JP5540252B2 - Electrochemical measuring device - Google Patents

Electrochemical measuring device Download PDF

Info

Publication number
JP5540252B2
JP5540252B2 JP2009105690A JP2009105690A JP5540252B2 JP 5540252 B2 JP5540252 B2 JP 5540252B2 JP 2009105690 A JP2009105690 A JP 2009105690A JP 2009105690 A JP2009105690 A JP 2009105690A JP 5540252 B2 JP5540252 B2 JP 5540252B2
Authority
JP
Japan
Prior art keywords
electrode
fet
impedance
electrochemical
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009105690A
Other languages
Japanese (ja)
Other versions
JP2010256140A (en
Inventor
隆 平賀
峰之 服部
正 寺崎
典孝 山本
和郎 中里
重康 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
National Institute of Advanced Industrial Science and Technology AIST
Tokai National Higher Education and Research System NUC
Original Assignee
Nagoya University NUC
National Institute of Advanced Industrial Science and Technology AIST
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, National Institute of Advanced Industrial Science and Technology AIST, Tokai National Higher Education and Research System NUC filed Critical Nagoya University NUC
Priority to JP2009105690A priority Critical patent/JP5540252B2/en
Publication of JP2010256140A publication Critical patent/JP2010256140A/en
Application granted granted Critical
Publication of JP5540252B2 publication Critical patent/JP5540252B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、電気化学測定をオンチップ(集積回路上)で高密度に行う電気化学測定装置に関するものである。   The present invention relates to an electrochemical measurement apparatus that performs electrochemical measurement at high density on-chip (on an integrated circuit).

従来より、界面近傍の化学的な変化を観察したり、DNAや細胞膜の研究を行ったりするために電気化学測定技術を用いることは知られている。最近では、この電気化学測定を、オンチップ(集積回路上)で行うことの提案もなされている。   Conventionally, it has been known to use an electrochemical measurement technique for observing a chemical change in the vicinity of an interface or for studying DNA or a cell membrane. Recently, it has been proposed to perform this electrochemical measurement on-chip (on an integrated circuit).

例えば、特許文献1は、検体中に含まれる標的核酸の濃度を定量的に分析する核酸濃度定量分析チップとこれを用いた核酸濃度定量分析技術を提案したものであり、試料の濃度等を、作用極、対向極、参照極を備えた3極方式の電気化学セルを用いて測定している。図1に特許文献1における電気化学分析のための集積回路を模式的に示す。図中、CEが対向極、WEが作用極、REが参照極である。特許文献1では3つのオペアンプを用いており、作用極WEは、図示しない電界効果型トランジスタ(FET)のゲートに接続されている。また、測定は電位検出法を用いて行っている。   For example, Patent Document 1 proposes a nucleic acid concentration quantitative analysis chip that quantitatively analyzes the concentration of a target nucleic acid contained in a specimen and a nucleic acid concentration quantitative analysis technique using the nucleic acid concentration quantitative analysis chip. Measurement is performed using a three-electrode electrochemical cell having a working electrode, a counter electrode, and a reference electrode. FIG. 1 schematically shows an integrated circuit for electrochemical analysis in Patent Document 1. In the figure, CE is a counter electrode, WE is a working electrode, and RE is a reference electrode. In Patent Document 1, three operational amplifiers are used, and the working electrode WE is connected to the gate of a field effect transistor (FET) (not shown). Measurement is performed using a potential detection method.

また、非特許文献1では、マイクロ流路型DNAセンサが提案されている。このDNAセンサの信号処理部の要部を模式的に図2に示す。図中、CEが対向極、WEが作用極、REが参照極である。非特許文献1では2つのオペアンプを用いており、作用極WEは、図示しない電界効果型トランジスタ(FET)のゲートに接続されている。また、測定は電位検出法を用いて行っている。   Non-Patent Document 1 proposes a microchannel type DNA sensor. The main part of the signal processing part of this DNA sensor is schematically shown in FIG. In the figure, CE is a counter electrode, WE is a working electrode, and RE is a reference electrode. In Non-Patent Document 1, two operational amplifiers are used, and the working electrode WE is connected to the gate of a field effect transistor (FET) (not shown). Measurement is performed using a potential detection method.

しかしながら、特許文献1や非特許文献1で使用するオペアンプは約1mm×1mm程度の大きな面積を占め、消費電力も大きく、またオンチップFETをそのまま使用しているので入力インピーダンスが大きいため、精度の高い測定が難しく、さらに各点での測定を並行して行うことができないという問題があった。   However, the operational amplifier used in Patent Document 1 and Non-Patent Document 1 occupies a large area of about 1 mm × 1 mm, consumes a large amount of power, and uses an on-chip FET as it is. There is a problem that high measurement is difficult and measurement at each point cannot be performed in parallel.

一方、非特許文献2では、DNAや蛋白質の検出・同定を行うためにCMOSを用いた8×8ピクセルの電気化学センサが提案されている。ここでも、対向極、作用極、参照極を備えた3極方式の化学電気セルを用いている。非特許文献2の電気化学センサのアレイ状に配置された検出電極からなるカラムを図3に示す。ここでは、カラムに沿った各部位に対応する検出電極のオンオフを順次切り替え、図中上方に設けられているオペアンプで電流を検出している。   On the other hand, Non-Patent Document 2 proposes an 8 × 8 pixel electrochemical sensor using CMOS in order to detect and identify DNA and proteins. Again, a three-pole chemical electric cell having a counter electrode, a working electrode, and a reference electrode is used. FIG. 3 shows a column composed of detection electrodes arranged in an array of the electrochemical sensor of Non-Patent Document 2. Here, ON / OFF of the detection electrode corresponding to each part along the column is sequentially switched, and a current is detected by an operational amplifier provided in the upper part of the figure.

ところが、非特許文献2の技術では、スイッチの切り替えにより、測定対象となる系に影響を与え、精度のよい測定が困難であった。   However, in the technique of Non-Patent Document 2, switching the switch affects the system to be measured, and it is difficult to perform accurate measurement.

特開2004−309462号公報JP 2004-309462 A

”Smart Microfluidic Electrochemical DNA sensors with Signal Processing circuits” Japanese Journal of Applied Physics, Vol. 46, No.5A, 2007, pp.3135-3138“Smart Microfluidic Electrochemical DNA sensors with Signal Processing circuits” Japanese Journal of Applied Physics, Vol. 46, No.5A, 2007, pp.3135-3138 ”Optical and electrochemical dual-image CMOS sensor for on-chip biomolecular sensing applications”, Sensors and Actuators A 135 (2007) 315-322“Optical and electrochemical dual-image CMOS sensor for on-chip biomolecular sensing applications”, Sensors and Actuators A 135 (2007) 315-322

本発明は、以上のような実情に鑑みてなされたもので、オンチップFETを用い、オペアンプなしに精度の高い測定を行うことができ、スイッチのオンオフにより溶液系に影響を与えず測定が可能な電気化学測定装置を提供することを課題とする。   The present invention has been made in view of the above circumstances, and can perform measurement with high accuracy without using an operational amplifier using an on-chip FET, and can perform measurement without affecting the solution system by turning on and off the switch. It is an object to provide a simple electrochemical measurement device.

本発明は、上記課題を解決するため、第1には、検体の電気化学測定を行うため、検体である溶液内に作用極、対向極及び参照極が配置され、FETのゲート電極を作用極とする3極構造の電気化学測定装置であって、対向極とFETのソース電極との間に低周波電圧を印加して、FETのゲート電極と対向極との間に電圧を印加させる電圧印加手段と、FETのゲート電極と対向極の間に流れる変位電流を計測する変位電流計測手段とを備え、変位電流計測手段による測定結果にもとづいて電気化学測定を行うことを特徴とする電気化学測定装置を提供する。 In order to solve the above-mentioned problems, the present invention firstly has a working electrode, a counter electrode, and a reference electrode disposed in a solution as a sample to perform electrochemical measurement of the sample, and the gate electrode of the FET is used as the working electrode. Is a three-pole electrochemical measuring apparatus that applies a low-frequency voltage between the counter electrode and the FET source electrode, and applies a voltage between the FET gate electrode and the counter electrode. And a displacement current measuring means for measuring a displacement current flowing between the gate electrode and the counter electrode of the FET, and performing an electrochemical measurement based on a measurement result by the displacement current measuring means Providing equipment.

第2には、上記第1の発明において、ゲート絶縁抵抗を介して溶液に電圧分割分配して電圧印加するためにFETのゲート電極の面積を制御することにより、ゲート絶縁抵抗に比較して溶液のインピーダンスを大きくすることを特徴とする電気化学測定装置を提供する。   Second, in the first invention, the area of the gate electrode of the FET is controlled in order to apply a voltage by voltage division and distribution to the solution through the gate insulation resistance, so that the solution is compared with the gate insulation resistance. There is provided an electrochemical measurement device characterized by increasing the impedance.

第3には、上記第1又は2の発明において、対向極と作用極の間のインピーダンスに近いインピーダンスを有する素子を作用極と接地極の間に設けたことを特徴とする電気化学測定装置を提供する。   Thirdly, in the first or second invention, there is provided an electrochemical measurement apparatus characterized in that an element having an impedance close to the impedance between the counter electrode and the working electrode is provided between the working electrode and the ground electrode. provide.

第4には、上記第3の発明において、前記素子のインピーダンスが制御信号により可変であることを特徴とする電気化学測定装置を提供する。   Fourth, the electrochemical measurement apparatus according to the third invention is characterized in that the impedance of the element is variable by a control signal.

本発明によれば、上記構成を採用したので、オンチップFETを用い、オペアンプなしに精度の高い測定を行うことができ、スイッチのオンオフにより溶液系に影響を与えず測定が可能な電気化学測定装置が提供可能となる。   According to the present invention, the above configuration is adopted, so that an on-chip FET can be used to perform highly accurate measurement without an operational amplifier, and electrochemical measurement that can be measured without affecting the solution system by turning on and off the switch. A device can be provided.

特許文献1の電気化学分析のための集積回路を模式的に示す図である。It is a figure which shows typically the integrated circuit for the electrochemical analysis of patent document 1. FIG. 非特許文献1の電気化学分析のための集積回路を模式的に示す図である。It is a figure which shows typically the integrated circuit for the electrochemical analysis of a nonpatent literature 1. FIG. 非特許文献2の電気化学センサのアレイ状に配置された検出電極からなるカラムを示す図である。It is a figure which shows the column which consists of a detection electrode arrange | positioned at the array form of the electrochemical sensor of a nonpatent literature 2. FETのゲート電極を作用極に接続し、溶液のインピーダンスZを測定する場合の等価回路を示す図である。It is a figure which shows the equivalent circuit in the case of connecting the gate electrode of FET to a working electrode, and measuring the impedance Z of a solution. /VとZ/Zの関係を示すグラフである。It is a graph showing the relationship between V g / V r and Z / Z g. 容量系の等価回路を示す図である。It is a figure which shows the equivalent circuit of a capacitive system. FETのゲートに高抵抗Rを並設した図である。It is the figure which arranged the high resistance R in parallel with the gate of FET. FETのゲートに可変の高抵抗Rを並設した図である。It is the figure which arranged the variable high resistance R in parallel with the gate of FET. 電圧印加手段及び変位電流計測手段の配置図である。It is an arrangement view of voltage application means and displacement current measurement means. FETで高抵抗Rを形成した例を示す図である。It is a figure which shows the example which formed high resistance R by FET. 弱反転領域の説明図である。It is explanatory drawing of a weak inversion area | region. 基準電流源を複数組み込み、高抵抗Rを可変とした例を示す図である。It is a figure which shows the example which incorporated multiple reference current sources and made high resistance R variable. 変位電流を検出するセンサをペアのFETで構成した例を示す図である。It is a figure which shows the example which comprised the sensor which detects a displacement current with paired FET. スイッチト・キャパシタで高抵抗Rを形成した例を示す図である。It is a figure which shows the example which formed high resistance R with the switched capacitor. 作用極の電極面積を変化させた場合の分配電圧の測定例を示す図である。It is a figure which shows the example of a measurement of the distribution voltage at the time of changing the electrode area of a working electrode.

以下、本発明の電気化学測定装置を実施形態に基づいて詳述する。   Hereinafter, the electrochemical measurement apparatus of the present invention will be described in detail based on the embodiments.

本発明の電気化学測定装置は、対向極CE、作用極WE、参照極REを備えた3極方式を用いる。そして作用極WEにFETのゲートを接続する。   The electrochemical measurement apparatus of the present invention uses a three-pole system including a counter electrode CE, a working electrode WE, and a reference electrode RE. The gate of the FET is connected to the working electrode WE.

FETのゲートを作用極WEに接続し、溶液のインピーダンスZを測定する場合の等価回路を図4に示す。ゲートの電圧をVg、インピーダンスをZgとすると、数1のような関係になる。 FIG. 4 shows an equivalent circuit when the gate of the FET is connected to the working electrode WE and the impedance Z of the solution is measured. When the gate voltage is Vg and the impedance is Zg, the relationship is as shown in Equation 1.

Figure 0005540252
Figure 0005540252

ここでV/VとZ/Zは図5のような関係となる。 Here, V g / V r and Z / Z g have a relationship as shown in FIG.

したがって、溶液のインピーダンスZを測るにはZがZと同程度であることが必要である。 Therefore, the measure impedance Z of the solution it is necessary that Z is comparable with Z g.

FETのゲートは直流的にはインピーダンスは無限大であるが、交流的にはZ=1/jωCで表される。溶液のインピーダンスはZ=1/jωCで表される。したがって、次の関係が成り立つ。 The gate of the FET has an infinite impedance in direct current, but is expressed by Z g = 1 / jωC g in alternating current. The impedance of the solution is expressed as Z = 1 / jωC. Therefore, the following relationship holds.

Figure 0005540252
Figure 0005540252

ここで、容量系の等価回路としては図6の左側のように表され、溶液の容量Cとゲートの容量Cを例示すると図6の右側のようになる。溶液のCは3次元効果より平面キャパシタンスより大きくなるからZg≫Zとなり、オンチップFETをそのまま用いたのでは、入力インピーダンスが大きすぎることがわかる。 Here, the equivalent circuit of the capacitive system is represented as shown on the left side of FIG. 6, and the solution capacity C and the gate capacity Cg are illustrated as shown on the right side of FIG. Since C of the solution is larger than the planar capacitance due to the three-dimensional effect, Zg >> Z, and it can be seen that the input impedance is too large when the on-chip FET is used as it is.

そこで、本発明では、図7に示すようにFETのゲートに高抵抗Rを併設する。すなわち、対向極CEと作用極WEの間のインピーダンスに近いインピーダンスを有する素子を、作用極WEと接地極の間に設ける。また、本発明では、図8に示すように、Vgがほぼゼロとなるように高抵抗Rは可変となるように図示しない制御信号で制御できるようにする。これにより、高抵抗Rを用いて開放電位の測定を行う。上記の素子のインピーダンスは対向極CEと作用極WEの間のインピーダンスの2〜10倍程度が適当である。   Therefore, in the present invention, a high resistance R is provided at the gate of the FET as shown in FIG. That is, an element having an impedance close to the impedance between the counter electrode CE and the working electrode WE is provided between the working electrode WE and the ground electrode. Further, in the present invention, as shown in FIG. 8, the high resistance R can be controlled by a control signal (not shown) so as to be variable so that Vg becomes substantially zero. Thereby, the open-circuit potential is measured using the high resistance R. The impedance of the above element is suitably about 2 to 10 times the impedance between the counter electrode CE and the working electrode WE.

また、本発明では、図9に示すように、対向極CEとFETのソース電極の間に低周波電圧を印加する電圧印加手段を設けるとともに、FETのゲート極と対向極CEの間に流れる変位電流を計測する変位電流計測手段を設ける。   Further, in the present invention, as shown in FIG. 9, a voltage application means for applying a low frequency voltage is provided between the counter electrode CE and the source electrode of the FET, and the displacement flowing between the gate electrode of the FET and the counter electrode CE. Displacement current measuring means for measuring current is provided.

また、本発明では、作用極WEの電極面積を調整する(小さくする)ことにより、あるいは対向極CEと作用極WEとの間の距離を大きくすることにより、あるいは両者を組み合わせることにより、溶液のインピーダンスを大きくすることができる。   In the present invention, by adjusting (decreasing) the electrode area of the working electrode WE, or by increasing the distance between the counter electrode CE and the working electrode WE, or by combining the two, Impedance can be increased.

次に、実施例を述べる。   Next, examples will be described.

図10は、FETで高抵抗を形成した例である。対向極CEには−1〜1Vの電圧Vを印加され、作用極WEに接続されるFETのゲートにはおよそ±30mVの電圧が印加されるようにする。また高抵抗を別のFETで形成し、線形領域(図11の弱反転領域)で動作させるようにする。図11に示すように制御信号である電流Iを調整し、高抵抗Rを1MΩ〜10GΩに可変できるようにする。 FIG. 10 shows an example in which a high resistance is formed by an FET. The counter electrode CE is applied a voltage V r of -1~1V, the voltage of approximately ± 30 mV to the gate of the FET being connected to the working electrode WE is to be applied. In addition, a high resistance is formed by another FET so as to operate in a linear region (weak inversion region in FIG. 11). Adjust the current I s is a control signal as shown in FIG. 11, so that the high-resistance R can be varied to 1Emuomega~10jiomega.

図12は、基準電流源を複数組み込み、高抵抗Rを可変とした例である。電流はカレントミラーで繋ぎ、配線インピーダンス、閾値のばらつきの影響をなくするようにしてある。終端処理はしておいた方がよいが、場合によってはなくてもよい。   FIG. 12 shows an example in which a plurality of reference current sources are incorporated and the high resistance R is variable. The current is connected by a current mirror so as to eliminate the influence of variations in wiring impedance and threshold. It is better to perform termination processing, but it may not be necessary.

図13は、変位電流を検出するセンサをペアのFETで構成した例である。このようにすると、閾値のバラツキの影響が少なくなるとともに、カレントモードが低電流で実現できる利点がある。   FIG. 13 shows an example in which a sensor for detecting a displacement current is composed of a pair of FETs. In this way, there is an advantage that the influence of the variation in threshold value is reduced and the current mode can be realized with a low current.

図14は、高抵抗Rをスイッチト・キャパシタで構成した例である。この場合クロック周波数により高抵抗Rを可変にすることができる。このようにすると、トランジスタ動作点に対する制限が緩和でき、高抵抗Rを安定に形成する利点がある。   FIG. 14 shows an example in which the high resistance R is composed of a switched capacitor. In this case, the high resistance R can be made variable according to the clock frequency. In this way, restrictions on the transistor operating point can be relaxed, and there is an advantage that the high resistance R is stably formed.

図15は、対向極として3mmφの金電極を用い、作用極としてそれぞれ10μmφ、25μmφ、100μmφ、3mmφのものを用い、高抵抗として1GΩ抵抗をNaCl溶液セルに直列接続し、1V/1mHzの電圧を印加し、分配される電圧(溶液1GΩ)の電圧を測定した例である。   FIG. 15 uses a 3 mmφ gold electrode as a counter electrode, 10 μmφ, 25 μmφ, 100 μmφ, and 3 mmφ respectively as working electrodes, a 1 GΩ resistor connected in series to a NaCl solution cell as a high resistance, and a voltage of 1 V / 1 mHz. It is the example which measured the voltage of the voltage (solution 1Gohm) applied and distributed.

本発明は、化学物質の反応(液−液界面の状態等)の測定、生体・細胞当の定量的解析、膜特性の測定・解析等への適用が期待できる。   The present invention can be expected to be applied to measurement of chemical reaction (liquid-liquid interface state, etc.), quantitative analysis of living organisms / cells, measurement / analysis of membrane characteristics, and the like.

CE 対向極
WE 作用極
RE 参照極
ゲート電圧
R 高抵抗
CE Counter electrode WE Working electrode RE Reference electrode V g Gate voltage R High resistance

Claims (4)

検体の電気化学測定を行うため、検体である溶液内に作用極、対向極及び参照極が配置され、FETのゲート電極を作用極とする3極構造の電気化学測定装置であって、対向極とFETのソース電極との間に低周波電圧を印加して、FETのゲート電極と対向極との間に電圧を印加させる電圧印加手段と、FETのゲート電極と対向極の間に流れる変位電流を計測する変位電流計測手段とを備え、変位電流計測手段による測定結果にもとづいて電気化学測定を行うことを特徴とする電気化学測定装置。 In order to perform electrochemical measurement of a specimen, a working electrode, a counter electrode, and a reference electrode are arranged in a solution that is a specimen, and is a three-pole electrochemical measuring device having a gate electrode of a FET as a working electrode , A voltage applying means for applying a low-frequency voltage between the FET gate electrode and the FET source electrode to apply a voltage between the FET gate electrode and the counter electrode, and a displacement current flowing between the FET gate electrode and the counter electrode An electrochemical measurement apparatus comprising: a displacement current measurement unit that measures the current, and performing an electrochemical measurement based on a measurement result obtained by the displacement current measurement unit. ゲート絶縁抵抗を介して溶液に電圧分割分配して電圧印加するためにFETのゲート電極の面積を制御することにより、ゲート絶縁抵抗に比較して溶液のインピーダンスを大きくすることを特徴とする請求項1に記載の電気化学測定装置。   3. The impedance of the solution is increased compared to the gate insulation resistance by controlling the area of the gate electrode of the FET in order to apply voltage by dividing the voltage into the solution through the gate insulation resistance. 2. The electrochemical measurement apparatus according to 1. 対向極と作用極の間のインピーダンスに近いインピーダンスを有する素子を作用極と接地極の間に設けたことを特徴とする請求項1又は2に記載の電気化学測定装置。   The electrochemical measurement apparatus according to claim 1 or 2, wherein an element having an impedance close to an impedance between the counter electrode and the working electrode is provided between the working electrode and the ground electrode. 前記素子のインピーダンスが制御信号により可変であることを特徴とする請求項3に記載の電気化学測定装置。   The electrochemical measurement apparatus according to claim 3, wherein the impedance of the element is variable by a control signal.
JP2009105690A 2009-04-23 2009-04-23 Electrochemical measuring device Expired - Fee Related JP5540252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009105690A JP5540252B2 (en) 2009-04-23 2009-04-23 Electrochemical measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009105690A JP5540252B2 (en) 2009-04-23 2009-04-23 Electrochemical measuring device

Publications (2)

Publication Number Publication Date
JP2010256140A JP2010256140A (en) 2010-11-11
JP5540252B2 true JP5540252B2 (en) 2014-07-02

Family

ID=43317229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009105690A Expired - Fee Related JP5540252B2 (en) 2009-04-23 2009-04-23 Electrochemical measuring device

Country Status (1)

Country Link
JP (1) JP5540252B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138557A (en) * 1984-07-31 1986-02-24 Toshiba Corp Analysis of dissolved material
JPS61181951A (en) * 1985-02-08 1986-08-14 Seitai Kinou Riyou Kagakuhin Shinseizou Gijutsu Kenkyu Kumiai Ion concentration measuring apparatus
JP3917595B2 (en) * 2003-02-26 2007-05-23 株式会社東芝 Nucleic acid concentration quantitative analysis chip, nucleic acid concentration quantitative analysis device, and nucleic acid concentration quantitative analysis method
JP4331181B2 (en) * 2006-03-30 2009-09-16 株式会社日立製作所 Measuring device and analytical element
US8129978B2 (en) * 2006-07-13 2012-03-06 National University Corporation Nagoya University Material detector

Also Published As

Publication number Publication date
JP2010256140A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
Zhang et al. Sweat biomarker sensor incorporating picowatt, three-dimensional extended metal gate ion sensitive field effect transistors
CN1867826B (en) Method and apparatus for assay of electrochemical properties
WO2016157117A1 (en) Nanoelectronic sensor pixel
WO2010023569A1 (en) Reducing capacitive charging in electronic devices
CN106932456A (en) Method and apparatus for testing ISFET arrays
US9099436B2 (en) Sensor probe for bio-sensing and chemical-sensing applications
US10809221B2 (en) Methods of electrochemically measuring an analyte with a test sequence having a pulsed DC block as well as devices, apparatuses and systems incorporating the same
JP5769020B2 (en) IC chip with multiple electrodes
Duarte-Guevara et al. Characterization of a 1024× 1024 DG-BioFET platform
RU2017109736A (en) METHODS AND ANALYTES DETECTION SYSTEMS
Ma et al. Cell constant studies of bipolar and tetrapolar electrode systems for impedance measurement
KR20110116008A (en) An apparatus for the measurement of a concentration of a charged species in a sample
Yusof et al. On-chip microelectrode capacitance measurement for biosensing applications
Liu et al. Implementation of a microfluidic conductivity sensor—A potential sweat electrolyte sensing system for dehydration detection
JP5540252B2 (en) Electrochemical measuring device
JP2007071766A (en) Method and apparatus for quantifying living body
JP5781256B2 (en) Reader device and signal amplification method
EP2972273B1 (en) Methods of using information from recovery pulses in electrochemical analyte measurements as well as devices incorporating the same
Al-Gayem et al. Test strategies for electrode degradation in bio-fluidic microsystems
Spiller et al. A sensitive microsystem as biosensor for cell growth monitoring and antibiotic testing
US20210318264A1 (en) Biosensor using fet element and extended gate, and operating method thereof
Giagkoulovits et al. Hybrid amperometric and potentiometrie sensing based on a CMOS ISFET array
KR100988728B1 (en) Biosensor using the selectivity of biomolecule
US20230301564A1 (en) Sensor array systems for reaction measurement by electronic gate
KR102345693B1 (en) Bio sensor using fet element and extend gate, and operating method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140403

R150 Certificate of patent or registration of utility model

Ref document number: 5540252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees