凝固浴における溶媒の種類および溶媒濃度によって制御することが好ましい。溶媒濃度が高まるほど、凝固促進成分が減少するので凝固価が高まる。凝固価が23g未満であっても、40gを超えても前駆体繊維表面が平滑になりすぎる。   The coagulation value varies depending on the molecular weight and copolymer composition of the polymer, the concentration of the polymer solution, the type of solvent, the type of coagulation-promoting component, and the solvent concentration, and must be measured according to the spinning conditions. It is preferable to control by the kind and solvent concentration of the solvent. As the solvent concentration increases, the coagulation promoting component decreases, so the coagulation value increases. Even if the coagulation value is less than 23 g or exceeds 40 g, the surface of the precursor fiber becomes too smooth.

ここで、溶媒の種類について考える。共重合成分や凝固促進成分とも関係するが、共重合成分を含まないPANを各種の溶媒に溶解し、水を凝固促進成分として調べると一般的な傾向として、ジメチルアセトアミド<ジメチルホルムアミド<ジメチルスルホキシド<塩化亜鉛水溶液<チオ硫酸ナトリウム水溶液の順に凝固促進成分量を多く必要とする。共重合成分等によっても値は変化するが、AN100%のMw32万のPANを用い、各種溶媒に溶解して、水を凝固促進成分とした場合、凝固価はそれぞれ、ジメチルアセトアミド4g、ジメチルスルホキシド5g、塩化亜鉛水溶液10g、およびチオ硫酸ナトリウム水溶液20gであった。   Here, the kind of solvent is considered. Although it is related to the copolymerization component and the coagulation accelerating component, when PAN not containing the copolymerization component is dissolved in various solvents and water is examined as the coagulation accelerating component, dimethylacetamide <dimethylformamide <dimethylsulfoxide < The amount of coagulation accelerating component is increased in the order of zinc chloride aqueous solution <sodium thiosulfate aqueous solution. The value varies depending on the copolymerization component, etc., but when using PAN of 100% Mw 320,000 and dissolved in various solvents to make water a coagulation promoting component, the coagulation values are 4 g of dimethylacetamide and 5 g of dimethylsulfoxide, respectively. 10 g of an aqueous zinc chloride solution and 20 g of an aqueous sodium thiosulfate solution.

凝固浴の溶媒濃度は、なるべく高くすることによりゆっくり凝固させ、均一な緻密な凝固状態の凝固糸を得ることができ、かつ、凝固促進成分量を減らし、溶媒と凝固促進成分との分離・回収エネルギーの低減を行うことができる。ジメチルスルホキシドを例にした場合には、凝固浴の溶媒濃度は69重量%以上が好ましく、より好ましくは72重量%以上であり、更に好ましくは75重量%以上である。溶媒濃度を高めていくと臨界濃度があり、糸条の形成が不可能になる溶媒濃度があるが、この間の溶媒濃度では凝固状態の均質化が一般的には困難であり、溶媒濃度は臨界濃度以下であることが好ましい。   The concentration of the solvent in the coagulation bath can be slowly solidified as much as possible to obtain a coagulated yarn in a uniform and dense coagulation state, and the amount of coagulation-promoting components can be reduced to separate and recover the solvent and coagulation-promoting components. Energy can be reduced. When dimethyl sulfoxide is taken as an example, the solvent concentration of the coagulation bath is preferably 69% by weight or more, more preferably 72% by weight or more, and further preferably 75% by weight or more. When the solvent concentration is increased, there is a critical concentration, and there is a solvent concentration at which the formation of the yarn becomes impossible. However, it is generally difficult to homogenize the solidified state at this solvent concentration, and the solvent concentration is critical. It is preferable that it is below the concentration.

また、溶媒が有機溶媒である場合は、水と混合した場合、凝固浴液粘度が高くなり、ピークを有する。凝固浴液粘度が高いと凝固浴中での糸揺れは少なくなる効果があるが、一方、凝固浴液抵抗が大きくなり、また、口金直下での凝固浴液の乱れが起こり、一般的には可紡性は低下する。本発明では、凝固浴液の粘度が高くても上記と同様の理由で可紡性の低下が起こりにくく、凝固浴液の粘度は、設定する凝固浴温度を測定温度として、7〜15mPa・sであることが好ましい。凝固浴液の粘度が7mPa・s以上では、凝固浴中での糸揺れを抑制し、凝固浴液の随伴流が大きくなるために凝固張力を小さくすることができ、また、凝固浴液の粘度が15mPa・s以下であると凝固浴液の随伴流が大きくなりすぎて沈み込み深さが大きくなりすぎ、かつ、吐出角度が大きくなりすぎて可紡性が低下する傾向にある。また、凝固浴液粘度を上記範囲に設定することで前駆体繊維の自乗平均面粗さを本発明の範囲に制御することが容易となる。凝固浴液の粘度は、凝固浴に用いる溶媒の種類、溶媒と凝固剤の濃度、温度によって制御することができる。   Moreover, when a solvent is an organic solvent, when it mixes with water, coagulation bath liquid viscosity becomes high and has a peak. If the viscosity of the coagulation bath liquid is high, there is an effect of reducing yarn fluctuation in the coagulation bath, but on the other hand, resistance of the coagulation bath liquid is increased, and disturbance of the coagulation bath liquid occurs directly under the base, Spinnability is reduced. In the present invention, even if the viscosity of the coagulation bath liquid is high, the spinnability is hardly lowered for the same reason as described above. The viscosity of the coagulation bath liquid is 7 to 15 mPa · s with the set coagulation bath temperature as the measurement temperature. It is preferable that When the viscosity of the coagulation bath liquid is 7 mPa · s or more, the yarn swaying in the coagulation bath is suppressed and the accompanying flow of the coagulation bath liquid is increased, so that the coagulation tension can be reduced. Is 15 mPa · s or less, the accompanying flow of the coagulation bath liquid becomes too large, the sinking depth becomes too large, and the discharge angle tends to be too large, so that the spinnability tends to decrease. Moreover, it becomes easy to control the root mean square surface roughness of the precursor fiber within the range of the present invention by setting the viscosity of the coagulation bath solution within the above range. The viscosity of the coagulation bath liquid can be controlled by the type of solvent used in the coagulation bath, the concentration of the solvent and the coagulant, and the temperature.

本発明において、凝固浴液の粘度は、B型粘度計により測定することができる。条件としては、ローターNo.1を使用し、ローター回転数60r.p.m.で測定する。   In the present invention, the viscosity of the coagulation bath liquid can be measured with a B-type viscometer. As conditions, rotor No. 1 was used, and the rotor rotational speed was 60 r. p. m. Measure with

本発明において、凝固浴温度を0〜30℃とすることが好ましい。凝固浴温度は、溶媒の凝固浴中への拡散速度および凝固促進成分の紡糸溶液への拡散速度に影響を与え、その結果、凝固浴温度が低いほど緻密な凝固糸となり、高強度な炭素繊維が得られる。また、本発明では、凝固価の測定自体は一定温度であるが、あえて変更して測定すると温度が高いほど凝固価は高くなるため、そのバランスで適宜設定すればよい。凝固浴温度は、より好ましくは5〜20℃であり、更に好ましくは10〜15℃である。   In the present invention, the coagulation bath temperature is preferably 0 to 30 ° C. The coagulation bath temperature affects the diffusion rate of the solvent into the coagulation bath and the diffusion rate of the coagulation accelerating component into the spinning solution. As a result, the lower the coagulation bath temperature, the denser the coagulated yarn, and the higher the strength of the carbon fiber. Is obtained. In the present invention, the measurement of the coagulation value itself is a constant temperature. However, if the measurement is performed with a change, the coagulation value increases as the temperature increases. The coagulation bath temperature is more preferably 5 to 20 ° C, still more preferably 10 to 15 ° C.

本発明において、PAN系重合体溶液を凝固浴中に導入して凝固させ凝固糸を形成した後、水洗工程、浴中延伸工程、油剤付与工程および乾燥工程を経て、炭素繊維前駆体繊維が得られる。また、上記の工程に乾熱延伸工程や蒸気延伸工程を加えてもよい。凝固後の糸条は、水洗工程を省略して直接浴中延伸を行っても良いし、溶媒を水洗工程により除去した後に浴中延伸を行っても良い。浴中延伸は、通常、30〜98℃の温度に温調された単一または複数の延伸浴中で行うことが好ましい。そのときの延伸倍率は、1〜5倍であることが好ましく、1〜3倍であることがより好ましい。   In the present invention, after a PAN polymer solution is introduced into a coagulation bath and coagulated to form a coagulated yarn, a carbon fiber precursor fiber is obtained through a water washing step, an in-bath drawing step, an oil agent application step, and a drying step. It is done. Moreover, you may add a dry heat extending process and a steam extending process to said process. The solidified yarn may be directly stretched in the bath without the water washing step, or may be stretched in the bath after removing the solvent by the water washing step. Usually, the stretching in the bath is preferably performed in a single or a plurality of stretching baths adjusted to a temperature of 30 to 98 ° C. The draw ratio at that time is preferably 1 to 5 times, and more preferably 1 to 3 times.

浴中延伸工程の後、単繊維同士の接着を防止する目的から、延伸された繊維糸条にシリコーン等からなる油剤を付与することが好ましい。シリコーン油剤は、耐熱性の高いアミノ変性シリコーン等の変性されたシリコーンを含有するものを用いることが好ましい。   After the stretching step in the bath, it is preferable to apply an oil agent made of silicone or the like to the stretched fiber yarn for the purpose of preventing adhesion between single fibers. As the silicone oil, it is preferable to use a silicone oil containing a modified silicone such as amino-modified silicone having high heat resistance.

乾燥工程としては、例えば、乾燥温度が70〜200℃で乾燥時間が10秒から200秒の乾燥条件が好ましい結果を与える。生産性の向上や結晶配向度の向上として、乾燥工程後に加熱熱媒中で延伸することが好ましい。加熱熱媒としては、例えば、加圧水蒸気あるいは過熱水蒸気が操業安定性やコストの面で好適に用いられ、延伸倍率は通常1.5〜10倍である。   As the drying step, for example, a drying condition in which a drying temperature is 70 to 200 ° C. and a drying time is 10 seconds to 200 seconds gives preferable results. As an improvement in productivity and an improvement in the degree of crystal orientation, it is preferable to stretch in a heating heat medium after the drying step. As the heating heat medium, for example, pressurized steam or superheated steam is suitably used in terms of operational stability and cost, and the draw ratio is usually 1.5 to 10 times.

前駆体繊維の全体配向度や結晶配向度の配向を高め、強度を高めるため、凝固糸の引き取りローラーからの合計延伸倍率は、10〜20倍が好ましい。かかる合計延伸倍率が10倍未満では、前駆体繊維の全体配向度や結晶配向度が不足し、一方、合計延伸倍率が20倍を超える場合には、前駆体繊維の強度が低下する場合がある。   The total draw ratio of the coagulated yarn from the take-off roller is preferably 10 to 20 times in order to enhance the orientation of the precursor fibers and the degree of crystal orientation and increase the strength. When the total draw ratio is less than 10 times, the overall orientation degree and the crystal orientation degree of the precursor fiber are insufficient. On the other hand, when the total draw ratio exceeds 20 times, the strength of the precursor fiber may be reduced. .

凝固糸の引き取り速度と凝固糸の引き取りローラーからの合計延伸倍率の積である前駆体繊維の巻き取り速度(最終製糸速度)が好ましくは600〜2000m/分であり、より好ましくは700〜2000m/分であり、1000〜2000m/分である。前駆体繊維の巻き取り速度が600m/分未満である場合は、前駆体繊維の全体配向度が高まりにくく、前駆体繊維の巻き取り速度が2000m/分を超える場合には前駆体繊維の単繊維断面直径の変動係数が大きくなる場合がある。   The precursor fiber winding speed (final spinning speed), which is the product of the coagulated yarn take-up speed and the total draw ratio from the coagulated yarn take-up roller, is preferably 600 to 2000 m / min, more preferably 700 to 2000 m / min. Minutes, 1000 to 2000 m / min. When the winding speed of the precursor fiber is less than 600 m / min, the overall orientation degree of the precursor fiber is difficult to increase, and when the winding speed of the precursor fiber exceeds 2000 m / min, the single fiber of the precursor fiber The coefficient of variation of the cross-sectional diameter may become large.

このようにして得られた本発明の前駆体繊維は、重量平均分子量Mz(F)が60万〜200万、好ましくは70万〜200万、より好ましくは90万〜200万であるPAN系重合体からなる。Mz(F)が60万未満の低分子量のPAN系重合体からなる場合、前駆体繊維の強度が低下して耐炎化工程で毛羽が発生しやすくなる。また、Mz(F)が200万を越えるような高分子量のPAN系重合体からなる場合、紡糸溶液における重合体の重量平均分子量Mz(P)が600万を越えるように設定する必要があり、その場合、分子鎖同士の絡み合いが多くなり伸びきり鎖長を大きくするためには重合体濃度を下げて準希薄溶液で絡み合いを下げて延伸することもできるが、本発明のもう一つの目的である高生産性と乖離してしまう。   The precursor fiber of the present invention thus obtained has a weight average molecular weight Mz (F) of 600,000 to 2,000,000, preferably 700,000 to 2,000,000, more preferably 900,000 to 2,000,000. Composed of coalescence. When it consists of a low molecular weight PAN-based polymer having an Mz (F) of less than 600,000, the strength of the precursor fiber is lowered and fluff is likely to occur in the flameproofing step. Further, in the case of a PAN polymer having a high molecular weight such that Mz (F) exceeds 2 million, it is necessary to set the weight average molecular weight Mz (P) of the polymer in the spinning solution to exceed 6 million. In that case, in order to increase the entanglement between the molecular chains and increase the extended chain length, the polymer concentration can be lowered and the entanglement can be lowered with a quasi-dilute solution, but for another purpose of the present invention. Deviation from high productivity.

また本発明の前駆体繊維は、前駆体繊維を構成するPAN系重合体の多分散度Mz(F)/Mw(F)(Mzは、繊維のZ平均分子量を表す)が2〜5であり、好ましくは、2.2〜4であり、より好ましくは、3〜4である。Mz(F)/Mw(F)が2未満では、耐炎化工程、特に高温での耐炎化する場合の毛羽の発生を抑制する効果が不足する。また、Mz(F)/Mw(F)が高いほど耐炎化工程の毛羽発生を抑制する効果が高まるため好ましいが一方で、Mz(F)/Mw(F)が5を越えるような繊維は、それを得るための紡糸溶液における重合体の絡み合いが大きくなりすぎて、吐出が困難となるため、得ることが困難である。Mz(F)/Mw(F)はMz(P)/Mw(P)と同じか低下するため、Mz(P)/Mw(P)が本発明の範囲であるPAN系重合体を含有する紡糸溶液を用い、製糸工程の条件を調整することによってMz(F)/Mw(F)は制御される。   In the precursor fiber of the present invention, the polydispersity Mz (F) / Mw (F) (Mz represents the Z average molecular weight of the fiber) of the PAN polymer constituting the precursor fiber is 2 to 5. Preferably, it is 2.2-4, More preferably, it is 3-4. When Mz (F) / Mw (F) is less than 2, the effect of suppressing the generation of fluff in the flameproofing step, particularly when flameproofing at high temperatures is insufficient. Moreover, since the effect which suppresses the fluff generation | occurrence | production of a flame-proofing process increases as Mz (F) / Mw (F) is high, on the other hand, a fiber whose Mz (F) / Mw (F) exceeds 5, Since the entanglement of the polymer in the spinning solution for obtaining it becomes too large and the discharge becomes difficult, it is difficult to obtain. Since Mz (F) / Mw (F) is the same as or lower than Mz (P) / Mw (P), spinning containing a PAN-based polymer in which Mz (P) / Mw (P) is within the scope of the present invention Mz (F) / Mw (F) is controlled by adjusting the conditions of the spinning process using the solution.

本発明の前駆体繊維の単繊維の原子間力顕微鏡により3μmの範囲で測定される自乗平均面粗さRms、すなわち平滑性は17〜40nmであり、好ましくは、19〜30nmである。Rmsが17nm未満、すなわち前駆体繊維表面が過度に平滑である場合、前駆体繊維の集束性が高すぎて、耐炎化工程で蓄熱して毛羽の発生が生じることがあり、一方、Rmsが40nmを超える、すなわち表面凹凸が大きいと耐炎化工程において前駆体繊維束としての集束性が低下し、毛羽が発生する。Rmsは、凝固浴液粘度を本発明の範囲に調整することで制御でき、その他に凝固価や凝固引き取り速度を本発明の範囲に制御することでも適宜調整できる。
The root-mean-square surface roughness Rms of the atomic force microscope of a single fiber of the precursor fiber of the present invention is measured in the range of 3 [mu] m, i.e. smoothness is 1 7 to 40 nm, good Mashiku is a 19~30nm . When Rms is less than 17 nm, that is, when the surface of the precursor fiber is excessively smooth, the precursor fiber is too focused, and heat may be accumulated in the flameproofing process to cause fluffing. When it exceeds 40 nm, that is, when the surface unevenness is large, the convergence as a precursor fiber bundle is lowered in the flameproofing process, and fluff is generated. Rms can be controlled by adjusting the viscosity of the coagulation bath solution within the range of the present invention, and can also be appropriately adjusted by controlling the coagulation number and the coagulation take-up speed within the range of the present invention.

本発明の前駆体繊維の結晶配向度は、91〜94%であることが好ましく、より好ましくは92〜94%である。結晶配向度が91%を下回ると、耐炎化工程で張力が高まりにくく、毛羽が発生することがある。一方、結晶配向度が94%を超えると、耐炎化工程において延伸倍率を高く設定できないことがあることに加え、毛羽が発生することがある。結晶配向度は凝固糸の引き取りローラーからの合計延伸倍率と各工程の延伸張力を調整することで制御できる。   The crystal orientation degree of the precursor fiber of the present invention is preferably 91 to 94%, more preferably 92 to 94%. When the degree of crystal orientation is less than 91%, the tension is hardly increased in the flameproofing step, and fluff may be generated. On the other hand, if the degree of crystal orientation exceeds 94%, the stretch ratio may not be set high in the flameproofing process, and fluff may occur. The degree of crystal orientation can be controlled by adjusting the total draw ratio from the take-up roller of the coagulated yarn and the draw tension in each step.

また、本発明の前駆体繊維は、RAMAN分光法により求められるRAMAN二色比R値が2.7〜3.0であり、好ましくは2.8〜3.0である。結晶配向度と異なり、非晶配向度や結晶化度も反映した全体配向度はRAMAN二色比で測定できる。RAMAN分光法では、レーザー光により特定の分子鎖の振動に応じたRAMAN散乱が観測され、PANの場合は、2240cm−1付近にC―N伸縮モードが表れ、他のC―Hなどのピークで規格化し、繊維軸方向と繊維軸に垂直方向のピーク比を調べることで全体配向の度合が測定できる。すなわち、レーザー励起波長:785nmとし、測定は、前駆体繊維表面にレーザー光を集光し、偏光面は繊維軸と一致させた時を0°の測定、ステージを90°回転させて、偏光面を繊維軸に90°に設定した時を90°の測定とする。ベースラインを引いた上で各測定の2240cmー1付近のピーク強度と1480cm−1付近のピーク強度の比をR’とする。R’(0°)/R’(90°)をRAMAN二色比Rと定義する。各試料につき異なる単繊維を用いてn=6の測定を行った。スペクトル比較や解析はそれらの平均を用いる。延伸を行うと結晶配向度の上昇とともにR値が高まるが、製糸速度を大きく高めると結晶配向度の割にR値が高まりやすいことが分かった。R値が高いほど、耐炎化工程での毛羽発生が少なくなり、R値が2.7未満では耐炎化温度を下げることなしには毛羽を抑制することができず、R値が3.0を超えるように毛羽の発生なしに前駆体繊維を製造するのは困難であった。 The precursor fiber of the present invention has a RAMAN dichroic ratio R value obtained by RAMAN spectroscopy of 2.7 to 3.0, preferably 2.8 to 3.0. Unlike the degree of crystal orientation, the total degree of orientation reflecting the degree of amorphous orientation and the degree of crystallinity can be measured by the RAMAN dichroic ratio. In RAMAN spectroscopy, RAMAN scattering corresponding to the vibration of a specific molecular chain is observed by laser light. In the case of PAN, a CN stretching mode appears in the vicinity of 2240 cm −1 , with other peaks such as C—H. The degree of overall orientation can be measured by normalizing and examining the peak ratio in the fiber axis direction and the direction perpendicular to the fiber axis. That is, the laser excitation wavelength is set to 785 nm, and the measurement is performed by condensing the laser beam on the precursor fiber surface and measuring the polarization plane with the fiber axis at 0 °, rotating the stage by 90 °, Is set to 90 ° on the fiber axis as 90 ° measurement. After the baseline is drawn, the ratio of the peak intensity in the vicinity of 2240 cm -1 and the peak intensity in the vicinity of 1480 cm −1 of each measurement is R ′. R ′ (0 °) / R ′ (90 °) is defined as the RAMAN dichroic ratio R. Measurements of n = 6 were performed using different single fibers for each sample. Spectral comparison and analysis use those averages. When the stretching is performed, the R value increases with an increase in the degree of crystal orientation, but it has been found that the R value is likely to increase relative to the degree of crystal orientation when the spinning speed is greatly increased. The higher the R value, the less fluffing occurs in the flameproofing process. When the R value is less than 2.7, the fluff cannot be suppressed without lowering the flameproofing temperature, and the R value is 3.0. It was difficult to produce precursor fibers without generation of fluff.

本発明では、束の状態で測定した前駆体繊維の単繊維強度が好ましくは6〜9cN/dtexである。単繊維強度が6cN/dtexより低いと耐炎化工程で毛羽が発生することがあり、一方、単繊維強度が9cN/dtexを超えると、耐炎化工程において延伸倍率を高く設定できないことがあることに加え、毛羽が発生することがある。単繊維強度は凝固糸の引き取りローラーからの合計延伸倍率と各工程の延伸張力を調整することで制御できる。   In the present invention, the single fiber strength of the precursor fiber measured in a bundle state is preferably 6 to 9 cN / dtex. When the single fiber strength is lower than 6 cN / dtex, fluff may be generated in the flameproofing process. On the other hand, if the single fiber strength exceeds 9 cN / dtex, the draw ratio may not be set high in the flameproofing process. In addition, fluff may occur. The single fiber strength can be controlled by adjusting the total draw ratio from the take-up roller of the coagulated yarn and the draw tension in each step.

このようにして得られた炭素繊維前駆体繊維の単繊維繊度は、0.3〜1.5dtexであり、好ましくは0.3〜1.1dtexであり、より好ましくは0.6〜1.1dtexである。単繊維繊度が小さすぎると、生産性が低下するばかりか、ローラーやガイドとの接触による糸切れ発生などにより、製糸工程および炭素繊維の焼成工程のプロセス安定性が低下することがある。一方、単繊維繊度が大きすぎると、耐炎化工程での蓄熱が大きく糸切れしやすく、また、耐炎化後の各単繊維における内外構造差が大きくなり、続く炭化工程でのプロセス性低下や、得られる炭素繊維の引張強度および引張弾性率が低下することでコストパフォーマンスが低下することがある。   The single fiber fineness of the carbon fiber precursor fiber thus obtained is 0.3 to 1.5 dtex, preferably 0.3 to 1.1 dtex, more preferably 0.6 to 1.1 dtex. It is. If the single fiber fineness is too small, not only the productivity is lowered, but also the process stability of the yarn making process and the carbon fiber firing process may be lowered due to the occurrence of yarn breakage due to contact with a roller or a guide. On the other hand, if the single fiber fineness is too large, the heat storage in the flameproofing process is large and the yarn tends to break, and the difference in internal and external structures in each single fiber after flameproofing becomes large, and the processability decline in the subsequent carbonization process, Cost performance may be lowered by lowering the tensile strength and tensile modulus of the carbon fiber obtained.

本発明の前駆体繊維の単繊維断面直径の変動係数は0〜5%であり、好ましくは1〜2%である。繊維長手方向に繊維直径の変動があると長い炉長での工程通過時に毛羽を発生させるため、断面直径の変動係数は5%以内であり、多フィラメントで紡糸する場合にはかかる変動係数が1%以上となることが多い。高凝固浴液粘度条件、かつ、高速凝固引き取り速度条件においてかかる変動係数を本発明の範囲内に制御するためには、本発明の前駆体繊維の製造方法に従えばよい。   The variation coefficient of the single fiber cross-sectional diameter of the precursor fiber of the present invention is 0 to 5%, preferably 1 to 2%. If the fiber diameter fluctuates in the longitudinal direction of the fiber, fluff is generated when passing through the process with a long furnace length. Therefore, the variation coefficient of the cross-sectional diameter is 5% or less, and this coefficient of variation is 1 when spinning with multifilaments. It is often more than%. In order to control the coefficient of variation within the range of the present invention under the high coagulation bath liquid viscosity condition and the high speed coagulation take-up speed condition, the precursor fiber production method of the present invention may be followed.

本発明において前駆体繊維の真円度は好ましくは0.85(真円に近い楕円)〜1(真円)であり、より好ましくは0.91〜1である。前駆体繊維の真円度が0.85未満では、耐炎化工程での繊維束の集束性が低下することがある。真円度は、前駆体繊維製造時の凝固浴濃度と温度を調整することで制御できる。   In the present invention, the roundness of the precursor fiber is preferably 0.85 (ellipse close to a perfect circle) to 1 (perfect circle), more preferably 0.91 to 1. When the roundness of the precursor fiber is less than 0.85, the bundle property of the fiber bundle in the flameproofing process may be lowered. The roundness can be controlled by adjusting the coagulation bath concentration and temperature during the production of the precursor fiber.

前駆体繊維の単繊維断面直径の変動係数と真円度の測定方法を以下に述べる。前駆体繊維束を繊維軸に垂直に高さを合わせてカミソリで切断し、光学顕微鏡を用いて単繊維の断面形状の観察を行う。測定倍率は、最も細い単繊維が1mm程度となるよう倍率200〜400倍程度とし、得られた画像を6枚分画像解析することにより前駆体繊維の単繊維の断面積と周長を求め、その断面積から単繊維の断面の直径(繊維径)を求め、また、下記式を用いて単繊維の真円度を求める。   A method for measuring the coefficient of variation and the roundness of the single fiber cross-sectional diameter of the precursor fiber will be described below. The precursor fiber bundle is aligned with the height perpendicular to the fiber axis and cut with a razor, and the cross-sectional shape of the single fiber is observed using an optical microscope. The measurement magnification is about 200 to 400 times the magnification so that the thinnest single fiber is about 1 mm, and the cross-sectional area and circumference of the single fiber of the precursor fiber are obtained by image analysis of the obtained images. From the cross-sectional area, the diameter of the cross section of the single fiber (fiber diameter) is obtained, and the roundness of the single fiber is obtained using the following formula.

真円度=4πS/L
(式中、Sは単繊維の断面積を表し、Lは単繊維の周長を表す。)
直径変動係数は、上記で得られた直径の変動係数とする。
Roundness = 4πS / L 2
(In the formula, S represents the cross-sectional area of the single fiber, and L represents the circumference of the single fiber.)
The diameter variation coefficient is the variation coefficient of the diameter obtained above.

得られる炭素繊維前駆体繊維は、通常、連続繊維(フィラメント)の形状である。また、その1糸条(マルチフィラメント)当たりのフィラメント数は、好ましくは3000〜60000本である。得られる炭素繊維前駆体繊維は、均質であるために1糸条あたりのフィラメント数は、焼成工程における生産性の向上の目的からは多い方が好ましく、また安定して焼成通過することが可能である。フィラメント数が60000本を越えると束内部まで均一に耐炎化処理できないことがある。フィラメント数が多いほど、本発明の効果が更に顕著となる。フィラメント数は、紡糸口金孔数と複数の錘から得られた糸条を合糸する数で制御できる。口金孔数は多いほどコストパフォーマンスが高いが、吐出の安定性からは合糸する数を増やすとよい。合糸するのは、凝固浴を出た後から耐炎化までの間であれば構わないが、凝固浴を出た後で合糸することが設備生産性の観点で好ましい。   The obtained carbon fiber precursor fiber is usually in the form of a continuous fiber (filament). The number of filaments per one yarn (multifilament) is preferably 3000 to 60000. Since the obtained carbon fiber precursor fiber is homogeneous, the number of filaments per yarn is preferably larger for the purpose of improving the productivity in the firing process, and can be stably fired. is there. If the number of filaments exceeds 60000, the flameproofing treatment may not be performed uniformly throughout the bundle. The effect of the present invention becomes more remarkable as the number of filaments increases. The number of filaments can be controlled by the number of spinneret holes and the number of yarns obtained from a plurality of weights. The more the number of nozzle holes, the higher the cost performance, but it is better to increase the number of combined yarns in terms of discharge stability. The yarns may be combined after leaving the coagulation bath until flame resistance, but it is preferable from the viewpoint of equipment productivity that the yarns are combined after leaving the coagulation bath.

次に、本発明の炭素繊維の製造方法について説明する。
本発明では、前記のようにして得た炭素繊維前駆体繊維を、200〜300℃の温度の空気中において延伸比0.8〜1.2延伸しながら耐炎化する耐炎化工程と、耐炎化工程で得られた繊維を、300〜800℃の温度の不活性雰囲気中において延伸比0.95〜1.2で延伸しながら予備炭化する予備炭化工程と、予備炭化工程で得られた繊維を1,000〜3,000℃の温度の不活性雰囲気中において延伸比0.96〜1.05で延伸しながら炭化する炭化工程を順次経て炭素繊維を得ることができる。
Next, the manufacturing method of the carbon fiber of this invention is demonstrated.
In the present invention, the carbon fiber precursor fiber obtained as described above is flame-proofed in which the carbon fiber precursor fiber is flame-resistant while being stretched in air at a temperature of 200 to 300 ° C. while stretching a stretch ratio of 0.8 to 1.2; A pre-carbonization step of pre-carbonizing the fiber obtained in the step while drawing at a draw ratio of 0.95-1.2 in an inert atmosphere at a temperature of 300 to 800 ° C., and a fiber obtained in the pre-carbonization step. Carbon fibers can be obtained through a carbonization step in which carbonization is performed while stretching at a stretch ratio of 0.96 to 1.05 in an inert atmosphere at a temperature of 1,000 to 3,000 ° C.

本発明において、耐炎化とは、空気を4〜25mol%以上含む雰囲気中において、200〜300℃で熱処理する工程をいう。通常、紡糸工程と耐炎化工程以降は非連続であるが、紡糸工程と耐炎化工程の一部もしくは全てを連続的に行っても構わない。また、耐炎化工程の生産性向上のために耐炎化工程における雰囲気最高温度を270〜300℃に設定することが好ましい。耐炎化工程の雰囲気最高温度が高すぎると炭素繊維の物性が低下することがある。   In the present invention, flame resistance refers to a step of heat treatment at 200 to 300 ° C. in an atmosphere containing 4 to 25 mol% or more of air. Usually, the spinning process and the flameproofing process are discontinuous, but part or all of the spinning process and the flameproofing process may be performed continuously. Moreover, it is preferable to set the maximum atmospheric temperature in the flameproofing process to 270 to 300 ° C. in order to improve the productivity of the flameproofing process. If the maximum atmospheric temperature in the flameproofing process is too high, the physical properties of the carbon fiber may be lowered.

耐炎化する際の延伸比は、0.8〜1.2、好ましくは0.9〜1.1とする。耐炎化する際の延伸比が0.8を下回ると、耐炎化工程の張力が低下し、耐炎化炉スリットなどで擦過を起こすことがあり、得られる炭素繊維の単繊維強度分布が広がる。また、耐炎化する際の延伸比が1.2を超えると、延伸張力が高すぎてローラー等に圧迫されて圧痕が残ることや欠陥が拡大することがある。   The stretch ratio when making flame resistant is 0.8 to 1.2, preferably 0.9 to 1.1. If the draw ratio at the time of flame resistance is less than 0.8, the tension in the flame resistance process is lowered, and scratching may occur in the flame resistance furnace slits, etc., and the single fiber strength distribution of the resulting carbon fiber is expanded. On the other hand, if the stretch ratio at the time of flame resistance exceeds 1.2, the stretch tension is too high and is pressed by a roller or the like so that an indentation remains or a defect may be enlarged.

耐炎化の処理時間は、10〜100分の範囲で適宜選択することができるが、続く予備炭化の生産安定性、および、得られる炭素繊維の力学物性向上の目的から、得られる耐炎化繊維の比重が1.3〜1.38の範囲となるように設定することが好ましい。   The flameproofing treatment time can be appropriately selected within a range of 10 to 100 minutes. However, for the purpose of improving the production stability of the subsequent preliminary carbonization and the mechanical properties of the resulting carbon fiber, It is preferable to set the specific gravity within a range of 1.3 to 1.38.

予備炭化、および、炭化は、不活性雰囲気中で行なわれるが、用いられる不活性ガスとしては、例えば、窒素、アルゴン、および、キセノンなどが用いられる。経済的な観点からは、窒素が好ましく用いられる。   Pre-carbonization and carbonization are performed in an inert atmosphere, and as the inert gas used, for example, nitrogen, argon, xenon, or the like is used. Nitrogen is preferably used from an economical viewpoint.

予備炭化の温度は、300〜800℃とする。なお、予備炭化における昇温速度は、500℃/分以下に設定されることが好ましい。   The temperature of preliminary carbonization shall be 300-800 degreeC. In addition, it is preferable that the temperature increase rate in preliminary carbonization is set to 500 degrees C / min or less.

予備炭化を行う際の延伸比は、0.95〜1.2、好ましくは1.0〜1.1とする。予備炭化を行う際の延伸比が0.95を下回ると、得られる予備炭化繊維の配向度が不十分となり、炭素繊維のストランド引張弾性率が低下する。また、予備炭化を行う際の延伸比が1.2を超えると、延伸張力が高すぎてローラー等に圧迫されて圧痕が残ることや欠陥が拡大することがある。   The stretch ratio when performing preliminary carbonization is 0.95 to 1.2, preferably 1.0 to 1.1. When the draw ratio at the time of preliminary carbonization is less than 0.95, the degree of orientation of the resulting preliminary carbonized fiber becomes insufficient, and the strand tensile elastic modulus of the carbon fiber decreases. On the other hand, if the draw ratio during preliminary carbonization exceeds 1.2, the draw tension may be too high and may be pressed by a roller or the like to leave indentations or enlarge defects.

炭化の温度は、好ましくは1,000〜2,000℃、より好ましくは1,200〜1800℃、さらに好ましくは1,300〜1,600℃とする。一般に炭化の最高温度が高いほど、ストランド引張弾性率は高まるものの、引張強度は1,500℃付近で極大となるため、両者のバランスを勘案して、炭化の温度を設定する。   The carbonization temperature is preferably 1,000 to 2,000 ° C, more preferably 1,200 to 1800 ° C, and still more preferably 1,300 to 1,600 ° C. Generally, the higher the maximum temperature of carbonization, the higher the tensile tensile modulus of the strand, but the tensile strength becomes a maximum at around 1,500 ° C. Therefore, the carbonization temperature is set in consideration of the balance between the two.

炭化を行う際の延伸比は、0.96〜1.05、好ましくは0.97〜1.05、より好ましくは0.98〜1.03とする。炭化を行う際の延伸比が0.96を下回ると、得られる炭素繊維の配向度や緻密性が不十分となり、ストランド引張弾性率が低下する。また、炭化を行う際の延伸比が1.05を超えると、延伸張力が高すぎてローラー等に圧迫されて圧痕が残ることや欠陥が拡大することがある。   The stretch ratio when carbonizing is 0.96 to 1.05, preferably 0.97 to 1.05, and more preferably 0.98 to 1.03. When the draw ratio at the time of carbonization is less than 0.96, the orientation degree and denseness of the obtained carbon fiber become insufficient, and the strand tensile elastic modulus is lowered. On the other hand, if the drawing ratio during carbonization exceeds 1.05, the drawing tension may be too high and may be pressed by a roller or the like to leave indentations or enlarge defects.

より弾性率が高い炭素繊維を所望する場合には、炭化工程に続き黒鉛化を行うこともできる。黒鉛化工程の温度は2000〜2800℃であるのがよい。また、その最高温度は、所望する炭素繊維の要求特性に応じて適宜選択して使用される。黒鉛化工程における延伸比は、所望する炭素繊維の要求特性に応じて、毛羽発生など品位低下の生じない範囲で適宜選択するのがよい。   When a carbon fiber having a higher elastic modulus is desired, graphitization can be performed following the carbonization step. The temperature of the graphitization step is preferably 2000 to 2800 ° C. The maximum temperature is appropriately selected and used according to the required characteristics of the desired carbon fiber. The drawing ratio in the graphitization step is preferably selected as appropriate within a range where no deterioration in quality such as generation of fluff occurs according to the required characteristics of the desired carbon fiber.

得られた炭素繊維はその表面改質のため、電解処理することができる。電解処理に用いられる電解液には、硫酸、硝酸および塩酸等の酸性溶液や、水酸化ナトリウム、水酸化カリウム、テトラエチルアンモニウムヒドロキシド、炭酸アンモニウムおよび重炭酸アンモニウムのようなアルカリまたはそれらの塩を水溶液として使用することができる。ここで、電解処理に要する電気量は、適用する炭素繊維の炭化度に応じて適宜選択することができる。   The obtained carbon fiber can be subjected to electrolytic treatment for its surface modification. The electrolytic solution used for the electrolytic treatment includes an acidic solution such as sulfuric acid, nitric acid and hydrochloric acid, an alkali solution such as sodium hydroxide, potassium hydroxide, tetraethylammonium hydroxide, ammonium carbonate and ammonium bicarbonate, or a salt thereof as an aqueous solution. Can be used as Here, the amount of electricity required for the electrolytic treatment can be appropriately selected according to the carbonization degree of the carbon fiber to be applied.

電解処理により、得られる繊維強化複合材料において炭素繊維マトリックスとの接着性が適正化することができ、接着が強すぎることによる複合材料の脆性的な破壊や、繊維方向の引張強度が低下する問題や、繊維方向における引張強度は高いものの樹脂との接着性に劣り、非繊維方向における強度特性が発現しないという問題が解消され、得られる繊維強化複合材料において、繊維方向と非繊維方向の両方向にバランスのとれた強度特性が発現されるようになる。   Electrolytic treatment can optimize the adhesion to the carbon fiber matrix in the resulting fiber reinforced composite material, causing brittle fracture of the composite material due to too strong adhesion and lowering the tensile strength in the fiber direction In addition, although the tensile strength in the fiber direction is high, the adhesive property with the resin is poor, and the problem that the strength characteristics in the non-fiber direction are not expressed is solved, and in the obtained fiber reinforced composite material, in both the fiber direction and the non-fiber direction A balanced strength characteristic is developed.

電解処理の後、炭素繊維に集束性を付与するため、サイジング処理を施すこともできる。サイジング剤には、使用する樹脂の種類に応じて、マトリックス樹脂等との相溶性の良いサイジング剤を適宜選択することができる。   After the electrolytic treatment, a sizing treatment can also be applied to give the carbon fiber a bundling property. As the sizing agent, a sizing agent having good compatibility with the matrix resin or the like can be appropriately selected according to the type of resin used.

本発明により得られる炭素繊維は、プリプレグとしてオートクレーブ成形、織物などのプリフォームとしてレジントランスファーモールディングで成形、およびフィラメントワインディングで成形するなど種々の成形法により、航空機部材、圧力容器部材、自動車部材、釣り竿およびゴルフシャフトなどのスポーツ部材として好適に用いられる。   The carbon fiber obtained by the present invention can be produced by various molding methods such as autoclave molding as a prepreg, resin transfer molding as a preform of a woven fabric, and filament winding. And it is suitably used as a sports member such as a golf shaft.

以下、実施例により本発明をさらに具体的に説明する。本実施例で用いた測定方法を次に説明する。
<各種分子量:Mz、Mw>
重合体を測定する場合は、測定しようとする重合体が濃度0.1重量%でジメチルホルムアミド(0.01N−臭化リチウム添加)に溶解した検体溶液を作製する。前駆体繊維を測定する場合は、測定する試料を濃度0.1w/v%でジメチルスルホキシドに溶解した検体溶液を作製する。作製した検体溶液について、GPC装置を用いて、次の条件で測定したGPC曲線から分子量分布曲線を求め、Mz(P)およびMw(P)、あるいは、Mz(F)およびMw(F)を算出する。測定は3回行い、Mz(P)、Mw(P)の値を平均して用いる。
・カラム :極性有機溶媒系GPC用カラム
・溶媒 :ジメチルホルムアミド(0.01N−臭化リチウム添加)
・流速 :0.5ml/分
・温度 :75℃
・試料濾過 :メンブレンフィルター(0.45μmカット)
・注入量 :200μl
・検出器 :示差屈折率検出器
Mwは、分子量が異なる分子量既知の単分散ポリスチレンを少なくとも6種類用いて、溶出時間―分子量の検量線を作成し、その検量線上において、該当する溶出時間に対応するポリスチレン換算の分子量を読み取ることにより求める。
Hereinafter, the present invention will be described more specifically with reference to examples. The measurement method used in this example will be described next.
<Various molecular weights: Mz, Mw>
In the case of measuring a polymer, a sample solution in which the polymer to be measured is dissolved in dimethylformamide (added with 0.01 N lithium bromide) at a concentration of 0.1% by weight is prepared. When measuring the precursor fiber, a sample solution is prepared by dissolving the sample to be measured in dimethyl sulfoxide at a concentration of 0.1 w / v%. For the prepared sample solution, a molecular weight distribution curve is obtained from a GPC curve measured under the following conditions using a GPC apparatus, and Mz (P) and Mw (P) or Mz (F) and Mw (F) are calculated. To do. The measurement is performed three times, and the average values of Mz (P) and Mw (P) are used.
-Column: Column for polar organic solvent GPC-Solvent: Dimethylformamide (0.01N-lithium bromide added)
・ Flow rate: 0.5ml / min ・ Temperature: 75 ℃
・ Sample filtration: Membrane filter (0.45μm cut)
・ Injection volume: 200 μl
・ Detector: Differential refractive index detector Mw uses at least six types of monodispersed polystyrenes with different molecular weights and known molecular weights to create an elution time-molecular weight calibration curve, and corresponds to the corresponding elution time on the calibration curve. It is obtained by reading the molecular weight in terms of polystyrene.

本実施例では、GPC装置として(株)島津製作所製CLASS−LC2010を、カラムとして東ソー(株)製TSK−GEL−α―M(×2)+東ソー(株)製TSK−guard Column αを、ジメチルホルムアミドおよび臭化リチウムとして和光純薬工業(株)製を、メンブレンフィルターとしてミリポアコーポレーション製0.45μm−FHLP FILTERを、示差屈折率検出器として(株)島津製作所製RID−10AVを、検量線作成用の単分散ポリスチレンとして、分子量184000、427000、791000および1300000、1810000、4240000のものを、それぞれ用いた。   In this example, CLASS-LC2010 manufactured by Shimadzu Corporation as a GPC device, and TSK-GEL-α-M (× 2) manufactured by Tosoh Corporation as a column and TSK-guard Column α manufactured by Tosoh Corporation, Calibration curves were manufactured by Wako Pure Chemical Industries, Ltd. as dimethylformamide and lithium bromide, 0.45 μm-FHLP FILTER manufactured by Millipore Corporation as a membrane filter, and RID-10AV manufactured by Shimadzu Corporation as a differential refractive index detector. As the monodisperse polystyrene for production, those having molecular weights of 184000, 427000, 791000 and 1300000, 1810000, 420000 were used.

<凝固浴液粘度>
B型粘度計を用いて測定した。条件としては、ローターNo.1を使用し、ローター回転数60r.p.m.で測定した。
<Viscosity bath viscosity>
Measurement was performed using a B-type viscometer. As conditions, rotor No. 1 was used, and the rotor rotational speed was 60 r. p. m. Measured with

<凝固価>
紡糸に用いる溶媒50ccに対して紡糸に用いる重合体を1重量%溶解した溶液を5℃の温度に調温する。凝固促進成分を攪拌されたその溶液に徐々に滴下し、温度が25℃に安定し、十分攪拌されたのを確認してから滴下を続ける。沈殿生成を開始して溶液が透明から白濁に変化することを目視で確認し、滴下した凝固促進成分量を測定した。設定する凝固浴の凝固促進成分濃度(%)から、凝固価(g)=滴下した凝固促進成分量(g)/凝固促進成分濃度×100として求めた。測定は3回行い、その平均値を採用した。
<Coagulation value>
A solution in which 1% by weight of the polymer used for spinning is dissolved in 50 cc of the solvent used for spinning is adjusted to a temperature of 5 ° C. The coagulation accelerating component is gradually added dropwise to the stirred solution, and the addition is continued after confirming that the temperature is stabilized at 25 ° C. and sufficiently stirred. Precipitation formation was started and it was visually confirmed that the solution changed from transparent to cloudy, and the amount of the coagulation-promoting component dropped was measured. From the solidification promoting component concentration (%) of the coagulation bath to be set, the solidification value (g) = the amount of solidification promoting component dropped (g) / coagulation promoting component concentration × 100 was obtained. The measurement was performed 3 times and the average value was adopted.

<吐出角度>
口金短径に対し垂直方向から口金の吐出面と液面との間を写真撮影し、口金最外孔の吐出状態を計測した。口金面に垂直方向からの角度を吐出角度とした。
<Discharge angle>
A photograph was taken between the discharge surface and the liquid surface of the base from the direction perpendicular to the short diameter of the base, and the discharge state of the outermost hole of the base was measured. The angle from the direction perpendicular to the die surface was taken as the discharge angle.

<沈み込み深さ>
凝固浴の側面の口金部分が透明になっている凝固浴で、口金短径に対し垂直方向から口金の吐出面と液面との間を写真撮影し、口金周辺部の液面と口金直下の液面の高低差を計測し、沈み込み深さとした。
<Subduction depth>
A coagulation bath with a transparent base on the side of the coagulation bath. Take a picture of the gap between the discharge surface of the base and the liquid surface from the direction perpendicular to the short axis of the base. The level difference of the liquid level was measured and set as the subduction depth.

<前駆体繊維のRAMAN二色比>
測定装置および、測定条件は以下のとおりで行った。
測定装置:JobinYvon製RamaonorT-64000マイクロプローブ(顕微モード)
対物レンズ:100倍
ビーム径:1μm
レーザー励起波長:785nm
レーザーパワー:33mW
回折格子:600gr/mm(Spectrograph製)
スリット:φ50μm
検出器:CCD(JobinYvon製1024×256)
測定は、前駆体繊維表面にレーザー光を集光し、偏光面は繊維軸と一致させた時を0°の測定、ステージを90°回転させて、偏光面を繊維軸に90°に設定した時を90°の測定とした。ベースラインを引いた上で各測定の2240cm−1付近のピーク強度と1480cm−1付近のピーク強度の比をR’とする。R’(0°)/R’(90°)をRAMAN二色比R値として用いた。各試料につき異なる単繊維を用いてn=6の測定を行った。スペクトル比較や解析はそれらの平均を用いた。
<RAMAN dichroic ratio of precursor fiber>
The measurement apparatus and measurement conditions were as follows.
Measuring device: JobonYvon RamaonorT-64000 microprobe (microscopic mode)
Objective lens: 100 times beam diameter: 1 μm
Laser excitation wavelength: 785 nm
Laser power: 33mW
Diffraction grating: 600 gr / mm (manufactured by Spectrograph)
Slit: φ50μm
Detector: CCD (1024 × 256 made by JobinYvon)
In the measurement, the laser beam was condensed on the surface of the precursor fiber, the measurement was performed at 0 ° when the polarization plane was aligned with the fiber axis, the stage was rotated 90 °, and the polarization plane was set at 90 ° about the fiber axis. The time was measured at 90 °. The ratio of the peak intensity in the vicinity of the peak intensity and 1480 cm -1 in the vicinity of 2240 cm -1 of each measurement and R 'on minus the baseline. R ′ (0 °) / R ′ (90 °) was used as the RAMAN dichroic ratio R value. Measurements of n = 6 were performed using different single fibers for each sample. Spectral comparison and analysis used those averages.

<前駆体繊維の結晶配向度>
繊維軸方向の配向度は、次のように測定した。繊維束を40mm長に切断して、20mgを精秤して採取し、試料繊維軸が正確に平行になるようにそろえた後、試料調整用治具を用いて幅1mmの厚さが均一な試料繊維束に整えた。薄いコロジオン液を含浸させて形態が崩れないように固定した後、広角X線回折測定試料台に固定した。X線源として、Niフィルターで単色化されたCuのKα線を用い、2θ=17°付近に観察される回折の最高強度を含む子午線方向のプロフィールの広がりの半価幅(H゜)から、次式を用いて結晶配向度(%)を求めた。n数は3とした。
<Crystal orientation degree of precursor fiber>
The degree of orientation in the fiber axis direction was measured as follows. The fiber bundle is cut to a length of 40 mm, and 20 mg is precisely weighed and sampled so that the sample fiber axes are exactly parallel, and then a thickness of 1 mm is uniform using a sample adjusting jig. Sample fiber bundles were arranged. After impregnating with a thin collodion solution and fixing it so as not to lose its shape, it was fixed to a sample table for wide-angle X-ray diffraction measurement. From the half width (H °) of the spread of the profile in the meridian direction including the highest intensity of diffraction observed near 2θ = 17 °, using Cu Kα ray monochromated with a Ni filter as the X-ray source. The degree of crystal orientation (%) was determined using the following formula. The n number was 3.

結晶配向度(%)=[(180−H)/180]×100
なお、上記広角X線回折装置として、島津製作所製XRD-6100を用いた。
Crystal orientation degree (%) = [(180−H) / 180] × 100
In addition, Shimadzu Corporation XRD-6100 was used as said wide angle X-ray diffraction apparatus.

<前駆体繊維の単繊維繊度>
絶乾したフィラメント数6,000の繊維を1巻き1m金枠に10回巻いた後、その重量を測定し、10,000m当たりの重量を算出することにより求めた。
<Single fiber fineness of precursor fiber>
The dried fiber having a filament number of 6,000 was wound 10 times on a 1 m metal frame, and then its weight was measured to calculate the weight per 10,000 m.

<前駆体繊維自乗平均面粗さRms>
評価すべき前駆体繊維単繊維を数本試料台にのせ、両端を接着液(例えば、文具の修正液)で固定したものをサンプルとし、原子間力顕微鏡を用いて3次元表面形状の像を得る。本実施例においては、原子間力顕微鏡として、セイコーインスツルメンツ(株)製、SPI3800N/SPA−400を用い、下記条件にて3次元表面形状の像を得た。
探針:シリコンカンチレバー(セイコーインスツルメンツ製、DF−20)
測定モード:ダイナミックフォースモード(DFM)
走査速度:1.5Hz
走査範囲:3μm×3μm
分解能:256ピクセル×256ピクセル
得られた3次元表面形状の像は、繊維断面の曲率を考慮し、付属のソフトウエアにより、画像の全データから最小二乗法により1次平面を求めてフィッティングし、面内の傾きを補正する1次傾き補正を行い、続いて同様に2次曲線を補正する2次傾き補正を行った後、付属のソフトウエアにより表面粗さ解析を行い、自乗平均面粗さRmsを算出した。測定は、異なる単繊維10本をランダムにサンプリングし、単繊維1本につき、各1回ずつ、計10回行い、その平均値を値とした。
<Precursor fiber square average surface roughness Rms>
A sample of a single precursor fiber to be evaluated placed on a sample stage and fixed at both ends with an adhesive solution (for example, a stationery correction solution) is used as a sample, and an image of a three-dimensional surface shape is obtained using an atomic force microscope. obtain. In the present example, an SPI 3800N / SPA-400 manufactured by Seiko Instruments Inc. was used as an atomic force microscope, and a three-dimensional surface shape image was obtained under the following conditions.
Probe: Silicon cantilever (Seiko Instruments, DF-20)
Measurement mode: Dynamic force mode (DFM)
Scanning speed: 1.5Hz
Scanning range: 3μm × 3μm
Resolution: 256 pixels × 256 pixels The obtained image of the three-dimensional surface shape is obtained by fitting the primary plane by the least square method from the entire data of the image, taking into account the curvature of the fiber cross section, First-order inclination correction to correct the in-plane inclination, followed by second-order inclination correction to correct the quadratic curve in the same way, then surface roughness analysis by the attached software, the root mean square surface roughness Rms was calculated. The measurement was performed by sampling 10 different single fibers at random, and performing each measurement once for each single fiber for a total of 10 times.

<前駆体繊維の強度>
前駆体繊維束を試長50mm、引張速度100mm/分で試験を行い、n=10の値の平均を用いた。
<Strength of precursor fiber>
The precursor fiber bundle was tested at a test length of 50 mm and a tensile speed of 100 mm / min, and an average of n = 10 values was used.

<前駆体繊維単繊維の断面形状、直径変動係数>
前駆体繊維束を繊維軸に垂直に高さを合わせてカミソリで切断し、光学顕微鏡を用いて単繊維の断面形状の観察を行った。測定倍率は、最も細い単繊維が1mm程度となるよう倍率200〜400倍程度とし、得られた画像を6枚分画像解析することにより前駆体繊維の単繊維の断面積と周長を求め、その断面積から単繊維の断面の直径(繊維径)を求め、また、下記式を用いて単繊維の真円度を求めた。
<Cross-sectional shape and diameter variation coefficient of precursor fiber monofilament>
The precursor fiber bundle was aligned with the height perpendicular to the fiber axis and cut with a razor, and the cross-sectional shape of the single fiber was observed using an optical microscope. The measurement magnification is about 200 to 400 times the magnification so that the thinnest single fiber is about 1 mm, and the cross-sectional area and circumference of the single fiber of the precursor fiber are obtained by image analysis of the obtained images. The cross-sectional diameter (fiber diameter) of the single fiber was determined from the cross-sectional area, and the roundness of the single fiber was determined using the following formula.

真円度=4πS/L
(式中、Sは単繊維の断面積を表し、Lは単繊維の周長を表す。)
直径変動係数は、上記で得られた直径の変動係数とした。
Roundness = 4πS / L 2
(In the formula, S represents the cross-sectional area of the single fiber, and L represents the circumference of the single fiber.)
The diameter variation coefficient was the variation coefficient of the diameter obtained above.

<接着評価>
以下の実施例、比較例の条件で製糸したときに凝固引取後の繊維束を50cm採取し、底が黒色で、2cm深さの水が入ったバットで繊維束を泳がせ、バラケ具合を観察して、接着状態を評価した。評価基準は以下の通りである。
1:単繊維状にばらけている。
2:ピンセットで水中の繊維束を軽くたたくと単繊維にばらける。
3:数本単位でばらけない繊維束を含む。
4:数10本単位でばらけない繊維束を含む。
5:数10本単位でばらけない繊維束を複数含む。
<Adhesion evaluation>
50 cm of fiber bundles after coagulation take-up were collected when yarn was produced under the conditions of the following examples and comparative examples, and the fiber bundles were swimmed in a vat with black bottom and 2 cm of water, and observed for the condition of the looseness. Then, the adhesion state was evaluated. The evaluation criteria are as follows.
1: Dispersed into a single fiber.
2: When tapping the fiber bundle in water with tweezers, it breaks into single fibers.
3: Including a fiber bundle that does not disperse in units of several.
4: Including a fiber bundle that does not disperse in units of several tens.
5: Contains a plurality of fiber bundles that cannot be separated in units of several tens.

<前駆体繊維製造時の工程安定性>
以下の実施例、比較例の条件で製糸したときに前駆体繊維を巻き取る手前で1000m分の前駆体繊維の毛羽の数を数え、工程安定性を評価した。評価基準は以下の通りである。
1:(毛羽本数/1繊維束・1000m)≦1
2:1<(毛羽本数/1繊維束・1000m)≦2
3:2<(毛羽本数/1繊維束・1000m)≦5
4:5<(毛羽本数/1繊維束・1000m)<60
5:(毛羽本数/1繊維束・1000m)≧60
<耐炎化時の工程安定性>
以下の実施例、比較例の前駆体繊維を12,000フィラメントとなるように合糸した上で、雰囲気温度を270℃一定に保たれ、炉長7.5mである横型熱風循環炉に、糸速2.5m/分で導入し、延伸比1.0で延伸しながら、炉の出側で40分間毛羽の数を数え、工程安定性を評価した。評価基準は以下の通りである。
1:(毛羽本数/1繊維束・100m)≦1
2:1<(毛羽本数/1繊維束・100m)≦2
3:2<(毛羽本数/1繊維束・100m)≦40
4:40<(毛羽本数/1繊維束・100m)<400
5:(毛羽本数/1繊維束・100m)≧400
[実施例1]
AN100重量部、イタコン酸1重量部、およびジメチルスルホキシド130重量部を混合し、それを還流管と攪拌翼を備えた反応容器に入れた。反応容器内の空間部を酸素濃度が100ppmまで窒素置換した後、ラジカル開始剤として2,2’−アゾビスイソブチロニトリル(AIBN)0.002重量部を投入し、撹拌しながら下記の条件(重合条件Bと呼ぶ。)の熱処理を行った。
<Process stability during precursor fiber production>
The process stability was evaluated by counting the number of fluff of the precursor fiber for 1000 m before winding up the precursor fiber when the yarn was produced under the conditions of the following examples and comparative examples. The evaluation criteria are as follows.
1: (number of fuzz / one fiber bundle / 1000 m) ≦ 1
2: 1 <(number of fuzz / 1 fiber bundle / 1000 m) ≦ 2
3: 2 <(number of fuzz / 1 fiber bundle · 1000 m) ≦ 5
4: 5 <(number of fuzz / 1 fiber bundle / 1000 m) <60
5: (number of fuzz / 1 fiber bundle / 1000 m) ≧ 60
<Process stability during flame resistance>
After the precursor fibers of the following examples and comparative examples were combined so as to be 12,000 filaments, the atmosphere temperature was kept constant at 270 ° C., and the yarn was placed in a horizontal hot air circulation furnace having a furnace length of 7.5 m. While introducing at a speed of 2.5 m / min and stretching at a draw ratio of 1.0, the number of fluff was counted for 40 minutes on the exit side of the furnace to evaluate the process stability. The evaluation criteria are as follows.
1: (number of fluff / one fiber bundle / 100 m) ≦ 1
2: 1 <(number of fuzz / 1 fiber bundle / 100 m) ≦ 2
3: 2 <(number of fuzz / 1 fiber bundle / 100 m) ≦ 40
4:40 <(number of fuzz / 1 fiber bundle / 100 m) <400
5: (number of fuzz / 1 fiber bundle / 100 m) ≧ 400
[Example 1]
100 parts by weight of AN, 1 part by weight of itaconic acid, and 130 parts by weight of dimethyl sulfoxide were mixed and placed in a reaction vessel equipped with a reflux tube and a stirring blade. After replacing the space in the reaction vessel with nitrogen to an oxygen concentration of 100 ppm, as a radical initiator, 0.002 part by weight of 2,2′-azobisisobutyronitrile (AIBN) was added, and the following conditions were added while stirring: The heat treatment (referred to as polymerization condition B) was performed.

・ 65℃の温度で2時間保持
・ 65℃から30℃へ降温(降温速度120℃/時間)
次に、その反応容器中に、ジメチルスルホキシド240重量部、ラジカル開始剤としてAIBN 0.4重量部、および連鎖移動剤としてオクチルメルカプタン0.1重量部を計量導入した後、さらに撹拌しながら次の(1)〜(4)の熱処理(重合条件Aと呼ぶ)を行い、溶液重合法により重合して、PAN系重合体溶液を得た。
(1)30℃から60℃へ昇温(昇温速度10℃/時間)
(2)60℃の温度で4時間保持
(3)60℃から80℃へ昇温(昇温速度10℃/時間)
(4)80℃の温度で6時間保持
得られたPAN系重合体溶液を用いて重合体濃度が20重量%となるように調製した後、アンモニアガスをpHが8.5になるまで吹き込むことにより、イタコン酸を中和しつつアンモニウム基をPAN系重合体に導入し、紡糸溶液を得た。得られた紡糸溶液におけるPAN系重合体は、Mw(P)が48万、Mz(P)/Mw(P)が5.7、MZ+1(P)/Mw(P)が14であり、紡糸溶液の粘度は45Pa・sであった。
-Hold at 65 ° C for 2 hours-Decrease in temperature from 65 ° C to 30 ° C (Temperature drop rate: 120 ° C / hour)
Next, 240 parts by weight of dimethyl sulfoxide, 0.4 part by weight of AIBN as a radical initiator, and 0.1 part by weight of octyl mercaptan as a chain transfer agent were weighed and introduced into the reaction vessel, and the following stirring was performed. A heat treatment (referred to as polymerization conditions A) of (1) to (4) was performed and polymerized by a solution polymerization method to obtain a PAN polymer solution.
(1) Temperature increase from 30 ° C to 60 ° C (temperature increase rate 10 ° C / hour)
(2) Hold for 4 hours at a temperature of 60 ° C. (3) Increase the temperature from 60 ° C. to 80 ° C. (Temperature increase rate: 10 ° C./hour)
(4) Hold for 6 hours at a temperature of 80 ° C. Use the obtained PAN-based polymer solution to prepare a polymer concentration of 20% by weight, and then blow ammonia gas until the pH reaches 8.5. Thus, an ammonium group was introduced into the PAN polymer while neutralizing itaconic acid to obtain a spinning solution. The PAN-based polymer in the obtained spinning solution had Mw (P) of 480,000, Mz (P) / Mw (P) of 5.7, M Z + 1 (P) / Mw (P) of 14, The viscosity of the solution was 45 Pa · s.

得られた紡糸溶液を、40℃の温度で、孔数3000、紡糸口金孔径0.3mm、口金短径が175mmの紡糸口金から一旦5mmエアギャップを走行させ、5℃の温度にコントロールした70重量%ジメチルスルホキシドの水溶液からなる凝固浴に導入する乾湿式紡糸法により紡糸し、凝固糸とした。このときの吐出線速度3m/分、紡糸ドラフト率12、凝固引取速度40m/分の条件で凝固糸を得、接着評価を行った。また、このときの口金からの吐出角度は14°、沈み込み深さは8mmであった。得られた凝固糸を水洗した後、70℃の温度の温水中で2倍の浴中延伸倍率で延伸し、さらにアミノ変性シリコーン系油剤を付与し、190℃の温度のホットドラムを用いて乾燥し、その後0.4MPaの加圧水蒸気中で6倍の後延伸を行って単繊維繊度1.1dtexの炭素繊維前駆体繊維を得た。得られた炭素繊維前駆体繊維の品位は優れており、前駆体繊維巻き取り手前で観察した製糸工程通過性も安定していた。   The obtained spinning solution was run at a temperature of 40 ° C. at a temperature of 5 ° C. by running a 5 mm air gap once from a spinneret having a hole number of 3000, a spinneret hole diameter of 0.3 mm, and a short diameter of the base of 175 mm. Spinning was performed by a dry-wet spinning method introduced into a coagulation bath composed of an aqueous solution of% dimethyl sulfoxide to obtain a coagulated yarn. Under this condition, a coagulated yarn was obtained under the conditions of a discharge linear velocity of 3 m / min, a spinning draft rate of 12, and a coagulation take-up speed of 40 m / min, and the adhesion was evaluated. At this time, the discharge angle from the die was 14 °, and the sinking depth was 8 mm. After washing the obtained coagulated yarn with water, it is stretched in hot water at a temperature of 70 ° C. at a stretch ratio of 2 times in a bath, further provided with an amino-modified silicone oil, and dried using a hot drum at a temperature of 190 ° C. Thereafter, the carbon fiber precursor fiber having a single fiber fineness of 1.1 dtex was obtained by post-stretching 6 times in pressurized water vapor of 0.4 MPa. The quality of the obtained carbon fiber precursor fiber was excellent, and the yarn passing through the spinning process observed before winding the precursor fiber was also stable.

[実施例2]
1回目のAIBNの投入量を0.001重量部に変更したことと、反応容器内の空間部を酸素濃度が1000ppmまで窒素置換したこと、重合条件Aを以下の重合条件Cに変更した以外は、実施例1と同様にして紡糸溶液を得た。
(1)70℃の温度で4時間保持
(2)70℃から30℃へ降温(降温速度120℃/時間)
得られた紡糸溶液におけるPAN系重合体は、Mw(P)が34万、Mz(P)/Mw(P)が2.7、MZ+1(P)/Mw(P)が7.2であり、紡糸溶液の粘度は40Pa・sであった。紡糸溶液を上記のようにして得た紡糸溶液に変更した以外は実施例1と同様にして紡糸を行った。得られた炭素繊維前駆体繊維の品位は優れており、前駆体繊維巻き取り手前で観察した製糸工程通過性も安定していた。
[Example 2]
Except that the first AIBN charge was changed to 0.001 part by weight, the space in the reaction vessel was replaced with nitrogen to an oxygen concentration of 1000 ppm, and the polymerization condition A was changed to the following polymerization condition C A spinning solution was obtained in the same manner as in Example 1.
(1) Hold for 4 hours at a temperature of 70 ° C. (2) Decrease in temperature from 70 ° C. to 30 ° C. (Cooling rate 120 ° C./hour)
The PAN polymer in the obtained spinning solution has Mw (P) of 340,000, Mz (P) / Mw (P) of 2.7, and M Z + 1 (P) / Mw (P) of 7.2. The viscosity of the spinning solution was 40 Pa · s. Spinning was carried out in the same manner as in Example 1 except that the spinning solution was changed to the spinning solution obtained as described above. The quality of the obtained carbon fiber precursor fiber was excellent, and the yarn passing through the spinning process observed before winding the precursor fiber was also stable.

[実施例3]
1回目のAIBNの投入量を0.002重量部に変更したことと、重合条件Cにおいて保持時間を1.5時間にした以外は、実施例2と同様にして紡糸溶液を得た。得られた紡糸溶液におけるPAN系重合体は、Mw(P)を32万、Mz(P)/Mw(P)を3.4、MZ+1(P)/Mw(P)を12であり、紡糸溶液の粘度は35Pa・sであった。紡糸溶液を上記のようにして得た紡糸溶液に変更した以外は実施例1と同様にして紡糸を行った。得られた炭素繊維前駆体繊維の品位は優れており、前駆体繊維巻き取り手前で観察した製糸工程通過性も安定していた。
[Example 3]
A spinning solution was obtained in the same manner as in Example 2 except that the first AIBN charge was changed to 0.002 parts by weight and that the holding time was 1.5 hours under the polymerization condition C. The PAN polymer in the obtained spinning solution had Mw (P) of 320,000, Mz (P) / Mw (P) of 3.4, and M Z + 1 (P) / Mw (P) of 12, The viscosity of the solution was 35 Pa · s. Spinning was carried out in the same manner as in Example 1 except that the spinning solution was changed to the spinning solution obtained as described above. The quality of the obtained carbon fiber precursor fiber was excellent, and the yarn passing through the spinning process observed before winding the precursor fiber was also stable.

[比較例1]
AN100重量部、イタコン酸1重量部、ラジカル開始剤として2,2‘−アゾビス(2−メチルプロピオニトリル)(以下、AIBNと略記)0.4重量部、および連鎖移動剤としてオクチルメルカプタン0.1重量部をジメチルスルホキシド370重量部に均一に溶解し、それを還流管と攪拌翼を備えた反応容器に入れた。反応容器内の空間部を酸素濃度が1000ppmとなるまで窒素置換した後、実施例1における重合条件Aによる熱処理を行い、残存する未反応単量体を溶液重合法により重合してPAN系重合体溶液を得た。
得られたPAN系重合体溶液の溶媒に対する重合体濃度は、20重量%弱であった。
得られたPAN系重合体溶液を、重合体濃度が20重量%となるように調製した後、アンモニアガスをpHが8.5になるまで吹き込むことにより、イタコン酸を中和しつつ、アンモニウム基を重合体に導入し、紡糸溶液を得た。紡糸溶液を上記のようにして得た紡糸溶液に変更した以外は実施例1と同様にして紡糸を行おうとしたが、凝固引取ローラーに糸を掛けようとすると口金直下で糸切れしてサンプリングできなかった。
[Comparative Example 1]
100 parts by weight of AN, 1 part by weight of itaconic acid, 0.4 parts by weight of 2,2′-azobis (2-methylpropionitrile) (hereinafter abbreviated as AIBN) as a radical initiator, and octyl mercaptan as a chain transfer agent 1 part by weight was uniformly dissolved in 370 parts by weight of dimethyl sulfoxide, and it was put into a reaction vessel equipped with a reflux tube and a stirring blade. After replacing the space in the reaction vessel with nitrogen until the oxygen concentration becomes 1000 ppm, heat treatment is performed under the polymerization condition A in Example 1, and the remaining unreacted monomer is polymerized by a solution polymerization method to obtain a PAN-based polymer. A solution was obtained.
The polymer concentration with respect to the solvent of the obtained PAN-based polymer solution was a little less than 20% by weight.
The obtained PAN-based polymer solution was prepared so that the polymer concentration was 20% by weight, and then ammonia gas was blown until the pH reached 8.5 to neutralize itaconic acid, while the ammonium group was neutralized. Was introduced into the polymer to obtain a spinning solution. Except for changing the spinning solution to the spinning solution obtained as described above, spinning was attempted in the same manner as in Example 1. However, when the yarn was placed on the coagulation take-up roller, the yarn was broken just below the base and could be sampled. There wasn't.

[比較例2]
(特開2008−248219の実施例1に類似した方法)実施例1で用いた紡糸溶液を用いて、孔数6000、紡糸口金孔径0.15mm、口金短径が175mmの紡糸口金から一旦5mmエアギャップを走行させ、3℃の温度にコントロールした20重量%ジメチルスルホキシドの水溶液からなる凝固浴に導入する乾湿式紡糸法により紡糸し、凝固糸とした。このときの吐出線速度7m/分、紡糸ドラフト率4、凝固引取速度28m/分の条件で凝固糸を得、接着評価を行った。凝固浴液の粘度が低く、凝固引取速度が遅かったため、口金からの吐出角度は14°、沈み込み深さは0mmであり、接着は少なかった。その後、凝固・吐出条件を上述のように変更した以外は実施例1と同様にして0.7dtexの前駆体繊維を得たが、実施例1に比べれば、若干工程通過性が悪化した。
[Comparative Example 2]
(Method similar to Example 1 of Japanese Patent Application Laid-Open No. 2008-248219) Using the spinning solution used in Example 1, air was once discharged from a spinneret having a hole number of 6000, a spinneret hole diameter of 0.15 mm, and a shorter diameter of 175 mm. The gap was run and spun by a dry-wet spinning method introduced into a coagulation bath composed of an aqueous solution of 20% by weight dimethyl sulfoxide controlled at a temperature of 3 ° C. to obtain a coagulated yarn. Under this condition, a coagulated yarn was obtained under the conditions of a discharge linear velocity of 7 m / min, a spinning draft rate of 4, and a coagulation take-up speed of 28 m / min, and adhesion evaluation was performed. Since the viscosity of the coagulation bath liquid was low and the coagulation take-up speed was slow, the discharge angle from the die was 14 °, the sinking depth was 0 mm, and the adhesion was small. Thereafter, a precursor fiber of 0.7 dtex was obtained in the same manner as in Example 1 except that the coagulation / discharge conditions were changed as described above, but the process passability was slightly deteriorated as compared with Example 1.

[比較例3]
凝固浴の濃度と温度、吐出線速度を13m/分、紡糸ドラフト率3、凝固引取速度40m/分の条件として、1.1dtexの前駆単繊維を得た以外は比較例2と同様にして紡糸を行った。高粘度の凝固浴液となり、高速で引き取った場合には、口金中心部への随伴流が大きくなり、吐出角度が大きく、沈み込み深さが大きくなった。吐出角度が大きくなったため、接着が増加し、工程通過性が大幅に低下した。
[Comparative Example 3]
Spinning in the same manner as in Comparative Example 2 except that a precursor single fiber of 1.1 dtex was obtained under the conditions of a coagulation bath concentration and temperature, a discharge linear velocity of 13 m / min, a spinning draft rate of 3, and a coagulation take-up speed of 40 m / min. Went. When it became a high-viscosity coagulation bath solution and taken up at high speed, the accompanying flow to the central part of the die became large, the discharge angle was large, and the sinking depth was large. Since the discharge angle was increased, adhesion increased, and process passability was greatly reduced.

[比較例4]
比較例1と同様の紡糸溶液を用いた以外は比較例3と同様にして紡糸を行った。吐出角度は比較例3よりも大きくなり、工程通過性はさらに悪化した。
[Comparative Example 4]
Spinning was performed in the same manner as in Comparative Example 3 except that the same spinning solution as in Comparative Example 1 was used. The discharge angle was larger than that of Comparative Example 3, and the process passability was further deteriorated.

[比較例5]
口金短径を220mmとした紡糸口金を用いた以外は実施例3と同様にして紡糸を行った。実施例3よりも吐出角度が大きくなり、接着が増えたために工程通過性は低下した。
[Comparative Example 5]
Spinning was performed in the same manner as in Example 3 except that a spinneret having a short diameter of 220 mm was used. Since the discharge angle was larger than in Example 3 and the adhesion increased, the process passability decreased.

[実施例4]
口金短径を75mmとした紡糸口金を用いた以外は実施例3と同様にして紡糸を行った。実施例3よりも吐出角度が小さくなり、工程通過性は良好だった。
[Example 4]
Spinning was performed in the same manner as in Example 3 except that a spinneret having a short diameter of 75 mm was used. The discharge angle was smaller than in Example 3, and the process passability was good.

[実施例5]
口金の長径を長くして、短径を維持したまま口金孔数を16000個とした紡糸口金を用いた以外は実施例3と同様にして紡糸を行ったところ、工程通過性は良好だった。
[Example 5]
Spinning was carried out in the same manner as in Example 3 except that a spinneret was used in which the long diameter of the base was lengthened and the number of holes in the base was 16,000 while the short diameter was maintained.

[実施例6]
口金の長径を長くして、短径を維持したまま口金孔数を24000個とした紡糸口金を用いた以外は実施例3と同様にして紡糸を行ったところ、工程通過性は良好だった。
[Example 6]
Spinning was carried out in the same manner as in Example 3 except that the spinneret with the longer diameter of the base and the base diameter maintained to 24,000 while the short diameter was maintained, the process passability was good.

[実施例7]
凝固浴の溶媒濃度を79%とし、浴液温度を10℃として凝固浴液粘度を8mPa・sとした以外は、実施例3と同様にして紡糸を行った。凝固浴温度が高かったためスキン層が薄くなり、工程通過性が若干悪化したが、凝固浴粘度が低下したために吐出角度が小さくなり、接着が低減した。
[Example 7]
Spinning was carried out in the same manner as in Example 3 except that the solvent concentration of the coagulation bath was 79%, the bath solution temperature was 10 ° C., and the coagulation bath solution viscosity was 8 mPa · s. The skin layer was thinned due to the high coagulation bath temperature, and the process passability was slightly deteriorated. However, the discharge angle was reduced and the adhesion was reduced because the coagulation bath viscosity was lowered.

[実施例8]
凝固浴の浴液温度を15℃として凝固浴液粘度を7mPa・sとした以外は、実施例7と同様にして紡糸を行った。凝固浴温度が高かったためスキン層が薄くなり、工程通過性が若干悪化したが、凝固浴粘度が低下したために吐出角度が小さくなり、接着が低減した。
[Example 8]
Spinning was carried out in the same manner as in Example 7 except that the bath temperature of the coagulation bath was 15 ° C. and the viscosity of the coagulation bath solution was 7 mPa · s. The skin layer was thinned due to the high coagulation bath temperature, and the process passability was slightly deteriorated. However, the discharge angle was reduced and the adhesion was reduced because the coagulation bath viscosity was lowered.

[比較例6]
凝固浴の浴液温度を25℃として凝固浴液粘度を5mPa・sとした以外は、実施例7と同様にして紡糸を行った。凝固浴温度が高かったためスキン層が薄くなり、工程通過性が大幅に悪化した。
[Comparative Example 6]
Spinning was performed in the same manner as in Example 7 except that the bath temperature of the coagulation bath was 25 ° C. and the viscosity of the coagulation bath solution was 5 mPa · s. Since the coagulation bath temperature was high, the skin layer became thinner, and the process passability was greatly deteriorated.

[実施例9〜11]
紡糸溶液の口金からの吐出量を凝固引取速度に応じて高め、凝固引取速度を表1に示すとおり変化させた以外は、実施例3と同様紡糸が行った。凝固浴液面の沈み込み深さは大きくなったが、大幅な工程通過性低下はなく、安定して紡糸できた。
[Examples 9 to 11]
Spinning was carried out in the same manner as in Example 3 except that the amount of spinning solution discharged from the die was increased according to the coagulation take-up speed and the coagulation take-up speed was changed as shown in Table 1. Although the sinking depth of the coagulation bath liquid level increased, there was no significant decrease in process passability and stable spinning was possible.

[比較例7〜9]
紡糸溶液の口金からの吐出量を凝固引取速度に応じて高め、凝固引取速度を表1に示すとおり変化させた以外は、比較例4と同様紡糸が行った。凝固浴液面の沈み込み深さは大きくなり、比較例4同様、吐出角度が大きかったため工程通過性は大幅に悪化した。
[Comparative Examples 7 to 9]
Spinning was performed in the same manner as in Comparative Example 4, except that the amount of spinning solution discharged from the die was increased according to the coagulation take-up speed and the coagulation take-up speed was changed as shown in Table 1. The submergence depth of the coagulation bath liquid level was increased, and as in Comparative Example 4, since the discharge angle was large, the process passability was greatly deteriorated.

[実施例12]
口金孔径を変更して、紡糸ドラフト8に変更したした以外は実施例4と同様、紡糸を行った。吐出角度が大きくなったため、若干工程通過性が悪化したが、問題なく紡糸できた。
[Example 12]
Spinning was carried out in the same manner as in Example 4 except that the diameter of the nozzle hole was changed and the spinning draft 8 was changed. Since the discharge angle was increased, the process passability was slightly deteriorated, but spinning was possible without problems.

[実施例13]
口金孔径を変更して、紡糸ドラフト5に変更したした以外は実施例4と同様、紡糸を行った。吐出角度が大きくなったため、若干工程通過性が悪化したが、問題なく紡糸できた。
[Example 13]
Spinning was carried out in the same manner as in Example 4 except that the diameter of the die hole was changed and the spinning draft 5 was changed. Since the discharge angle was increased, the process passability was slightly deteriorated, but spinning was possible without problems.

[実施例14]
凝固引取速度を高めて、紡糸ドラフトを変更した以外は実施例3と同様にして紡糸を行った。紡糸ドラフトが高まったため吐出角度が小さくなり、凝固引取速度は高まったにもかかわらず、紡糸は安定した。
[Example 14]
Spinning was carried out in the same manner as in Example 3 except that the coagulation take-up speed was increased and the spinning draft was changed. Although the spinning draft increased, the discharge angle became smaller and the coagulation take-up speed increased, but the spinning was stable.

[比較例10]
オクチルメルカプタン0.2重量部をジメチルスルホキシド240重量部に変更した以外は比較例1と同様に重合を行い、Mw(P)20万の重合体を得た。この重合体溶液の重合体濃度を27重量%に調整して紡糸溶液とした。得られた紡糸溶液を、40℃の温度で、孔数36、紡糸口金孔径0.3mm、口金短径が10mmの紡糸口金から一旦5mmエアギャップを走行させて乾湿式紡糸法により紡糸して凝固糸とした。このとき、特許文献2の実施例と同様の凝固浴液粘度となるように40℃の温度にコントロールした70重量%ジメチルスルホキシドの水溶液からなる凝固浴条件とした。吐出線速度5m/分、紡糸ドラフト率13.6、凝固引取速度65m/分の条件で紡糸を行った。凝固浴液粘度が低く、口金孔数が少なく口金中心部と外周部との距離が短かったため、凝固浴液の口金中心部直下への流れが小さく、比較的安定した紡糸ができたが、生産性の観点で満足できるものではなかった。
[Comparative Example 10]
Polymerization was carried out in the same manner as in Comparative Example 1 except that 0.2 part by weight of octyl mercaptan was changed to 240 parts by weight of dimethyl sulfoxide to obtain a polymer having Mw (P) of 200,000. The polymer concentration of this polymer solution was adjusted to 27% by weight to obtain a spinning solution. The obtained spinning solution is spun by a wet-wet spinning method from a spinning nozzle having a hole number of 36, a spinning nozzle hole diameter of 0.3 mm, and a short nozzle diameter of 10 mm at a temperature of 40 ° C. It was a thread. At this time, the coagulation bath conditions were made of an aqueous solution of 70% by weight dimethyl sulfoxide controlled at a temperature of 40 ° C. so that the viscosity of the coagulation bath solution was the same as in the example of Patent Document 2. Spinning was performed under the conditions of a discharge linear speed of 5 m / min, a spinning draft rate of 13.6, and a coagulation take-up speed of 65 m / min. The coagulation bath liquid viscosity is low, the number of nozzle holes is small, and the distance between the center part and the outer peripheral part is short, so the flow of the coagulation bath liquid directly under the center part of the base is small and relatively stable spinning is possible. It was not satisfactory from the viewpoint of sex.

[比較例11]
紡糸口金および凝固浴の条件を実施例1と同様にした以外は比較例10と同様にして紡糸を行ったが、吐出角度が大きく、凝固糸同士が接着したため、安定して紡糸することはできなかった。
[Comparative Example 11]
Spinning was carried out in the same manner as in Comparative Example 10 except that the conditions of the spinneret and the coagulation bath were the same as in Example 1. However, since the discharge angle was large and the coagulated yarns were bonded together, stable spinning was possible. There wasn't.

[比較例12]
AIBN 0.3重量部、オクチルメルカプタンを不投入に変更した以外は、比較例1と同様にして重合を行い、Mw(P)90万の重合体を得た。ポリマー濃度が20重量%になるように調整して紡糸溶液を得た。得られた紡糸溶液を、40℃の温度で、孔数16000、紡糸口金孔径0.19mm、口金短径が67mmの紡糸口金から一旦5mmエアギャップを走行させて乾湿式紡糸法により紡糸して凝固糸とした。このとき、特許文献3の実施例と凝固浴液粘度のみ同様となるように3℃の温度にコントロールした20重量%ジメチルスルホキシドの水溶液からなる凝固浴条件とした。吐出線速度0.5m/分、紡糸ドラフト率8、凝固引取速度4m/分の条件で紡糸を行った。凝固浴液粘度が低く、凝固引取速度が遅かったため、凝固浴液の口金中心部直下への流れが小さく、比較的安定した紡糸ができたが、生産性の観点で満足できるものではなかった。
[Comparative Example 12]
Polymerization was carried out in the same manner as in Comparative Example 1 except that 0.3 parts by weight of AIBN and octyl mercaptan were not added to obtain a polymer having Mw (P) 900,000. A spinning solution was obtained by adjusting the polymer concentration to 20% by weight. The obtained spinning solution was spun by a dry and wet spinning method from a spinning nozzle having a hole number of 16000, a spinning nozzle hole diameter of 0.19 mm, and a short nozzle diameter of 67 mm at a temperature of 40 ° C. It was a thread. At this time, it was set as the coagulation bath condition which consists of the aqueous solution of 20 weight% dimethylsulfoxide controlled to the temperature of 3 degreeC so that only the Example of patent document 3 and the coagulation bath liquid viscosity might become the same. Spinning was performed under the conditions of a discharge linear speed of 0.5 m / min, a spinning draft rate of 8, and a coagulation take-up speed of 4 m / min. Since the viscosity of the coagulation bath solution was low and the coagulation take-up speed was slow, the flow of the coagulation bath solution just below the center of the die was small and a relatively stable spinning could be performed, but this was not satisfactory from the viewpoint of productivity.

[比較例13]
凝固浴の条件、および吐出量、凝固引取速度を実施例1と同様にした以外は、比較例12と同様にして紡糸を行ったが、吐出角度が大きく、凝固糸同士が接着したため、安定して紡糸することはできなかった。
[Comparative Example 13]
Spinning was carried out in the same manner as in Comparative Example 12 except that the coagulation bath conditions, the discharge amount, and the coagulation take-up speed were the same as in Example 1. However, since the discharge angle was large and the coagulated yarns were bonded together, the spinning was stable. Could not be spun.

[比較例14]
吐出線速度を落として紡糸ドラフトを変更した以外は実施例14と同様にして紡糸を行った。紡糸ドラフトを高めすぎたため、わずかに口金直下で糸切れが起こり、工程通過性が大幅に悪化した。
[Comparative Example 14]
Spinning was performed in the same manner as in Example 14 except that the spinning draft was changed by lowering the discharge linear velocity. Since the spinning draft was increased too much, the yarn breakage occurred just below the die, and the process passability was greatly deteriorated.

[実施例15〜18]
重合条件Bの熱処理(65℃)保持時間を2時間から1.5時間にした以外は実施例1と同様にして紡糸溶液を得た。前駆体繊維製造条件を表2のように変更した以外は、実施例1と同様にして紡糸を行い、前駆体繊維を得た。なお、総延伸倍率は後延伸の倍率を調整して条件設定した。
[Examples 15 to 18]
A spinning solution was obtained in the same manner as in Example 1 except that the heat treatment (65 ° C.) holding time under the polymerization condition B was changed from 2 hours to 1.5 hours. Spinning was carried out in the same manner as in Example 1 except that the precursor fiber production conditions were changed as shown in Table 2 to obtain precursor fibers. The total draw ratio was set by adjusting the post-draw ratio.

[実施例19]
前駆体繊維製造条件を表2のように変更した以外は、実施例1と同様にして紡糸を行い、前駆体繊維を得た。
[Example 19]
Spinning was carried out in the same manner as in Example 1 except that the precursor fiber production conditions were changed as shown in Table 2 to obtain precursor fibers.

[実施例20、21]
紡糸溶液の重合体濃度が15重量%となるようにジメチルスルホキシドを加えて調製し、前駆体繊維製造条件を表2のように変更した以外は、実施例1と同様にして紡糸を行い、前駆体繊維を得た。
[Examples 20 and 21]
Spinning was carried out in the same manner as in Example 1 except that dimethyl sulfoxide was added so that the polymer concentration of the spinning solution was 15% by weight, and the precursor fiber production conditions were changed as shown in Table 2. Body fibers were obtained.

[比較例15]
特願2009−09704号の実施例5と同様にして紡糸溶液を得て、同条件を参考に表1のように条件設定して紡糸を行い、前駆体繊維を得た。
[Comparative Example 15]
A spinning solution was obtained in the same manner as in Example 5 of Japanese Patent Application No. 2009-09704, and spinning was performed by setting the conditions as shown in Table 1 with reference to the same conditions to obtain precursor fibers.

[比較例16]
特開2008−248219号の実施例1と同様にして紡糸溶液を得て、同条件を参考に表1のように条件設定して紡糸を行った。すなわち、得られた紡糸溶液を用い、孔数12,000であり、かつ、表2に示す紡糸口金・吐出条件で紡糸し、3℃の温度にコントロールした20重量%ジメチルスルホキシドの水溶液からなる凝固浴に導入する乾湿式紡糸法により紡糸し凝固糸とした。このときの紡糸ドラフトを2.5倍に調節し凝固糸を得た。乾燥した凝固糸の単繊維繊度は10.5dtexであった。このようにして得られた凝固糸を水洗した後、90℃の温水中で3倍の浴中延伸倍率で延伸し、さらにアミノ変性シリコーン系シリコーン油剤を付与して浴中延伸糸を得た。このようにして得られた浴中延伸糸を165℃の温度に加熱したローラーを用いて30秒間乾燥を行い、5倍のスチーム延伸倍率でスチーム延伸を行い、単繊維繊度1dtexの前駆体繊維を得た。
[Comparative Example 16]
A spinning solution was obtained in the same manner as in Example 1 of JP-A-2008-248219, and spinning was performed with the conditions set as shown in Table 1 with reference to the same conditions. That is, using the obtained spinning solution, coagulating with an aqueous solution of 20% by weight dimethyl sulfoxide having a pore number of 12,000, spinning under the spinneret and discharge conditions shown in Table 2, and controlling at a temperature of 3 ° C. Spinning was performed by a dry and wet spinning method introduced into a bath to obtain a coagulated yarn. The spinning draft at this time was adjusted to 2.5 times to obtain a coagulated yarn. The single fiber fineness of the dried coagulated yarn was 10.5 dtex. The coagulated yarn thus obtained was washed with water and then stretched at 90 ° C. in warm water at a stretch ratio of 3 times in a bath, and an amino-modified silicone-based silicone oil was further added to obtain a stretched yarn in the bath. The drawn yarn in the bath thus obtained was dried for 30 seconds using a roller heated to a temperature of 165 ° C., steam drawn at a steam drawing ratio of 5 times, and a precursor fiber having a single fiber fineness of 1 dtex was obtained. Obtained.

[比較例17]
凝固浴条件を表2のように変更した以外は比較例16と同様にして紡糸を行い、前駆体繊維を得た。
[Comparative Example 17]
Spinning was performed in the same manner as in Comparative Example 16 except that the coagulation bath conditions were changed as shown in Table 2 to obtain precursor fibers.

[比較例18]
特願2008−287520号の実施例1と同様にして紡糸溶液を得て、同条件を参考に表1のように条件設定して紡糸を行った。すなわち、得られた紡糸溶液を、40℃の温度で、孔数100、紡糸口金孔径0.2mmの紡糸口金から一旦15mmエアギャップを走行させ、5℃の温度にコントロールした66重量%ジメチルスルホキシドの水溶液からなる凝固浴に導入する乾湿式紡糸法により紡糸し、凝固糸とした。このときの吐出線速度は、8m/分となるように紡糸口金への送液量を調整し、凝固糸の巻取り速度を変更することにより、糸切れの発生する可紡性の測定を行った。また、吐出線速度1m/分、紡糸ドラフト率14の条件で凝固糸を得、水洗した後、70℃の温度の温水中で2倍の浴中延伸倍率で延伸し、さらにアミノ変性シリコーン系シリコーン油剤を付与し、130℃の温度のホットドラムを用いて乾燥し、その後165℃の温度の加熱炉を用いて非接触で乾燥しながら2倍の倍率で延伸を行い、単繊維繊度1.3dtexの炭素繊維前駆体繊維を得た。
[Comparative Example 18]
A spinning solution was obtained in the same manner as in Example 1 of Japanese Patent Application No. 2008-287520, and spinning was performed with the conditions set as shown in Table 1 with reference to the same conditions. That is, the obtained spinning solution was run at a temperature of 40 ° C. from a spinneret having a hole number of 100 and a spinneret hole diameter of 0.2 mm, and once moved through a 15 mm air gap, and controlled to a temperature of 5 ° C. Spinning was performed by a dry-wet spinning method introduced into a coagulation bath made of an aqueous solution to obtain a coagulated yarn. At this time, the spin rate at which yarn breakage occurs is measured by adjusting the amount of liquid fed to the spinneret so that the discharge linear velocity is 8 m / min and changing the winding speed of the coagulated yarn. It was. Moreover, after obtaining a coagulated yarn under conditions of a discharge linear velocity of 1 m / min and a spinning draft rate of 14, and after washing with water, the coagulated yarn is stretched in a bath at a temperature of 70 ° C. at a stretch ratio of 2 times in a bath, and further amino-modified silicone silicone Oil is applied, dried using a hot drum at a temperature of 130 ° C., and then stretched at a double magnification while drying in a non-contact manner using a heating furnace at a temperature of 165 ° C. to obtain a single fiber fineness of 1.3 dtex. Carbon fiber precursor fiber was obtained.

[比較例19、20]
前駆体繊維製造条件を表2のように変更した以外は、比較例1と同様にして紡糸を行い、前駆体繊維を得た。
[Comparative Examples 19 and 20]
Spinning was performed in the same manner as in Comparative Example 1 except that the precursor fiber production conditions were changed as shown in Table 2 to obtain precursor fibers.

上記した実施例および比較例における前駆体繊維製造条件およびその評価などの結果を表1および2に、前駆体繊維の特性を表3にまとめて示す。   Tables 1 and 2 show the results of the precursor fiber production conditions and the evaluation thereof in the above Examples and Comparative Examples, and Table 3 shows the properties of the precursor fibers.

Figure 0005540676
Figure 0005540676

Figure 0005540676
Figure 0005540676

Figure 0005540676
Figure 0005540676

本発明では、高速紡糸を行うことの可能なPAN系重合体を、安定して吐出することにより、生産性を損なうことなく、かつ、製造コストを削減しつつ高品位な前駆体繊維を製造することができ、その得られた前駆体繊維を用いることにより、焼成工程でも安定して高品位、かつ、高強度な炭素繊維の製造することができ有用である。   In the present invention, by stably discharging a PAN-based polymer capable of performing high-speed spinning, a high-quality precursor fiber is produced without impairing productivity and reducing production costs. By using the obtained precursor fiber, it is useful because it can stably produce a high-quality and high-strength carbon fiber even in the firing step.

Claims (9)

繊維を構成するポリアクリロニトリル系重合体のZ平均分子量Mz(F)が60万〜200万であり、多分散度Mz(F)/Mw(F)(Mw(F)は、繊維を構成するポリアクリロニトリル系重合体の重量平均分子量を表す)が2〜5であり、原子間力顕微鏡で3μmの範囲で測定した自乗平均面粗さRmsが17〜40nmであり、単繊維繊度が0.3〜1.5dtexであり、下記(I)の方法に準じて測定される単繊維断面直径の変動係数が0〜5%である炭素繊維前駆体繊維。
(I)繊維軸に垂直に高さを合わせて前駆体繊維束を切断し、光学顕微鏡を用いて単繊維の断面形状の観察を行うに際し、測定倍率を最も細い単繊維が1mm程度となるよう倍率200〜400倍程度とし、得られた画像を6枚分画像解析することにより前駆体繊維の単繊維の断面積、および、その断面積から単繊維の断面の直径(繊維径)を求め、その直径の変動係数(単繊維断面直径の変動係数)を求める。
The polyacrylonitrile polymer constituting the fiber has a Z average molecular weight Mz (F) of 600,000 to 2,000,000, and the polydispersity Mz (F) / Mw (F) (Mw (F) is the poly The weight average molecular weight of the acrylonitrile polymer) is 2 to 5, the root mean square surface roughness Rms measured in the range of 3 μm with an atomic force microscope is 17 to 40 nm, and the single fiber fineness is 0.3 to A carbon fiber precursor fiber having a variation coefficient of a single fiber cross-sectional diameter of 0 to 5%, which is 1.5 dtex and measured according to the method of (I) below .
(I) Cutting the precursor fiber bundle by adjusting the height perpendicular to the fiber axis, and observing the cross-sectional shape of the single fiber using an optical microscope, the single fiber having the thinnest measurement magnification is about 1 mm. The magnification is about 200 to 400 times, and the obtained image is subjected to image analysis for six sheets to determine the cross-sectional area of the single fiber of the precursor fiber, and the cross-sectional area (fiber diameter) of the single fiber from the cross-sectional area, The variation coefficient of the diameter (variation coefficient of the single fiber cross-sectional diameter) is obtained.
RAMAN分光法により求められ、明細書で規定するR値が2.7〜3.0であり、単繊維強度が6〜9cN/dtexであり、原糸結晶配向度が91〜94%である、請求項1に記載の炭素繊維前駆体繊維。 The R value determined by RAMAN spectroscopy and specified in the specification is 2.7 to 3.0, the single fiber strength is 6 to 9 cN / dtex, and the raw yarn crystal orientation is 91 to 94%. The carbon fiber precursor fiber according to claim 1. 真円度が0.85〜1である、請求項1または2に記載の炭素繊維前駆体繊維。 The carbon fiber precursor fiber according to claim 1 or 2, wherein the roundness is 0.85 to 1. 短径が75〜200mm、孔数3000〜30000個である紡糸口金を用い、凝固浴液の紡糸条件での凝固温度における粘度が7〜15mPa・sの条件で凝固浴液中を凝固糸が35〜200m/分の速度で走行するように乾湿式紡糸する炭素繊維前駆体繊維の製造方法であって、Z平均分子量(Mz(P))が80万〜600万で、多分散度(Mz(P)/Mw(P))(Mw(P)は、重量平均分子量を表す)が2.7〜10であるポリアクリロニトリル系重合体を含有する紡糸溶液を用い、紡糸ドラフトを5〜50とし、紡糸口金の最外孔からの吐出した紡糸溶液の紡糸口金面鉛直方向との角度を5〜15°とすることを特徴とする炭素繊維前駆体繊維の製造方法。 Using a spinneret having a minor axis of 75 to 200 mm and a number of holes of 3000 to 30000, the coagulated yarn is 35 in the coagulation bath liquid under the condition that the viscosity at the coagulation temperature of the coagulation bath liquid is 7 to 15 mPa · s. A method for producing a carbon fiber precursor fiber that is dry and wet-spun so as to run at a speed of ˜200 m / min, the Z average molecular weight (Mz (P)) is 800,000 to 6,000,000, and the polydispersity (Mz ( P) / Mw (P)) (Mw (P) represents a weight average molecular weight) is a spinning solution containing a polyacrylonitrile polymer having a weight average molecular weight of 2.7 to 10, and a spinning draft is 5 to 50, A method for producing a carbon fiber precursor fiber, characterized in that the angle of the spinning solution discharged from the outermost hole of the spinneret and the spinneret surface vertical direction is 5 to 15 °. 前記紡糸溶液を凝固価が23〜40gである凝固浴条件の凝固浴中に吐出する、請求項4に記載の炭素繊維前駆体繊維の製造方法。 The manufacturing method of the carbon fiber precursor fiber of Claim 4 which discharges the said spinning solution in the coagulation bath of coagulation bath conditions whose coagulation number is 23-40g. 前記凝固糸の引き取りローラーからの合計延伸倍率が10〜20倍、前駆体繊維束の巻き取り速度が600〜2000m/分である、請求項4または5に記載の炭素繊維前駆体繊維の製造方法。 The method for producing a carbon fiber precursor fiber according to claim 4 or 5, wherein a total draw ratio of the coagulated yarn from a take-up roller is 10 to 20 times, and a winding speed of the precursor fiber bundle is 600 to 2000 m / min. . 前記凝固糸の引き取り速度が50〜200m/分である、請求項4〜6のいずれかに記載の炭素繊維前駆体繊維の製造方法。 The manufacturing method of the carbon fiber precursor fiber in any one of Claims 4-6 whose take-up speed of the said coagulated yarn is 50-200 m / min. 沈み込む前の凝固浴液面と紡糸口金との距離を5〜10mmに設定し、紡糸によって凝固浴液面が沈み込む深さを5〜20mmに制御する、請求項4〜7のいずれかに記載の炭素繊維前駆体繊維の製造方法。 The distance between the coagulation bath liquid level before sinking and the spinneret is set to 5 to 10 mm, and the depth at which the coagulation bath liquid level sinks by spinning is controlled to 5 to 20 mm. The manufacturing method of the carbon fiber precursor fiber of description. 請求項1〜3のいずれかに記載の炭素繊維前駆体繊維、または、請求項4〜8のいずれかに記載の製造方法によって得られた炭素繊維前駆体繊維を、200〜300℃の温度の空気中において耐炎化する耐炎化工程と、耐炎化工程で得られた繊維を、300〜800℃の温度の不活性雰囲気中において予備炭化する予備炭化工程と、予備炭化工程で得られた繊維を1,000〜3,000℃の温度の不活性雰囲気中において炭化する炭化工程を順次経て炭素繊維を得る炭素繊維の製造方法。 The carbon fiber precursor fiber according to any one of claims 1 to 3, or the carbon fiber precursor fiber obtained by the production method according to any one of claims 4 to 8, at a temperature of 200 to 300 ° C. A flameproofing step for flameproofing in the air, a precarbonization step for precarbonizing the fiber obtained in the flameproofing step in an inert atmosphere at a temperature of 300 to 800 ° C., and a fiber obtained in the preliminary carbonization step A method for producing carbon fiber, wherein carbon fibers are sequentially obtained through a carbonization step of carbonizing in an inert atmosphere at a temperature of 1,000 to 3,000 ° C.
JP2009279121A 2009-03-31 2009-12-09 Carbon fiber precursor fiber, method for producing the same, and method for producing carbon fiber Expired - Fee Related JP5540676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009279121A JP5540676B2 (en) 2009-03-31 2009-12-09 Carbon fiber precursor fiber, method for producing the same, and method for producing carbon fiber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009085795 2009-03-31
JP2009085795 2009-03-31
JP2009279121A JP5540676B2 (en) 2009-03-31 2009-12-09 Carbon fiber precursor fiber, method for producing the same, and method for producing carbon fiber

Publications (3)

Publication Number Publication Date
JP2010255159A JP2010255159A (en) 2010-11-11
JP2010255159A5 JP2010255159A5 (en) 2012-12-06
JP5540676B2 true JP5540676B2 (en) 2014-07-02

Family

ID=43316385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009279121A Expired - Fee Related JP5540676B2 (en) 2009-03-31 2009-12-09 Carbon fiber precursor fiber, method for producing the same, and method for producing carbon fiber

Country Status (1)

Country Link
JP (1) JP5540676B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20111372A1 (en) * 2011-07-22 2013-01-23 M A E S P A CARBON FIBER PRODUCTION PROCESS AND PLANT FOR THE IMPLEMENTATION OF THIS PROCESS.
WO2015133514A1 (en) * 2014-03-06 2015-09-11 東レ株式会社 Carbon fibres, and production method therefor
EP3674455A1 (en) * 2018-12-28 2020-07-01 Lenzing Aktiengesellschaft Process for liquid removal from cellulose filaments yarns or fibers
CN114457436B (en) * 2020-11-10 2023-05-02 中国石油化工股份有限公司 Preparation method of polyacrylonitrile-based carbon fiber precursor, filament bundle and application method
CN114481367A (en) * 2021-12-30 2022-05-13 吉林宝旌炭材料有限公司 35k large-tow carbon fiber and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294518A (en) * 2001-03-30 2002-10-09 Mitsubishi Rayon Co Ltd Carbon fiber precursor acrylonitrile-based yarn and method for producing the same
JP2004211240A (en) * 2002-12-27 2004-07-29 Mitsubishi Rayon Co Ltd Carbon fiber, acrylonitrile-based precursor fiber for the same, and method for producing the carbon fiber and the precursor fiber
ES2339262T3 (en) * 2004-06-25 2010-05-18 Toray Industries, Inc. THREAD SET FOR DRY-MOISTURE AND DEVICE AND METHOD TO PRODUCE FIBER MAKING.
JP4543922B2 (en) * 2004-12-27 2010-09-15 東レ株式会社 Silicone oil agent for carbon fiber precursor fiber, carbon fiber precursor fiber, flame-resistant fiber, carbon fiber and production method thereof
JP4910729B2 (en) * 2006-07-10 2012-04-04 東レ株式会社 Method for producing carbon fiber precursor fiber, carbon fiber and method for producing the same
KR101342176B1 (en) * 2006-10-18 2013-12-16 도레이 카부시키가이샤 Polyacrylonitrile polymer, process for production of the polymer, process for production of precursor fiber for carbon fiber, carbon fiber, and process for production of the carbon fiber
JP2009046770A (en) * 2007-08-16 2009-03-05 Mitsubishi Rayon Co Ltd Acrylonitrile-based precursor fiber for carbon fiber

Also Published As

Publication number Publication date
JP2010255159A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
US8674045B2 (en) Carbon-fiber precursor fiber, carbon fiber, and processes for producing these
US8822029B2 (en) Polyacrylonitrile polymer, method of producing the same, method of producing precursor fiber used for producing carbon fiber, carbon fiber and method of producing the same
JP4910729B2 (en) Method for producing carbon fiber precursor fiber, carbon fiber and method for producing the same
JP4924469B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber
JP5169939B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber
JP4924484B2 (en) Method for producing carbon fiber precursor fiber
JP5540676B2 (en) Carbon fiber precursor fiber, method for producing the same, and method for producing carbon fiber
JP5434187B2 (en) Polyacrylonitrile-based continuous carbon fiber bundle and method for producing the same
JP5109936B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber
JP5151809B2 (en) Method for producing carbon fiber precursor fiber
JP2009079343A (en) Method for producing precursor fiber for carbon fiber and carbon fiber
JP4983709B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber
JP5146394B2 (en) Method for producing carbon fiber precursor fiber and method for producing carbon fiber
JP5066952B2 (en) Method for producing polyacrylonitrile-based polymer composition, and method for producing carbon fiber
JP5504859B2 (en) Carbon fiber precursor fiber bundle, carbon fiber bundle and their production method
JP4957634B2 (en) Method for producing carbon fiber precursor fiber, carbon fiber bundle and method for producing the same
JP2010031418A (en) Method for producing precursor fiber for carbon fiber
JP2011122254A (en) Carbon fiber precursor fiber bundle, carbon fiber bundle, and method for producing them
JP5141591B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121018

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140421

R151 Written notification of patent or utility model registration

Ref document number: 5540676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees