JPS61181951A - Ion concentration measuring apparatus - Google Patents

Ion concentration measuring apparatus

Info

Publication number
JPS61181951A
JPS61181951A JP60021747A JP2174785A JPS61181951A JP S61181951 A JPS61181951 A JP S61181951A JP 60021747 A JP60021747 A JP 60021747A JP 2174785 A JP2174785 A JP 2174785A JP S61181951 A JPS61181951 A JP S61181951A
Authority
JP
Japan
Prior art keywords
gate electrode
gate
amplitude
measuring device
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60021747A
Other languages
Japanese (ja)
Inventor
Takuya Maruizumi
丸泉 琢也
Keiji Tsukada
啓二 塚田
Hiroyuki Miyagi
宮城 宏行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEITAI KINOU RIYOU KAGAKUHIN SHINSEIZOU GIJUTSU KENKYU KUMIAI
Original Assignee
SEITAI KINOU RIYOU KAGAKUHIN SHINSEIZOU GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEITAI KINOU RIYOU KAGAKUHIN SHINSEIZOU GIJUTSU KENKYU KUMIAI filed Critical SEITAI KINOU RIYOU KAGAKUHIN SHINSEIZOU GIJUTSU KENKYU KUMIAI
Priority to JP60021747A priority Critical patent/JPS61181951A/en
Publication of JPS61181951A publication Critical patent/JPS61181951A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS

Abstract

PURPOSE:To enable handy monitoring of the condition of an ISFET, by providing a detection circuit between a gate electrode and a reference electrode to measure complex impedance between the gate electrode and a liquid to be inspected. CONSTITUTION:A gate electrode 24 of an ISFET20 is connected to an AC current source 27 and an amplitude phase measuring device 28 together with a reference electrode 23, where the phase of the amplitude phase measuring device28 is based on the phase of the AC power source 27. A complex impedance value R-jX between the gate electrode 24 of the ISFET20 and a liquid 22 to be inspected from the amplitude of a AC current applied from the AC current source 27 and the amplitude and the phase of the AC voltage measured with the amplitude phase measuring device 28 is calculated with a vector divider 29 and displayed. When the insulation state of a gate insulation film of the ISFET20 and the water content state of a gate ion sensitive film are to learned, the resistance component R of the complex impedance is read while the capacity component X thereof is read when the amount of components adsorbed on gate sensitive film is to be learned. Thus, the monitoring of the state of the ISFET can be done in a handy manner.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は電界効果トランジスタ型イオンセンサ(以下l
5FETと記す)を利用するイオン濃度測定装置に関す
るものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a field effect transistor type ion sensor (hereinafter referred to as l).
5FET).

〔発明の背景〕[Background of the invention]

l5FETを利用するイオン濃度測定装置を用いて被検
液中の電解質濃度を連続的に測定する場合、被検液中吸
着成分のl5FETゲート感応膜への吸着やl5FET
ゲ一ト感応膜自体の変質による感度変化等の要因により
測定誤差を生じる。
When continuously measuring the electrolyte concentration in a test solution using an ion concentration measuring device that uses a 15FET, the adsorption of adsorbed components in the test solution to the 15FET gate sensitive membrane and the 15FET
Measurement errors occur due to factors such as changes in sensitivity due to deterioration of the gate sensitive film itself.

このため、定期的にI 5FETゲート感応膜表面を洗
浄したり、電気計測回路の増幅感度を調節するなどの保
守作業が必要である。
Therefore, maintenance work such as periodically cleaning the surface of the I5FET gate sensitive film and adjusting the amplification sensitivity of the electrical measurement circuit is required.

しかしながら、特異な性状の被検液を測定する場合や、
突発的にl5FETが劣化したような場合には、このよ
うな定期的な保守作業は無力であり、測定誤差が補償さ
れないまま見すごされる危 ・陰性がある。このため、
l5FETの状態を連続的にモニターすることが重要な
課題となっており、簡便なモニター法が要望されている
However, when measuring a test liquid with unique properties,
If the 15FET suddenly deteriorates, such periodic maintenance work is useless, and there is a danger that measurement errors may be ignored without being compensated for. For this reason,
Continuously monitoring the state of the 15FET has become an important issue, and a simple monitoring method is desired.

なお、この種のl5FETのモニター法は現在まで知ら
れていないが、関連するものには例えば日本国特許公開
公報昭58−92854がある。
Although this type of monitoring method for 15FET is not known to date, related methods include, for example, Japanese Patent Publication No. 1987-92854.

〔発明の目的〕[Purpose of the invention]

本発明はl5FETの状態モニターが簡便に行えるイオ
ン濃度測定装置を提供することにある。
An object of the present invention is to provide an ion concentration measuring device that can easily monitor the condition of the 15FET.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために本発明によるイオン濃度測定
装置は、l5FETのゲート絶縁膜中に導電性ゲート電
極を設け、該ゲート電極と基準参照電極との間に交流基
準電流を印加する交流電源及び該ゲート電極と該基準参
照電極間に発生する交流電圧の振幅と位相を測定する検
出回路を具備し、該ゲート電極と被検液間の複素インピ
ーダンスをJlす定するよう構成することにより、I 
S FETの状態モニターが簡便に行えるようにしたも
のである。すなわち、ゲート電極被検液間の複素インピ
ーダンス抵抗値によりl5FETゲー1−絶縁膜の絶縁
状態及びゲートイオン感応膜の含水状態を知ることが可
能であり、また同複素インピーダンス容量値によりl5
FETゲート感応膜上の吸着成分量を知ることが可能で
あるため容易にl5FETの状態をモニターすることが
可能となる。
In order to achieve the above object, the ion concentration measuring device according to the present invention includes an AC power supply that provides a conductive gate electrode in the gate insulating film of the 15FET, and applies an AC reference current between the gate electrode and the reference reference electrode. The I
This allows easy monitoring of the S FET condition. That is, it is possible to know the insulation state of the l5FET gate insulating film and the water content state of the gate ion-sensitive film from the complex impedance resistance value between the gate electrode test liquid, and from the complex impedance capacitance value, the l5
Since it is possible to know the amount of adsorbed components on the FET gate sensitive film, it is possible to easily monitor the state of the 15FET.

〔発明の実施例〕[Embodiments of the invention]

つぎに本発明の実施例を図面とともに説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明によるゲート絶縁膜中に導電性ゲート電
極の設けられたl5FETの一実施例の断面図である。
FIG. 1 is a cross-sectional view of an embodiment of an 15FET in which a conductive gate electrode is provided in a gate insulating film according to the present invention.

”以下簡単に工程を記す。まずp型Siウェハ1を用い
て、不純物拡散法により(イオン注入法でも良い)n型
ソース2.ドレイン3を形成した。次に熱酸化法により
SiO膜を1000人成長させた後、CVD法により3
500人の導電性ポリシリコンゲート5を形成した。さ
らにCVD法により500人のSiO膜を形成し最終的
に1000人厚のSiO膜4とした。次に低圧CVD法
により1000人のSi  N  膜6を形成し、ホト
リソグラフ法によりソース電極7.ドレイン電極8.そ
してゲート電極(第1図中には記載されていない)を形
成した。本実施例では導電性ゲート電極材料にポリシリ
コンを使用したが、この他にMo、Wなどのシリサイド
を用いても何んら支障はない。
"The steps are briefly described below. First, using a p-type Si wafer 1, an n-type source 2 and drain 3 were formed by an impurity diffusion method (or an ion implantation method). Next, a SiO film with a thickness of 1000 nm was formed by a thermal oxidation method. After growing humans, 3
500 conductive polysilicon gates 5 were formed. Further, a 500-layer SiO film was formed by the CVD method, and the final SiO film 4 was 1000-layer thick. Next, a 1,000-layer Si N film 6 is formed by low-pressure CVD, and a source electrode 7 is formed by photolithography. Drain electrode8. Then, a gate electrode (not shown in FIG. 1) was formed. Although polysilicon is used as the conductive gate electrode material in this embodiment, other silicides such as Mo and W may also be used without any problem.

第2図は第1図の構成によるl5FETを用いた本発明
によるイオン濃度測定装置の一実施例を示す図である。
FIG. 2 is a diagram showing an embodiment of the ion concentration measuring device according to the present invention using the 15FET having the configuration shown in FIG.

l5FET20と基準参照電極23を被検液22中に浸
漬している。基準参照型Vi23とl5FET20のソ
ース、ドレイン各配線は濃度計測回路25に接続され、
被検液22のイオン濃度が表示器26により表示される
。本実施例ではl5FET20がpH感応性Si  N
をイオン感応膜としているためpH値が表示器26によ
り表示される。さて、l5FET20のゲート電極24
は基準参照電極23とともに交流電流源27及び振幅位
相測定器28に接続されている。振幅位相測定器28の
位相は交流電源27の位相を基準としている。交流電流
源27により印加された交流電流の振幅と振幅位相測定
器28により測定された交流電圧の振幅及び位相よりl
5FET20のゲート電極24と被検液22間の複素イ
ンピーダンス値R−jXがベクトル割算器29により計
算2表示される。l5FET20のゲート絶縁膜の絶縁
状態及びゲートイオン感応膜の含水状態を知る場合には
複素インピーダンスの抵抗成分Rを読み、またゲート感
応膜上の吸着成分量を知る場合には複素インピーダンス
の容量成分Xを読む構成となっている。
The 15FET 20 and the standard reference electrode 23 are immersed in the test liquid 22. The source and drain wirings of the standard reference type Vi23 and 15FET20 are connected to the concentration measurement circuit 25,
The ion concentration of the test liquid 22 is displayed on the display 26. In this example, 15FET20 is made of pH-sensitive SiN
Since the membrane is an ion-sensitive membrane, the pH value is displayed on the display 26. Now, the gate electrode 24 of l5FET20
is connected to an alternating current source 27 and an amplitude phase measuring device 28 together with a reference reference electrode 23 . The phase of the amplitude phase measuring device 28 is based on the phase of the AC power supply 27. From the amplitude of the alternating current applied by the alternating current source 27 and the amplitude and phase of the alternating current voltage measured by the amplitude phase measuring device 28,
A complex impedance value R-jX between the gate electrode 24 of the 5FET 20 and the test liquid 22 is calculated and displayed by the vector divider 29. To know the insulation state of the gate insulating film and the water content state of the gate ion sensitive film of 15FET20, read the resistance component R of the complex impedance, and to find out the amount of adsorbed components on the gate sensitive film, read the capacitance component X of the complex impedance. It is structured to read.

第3図には第2図の構成に従うイオン濃度測定装置を用
いてl5FETの状態をモニターした結果の一例である
。被検液22にPH7,0のトリス緩衝溶液を用い、抵
抗成分Rの経時変化を調べたものである。経過日数が増
加するに従い抵抗成分Rは徐々に減少している。これは
イオン感応膜(本例ではSi  N  膜)が徐々に含
水してゆき、抵抗値が減少したことを表わしている。ま
た32日目に突然抵抗成分は零となり、Si  N  
FIG. 3 shows an example of the results of monitoring the state of the 15FET using the ion concentration measuring device having the configuration shown in FIG. A Tris buffer solution with a pH of 7.0 was used as the test liquid 22, and the change in resistance component R over time was investigated. As the number of days elapsed increases, the resistance component R gradually decreased. This indicates that the ion-sensitive membrane (Si N membrane in this example) gradually became hydrated and the resistance value decreased. Also, on the 32nd day, the resistance component suddenly became zero, and the SiN
.

SiO各ゲート絶縁膜が絶縁破壊を起こしたことがわか
る。
It can be seen that dielectric breakdown occurred in each SiO gate insulating film.

第4図には第2図の構成に従うイオン濃度測定装置を用
いて、被検液に血清を使用した場合のl5FETの状態
をモニターした結果の一例である。本実験では血清中成
分のl5FETゲートイオン感応膜への吸着をモニター
するために容量成分値Xを調べた。血清検体処理数が増
加するに従い、容量成分値Xは単純に増加し、I 5F
ETゲ−ト感応膜上の吸若量が増加していることを示し
ている。第3図及び第4図の結果より、抵抗成分R2容
量成分Xにそれぞれ閾値R、X  を前もって設定し、
RがRを下回った場合にはIS’FETの交換を促す表
示を行う手段、及びXがX を上回った場合にはl5F
ETの洗浄を行う手段を設ければ、イオン濃度測定装置
の保守点検が著しく簡便化されることが明らかである。
FIG. 4 shows an example of the results of monitoring the state of the 15FET when serum is used as the test liquid using the ion concentration measuring device having the configuration shown in FIG. In this experiment, the capacitance component value X was examined in order to monitor the adsorption of serum components to the 15FET gate ion-sensitive membrane. As the number of serum samples processed increases, the volume component value X simply increases, and I 5F
This shows that the amount of absorption on the ET gate sensitive membrane is increasing. Based on the results shown in FIGS. 3 and 4, threshold values R and X are set in advance for the resistance component R and the capacitance component X, respectively.
Means for displaying a message prompting the replacement of IS'FET when R is less than R, and l5F when X exceeds X.
It is clear that if a means for cleaning the ET is provided, maintenance and inspection of the ion concentration measuring device will be significantly simplified.

以上の実施例では交流電流源27を用い、発生交流電圧
の振幅と位相を振幅位相測定器28で測定したが、交流
電流源27に代わり電圧源を用い。
In the above embodiments, the alternating current source 27 was used and the amplitude and phase of the generated alternating current voltage were measured by the amplitude and phase measuring device 28, but a voltage source was used instead of the alternating current source 27.

発生交流電流の振幅と位相を振幅位相測定器28で測定
するよう構成しても何んら支障はない。
There is no problem in configuring the amplitude and phase measuring device 28 to measure the amplitude and phase of the generated alternating current.

以上より、本発明によるイオン濃度測定装置はI S 
FETの状態モニターを簡便に行えることが実証された
From the above, the ion concentration measuring device according to the present invention has IS
It has been demonstrated that the condition of FET can be easily monitored.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明によるイオン濃度測定装置は、被検
液中に浸漬されたl5FET及び基準参照電極と、電気
計測回路からなるイオン濃度測定装置において、該l5
FETのゲート絶縁膜中に導電性ゲートを設け、該ゲー
ト電極と該基準参照電極との間に交流基$電流を印加す
る交流電源及び該ゲート電極と該基準参照電極間に発生
する交流電圧の振幅と位相を測定する検出回路を具備し
、該ゲート電極と被検液間の複素インピーダンスを測定
するよう構成したことにより、l5FETの状態モニタ
ーが簡便に行える効果がある。
As described above, the ion concentration measuring device according to the present invention includes an 15 FET immersed in a test liquid, a standard reference electrode, and an electric measurement circuit.
A conductive gate is provided in the gate insulating film of the FET, and an AC power supply that applies an AC current between the gate electrode and the standard reference electrode, and an AC voltage generated between the gate electrode and the standard reference electrode. By providing a detection circuit for measuring amplitude and phase and configuring to measure the complex impedance between the gate electrode and the test liquid, there is an effect that the state of the 15FET can be easily monitored.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はゲート絶縁膜中に導電性ゲート電極の設けられ
たl5FETの一実施例の断面図である。 第2図は第1図の構成によるl5FETを用いた本発明
によルイオン濃度測定装置の一実施例を示す図である。 第3図及び第4図は第1図の構成によるl5FET及び
第2図の構成によるイオン濃度測定装置を用いてl5F
ETの状態をモニターした結果を示す図である。 1・・・Siウェハ、2・・・ソース、3・・・ドレイ
ン。 4・・・SiO,5・・・ポリシリコンゲート、6・・
・SiN、7・・・ソース電極、8・・・ドレイン電極
、20・・rsFET、21・・・容器、22・・被検
液、23 ・基準参照電極、24・・ゲート電極、25
・・濃度計測回路、26・・表示器、27・・交流電流
源、28・・・振幅位相測定器、29・・・ベクトル割
算器。
FIG. 1 is a cross-sectional view of an embodiment of an 15FET in which a conductive gate electrode is provided in a gate insulating film. FIG. 2 is a diagram showing an embodiment of the ion concentration measuring device according to the present invention using the 15FET having the configuration shown in FIG. Figures 3 and 4 show the measurement of the 15F using the 15FET with the configuration shown in Figure 1 and the ion concentration measuring device with the configuration shown in Figure 2.
It is a figure which shows the result of monitoring the state of ET. 1...Si wafer, 2...source, 3...drain. 4...SiO, 5...Polysilicon gate, 6...
- SiN, 7... Source electrode, 8... Drain electrode, 20... rsFET, 21... Container, 22... Test liquid, 23 - Standard reference electrode, 24... Gate electrode, 25
...Concentration measurement circuit, 26..Display device, 27..AC current source, 28..amplitude phase measuring device, 29..vector divider.

Claims (1)

【特許請求の範囲】[Claims] 被検液中に浸漬された電界効果トランジスタ型イオンセ
ンサ及び基準参照電極と、電気計測回路からなるイオン
濃度測定装置において、該電界効果トランジスタ型イオ
ンセンサのゲート絶縁膜中に導電性ゲート電極を設け、
該ゲート電極と該基準参照電極との間に交流基準電流を
印加する交流電源及び該ゲート電極と該基準参照電極間
に発生する交流電圧の振幅と位相を測定する検出回路を
具備し該ゲート電極と被検液間の複素インピーダンスを
測定するよう構成したことを特徴とするイオン濃度測定
装置。
In an ion concentration measuring device comprising a field effect transistor type ion sensor immersed in a test liquid, a standard reference electrode, and an electric measurement circuit, a conductive gate electrode is provided in the gate insulating film of the field effect transistor type ion sensor. ,
The gate electrode includes an AC power source that applies an AC reference current between the gate electrode and the standard reference electrode, and a detection circuit that measures the amplitude and phase of the AC voltage generated between the gate electrode and the standard reference electrode. An ion concentration measuring device characterized in that it is configured to measure complex impedance between a test liquid and a test liquid.
JP60021747A 1985-02-08 1985-02-08 Ion concentration measuring apparatus Pending JPS61181951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60021747A JPS61181951A (en) 1985-02-08 1985-02-08 Ion concentration measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60021747A JPS61181951A (en) 1985-02-08 1985-02-08 Ion concentration measuring apparatus

Publications (1)

Publication Number Publication Date
JPS61181951A true JPS61181951A (en) 1986-08-14

Family

ID=12063665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60021747A Pending JPS61181951A (en) 1985-02-08 1985-02-08 Ion concentration measuring apparatus

Country Status (1)

Country Link
JP (1) JPS61181951A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134255A (en) * 2007-12-17 2008-06-12 Hitachi Ltd Biomolecule detector, and biomolecule detection method using the same
JP2010256140A (en) * 2009-04-23 2010-11-11 National Institute Of Advanced Industrial Science & Technology Electrochemical measuring device
WO2011040803A1 (en) * 2009-09-29 2011-04-07 Mimos Berhad A reference electrode and a method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134255A (en) * 2007-12-17 2008-06-12 Hitachi Ltd Biomolecule detector, and biomolecule detection method using the same
JP4731544B2 (en) * 2007-12-17 2011-07-27 株式会社日立製作所 Biomolecule detection apparatus and biomolecule detection method using the same
JP2010256140A (en) * 2009-04-23 2010-11-11 National Institute Of Advanced Industrial Science & Technology Electrochemical measuring device
WO2011040803A1 (en) * 2009-09-29 2011-04-07 Mimos Berhad A reference electrode and a method thereof

Similar Documents

Publication Publication Date Title
US4238757A (en) Field effect transistor for detection of biological reactions
US4508613A (en) Miniaturized potassium ion sensor
US2965842A (en) Detection of ambient components by semiconductors
US6617190B2 (en) A-WO3-gate ISFET devices and method of making the same
JPH0418625B2 (en)
JPS62130349A (en) Device for measuring concentration of substance in solution
US4716448A (en) CHEMFET operation without a reference electrode
Chou et al. SnO2 separative structure extended gate H+-ion sensitive field effect transistor by the sol–gel technology and the readout circuit developed by source follower
Cho et al. Optimization of signal to noise ratio in silicon nanowire ISFET sensors
JPS61181951A (en) Ion concentration measuring apparatus
Smith et al. The low frequency conductance of bipolar membranes demonstrates the presence of a depletion layer
Fabry et al. The CV method for characterizing ISFET or EOS devices with ion-sensitive membranes
Yusof et al. pH sensing characteristics of silicon nitride thin film and silicon nitride-based ISFET sensor
Schasfoort et al. Influence of an immunological precipitate on DC and AC behaviour of an ISFET
Chen et al. The fabrication and characterisation of ion-sensitive field-effect transistors with a silicon dioxide gate
JP2000277716A (en) Evaluation method of semiconductor layer, and evaluation equipment of semiconductor layer and storage device
Parmar et al. Electrical Characterization and Study of Current Drift Phenomena and Hysteresis Mechanism in Junctionless Ion-Sensitive Field-Effect Transistor
Van den Vlekkert Ion-sensitive field effect transistors
EP0190005A2 (en) Ambient sensing devices with isolation
GB2162997A (en) A fluoride ion sensitive field effect transistor
Baylav Ion-sensitive field effect transistor (ISFET) for MEMS multisensory chips at RIT
Baccar et al. New fluoride-sensitive membranes prepared through an ion implantation process
Chiang et al. Study on light and temperature properties of AlN pH-Ion-sensitive field-effect transistor devices
Prodromakis et al. Effect of mobile ionic-charge on CMOS based ion-sensitive field-effect transistors (ISFETS)
Huang et al. A new structured isfet with integrated Ti/Pd/Ag/AgCl electrode and micromachined back‐side P+ contacts