JP5538965B2 - Shield machine for spiral tunnel excavation - Google Patents

Shield machine for spiral tunnel excavation Download PDF

Info

Publication number
JP5538965B2
JP5538965B2 JP2010061726A JP2010061726A JP5538965B2 JP 5538965 B2 JP5538965 B2 JP 5538965B2 JP 2010061726 A JP2010061726 A JP 2010061726A JP 2010061726 A JP2010061726 A JP 2010061726A JP 5538965 B2 JP5538965 B2 JP 5538965B2
Authority
JP
Japan
Prior art keywords
spiral
tunnel
spiral tunnel
excavation
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010061726A
Other languages
Japanese (ja)
Other versions
JP2011196033A (en
Inventor
忠 原
高志 久原
裕悟 林
泰治 花岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Shimizu Corp
Original Assignee
Hitachi Zosen Corp
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp, Shimizu Corp filed Critical Hitachi Zosen Corp
Priority to JP2010061726A priority Critical patent/JP5538965B2/en
Publication of JP2011196033A publication Critical patent/JP2011196033A/en
Application granted granted Critical
Publication of JP5538965B2 publication Critical patent/JP5538965B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

本発明は、矩形断面や長円形断面、まゆ形断面などの非円形断面の螺旋トンネルを掘削するためのシールド掘進機に関する。   The present invention relates to a shield machine for excavating a spiral tunnel having a non-circular cross section such as a rectangular cross section, an oval cross section, or an eyebrows cross section.

たとえば地下大空間の周壁や地下道路の立体ジャンクションを形成するために、螺旋トンネルを掘削することがある。このような場合、従来では、図19(a)に示すように、前胴1と後胴2とを球面継手を介して屈曲中心3を中心に屈曲自在に連結した掘削機本体4を使用している。しかし、上記構成では、曲率が小さくなるほど大きい断面を余掘りしなければならなくなり、特に密閉形の場合には余掘り量に制約を受けること、余掘り後の注入剤の使用が増大すること、急勾配の螺旋トンネルの場合の施工工期が長くなることなどの問題点がある。これらの問題点を解消するものとして提案された特許文献1の掘削機本体7は、図19(b)に示すように、前胴5と後胴6とを螺旋トンネルの曲率と同一の円弧状に形成している。これにより、余掘りをなくすことができ、余掘りによる注入剤の削減や地盤沈下を防止することができる。   For example, a spiral tunnel may be drilled to form a peripheral wall of a large underground space or a three-dimensional junction of an underground road. In such a case, conventionally, as shown in FIG. 19A, an excavator main body 4 in which a front cylinder 1 and a rear cylinder 2 are connected to each other with a bendable center 3 through a spherical joint so as to be freely bent is used. ing. However, in the above configuration, the larger the cross section has to be dug down as the curvature becomes smaller, especially in the case of a sealed type, the amount of dug up is restricted, the use of the injecting agent after dug up increases, There are problems such as a long construction period in the case of a steep spiral tunnel. As shown in FIG. 19 (b), the excavator body 7 of Patent Document 1 proposed to solve these problems has an arcuate shape in which the front cylinder 5 and the rear cylinder 6 have the same curvature as that of the spiral tunnel. Is formed. As a result, it is possible to eliminate excessive digging, and it is possible to reduce the amount of infusate and subsidence due to excessive digging.

ところで、特許文献1は円形断面トンネルを掘削するものであるが、トンネル内に道路などを設置する場合、円形断面では、使用面積に対する掘削面積が広く、使用効率が低いために、矩形断面やまゆ形断面、長円形断面、釣鐘形断面などの非円形断面が数多く提案されている。   By the way, Patent Document 1 excavates a circular cross-section tunnel. However, when a road or the like is installed in the tunnel, the circular cross-section has a large excavation area with respect to the use area and low use efficiency. Many non-circular cross sections such as a cross section, an oval cross section and a bell-shaped cross section have been proposed.

特開平3−176592Japanese Patent Laid-Open No. 3-17692

螺旋トンネルを非円形断面で掘削する場合、セグメントは常に正立姿勢、たとえば矩形断面の場合には、上下面が水平で、内外周面が鉛直となるように、組み立てる必要がある。図19(b)に示す円弧状の掘削機本体8を使用して、螺旋トンネルを掘削する場合のトンネルの傾きについて、図19(c)を参照して説明する。   When excavating a spiral tunnel with a non-circular cross section, the segments must always be assembled in an upright position, for example, a rectangular cross section, so that the top and bottom surfaces are horizontal and the inner and outer peripheral surfaces are vertical. The inclination of the tunnel when excavating a spiral tunnel using the arc-shaped excavator body 8 shown in FIG. 19 (b) will be described with reference to FIG. 19 (c).

まず、図19(c6〜c8)は、上記従来の円弧状の掘削機本体8を水平に配置した中心軸心上の平面視の断面を示す円弧面CPである。この円弧面CPを、螺旋半径に沿う後端辺を中心に勾配αだけ前部上方に傾斜させると、図19(c3〜c5)に示す傾斜姿勢となる。一方、傾斜姿勢の円弧面CPと同じ占有角θで同じ勾配αの螺旋面SPは、図19(c1,c2)に示すとおりである。   First, FIG. 19 (c6 to c8) is a circular arc surface CP showing a cross section in a plan view on the central axis in which the conventional arc-shaped excavator body 8 is horizontally arranged. When the circular arc surface CP is inclined upward by a gradient α around the rear end side along the spiral radius, the inclined posture shown in FIG. 19 (c3 to c5) is obtained. On the other hand, the spiral surface SP having the same occupying angle θ and the same gradient α as the inclined circular arc surface CP is as shown in FIG. 19 (c1, c2).

前記傾斜円弧面CPと螺旋面SPとを比較すると、後端辺はそれぞれ水平であるが、螺旋面SPの前端辺が水平であるのに対して、円弧面CPの前端辺がB−B矢視でβだけ内周側下方に傾斜され、捻り角βが生じている点で相違している。   When the inclined arc surface CP and the spiral surface SP are compared, the rear end sides are horizontal, but the front end side of the spiral surface SP is horizontal, whereas the front end side of the arc surface CP is the BB arrow. It is different in that it is tilted downward by β on the inner peripheral side and a twist angle β is generated.

したがって、図19(d)に示すように、円弧状の掘削機本体4を、勾配分θだけ前部上方に傾斜させて、螺旋経路上をたとえば左のカーブに沿って掘進させても、一点鎖線で示す正立姿勢の螺旋トンネルTsに対して、前端部では捻り角βだけ掘進方向に向かって反時計方向に捻れた実線の傾斜円弧トンネルTcしか掘削することができず、掘進するに従って反時計方向に捻れたトンネルが形成されて、螺旋トンネルをスムーズに掘削できないという問題があった。   Accordingly, as shown in FIG. 19 (d), even if the arc-shaped excavator body 4 is tilted forward by the gradient θ and is excavated on the spiral path along the left curve, for example, In contrast to the spiral tunnel Ts in the upright position shown by the chain line, only the solid-line inclined arc tunnel Tc twisted in the counterclockwise direction toward the digging direction can be excavated at the front end portion, and as the digging proceeds, There was a problem that the tunnel twisted in the clockwise direction was formed and the spiral tunnel could not be excavated smoothly.

本発明は上記問題点を解決して、非円形断面のトンネルを正立姿勢で螺旋経路に沿って容易に掘進できるとともに、製作も容易で低コストで提供できる螺旋トンネル掘削用シールド掘進機を提供することを目的とする。   The present invention solves the above problems and provides a shield tunneling machine for spiral tunnel excavation that can easily dig a tunnel with a non-circular cross section along a spiral path in an upright posture and that can be easily manufactured and provided at low cost. The purpose is to do.

請求項1記載の発明は、
螺旋軸を中心として所定の勾配の螺旋経路に沿って、非円形断面の螺旋トンネルを掘削する螺旋トンネル掘削用シールド掘進機であって、
前部に掘削装置を有し、後部に螺旋トンネルに沿って覆工体を組み立てるエレクタ装置を有するシールド本体を、螺旋軸を中心とする円弧状に形成するとともに、前後に複数に分割された複数の胴部により構成し、
互いに隣接される後方の胴部に対して前方の胴部を、掘進方向に向かって左右一方に旋回して螺旋トンネルを掘削する場合に、左右他方に所定の捻り角で捻って連結固定し、
螺旋軸を中心とする螺旋トンネルの占有角:θ(rad)、螺旋トンネルのリード角:α(rad)として所定半径の螺旋トンネルを掘削する時に、
前記捻り角:β(rad)を、β=tan -1 (θ×tanα)とすることにより、前端の胴部の前端面と後端の胴部の後端面とをそれぞれ螺旋経路上の螺旋トンネル断面に略合致させるものである。
請求項2記載の発明は、
螺旋軸を中心として所定の勾配の螺旋経路に沿って、非円形断面の螺旋トンネルを掘削する螺旋トンネル掘削用シールド掘進機であって、
前部に掘削装置を有し、後部に螺旋トンネルに沿って覆工体を組み立てるエレクタ装置を有するシールド本体を、前後に複数に分割された複数の胴部により構成するとともに、当該各胴部を、螺旋トンネルに内接するように中間部で折り曲げられた複数の直状断面の分割胴部により形成し、
互いに隣接される後方の胴部に対して前方の胴部を、掘進方向に向かって左右一方に旋回して螺旋トンネルを掘削する場合に、左右他方に所定の捻り角で捻って連結固定し、
螺旋軸を中心とする螺旋トンネルの占有角:θ(rad)、螺旋トンネルのリード角:α(rad)として所定半径の螺旋トンネルを掘削する時に、
前記捻り角:β(rad)を、β=tan -1 (θ×tanα)とすることにより、
前端の胴部の前端面と後端の胴部の後端面とをそれぞれ螺旋経路上の螺旋トンネル断面に略合致させるものである。
The invention described in claim 1
A shield tunneling machine for spiral tunnel excavation for excavating a spiral tunnel having a non-circular cross section along a spiral path with a predetermined gradient around a spiral axis,
A shield body having an excavator at the front and an erector that assembles the lining body along the spiral tunnel at the rear is formed into an arc shape with the spiral axis as the center, and a plurality divided in front and rear. Composed of the body of
When excavating a spiral tunnel by turning the front trunk with respect to the rear trunks adjacent to each other in the right and left direction toward the excavation direction, the right and left other are twisted at a predetermined twist angle and fixed and connected.
When excavating a spiral tunnel of a predetermined radius with an occupation angle of the spiral tunnel around the spiral axis: θ (rad) and a lead angle of the spiral tunnel: α (rad),
By setting the twist angle: β (rad) to β = tan −1 (θ × tan α), the front end surface of the front end barrel portion and the rear end surface of the rear end barrel portion are respectively spiral tunnels on the spiral path. It substantially matches the cross section.
The invention according to claim 2
A shield tunneling machine for spiral tunnel excavation for excavating a spiral tunnel having a non-circular cross section along a spiral path with a predetermined gradient around a spiral axis,
A shield body having an excavator at the front and an erector device for assembling the lining body along the spiral tunnel at the rear is composed of a plurality of trunks divided into a plurality of front and rear parts, and , Formed by a plurality of straight section split barrels bent at the middle so as to be inscribed in the spiral tunnel,
When excavating a spiral tunnel by turning the front trunk with respect to the rear trunks adjacent to each other in the right and left direction toward the excavation direction, the right and left other are twisted at a predetermined twist angle and fixed and connected.
When excavating a spiral tunnel of a predetermined radius with an occupation angle of the spiral tunnel around the spiral axis: θ (rad) and a lead angle of the spiral tunnel: α (rad),
By setting the twist angle: β (rad) to β = tan −1 (θ × tan α),
The front end face of the front end barrel portion and the rear end face of the rear end barrel portion are substantially matched to the cross section of the spiral tunnel on the spiral path.

請求項3記載の発明は、
螺旋軸を中心として所定の勾配の螺旋経路に沿って、非円形断面の螺旋トンネルを掘削する螺旋トンネル掘削用シールド掘進機であって、
前部に掘削装置を有し、後部に螺旋トンネルに沿って覆工体を組み立てるエレクタ装置を有するシールド本体を、螺旋軸を中心とする円弧状に形成するとともに、前後に3個以上に分割された複数の胴部により構成し、
互いに隣接される後方の胴部に対して前方の胴部を、掘進方向に向かって左右一方に旋回して螺旋トンネルを掘削する場合に、左右他方に所定の捻り角で捻って連結固定し、
前記捻り角は、連結部の前後の胴部の合計の周長または螺旋軸を中心とする占有角の比率により設定され、ここで周長は、端部の胴部は全周長、中間の胴部は周長の1/2、また占有角は、端部の胴部は全占有角、中間の胴部は占有角の1/2とすることにより、前端の胴部の前端面と後端の胴部の後端面とをそれぞれ螺旋経路上の螺旋トンネル断面に略合致させるものである。
請求項4記載の発明は、
螺旋軸を中心として所定の勾配の螺旋経路に沿って、非円形断面の螺旋トンネルを掘削する螺旋トンネル掘削用シールド掘進機であって、
前部に掘削装置を有し、後部に螺旋トンネルに沿って覆工体を組み立てるエレクタ装置を有するシールド本体を、前後に複数に分割された複数の胴部により構成するとともに、当該各胴部を、螺旋トンネルに内接するように中間部で折り曲げられて前後に3個以上に分割された複数の直状断面の分割胴部により形成し、
互いに隣接される後方の胴部に対して前方の胴部を、掘進方向に向かって左右一方に旋回して螺旋トンネルを掘削する場合に、左右他方に所定の捻り角で捻って連結固定し、
前記捻り角は、連結部の前後の胴部の合計の周長または螺旋軸を中心とする占有角の比率により設定され、ここで周長は、端部の胴部は全周長、中間の胴部は周長の1/2、また占有角は、端部の胴部は全占有角、中間の胴部は占有角の1/2とすることにより、前端の胴部の前端面と後端の胴部の後端面とをそれぞれ螺旋経路上の螺旋トンネル断面に略合致させるものである。
The invention described in claim 3
A shield tunneling machine for spiral tunnel excavation for excavating a spiral tunnel having a non-circular cross section along a spiral path with a predetermined gradient around a spiral axis,
A shield body having an excavator at the front and an erector that assembles the lining body along the spiral tunnel at the rear is formed in an arc shape centered on the spiral axis, and is divided into three or more parts in the front and rear. multiple constituted by cylinder portions,
When excavating a spiral tunnel by turning the front trunk with respect to the rear trunks adjacent to each other in the right and left direction toward the excavation direction, the right and left other are twisted at a predetermined twist angle and fixed and connected.
The torsion angle is set by the total circumference of the body parts before and after the connecting part or the ratio of the occupied angle around the spiral axis, where the circumference is the entire circumference of the body part at the end, The front of the front end of the front end and the rear end of the front end The rear end surface of the end barrel is approximately matched with the cross section of the spiral tunnel on the spiral path.
The invention according to claim 4
A shield tunneling machine for spiral tunnel excavation for excavating a spiral tunnel having a non-circular cross section along a spiral path with a predetermined gradient around a spiral axis,
A shield body having an excavator at the front and an erector device for assembling the lining body along the spiral tunnel at the rear is composed of a plurality of trunks divided into a plurality of front and rear parts, and , Formed by a plurality of straight section divided body parts that are bent at the middle part so as to be inscribed in the spiral tunnel and divided into three or more in the front and rear ,
When excavating a spiral tunnel by turning the front trunk with respect to the rear trunks adjacent to each other in the right and left direction toward the excavation direction, the right and left other are twisted at a predetermined twist angle and fixed and connected.
The torsion angle is set by the total circumference of the body parts before and after the connecting part or the ratio of the occupied angle around the spiral axis, where the circumference is the entire circumference of the body part at the end, The front of the front end of the front end and the rear end of the front end The rear end surface of the end barrel is approximately matched with the cross section of the spiral tunnel on the spiral path.

請求項記載の発明は、請求項1乃至のいずれかに記載の構成において、
連結部に、前側胴部の連結端面と後側胴部の連結端面との合致部分からはみ出す胴部拡張部が形成され、
前側胴部と後側胴部の連結部側の外面に、前記胴部拡張部を削除する削除面部および前記胴部拡張部に連続する増径面部の少なくとも一方を設けたものである。
The invention according to claim 5 is the configuration according to any one of claims 1 to 4 ,
The connecting portion is formed with a body extension portion that protrudes from a matching portion between the connecting end surface of the front body portion and the connecting end surface of the rear body portion,
At least one of a deletion surface portion for deleting the body portion expansion portion and a diameter increasing surface portion continuous with the body portion expansion portion is provided on the outer surface of the front body portion and the rear body portion on the connecting portion side.

請求項1記載の発明によれば、非円形断面のシールド本体を、螺旋軸を中心とする螺旋半径に沿った円弧状に形成するとともに、シールド本体を構成する胴部の連結部で、後側胴部に対して前側胴部を、掘進方向に向かって左方向に旋回して螺旋トンネルを掘削する場合は、右方向(時計方向)に所定の捻り角[螺旋軸を中心とする螺旋トンネルの占有角:θ(rad)、螺旋トンネルのリード角:α(rad)とした時に、前記捻り角:β(rad)=tan -1 (θ×tanα)]だけ捻り、掘進方向に向かって右方向に旋回して螺旋トンネルを掘削する場合は、左方向(反時計方向)に所定の捻り角[螺旋軸を中心とする螺旋トンネルの占有角:θ(rad)、螺旋トンネルのリード角:α(rad)とした時に、前記捻り角:β(rad)=tan -1 (θ×tanα)]だけ捻って連結固定することにより、シールド本体の前端面と後端面とを螺旋経路上のトンネル断面に略合致させる。これにより、前部で掘削した螺旋トンネル断面を後方の胴部が通過する時に、シールド本体をローリングさせる捻り力を付与することができ、前端面と後端面の捻れの位相差により、シールド本体を旋回させつつ螺旋トンネルを掘進することができ、余掘り量を少なくして、非円形断面の螺旋トンネルをスムーズに掘削することができる。またシールド本体自体を捻った立体形状にすることなく、円弧状に形成した胴部を捻って連結するだけでよいので、低コストで製作でき、さらに捻り角を変更することにより、勾配の異なる螺旋トンネルの掘削にも適用することができ、汎用性を拡大することができる。 According to the first aspect of the present invention, the shield body having a non-circular cross section is formed in an arc shape along the spiral radius with the spiral axis as the center, and at the connecting portion of the trunk portion constituting the shield body, When excavating a spiral tunnel by turning the front trunk to the left in the direction of excavation and excavating the spiral tunnel with respect to the trunk, a predetermined twist angle [clockwise of the spiral tunnel centered on the spiral axis] When the occupying angle is θ (rad) and the lead angle of the spiral tunnel is α (rad), the twist angle is β (rad) = tan −1 (θ × tan α)] , and the right direction toward the excavation direction When excavating the spiral tunnel by turning to the left, a predetermined twist angle [ occupied angle of the spiral tunnel centered on the spiral axis: θ (rad), lead angle of the spiral tunnel: α ( when a rad), the torsion angle: β (rad) = tan -1 (θ × tanα)] only twisted by linking By constant, thereby substantially matching the front surface and the rear end face of the shield body in the tunnel cross-section of the helical path. As a result, when the rear trunk passes through the spiral tunnel cross section excavated at the front, a twisting force for rolling the shield main body can be applied, and the shield main body is caused by the phase difference of the twist between the front end face and the rear end face. The spiral tunnel can be excavated while turning, and the amount of surplus digging can be reduced to smoothly excavate the spiral tunnel having a non-circular cross section. In addition, it is only necessary to twist and connect the body formed in an arc shape without twisting the shield body itself, so that it can be manufactured at low cost, and by changing the twist angle, spirals with different gradients can be produced. It can be applied to tunnel excavation, and versatility can be expanded.

請求項2記載の発明によれば、非円形断面のシールド本体を構成する各胴部を、螺旋軸を中心とする螺旋トンネルに内接する折り曲げ形状に形成するとともに、シールド本体を構成する胴部の連結部で、後側胴部に対して前側胴部を、掘進方向に向かって左方向に旋回して螺旋トンネルを掘削する場合は、右方向(時計方向)に所定の捻り角[螺旋軸を中心とする螺旋トンネルの占有角:θ(rad)、螺旋トンネルのリード角:α(rad)とした時に、前記捻り角:β(rad)=tan -1 (θ×tanα)]だけ捻り、掘進方向に向かって右方向に旋回して螺旋トンネルを掘削する場合は、左方向(反時計方向)に所定の捻り角[螺旋軸を中心とする螺旋トンネルの占有角:θ(rad)、螺旋トンネルのリード角:α(rad)とした時に、前記捻り角:β(rad)=tan -1 (θ×tanα)]だけ捻って連結固定することにより、シールド本体の前端面と後端面とを螺旋経路上のトンネル断面に略合致させる。これにより、前端面で掘削した螺旋トンネル断面を後方の胴部が通過する時に、シールド本体をローリングさせる捻り力を付与することができ、前端面と後端面の捻れの位相差により、シールド本体を旋回させつつ螺旋トンネルを掘進することができ、余掘り量を少なくして、非円形断面の螺旋トンネルをスムーズに掘削することができる。また各胴部を円弧形状にすることなく、直状断面の分割胴部を折り曲げて形成するとともに、前後の胴部を捻って連結してシールド本体を形成するだけでよく、容易に短期間で製作でき、製作コストを削減することができる。さらに捻り角や折り曲げ角を変更することにより、勾配や半径の異なる螺旋トンネルの掘削にも適用することができ、汎用性を拡大することができる。 According to invention of Claim 2, while forming each trunk | drum which comprises the shield main body of a non-circular cross section in the bending shape inscribed in the spiral tunnel centering on a helical axis, at the junction, the front body portion relative to the rear body part, if turning to the left direction in the excavation direction drilling helical tunnel, predetermined twist angle in the right direction (clockwise) [helix axis Twisting by the twist angle: β (rad) = tan −1 (θ × tanα)] when the occupation angle of the spiral tunnel as the center is θ (rad) and the lead angle of the spiral tunnel is α (rad) When excavating a spiral tunnel by turning to the right toward the direction, a predetermined twist angle in the left direction (counterclockwise direction) [ occupied angle of the spiral tunnel around the spiral axis: θ (rad), spiral tunnel When the lead angle is α (rad), the twist angle: β (rad) = tan −1 By twisting and fixing (θ × tan α)] , the front end surface and the rear end surface of the shield body are substantially matched to the tunnel cross section on the spiral path. As a result, a twisting force that rolls the shield body can be applied when the rear trunk passes through the cross section of the spiral tunnel excavated on the front end face, and the shield body is moved by the phase difference between the twists of the front end face and the rear end face. The spiral tunnel can be excavated while turning, and the amount of surplus digging can be reduced to smoothly excavate the spiral tunnel having a non-circular cross section. Moreover, it is only necessary to form the shield main body by twisting and connecting the front and rear body portions while forming the shield body without bending each body portion in an arc shape, and by bending the front and rear body portions. It can be manufactured and the manufacturing cost can be reduced. Furthermore, by changing the twist angle and the bending angle, it can be applied to excavation of a spiral tunnel having different gradients and radii, and versatility can be expanded.

請求項3記載の発明によれば、請求項1の作用効果に加えて、連結固定される複数の胴部の捻り角を、その胴部の占有角または周長から求めることにより、螺旋トンネルから突出する胴部断面積を少なくして余掘り量を減少させることができ、スムーズに非円形断面の螺旋トンネルを掘削することができる。
請求項4記載の発明によれば、請求項2の作用効果に加えて、連結固定される複数の胴部の捻り角を、その胴部の占有角または周長から求めることにより、螺旋トンネルから突出する胴部断面積を少なくして余掘り量を減少させることができ、スムーズに非円形断面の螺旋トンネルを掘削することができる。
According to the third aspect of the invention, in addition to the effects of claim 1, the twist angle of the plurality of body portions to be connected and fixed, by obtaining from the occupation angle or circumferential length of the body portion, the helical tunnel It is possible to reduce the amount of surplus digging by reducing the protruding cross section of the trunk portion, and it is possible to smoothly excavate a spiral tunnel having a non-circular cross section.
According to the invention described in claim 4, in addition to the function and effect of claim 2, by obtaining the twist angles of the plurality of body parts to be connected and fixed from the occupation angle or the circumferential length of the body parts, It is possible to reduce the amount of surplus digging by reducing the protruding cross section of the trunk portion, and it is possible to smoothly excavate a spiral tunnel having a non-circular cross section.

請求項5記載の発明によれば、前側胴部と後側胴部の連結部に、胴部拡張部に連続する増径面部や胴部拡張部を削除する削除面部を形成することにより、連結部における断部をなくして連続面を形成することができ、掘進抵抗を低減することができる。 According to the invention described in claim 5, the connecting portion between the front body portion and the rear body portion is formed by forming a deletion surface portion that deletes the enlarged diameter surface portion and the body portion expansion portion continuous to the body portion expansion portion. A continuous surface can be formed without a cut portion in the portion, and the digging resistance can be reduced.

本発明に係る螺旋トンネル掘削用シールド掘進機の実施例1を示し、シールド本体の概略斜視図である。1 is a schematic perspective view of a shield main body according to a first embodiment of a shield tunneling machine for spiral tunnel excavation according to the present invention. シールド本体の連結部を示す正面視の横断面図である。It is a cross-sectional view of a front view showing a connecting portion of a shield body. 螺旋トンネルを示す側面図である。It is a side view which shows a spiral tunnel. (a)〜(c)は捻り角の説明図で、(a)は平面図、(b)は側面図、(c)は同図(a)に示すA−A矢視図である。(A)-(c) is explanatory drawing of a twist angle, (a) is a top view, (b) is a side view, (c) is an AA arrow line view shown to the same figure (a). シールド掘進機を示す平面視の断面図である。It is sectional drawing of the planar view which shows a shield machine. シールド掘進機を示す縦断面図である。It is a longitudinal cross-sectional view which shows a shield machine. 本発明に係る螺旋トンネル掘削用シールド掘進機の実施例2を示し、3つの胴部を有するシールド掘進機の概略平面図である。It is a schematic plan view of the shield machine which has Example 3 of the shield machine for spiral tunnel excavation which concerns on this invention, and has three trunk parts. (a)〜(f)はそれぞれ他の非円形断面の螺旋トンネルを掘削するシールド掘進機の胴部を示す正面図で、(a)は楕円形断面、(b)はまゆ形断面、(c)は角丸正方形断面、(d)は長円形断面、(e)は釣鐘形断面、(f)は長辺膨出タイプの矩形断面を示す。(A)-(f) is a front view which shows the trunk | drum of the shield machine which excavates the spiral tunnel of another non-circular cross section, respectively, (a) is an elliptical cross section, (b) is an eyebrows cross section, (c ) Is a rounded square cross section, (d) is an oval cross section, (e) is a bell-shaped cross section, and (f) is a long side bulge type rectangular cross section. (a)〜(d)はそれぞれ本発明に係るシールド掘進機の胴部の実施例3を示し、(a)は実施例1の連結部を示す横断面図、(b)は実施例1の連結部を示す斜視図、(c)は第1連結構造の増設部と削除部を示す斜視図、(d)は第1連結構造の増径面部と削除面部を示す斜視図である。(A)-(d) shows Example 3 of the trunk | drum of the shield machine which concerns on this invention, respectively, (a) is a cross-sectional view which shows the connection part of Example 1, (b) is Example 1 of FIG. The perspective view which shows a connection part, (c) is a perspective view which shows the expansion part and deletion part of a 1st connection structure, (d) is a perspective view which shows the enlarged diameter surface part and deletion surface part of a 1st connection structure. (a)および(b)はそれぞれ実施例3の第2連結構造を示し、(a)は増設部と削除部を示す斜視図、(b)は増径面部と削除面部を示す斜視図である。(A) And (b) shows the 2nd connection structure of Example 3, respectively (a) is a perspective view which shows an expansion part and a deletion part, (b) is a perspective view which shows a diameter-increasing surface part and a deletion surface part. . (a)および(b)はそれぞれ実施例3の第3連結構造を示し、(a)は増設部と削除部を示す斜視図、(b)は増径面部と削除面部を示す斜視図である。(A) And (b) shows the 3rd connection structure of Example 3, respectively, (a) is a perspective view which shows an expansion part and a deletion part, (b) is a perspective view which shows a diameter-increasing surface part and a deletion surface part. . (a)および(b)はそれぞれ本発明に係るまゆ形断面の螺旋トンネル掘削用シールド掘進機の胴部の実施例4の基本構造を示し、(a)は正面図、(b)は斜視図である。(A) And (b) shows the basic structure of Example 4 of the trunk | drum of the shield tunneling machine for spiral tunnel excavation of the eyebrows-shaped section which concerns on this invention, respectively, (a) is a front view, (b) is a perspective view. It is. (a)〜(c)はそれぞれ実施例4の連結部の第1連結構造を示し、(a)は正面図、(b)は斜視図、(c)は平面図である。(A)-(c) shows the 1st connection structure of the connection part of Example 4, respectively (a) is a front view, (b) is a perspective view, (c) is a top view. (a)〜(c)はそれぞれ実施例4の連結部の第2連結構造を示し、(a)は正面図、(b)は斜視図、(c)は平面図である。(A)-(c) shows the 2nd connection structure of the connection part of Example 4, respectively (a) is a front view, (b) is a perspective view, (c) is a top view. 本発明に係る螺旋トンネル掘削用シールド掘進機の折り曲げ部を有する胴部の実施例5の基本構造を示し、(a)は平面図、(b)は斜視図、(c)は分解斜視図である。The basic structure of Example 5 of the trunk | drum which has a bending part of the shield machine for spiral tunnel excavation which concerns on this invention is shown, (a) is a top view, (b) is a perspective view, (c) is an exploded perspective view. is there. (a)〜(c)はそれぞれ実施例5の連結部を示し、(a)は第1連結構造を示す斜視図、(b)は第2連結構造を示す斜視図、(c)は第3連結構造を示す斜視図である。(A)-(c) shows the connection part of Example 5, respectively, (a) is a perspective view which shows a 1st connection structure, (b) is a perspective view which shows a 2nd connection structure, (c) is 3rd. It is a perspective view which shows a connection structure. 本発明に係る螺旋トンネル掘削用シールド掘進機の折り曲げ部を有する胴部の実施例6の基本構造を示し、(a)は平面図、(b)は斜視図、(c)は分解斜視図である。The basic structure of Example 6 of the trunk | drum which has a bending part of the shield machine for spiral tunnel excavation which concerns on this invention is shown, (a) is a top view, (b) is a perspective view, (c) is an exploded perspective view. is there. (a)および(b)はそれぞれ実施例6の連結部を示し、(a)は第1連結構造を示す斜視図、(b)は第2連結構造を示す斜視図である。(A) And (b) shows the connection part of Example 6, respectively (a) is a perspective view which shows a 1st connection structure, (b) is a perspective view which shows a 2nd connection structure. (a)〜(d)はそれぞれ従来の技術を説明するシールド掘進機と掘削トンネルを示し、(a)は従来の屈曲式シールド掘進機、(b)は特許文献1に開示された円弧状の屈曲式シールド掘進機、(c1)は螺旋面の正面図、(c2)は螺旋面の左側面端面図、(c3)は傾斜円弧面の平面図、(c4)は傾斜円弧面の正面図、(c5)は(c3)に示すB−B矢視端面図、(c6)は水平円弧面の正面図、(c7)は(c8)に示すC−C矢視端面図、(c8)は水平円弧面の平面、(d)は螺旋トンネルと傾斜円弧トンネルの比較斜視図である。(A)-(d) shows the shield machine and excavation tunnel explaining a prior art, respectively, (a) is a conventional bending shield machine, (b) is the arc-shaped shape disclosed in Patent Document 1. Bending shield machine, (c1) is a front view of the spiral surface, (c2) is a left side end view of the spiral surface, (c3) is a plan view of the inclined arc surface, (c4) is a front view of the inclined arc surface, (C5) is an end view taken along the line B-B shown in (c3), (c6) is a front view of the horizontal arc surface, (c7) is an end view taken along the line CC shown in (c8), and (c8) is a horizontal view. The plane of the arc surface, (d) is a comparative perspective view of the spiral tunnel and the inclined arc tunnel.

以下、本発明に係るシールド掘進機の実施例を図面に基づいて説明する。
[実施例1]
図1,図3に示すように、この螺旋トンネル掘削用シールド掘進機は、螺旋軸Osを中心とする勾配:α、ピッチ:Pの螺旋経路Sに沿って矩形(正方形を含む)断面の螺旋トンネルTsを、上下辺が水平で左右側辺が鉛直な正立姿勢で掘削するもので、切羽崩壊土圧を保持する圧力室を有しない開放形に構成されている。もちろん、密閉形(圧力保持形)であってもよい。このシールド掘進機のシールド本体11は、互いに連結された前胴12と後胴13とを具備し、螺旋トンネルTsよりひと回り大きい相似形の略矩形断面に形成されている。また前胴12および後胴13は、螺旋トンネルTsの螺旋軸Osを中心とする円弧状にそれぞれ形成されている。
Embodiments of a shield machine according to the present invention will be described below with reference to the drawings.
[Example 1]
As shown in FIG. 1 and FIG. 3, this shield tunneling machine for spiral tunnel excavation is a spiral having a rectangular (including square) cross section along a spiral path S with a gradient of α and a pitch of P around a spiral axis Os. The tunnel Ts is excavated in an upright posture in which the upper and lower sides are horizontal and the left and right sides are vertical, and is configured in an open shape without a pressure chamber for holding the face collapse earth pressure. Of course, it may be a sealed type (pressure holding type). The shield main body 11 of this shield machine has a front cylinder 12 and a rear cylinder 13 connected to each other, and is formed in a substantially rectangular cross section having a similar shape that is slightly larger than the spiral tunnel Ts. The front cylinder 12 and the rear cylinder 13 are each formed in an arc shape centered on the helical axis Os of the helical tunnel Ts.

前胴12および後胴13の外殻(スキンプレート)は、平板状の上面プレート12U,13Uおよび下面プレート12D,13Dと、円弧板状の内周面プレート12I,13Iおよび外周面プレート12O,13Oにより形成されている。   The outer shells (skin plates) of the front cylinder 12 and the rear cylinder 13 are flat upper plates 12U and 13U and lower plates 12D and 13D, arc-shaped inner peripheral plates 12I and 13I, and outer peripheral plates 120 and 13O. It is formed by.

図5,図6に示すように、前胴12の前部に、上下方向の中央部に配置された水平区画板14と、幅方向の中央部に配置された垂直区画板15が設けられて、上下左右に四つの掘削室16が形成され、各掘削室16に、作業員によりそれぞれ操作されるバックホー形の掘削装置17が2基ずつを設置されている。また各掘削室16には、集荷排土コンベヤ18がそれぞれ設置され、掘削した土砂を集荷排土コンベヤ18から合流排土コンベヤ19を介してシールド本体11の後方に搬出する。   As shown in FIG. 5 and FIG. 6, a horizontal partition plate 14 disposed at the center portion in the vertical direction and a vertical partition plate 15 disposed at the center portion in the width direction are provided at the front portion of the front barrel 12. Four excavation chambers 16 are formed on the upper, lower, left, and right sides, and two backhoe excavation devices 17 each operated by an operator are installed in each excavation chamber 16. Each excavation chamber 16 is provided with a collection and discharge conveyor 18, and the excavated earth and sand are carried out from the collection and discharge conveyor 18 to the rear of the shield main body 11 through the merged discharge conveyor 19.

後胴13には、螺旋トンネルTsの内面に沿って複数のセグメント(覆工体)23を矩形断面に組み立てるエレクタ装置21が配置されている。またエレクタ装置21の外周部には、組み立てられたセグメント23を反力受けとしてシールド本体11を推進させる複数の推進ジャッキ22が周方向所定間隔ごとに設置されている。   The rear trunk 13 is provided with an erector device 21 for assembling a plurality of segments (covering bodies) 23 into a rectangular cross section along the inner surface of the spiral tunnel Ts. In addition, a plurality of propulsion jacks 22 for propelling the shield body 11 using the assembled segments 23 as reaction force receivers are installed at predetermined intervals in the circumferential direction of the erector device 21.

このシールド本体11は、たとえば略1/2の占有角(θ/2)で旋回軸Osの半径方向でシールド本体11の軸心(シールド軸心Oという)に直交する平面で分割された前胴12と後胴13とで構成され、前胴12と後胴13とは連結部31で連結されている。この連結部31では、前胴12と後胴13とをシールド軸心O周りに所定方向に所定の捻り角βで捻った状態で連結固定され、前胴12の前端面と後胴13の後端面とを、それぞれ螺旋トンネルTsに略合致させている。ここで「略」とは、掘削した螺旋トンネルTs内でセグメント23を組み立てる範囲で支障のない誤差をいう。   The shield body 11 is, for example, a front barrel divided by a plane orthogonal to the axis of the shield body 11 (referred to as the shield axis O) in the radial direction of the turning axis Os at an occupation angle (θ / 2) of approximately ½. 12 and the rear cylinder 13, and the front cylinder 12 and the rear cylinder 13 are connected by a connecting portion 31. In this connecting portion 31, the front barrel 12 and the rear barrel 13 are coupled and fixed around the shield axis O in a predetermined direction with a predetermined twist angle β, and the front end surface of the front barrel 12 and the rear barrel 13 are The end faces are substantially matched with the spiral tunnel Ts. Here, “substantially” refers to an error that does not hinder the range in which the segment 23 is assembled in the excavated spiral tunnel Ts.

すなわち、この連結部31は、前胴12の後端部に、スキンプレート12U,12D,12I,12Oからシールド軸心Oに直交する平面上で内側に直角に折り曲げられた前フランジ板32が設けられ、後胴13の前端部に、スキンプレート13U,13D,13I,13Oからシールド軸心Oに直交する平面上で内側に直角に折り曲げられて、前記前フランジ板32に対面される後フランジ板33が設けられている。そしてこれら前フランジ板32と後フランジ板33が、たとえば周方向所定間隔ごとに取り付けられた複数の連結具である連結ボルト(連結手段)34により連結固定されている。この連結ボルト34は、連結手段として特に限定されるものではなく、溶接接合などを用いてもよい。   That is, the connecting portion 31 is provided with a front flange plate 32 bent at a right angle on the plane perpendicular to the shield axis O from the skin plates 12U, 12D, 12I, 12O at the rear end portion of the front barrel 12. The rear flange plate is bent at the front end of the rear barrel 13 from the skin plates 13U, 13D, 13I, and 13O at a right angle on a plane orthogonal to the shield axis O and faces the front flange plate 32. 33 is provided. The front flange plate 32 and the rear flange plate 33 are connected and fixed by connecting bolts (connecting means) 34 which are a plurality of connecting tools attached at predetermined intervals in the circumferential direction, for example. The connection bolt 34 is not particularly limited as a connection means, and welding connection or the like may be used.

(前胴と後胴の捻りについて)
ここで、前胴12と後胴13との捻り角βが必要な理由を簡単に説明する。
矩形断面の螺旋トンネルを掘削する場合、セグメントは正立姿勢で組み立てられるため、後胴の後端面を正立姿勢に保持する必要がある。円弧状のシールド本体では、前述したように、掘進方向に左右一方に旋回して螺旋経路Sを掘削する場合、シールド本体は左右一方に回転するので、左右他方側に強制的に捻りを加えながら掘進する必要がある。たとえば掘進方向に左旋回して螺旋経路Sを掘進する場合、シールド本体は反時計回りに回転するので、強制的に時計回りに捻りを加えながら掘進する。
(About torsion of the front and back torso)
Here, the reason why the twist angle β between the front cylinder 12 and the rear cylinder 13 is necessary will be briefly described.
When excavating a spiral tunnel having a rectangular cross section, the segments are assembled in an upright posture, and thus the rear end surface of the rear trunk needs to be held in an upright posture. In the arc-shaped shield body, as described above, when the spiral path S is excavated by turning left and right in the excavation direction, the shield body rotates to the left and right, so that the left and right other side is forcibly twisted. Need to dig. For example, when turning to the left in the digging direction and digging up the spiral path S, the shield body rotates counterclockwise, and thus digging while forcibly twisting clockwise.

この場合、シールド本体前端の掘削部では、予め通過するシールド本体後方側の捻り分の余掘り量を掘削するが、この余掘り量は余分な空間を形成するだけであり、これだけでシールド本体の姿勢を変更するだけのローリング(捻り)力が働くものではない。またシールド本体は、後部周囲に設けられた推進ジャッキにより推力を与えられ、これら推進ジャッキの伸縮量により(屈曲式シールドの場合は、屈曲ジャッキによる上下左右の屈曲と共に)姿勢制御を行っているが、シールド本体11が矩形断面の螺旋トンネル内で拘束されているので、シールド軸心O周りのローリング(捻り)制御は極めて困難である。   In this case, the excavation part at the front end of the shield body excavates the excessive amount of twist on the rear side of the shield body that passes in advance, but this excessive amount of excavation only forms an extra space. Rolling (twisting) force that only changes posture does not work. In addition, the shield body is given thrust by a propulsion jack provided around the rear, and the posture is controlled by the amount of expansion and contraction of these propulsion jacks (in the case of a bent shield, along with the vertical and horizontal bending by the flex jack). Since the shield body 11 is constrained in a spiral tunnel having a rectangular cross section, rolling (twisting) control around the shield axis O is extremely difficult.

このため、本発明では、前胴12と後胴13とを、予め所定の捻り角βで捻って連結固定しておくことで、前胴12の前端部でほぼ螺旋トンネルの断面に沿って掘削すれば、この掘削面を後胴13が通過するときに捻り力が働き、これが連続的に行われることにより、螺旋経路Sに沿って捻りながら掘進できるとともに掘削断面も正立姿勢で連続させることかでき、余掘り量も少なくすることができて地盤沈下も抑制することができる。   For this reason, in the present invention, the front cylinder 12 and the rear cylinder 13 are connected and fixed in advance by a predetermined twist angle β, so that the front end of the front cylinder 12 is excavated substantially along the cross section of the spiral tunnel. Then, when the rear trunk 13 passes through this excavation surface, a torsional force works, and this is continuously performed, so that the excavation can be continued while twisting along the spiral path S, and the excavation cross section can be continued in an upright posture. However, the amount of excessive digging can be reduced, and land subsidence can be suppressed.

ところで、上記対策として、シールド本体を螺旋トンネルに一致するように、予め捻った立体形状に形成することも考えられる。しかし、シールド本体の外殻であるスキンプレートを、予め捻られた立体形状に形成するためには、極めて高度な技術が必要で、製作コストが嵩む。またシールド本体が、螺旋半径および勾配の決まった螺旋トンネルしか掘削することができない専用機となることから、再利用が困難で汎用性が低いという問題がある。   By the way, as the above countermeasure, it is conceivable to form the shield body in a three-dimensional shape twisted in advance so as to coincide with the spiral tunnel. However, in order to form the skin plate, which is the outer shell of the shield body, into a pre-twisted three-dimensional shape, an extremely advanced technique is required, and the manufacturing cost increases. In addition, since the shield body is a dedicated machine that can only excavate a spiral tunnel with a fixed spiral radius and gradient, there is a problem that reuse is difficult and versatility is low.

(捻り角)
次に前胴12と後胴13の捻り角βについて、図4を参照して説明する。
螺旋軸Osを中心とし、螺旋半径:Rの螺旋経路S上で、点P0から占有角:θ(rad)を隔てた点P1に至る円弧の周長:L(円弧面の内周長とする)は、
L=R×θ…(1)式で求められる。
また螺旋経路Sのリード角:αとすると、点P0−P1間のリード:Hは、
tanα=H/L→H=L×tanα…(2)式で求められる。
さらに図4(c)に示すように、円弧面の前辺の傾き角∠PO−Os’−P1である捻れ角β(rad)から求められる点P0−P1間のリード:Hは、
tanβ=H/R→H=R×tanβ…(3)式で求められる。ここで捻れ角β(rad)は、(円弧面の前辺の傾き角∠PO−Os’−P1)
上記(1)、(2)式から、
R×tanβ=L×tanα、(3)式を代入すると、
R×tanβ=R×θ×tanα
β=tan-1(θ×tanα)…(4)式により、捻り角:βを求めることができ、螺旋トンネルTsを掘削するには、後胴13に対して前胴12を捻り角:βとは逆方向にβだけ捻ればよい。
(Torsion angle)
Next, the twist angle β of the front cylinder 12 and the rear cylinder 13 will be described with reference to FIG.
Centered on the spiral axis Os, on the spiral path S with the spiral radius: R, the circumference of the arc from the point P0 to the point P1 separated by the occupation angle: θ (rad): L (the inner circumference of the arc surface) )
L = R × θ... (1)
If the lead angle of the spiral path S is α, the lead between the points P0 and P1: H is
tanα = H / L → H = L × tanα (2)
Further, as shown in FIG. 4C, the lead: H between points P0-P1 obtained from the twist angle β (rad) which is the inclination angle ∠PO-Os′-P1 of the front side of the arc surface is:
tanβ = H / R → H = R × tanβ (3) Here, the twist angle β (rad) is (tilt angle ∠PO-Os'-P1 of the front side of the arc surface)
From the above formulas (1) and (2),
R × tan β = L × tan α, substituting equation (3),
R × tanβ = R × θ × tanα
.beta. = tan.sup.- 1 (.theta..times.tan .alpha.) (4) The torsion angle: .beta. can be obtained, and in order to excavate the spiral tunnel Ts, the torsion angle: .beta. Is twisted by β in the opposite direction.

(実施例1の効果)
上記実施例によれば、矩形断面のシールド本体11を構成する前胴12と後胴13を円弧状に形成するとともに、その連結部31で、後胴13に対して前胴12を、掘進方向に左旋回して螺旋トンネルを掘削する場合には、時計方向に所定の捻り角だけ捻って連結固定し、また掘進方向に右旋回して螺旋トンネルを掘削する場合には、反時計方向に所定の捻り角だけ捻って連結固定し、これにより、シールド本体11の前端面と後端面とを螺旋経路S上の螺旋トンネルTsの断面に略合致させることにより、余掘り量を極力少なくして、シールド本体11を掘進することで掘削した螺旋トンネルTsの断面により、シールド本体をローリングさせる捻り力を付与することができ、螺旋トンネルTsを正立姿勢でスムーズに掘削することができる。またシールド本体11を、螺旋経路Sを中心とする円弧状に形成した前胴12と後胴13とを、連結部31で捻って連結するだけでよいので、低コストで製作できる。さらに連結部31で捻り角を変更することにより、勾配の異なる螺旋トンネルTsを掘削することができ、汎用性を拡大することができる。
(Effect of Example 1)
According to the above-described embodiment, the front cylinder 12 and the rear cylinder 13 constituting the shield body 11 having a rectangular cross section are formed in an arc shape, and the front cylinder 12 is formed in the direction of digging with respect to the rear cylinder 13 by the connecting portion 31. When excavating a spiral tunnel by turning counterclockwise, it is fixedly connected by twisting clockwise by a predetermined twist angle, and when excavating a spiral tunnel by turning right in the excavation direction, By connecting and fixing by twisting only the twist angle, the front end surface and the rear end surface of the shield body 11 are substantially matched to the cross section of the spiral tunnel Ts on the spiral path S, thereby reducing the amount of overexcavation as much as possible. The cross section of the spiral tunnel Ts excavated by excavating the main body 11 can give a twisting force for rolling the shield main body, and the spiral tunnel Ts can be excavated smoothly in an upright posture. . Further, since the shield body 11 only has to be connected by twisting the front cylinder 12 and the rear cylinder 13 formed in an arc shape with the spiral path S as the center at the connection portion 31, it can be manufactured at low cost. Further, by changing the twist angle at the connecting portion 31, it is possible to excavate the spiral tunnel Ts having different gradients, and to expand versatility.

(実施例1の変形例)
上記実施例1および2では、矩形断面のトンネルTsを掘削するシールド掘進機で説明したが、図8(a)に示すように、前胴51fと後胴51rとを有する楕円形断面のシールド本体51や、図8(b)に示すように、前胴52fと後胴52rとを有するまゆ形断面のシールド本体52、図8(c)に示すように、前胴53fと後胴53rとを有する角丸矩形断面のシールド本体53、図8(d)に示すように、前胴54fと後胴54rとを有する長円形断面のシールド本体54、図8(e)に示すように、前胴55fと後胴55rとを有する釣鐘形断面のシールド本体55、図8(f)に示すように、前胴56fと後胴56rとを有する長辺膨出タイプの矩形断面のシールド本体56であってもよい。
(Modification of Example 1)
In the first and second embodiments described above, the shield machine for excavating the tunnel Ts having a rectangular cross section has been described. However, as shown in FIG. 8A, the shield main body having an oval cross section having a front trunk 51f and a rear trunk 51r. 51, as shown in FIG. 8 (b), a shield body 52 having a cross-sectional shape having a front barrel 52f and a rear barrel 52r, and a front barrel 53f and a rear barrel 53r as shown in FIG. 8 (c). A shield body 53 having a rounded rectangular cross section, as shown in FIG. 8 (d), a shield body 54 having an oval cross section having a front cylinder 54f and a rear cylinder 54r, and a front cylinder as shown in FIG. 8 (e). A shield main body 55 having a bell-shaped cross section having a front body 56f and a rear body 55r, as shown in FIG. 8 (f), and a shield body 56 having a long side bulging type rectangular section having a front body 56f and a rear body 56r. May be.

これらシールド本体51〜56をそれぞれ螺旋軸を中心とした円弧形に形成するとともに、前胴51f〜56fと後胴51r〜56rとで形成し、後胴51r〜56rに対して前胴51f〜56fをシールド軸心O周りに所定方向の捻り角βだけ捻って連結固定することにより、螺旋トンネルTsをそれぞれスムーズに掘削することができる。またこれらのシールド本体51〜56は、さらに中胴を付加した前後三連以上の胴部で構成してもよい。   These shield bodies 51 to 56 are formed in arc shapes around the spiral axis, respectively, and are formed of front cylinders 51f to 56f and rear cylinders 51r to 56r, and the front cylinders 51f to 56r are formed with respect to the rear cylinders 51r to 56r. By twisting and fixing 56f around the shield axis O by a twist angle β in a predetermined direction, the helical tunnels Ts can be excavated smoothly. Moreover, you may comprise these shield main bodies 51-56 with the trunk | drum of the front and rear 3 series or more which added the middle trunk | drum further.

[実施例2]
このシールド本体41は、図7に示すように、掘進方向に向かって左旋回する螺旋トンネルTsを掘削するもので、前胴42と中胴43とを前連結部45を介して掘進方向に向かって時計方向に捻り角β1で捻って連結固定し、中胴43と、後胴44とを後連結部46を介して掘進方向に向かって時計方向に捻り角β2で捻って連結固定したものである。これにより前胴42の前端面と後胴の後端面とを、螺旋経路S上の螺旋トンネルTsの断面に略合致される。さらに連結部45,46の捻り角:β1およびβ2は、連結部45,46に接する前後の胴部の長さ(占有角)、すなわち端部の胴部42,44は全占有角、中間の胴43部は占有角の1/2の比で求められる。すなわち、前胴42の占有角:θ1、中胴43の占有角:θ2、後胴44の占有角:θ3とすると、
β1:β2=(θ1+θ2/2):(θ2/2+θ3)…(5)式
となる。
[Example 2]
As shown in FIG. 7, the shield body 41 excavates a spiral tunnel Ts that turns leftward in the excavation direction, and the front trunk 42 and the middle trunk 43 are directed to the excavation direction via the front coupling portion 45. The middle barrel 43 and the rear barrel 44 are coupled and fixed in a clockwise direction with a twist angle β2 toward the digging direction via the rear coupling portion 46. is there. As a result, the front end surface of the front cylinder 42 and the rear end surface of the rear cylinder are substantially matched with the cross section of the spiral tunnel Ts on the spiral path S. Further, the torsion angles β1 and β2 of the connecting portions 45, 46 are the lengths (occupied angles) of the front and rear body portions contacting the connecting portions 45, 46, that is, the end body portions 42, 44 are the total occupied angles, 43 parts of trunk | drum are calculated | required by the ratio of 1/2 of an occupation angle. That is, when the occupation angle of the front barrel 42 is θ1, the occupation angle of the middle barrel 43 is θ2, and the occupation angle of the rear barrel 44 is θ3,
β1: β2 = (θ1 + θ2 / 2): (θ2 / 2 + θ3) (5)

なお、上記占有角θ1〜θ3に替えて、各胴部42〜43のシールド軸心O上の周長L1〜L3であってもよい。
β1:β2=(L1+L2/2):(L2/2+L3)…(6)式
上記構成によれば、連結部45,46を複数個所設けて捻り角β1,β2を付与することにより、周長の長いシールド本体41や螺旋半径の小さい螺旋トンネルであっても、スムーズに掘削することができる。
Instead of the occupation angles θ1 to θ3, the circumferential lengths L1 to L3 on the shield axis O of the body portions 42 to 43 may be used.
β1: β2 = (L1 + L2 / 2): (L2 / 2 + L3) (6) Formula According to the above configuration, by providing a plurality of connecting portions 45, 46 and providing twist angles β1, β2, Even a long shield body 41 or a spiral tunnel with a small spiral radius can be excavated smoothly.

[実施例3]
螺旋トンネル掘削用シールド掘進機の実施例3を、図9〜図11を参照して説明する。このシールド掘進機は、正方形断面の螺旋トンネルを掘削するためのもので、実施例1と同一、略同一部材には同一符号を付して説明を省略する。
[Example 3]
Third Embodiment A shield tunneling machine for spiral tunnel excavation will be described with reference to FIGS. This shield machine is for excavating a spiral tunnel having a square cross section, and the same reference numerals are assigned to substantially the same members as in the first embodiment, and the description thereof is omitted.

図9(a),(b)に示すように、前胴12と後胴13とで構成されたシールド本体11は、その連結部31で捻り角βで捻られて連結されており、この連結部31では、後胴13の後胴連結端面63に対して前胴12の前胴連結端面62が外側にはみ出す前胴拡張部(胴部拡張部)64と、前胴連結端面62に対して後胴連結端面63が外側にはみ出す後胴拡張部(胴部拡張部)65とが断付き状に形成される。このような前胴拡張部64および後胴拡張部65は、掘削トンネルの内面に接触し掘進抵抗を与えるおそれがあるため、この掘進抵抗を軽減することが望ましい。   As shown in FIGS. 9 (a) and 9 (b), the shield body 11 composed of the front cylinder 12 and the rear cylinder 13 is connected by being twisted at a torsion angle β at the connecting portion 31. In the portion 31, the front cylinder connecting end surface 62 of the front cylinder 12 protrudes outward from the rear cylinder connecting end surface 63 of the rear cylinder 13, and the front cylinder connecting end surface 62. A rear trunk extension portion (body extension portion) 65 from which the rear trunk coupling end surface 63 protrudes outward is formed in a cut-off shape. Since the front trunk extension 64 and the rear trunk extension 65 may contact the inner surface of the excavation tunnel and give digging resistance, it is desirable to reduce the digging resistance.

この対策として、図9(c),(d)に示すように、後胴連結端面63を基準面とする第1連結構造と、図10(a),(b)に示すように、前胴連結端面62を基準面とする第2連結構造と、図11(a),(b)に示すように、前胴連結端面62と後胴連結端面63との合致面を規準面とする第3連結構造を提案している。   As countermeasures against this, as shown in FIGS. 9C and 9D, the first connecting structure having the rear cylinder connecting end face 63 as a reference plane, and the front cylinder as shown in FIGS. 10A and 10B. As shown in FIGS. 11A and 11B, a second connection structure having the connection end surface 62 as a reference surface, and a third connection surface having a matching surface between the front cylinder connection end surface 62 and the rear cylinder connection end surface 63 as a reference surface. Proposed connection structure.

(第1連結構造)
第1連結構造は、図9(c)(d)に示すように、後胴連結端面63を基準として、前胴12のスキンプレート12U,12D,12O,12Iに、前胴12の中間部にある前胴中央横断面FCPから後胴拡張部65の外縁に至る高さの低い直角三角錐空間Pに増径面部66Fを増設することにより、その平坦な外面で前胴12外面から後胴拡張部65に連続させる。
(First connection structure)
As shown in FIGS. 9C and 9D, the first connection structure is formed on the skin plate 12U, 12D, 12O, 12I of the front cylinder 12 and in the middle part of the front cylinder 12 with the rear cylinder connection end surface 63 as a reference. By expanding the diameter-increasing surface portion 66F in the right triangular pyramid space P having a low height extending from a certain front trunk central cross section FCP to the outer edge of the rear trunk extension 65, the rear trunk is expanded from the outer surface of the front trunk 12 with its flat outer surface. Continue to part 65.

また前胴12の中間部にある前胴中央横断面FCPから前胴拡張部64に至る高さの低い直角三角錐形部分Qを削除する削除面部67Fを形成することにより、その平坦な削除面で前胴12の外面から後胴13の外面に連続させる。   Further, by forming a deletion surface portion 67F that deletes the low-angle right triangular pyramid portion Q extending from the front cylinder central cross section FCP to the front cylinder extension 64 in the middle portion of the front cylinder 12, the flat deletion surface is formed. Then, the outer surface of the front cylinder 12 is continued from the outer surface of the rear cylinder 13.

(第2連結構造)
第2連結構造は、図10(a)(b)に示すように、前胴連結端面62を基準として、後胴13のスキンプレート13U,13D,13O,13Iに、前胴拡張部64の外縁から後胴13の後胴中央横断面RCPに至る高さの低い直角三角錐空間Pに増径面部66Rを増設することにより、その平坦な外面で前胴拡張部64から後胴13の外面に連続させる。
(Second connection structure)
As shown in FIGS. 10A and 10B, the second connection structure has the outer edge of the front body extension portion 64 on the skin plates 13U, 13D, 13O, and 13I of the rear cylinder 13 with the front cylinder connection end surface 62 as a reference. By increasing the diameter-increasing surface portion 66R in the right triangular pyramid space P having a low height extending from the rear cylinder 13 to the rear cylinder central cross section RCP, the flat outer surface extends from the front cylinder extension 64 to the outer surface of the rear cylinder 13. Make it continuous.

また後胴拡張部65から後胴中央横断面RCPに至る高さの低い直角三角錐形部分Qを削除して削除面部67Rを形成することにより、その平坦な削除面で前胴12の外面から後胴13の外面に連続させる。   Further, by removing the low-angle triangular pyramid portion Q having a low height from the rear trunk extension 65 to the rear trunk central cross-section RCP, a removal surface portion 67R is formed from the outer surface of the front cylinder 12 by the flat removal surface. The outer surface of the back barrel 13 is continued.

(第3連結構造)
第3連結構造は、図11(a)(b)に示すように、前胴連結端面64と後胴連結端面63とが互いに重なり合う八角形の合致面を基準として、前胴12のスキンプレート12U,12D,12O,12Iに、前胴中央横断面FCPから前胴拡張部64に至る高さの低い直角三角錐形部分QFを削除して削除面部67Fを形成することにより、その平坦な削除面で前胴12の外面から後胴13の外面を連続させる。
(Third connection structure)
As shown in FIGS. 11A and 11B, the third connection structure has a skin plate 12U of the front cylinder 12 with reference to an octagonal matching surface where the front cylinder connection end face 64 and the rear cylinder connection end face 63 overlap each other. , 12D, 12O, and 12I, by deleting the right triangular pyramid portion QF having a low height from the front cylinder central cross section FCP to the front cylinder extension 64 to form a deletion surface portion 67F, the flat deletion surface Then, the outer surface of the rear cylinder 13 is continued from the outer surface of the front cylinder 12.

また後胴13のスキンプレート13U,13D,13O,13Iに、後胴拡張部65から後胴中央横断面RCPに至る高さの低い直角三角錐形の部分QRを削除して削除面部67Rを形成することにより、その平坦な削除面で前胴12の外面と後胴13の外面とを連続させる。   Further, a deletion face portion 67R is formed on the skin plates 13U, 13D, 13O, and 13I of the rear cylinder 13 by deleting a low-right triangular pyramid-shaped portion QR that extends from the rear cylinder extension 65 to the rear cylinder central cross section RCP. By doing so, the outer surface of the front cylinder 12 and the outer surface of the rear cylinder 13 are made continuous with the flat deleted surface.

なお、これら第1〜第3連結構造以外に、増径面部66F,66Rのみを増設することで連結部31を構成することもできる。しかし、この場合には胴部外径が大きくなることから、掘進抵抗となるおそれがある。   In addition to the first to third connection structures, the connection portion 31 can be configured by adding only the diameter-increasing surface portions 66F and 66R. However, in this case, since the outer diameter of the trunk portion becomes large, there is a possibility that the resistance to excavation may occur.

上記第1〜第3連結構造によれば、前胴12と後胴13の連結部31で、前胴12と後胴13のスキンプレート12U,12D,12I,12O,13U,13D,13I,13Oの連結部31側に、前胴拡張部64と後胴拡張部65の段付き部をなくすために、前胴12と後胴13の外面を連続させる増径面部66F,66Rと削除面部67F,67R、または削除面部67F,67Rを設けたので、連結部31における掘進抵抗を減少させて螺旋トンネルTsをスムーズに掘削することができる。   According to the first to third connection structures, the skin plate 12U, 12D, 12I, 12O, 13U, 13D, 13I, 13O of the front cylinder 12 and the rear cylinder 13 is formed at the connection portion 31 between the front cylinder 12 and the rear cylinder 13. In order to eliminate the stepped portions of the front body extension part 64 and the rear body extension part 65 on the connecting part 31 side, the diameter-increasing surface parts 66F and 66R and the deletion surface part 67F, which make the outer surfaces of the front cylinder 12 and the rear cylinder 13 continuous. Since the 67R or the deletion surface portions 67F and 67R are provided, it is possible to smoothly excavate the spiral tunnel Ts by reducing the digging resistance in the connecting portion 31.

[実施例4]
上記実施例1〜3では、矩形(正方形)断面の螺旋トンネルTsを掘削するシールド掘進機について説明したが、実施例4では、まゆ形断面の螺旋トンネルTsを掘削するシールド掘進機について、図12,図13を参照して説明する。なお、ここで、シールド本体の前部に設けられる掘削装置や後部に設けられるエレクタ装置などの内部機構の説明は省略する。
[Example 4]
In Examples 1 to 3 described above, the shield machine that excavates the spiral tunnel Ts having a rectangular (square) cross section has been described. In Example 4, the shield machine that excavates the spiral tunnel Ts having an eyebrows-shaped section is illustrated in FIG. This will be described with reference to FIG. In addition, description of internal mechanisms, such as the excavator provided in the front part of a shield main body, and the erector apparatus provided in the rear part, is abbreviate | omitted here.

このシールド掘進機は、螺旋軸を中心として掘進方向に向かってたとえば左方向に旋回してまゆ形断面の螺旋トンネルTsを掘削するもので、前胴72および後胴73からなるシールド本体71は、螺旋軸を中心とする円弧状にそれぞれ形成されるとともに、図12(a)(b)に示すように、その連結部74で後胴73に対して前胴72がシールド軸Oを中心に、左側に旋回する掘進方向に向かって時計方向にβだけ捻られて連結固定されている。   This shield machine excavates a spiral tunnel Ts having a cross-section of the eyebrows by turning leftward, for example, in the direction of drilling about the spiral axis. A shield body 71 composed of a front trunk 72 and a rear trunk 73 includes: As shown in FIGS. 12 (a) and 12 (b), the front cylinder 72 is centered on the shield axis O with respect to the rear cylinder 73 at the connecting portion 74, as shown in FIGS. It is connected and fixed by twisting β in the clockwise direction toward the excavation direction turning to the left.

この連結部74では、後胴73の後胴連結端面74Rに対して前胴72の前胴連結端面74Fがはみ出す2箇所の前胴拡張部75と、前胴72の前胴連結端面74Fに対して後胴73の後胴連結端面74Rがはみ出す2箇所の後胴拡張部76が対称位置に形成される。   In this connecting portion 74, the front cylinder connecting end surface 74F of the front cylinder 72 protrudes from the rear cylinder connecting end surface 74R of the rear cylinder 73, and the front cylinder connecting end surface 74F of the front cylinder 72. Thus, two rear cylinder expansion portions 76 where the rear cylinder connection end surface 74R of the rear cylinder 73 protrudes are formed at symmetrical positions.

(第1連結構造)
図13に示すように、この連結部74には、掘進抵抗を軽減するために、後胴73の連結端側に、対称位置の2つの後胴拡張部76をそれぞれ削除する円筒テーパ面状の部分削除面部77が形成されている。この部分削除面部77により、前胴連結端面74Fから後胴73の外面に連続させることができ、掘進抵抗を軽減させることができる。
(First connection structure)
As shown in FIG. 13, the connecting portion 74 has a cylindrical tapered surface shape in which two rear trunk expansion portions 76 at symmetrical positions are deleted on the connecting end side of the rear trunk 73 in order to reduce the digging resistance. A partial deletion surface portion 77 is formed. By this partial deletion surface part 77, it can be made to continue from the front cylinder connection end surface 74F to the outer surface of the rear cylinder 73, and digging resistance can be reduced.

(第2連結構造)
図14に示すように、シールド本体71の後胴73の連結端側に、後胴連結端面74Rを含む全周にわたって全周削除面部78を形成したもので、全周削除面部78の外径が前胴連結端面74Fと略同一か、小さく形成されている。この全周削除面部78により2つの後胴拡張部76を削除している。
(Second connection structure)
As shown in FIG. 14, the entire circumference deletion surface portion 78 is formed over the entire circumference including the rear cylinder connection end surface 74 </ b> R on the connection end side of the rear cylinder 73 of the shield body 71. It is formed to be substantially the same as or smaller than the front trunk connecting end face 74F. The two rear waist extension portions 76 are deleted by the entire circumference deletion surface portion 78.

この第2連結構造によれば、筒状の後胴73の前部に、全周削除面部78を形成するテーパ筒を接合することにより、後胴73を容易に製作することができる。
上記実施例4によれば、実施例1と同様の作用効果を奏することができるとともに、前胴72と後胴73の連結部74で、後胴73のスキンプレートに、後胴拡張部66の突出を削除する部分削除面部77または全周削除面部78を形成したので、連結部における後胴拡張部76を無くすことができ、掘進抵抗を減少させて螺旋トンネルTsをスムーズに掘削することができる。
According to this second connection structure, the rear cylinder 73 can be easily manufactured by joining the tapered cylinder forming the entire peripheral deletion surface portion 78 to the front part of the cylindrical rear cylinder 73.
According to the fourth embodiment, the same operational effects as those of the first embodiment can be obtained, and the connecting portion 74 of the front cylinder 72 and the rear cylinder 73 can be connected to the skin plate of the rear cylinder 73 on the rear cylinder expansion portion 66. Since the partial deletion surface portion 77 or the entire circumference deletion surface portion 78 for deleting the protrusion can be formed, the rear trunk expansion portion 76 in the connecting portion can be eliminated, and the spiral tunnel Ts can be smoothly excavated by reducing the digging resistance. .

[実施例5]
上記各実施例1〜4では、シールド本体11を螺旋軸を中心とする円弧状に形成した。ところで、図8(a)〜(f)に示すような非円形断面では、特に内外周部に湾曲面を有している胴部は、円弧状に加工することがきわめて難しく、製作工程が複雑となり、製作期間も長く必要で、製作コストが嵩むという問題がある。このため、この実施例5では、軸方向に同一断面形状である直状断面に形成した複数の分割胴部を使用し、これら分割胴部を、螺旋軸を中心とする掘削トンネルの内外周線MSi,MSoに内接するように、所定角度折り曲げて接合形成して、シールド本体81を製作している。
[Example 5]
In each of the above Examples 1 to 4, the shield body 11 was formed in an arc shape centered on the spiral axis. By the way, in the non-circular cross section as shown in FIGS. 8A to 8F, it is extremely difficult to machine a barrel portion having a curved surface on the inner and outer peripheral portions, and the manufacturing process is complicated. Therefore, there is a problem that the production period is long and the production cost increases. For this reason, in the fifth embodiment, a plurality of divided body portions formed in a straight cross section having the same cross-sectional shape in the axial direction are used, and these divided body portions are connected to the inner and outer peripheral lines of the excavation tunnel centered on the spiral axis. The shield body 81 is manufactured by bending and bonding at a predetermined angle so as to be inscribed in MSi and MSo.

すなわち、図16に示すように、正方形断面のシールド本体81では、前胴82と後胴83とを、螺旋軸Osを中心とする掘削トンネルの円弧線(内外周線)MSi,MSoに内接するように、前中央横断面FCPおよび後中央横断面RCPでそれぞれ所定の折り曲げ角γで折り曲げて形成している。なお、掘削装置やエレクタ装置などの内部機構は説明を省略する。   That is, as shown in FIG. 16, in the shield body 81 having a square cross section, the front trunk 82 and the rear trunk 83 are inscribed in the arc lines (inner and outer circumference lines) MSi and MSo of the excavation tunnel centered on the spiral axis Os. As described above, the front center cross section FCP and the rear center cross section RCP are each bent at a predetermined bending angle γ. In addition, description of internal mechanisms, such as a digging apparatus and an erector apparatus, is abbreviate | omitted.

製作に際しては、前胴82と後胴83の上下面は、それぞれ1枚の平板状の上下面プレート82U,82D,83U,83Dにより形成され、また内外周面は、それぞれ前後に2分割された平板状の分割内外周面プレート82If,82Ir、82Of,82Or、83If,83Ir、83Of,83Orを、所定の折り曲げ角γで折り曲げた状態で溶接接合して形成される。さらに中央部で折り曲げられたこれら前胴82と後胴83とが、連結部31で、先の実施例と同様に捻り角βだけ捻って連結固定される。   At the time of manufacture, the upper and lower surfaces of the front cylinder 82 and the rear cylinder 83 are each formed by a single flat plate upper and lower plate 82U, 82D, 83U, 83D, and the inner and outer peripheral surfaces are divided into two parts in the front and rear direction. The plate-shaped divided inner and outer peripheral surface plates 82If, 82Ir, 82Of, 82Or, 83If, 83Ir, 83Of, 83Or are welded and joined at a predetermined bending angle γ. Further, the front cylinder 82 and the rear cylinder 83 bent at the central portion are connected and fixed at the connecting portion 31 by twisting the twist angle β as in the previous embodiment.

上記構成によれば、円弧状に湾曲した前胴および後胴を製作するのに比較して、直状断面の分割胴部82f,82r、83f,83rを内外周線MSi,MSoに内接するように折り曲げた状態で前胴82と後胴83を製作するので、容易に製作することができ、製作コストおよび製作時間を削減することができる。   According to the above-described configuration, the divided body portions 82f, 82r, 83f, and 83r having a straight cross section are inscribed in the inner and outer peripheral lines MSi and MSo, as compared with the case where the front cylinder and the rear cylinder curved in an arc shape are manufactured. Since the front cylinder 82 and the rear cylinder 83 are manufactured in a state of being folded into two, they can be manufactured easily, and the manufacturing cost and the manufacturing time can be reduced.

(実施例5の第1〜第3変形例)
この連結部31に、実施例3における第1連結構造の増径面部66Fと削除面部67Fを前胴82に設けたものを図17(a)に示し、第2連結構造の増径面部66Rと削除面部37Rを後胴83に設けたものを図17(a)に示し、第3連結構造の削除面部67F,67Rを前胴82と後胴83設けたものを図17(a)に示す。これら第1〜第3変形例によれば、上記作用効果に加えて、連結部31に突出部がなくなり、掘進抵抗を軽減することができる。
(First to third modifications of the fifth embodiment)
FIG. 17 (a) shows the connecting portion 31 provided with the increased diameter surface portion 66F of the first connection structure and the deletion surface portion 67F in the first connection structure in the third embodiment, and the increased diameter surface portion 66R of the second connection structure. FIG. 17A shows the removal surface portion 37R provided on the rear cylinder 83, and FIG. 17A shows the third connection structure deletion surface portions 67F and 67R provided on the front cylinder 82 and the rear cylinder 83. According to these 1st-3rd modification, in addition to the said effect, a connection part 31 does not have a protrusion part, and digging resistance can be reduced.

[実施例6]
実施例6では、まゆ形断面の螺旋トンネルを掘削するシールド掘進機の実施例6を、図18,図19を参照して説明する。掘削装置やエレクタ装置などの内部機構は説明を省略する。
[Example 6]
In Example 6, Example 6 of a shield machine that excavates a spiral tunnel having an eyebrows-shaped cross section will be described with reference to FIGS. 18 and 19. Description of internal mechanisms such as the excavator and the erector apparatus is omitted.

まゆ形断面のシールド本体91は、前胴92と後胴93とを、螺旋軸Osを中心とする掘削トンネルの円弧線(内外周線)MSi,MSoに内接するように、前中央横断面FCPおよび後中央横断面RCPでそれぞれ所定の折り曲げ角γで折り曲げて形成している。   The shield body 91 having an eyebrows-shaped cross section has a front central cross section FCP so that the front trunk 92 and the rear trunk 93 are inscribed in the arc lines (inner and outer circumference lines) MSi and MSo of the excavation tunnel centered on the helical axis Os. And the rear center cross section RCP is bent at a predetermined bending angle γ.

前胴82は、まゆ形の直状断面の分割前胴92f,92rを、内外周線MSi,MSoに内接するように、所定の折り曲げ角γで溶接接合して形成している。また後胴93も同様に、まゆ形の直状断面の分割後胴93f,93rを、掘削トンネルの円弧線(内外周線)MSi,MSoに内接するように所定の折り曲げ角γで溶接接合して形成している。   The front cylinder 82 is formed by welding and joining the front cylinders 92f and 92r of the eyebrow-shaped straight section at a predetermined bending angle γ so as to be inscribed in the inner and outer peripheral lines MSi and MSo. Similarly, the rear cylinder 93 is welded at a predetermined bending angle γ so that the rear cylinders 93f and 93r of the eyebrow-shaped straight section are inscribed in the arc lines (inner and outer lines) MSi and MSo of the excavation tunnel. Formed.

すなわち、まゆ形で直状断面の筒体により、所定寸法および形状の分割前胴92f,92rおよび分割後胴93f,93rをそれぞれ形成し、前後の分割前胴92f,92rおよび分割後胴93f,93rをそれぞれ折り曲げ角γで溶接接合して前胴92と後胴93を形成する。そして前胴92と後胴93を連結部74で、所定の捻り角βで捻って連結固定しシールド本体91を形成している。   That is, the cylinders 92f and 92r and the divided cylinders 93f and 93r having a predetermined size and shape are respectively formed by the eyebrows-shaped cylindrical body, and the front and rear divided cylinders 92f and 92r and the divided cylinder 93f, The front cylinder 92 and the rear cylinder 93 are formed by welding and joining 93r at bending angles γ. The front body 92 and the rear body 93 are twisted and fixed at the connecting portion 74 at a predetermined twist angle β to form the shield body 91.

図18(a)(b)は、シールド本体91の連結部31に、実施例4の部分削除面部77または全周削除面部78をそれぞれ形成したものである。
上記構成によれば、円弧状に製作するのが困難なまゆ形断面のシールド本体91であっても、掘削トンネルに内接するようにまゆ形直状断面の分割前胴92f,92rおよび分割後胴93f,93rを折り曲げて接合することにより前胴92と後胴93を形成し、連結部31で捻り角βだけ捻って連結固定することにより、まゆ形断面の螺旋トンネルを正立姿勢でスムーズに掘削することができる。また前胴92および後胴93を容易に製作することができ、製作コストおよび製作期間を削減することができる。
FIGS. 18A and 18B are obtained by forming the partial deletion surface portion 77 or the entire peripheral deletion surface portion 78 of the fourth embodiment on the connecting portion 31 of the shield body 91, respectively.
According to the above-described configuration, even if the shield body 91 has an eyebrows-shaped cross section that is difficult to manufacture in an arc shape, the split-front cylinders 92f and 92r and the post-separation cylinders have an eyebrows-shaped straight section so as to be inscribed in the excavation tunnel. The front barrel 92 and the rear barrel 93 are formed by bending and joining 93f and 93r, and the connecting portion 31 is twisted by a twist angle β to be connected and fixed, so that the spiral tunnel having a cross-section of the eyebrows is smoothly held in an upright posture. Can be excavated. Further, the front cylinder 92 and the rear cylinder 93 can be easily manufactured, and the manufacturing cost and the manufacturing period can be reduced.

また、連結部31に部分削除面部77または全周削除面部78を形成することにより、前胴92と後胴93の外面を連続させることができ、掘進抵抗を減少させて螺旋トンネルTsをスムーズに掘削することができる。   Further, by forming the partial deletion surface portion 77 or the entire circumference deletion surface portion 78 in the connecting portion 31, the outer surfaces of the front cylinder 92 and the rear cylinder 93 can be made continuous, and the spiral tunnel Ts can be smoothly reduced by reducing the digging resistance. Can be excavated.

なお、上記実施例5および6では、各胴部について、折れ曲がり箇所を1箇所としているが、2箇所以上であってもよい。   In addition, in the said Example 5 and 6, although the bending location is made into one place about each trunk | drum, two or more places may be sufficient.

Ts 螺旋トンネル
Os 螺旋軸
O シールド軸心(掘削機軸心)
S 螺旋経路
β 捻り角
R 半径
α 勾配
θ 占有角
FCP 前胴中央断面
RCP 後胴中央断面
MSi 内周線
MSo 外周線
11 シールド本体
12 前胴
13 後胴
14 水平区画板
15 垂直区画板
16 掘削室
17 掘削装置
18 集荷排土コンベヤ
19 合流排土コンベヤ
22 推進ジャッキ
23 セグメント
31 連結部
21 エレクタ装置
32 前フランジ板
33 後フランジ板
34 連結ボルト
41 シールド本体
42 前胴
43 中胴
44 後胴
51〜55 シールド本体
51f〜55f 前胴
51r〜55r 後胴
64 前胴拡張部
65 後胴拡張部
66F,66R 増径面部
67F,67R 削除面部
71 シールド本体
72 前胴
73 後胴
74F 前胴連結端面
74R 後胴連結端面
75 前胴拡張部
76 後胴拡張部
77 部分削除面部
78 全周削除面部
81 シールド本体
82 前胴
83 後胴
82U,83U 上面プレート
82D,83D 下面プレート
82If,82Ir、83If,83Ir 分割内周面プレート
82Of,82Or、83Of,83Or 分割外周面プレート
Ts Spiral tunnel Os Spiral axis O Shield axis (excavator axis)
S spiral path β twist angle R radius α gradient θ occupation angle FCP front trunk central section RCP rear trunk central section MSi inner circumference MSo outer circumference 11 shield body 12 front trunk 13 rear trunk 14 horizontal partition plate 15 vertical partition plate 16 excavation chamber 17 Excavator 18 Collecting and Discharging Conveyor 19 Joint Discharge Conveyor 22 Propulsion Jack 23 Segment 31 Connecting Portion 21 Elector Device 32 Front Flange Plate 33 Rear Flange Plate 34 Connecting Bolt 41 Shield Main Body 42 Front Drum 43 Middle Drum 44 Rear Drum 51-55 Shield body 51f to 55f Front cylinder 51r to 55r Rear cylinder 64 Front cylinder extension 65 Rear cylinder extension 66F, 66R Increased surface area 67F, 67R Deletion surface 71 Shield body 72 Front cylinder 73 Rear cylinder 74F Front cylinder connection end surface 74R Rear cylinder Connection end surface 75 Front trunk extension part 76 Rear trunk extension part 77 Partial deletion surface part 78 Whole circumference deletion surface part 81 Shield Body 82 front body 83 after cylinder 82U, 83U top plate 82D, 83D underside plate 82If, 82Ir, 83If, 83Ir split inner circumferential surface plate 82Of, 82Or, 83Of, 83Or divided outer circumferential surface plate

Claims (5)

螺旋軸を中心として所定の勾配の螺旋経路に沿って、非円形断面の螺旋トンネルを掘削する螺旋トンネル掘削用シールド掘進機であって、
前部に掘削装置を有し、後部に螺旋トンネルに沿って覆工体を組み立てるエレクタ装置を有するシールド本体を、螺旋軸を中心とする円弧状に形成するとともに、前後に複数に分割された複数の胴部により構成し、
互いに隣接される後方の胴部に対して前方の胴部を、掘進方向に向かって左右一方に旋回して螺旋トンネルを掘削する場合に、左右他方に所定の捻り角で捻って連結固定し、
螺旋軸を中心とする螺旋トンネルの占有角:θ(rad)、螺旋トンネルのリード角:α(rad)として所定半径の螺旋トンネルを掘削する時に、
前記捻り角:β(rad)を、β=tan -1 (θ×tanα)とすることにより、前端の胴部の前端面と後端の胴部の後端面とをそれぞれ螺旋経路上の螺旋トンネル断面に略合致させる
ことを特徴とする螺旋トンネル掘削用シールド掘進機。
A shield tunneling machine for spiral tunnel excavation for excavating a spiral tunnel having a non-circular cross section along a spiral path with a predetermined gradient around a spiral axis,
A shield body having an excavator at the front and an erector that assembles the lining body along the spiral tunnel at the rear is formed into an arc shape with the spiral axis as the center, and a plurality divided in front and rear. Composed of the body of
When excavating a spiral tunnel by turning the front trunk with respect to the rear trunks adjacent to each other in the right and left direction toward the excavation direction, the right and left other are twisted at a predetermined twist angle and fixed and connected.
When excavating a spiral tunnel of a predetermined radius with an occupation angle of the spiral tunnel around the spiral axis: θ (rad) and a lead angle of the spiral tunnel: α (rad),
By setting the twist angle: β (rad) to β = tan −1 (θ × tan α), the front end surface of the front end barrel portion and the rear end surface of the rear end barrel portion are respectively spiral tunnels on the spiral path. A shield tunneling machine for spiral tunnel excavation, characterized in that it substantially matches the cross section.
螺旋軸を中心として所定の勾配の螺旋経路に沿って、非円形断面の螺旋トンネルを掘削する螺旋トンネル掘削用シールド掘進機であって、
前部に掘削装置を有し、後部に螺旋トンネルに沿って覆工体を組み立てるエレクタ装置を有するシールド本体を、前後に複数に分割された複数の胴部により構成するとともに、当該各胴部を、螺旋トンネルに内接するように中間部で折り曲げられた複数の直状断面の分割胴部により形成し、
互いに隣接される後方の胴部に対して前方の胴部を、掘進方向に向かって左右一方に旋回して螺旋トンネルを掘削する場合に、左右他方に所定の捻り角で捻って連結固定し、
螺旋軸を中心とする螺旋トンネルの占有角:θ(rad)、螺旋トンネルのリード角:α(rad)として所定半径の螺旋トンネルを掘削する時に、
前記捻り角:β(rad)を、β=tan -1 (θ×tanα)とすることにより、
前端の胴部の前端面と後端の胴部の後端面とをそれぞれ螺旋経路上の螺旋トンネル断面に略合致させる
ことを特徴とする螺旋トンネル掘削用シールド掘進機。
A shield tunneling machine for spiral tunnel excavation for excavating a spiral tunnel having a non-circular cross section along a spiral path with a predetermined gradient around a spiral axis,
A shield body having an excavator at the front and an erector device for assembling the lining body along the spiral tunnel at the rear is composed of a plurality of trunks divided into a plurality of front and rear parts, and , Formed by a plurality of straight section split barrels bent at the middle so as to be inscribed in the spiral tunnel,
When excavating a spiral tunnel by turning the front trunk with respect to the rear trunks adjacent to each other in the right and left direction toward the excavation direction, the right and left other are twisted at a predetermined twist angle and fixed and connected.
When excavating a spiral tunnel of a predetermined radius with an occupation angle of the spiral tunnel around the spiral axis: θ (rad) and a lead angle of the spiral tunnel: α (rad),
By setting the twist angle: β (rad) to β = tan −1 (θ × tan α),
A shield tunneling machine for spiral tunnel excavation, characterized in that the front end surface of the front end barrel portion and the rear end surface of the rear end barrel portion substantially match the spiral tunnel cross section on the spiral path.
螺旋軸を中心として所定の勾配の螺旋経路に沿って、非円形断面の螺旋トンネルを掘削する螺旋トンネル掘削用シールド掘進機であって、
前部に掘削装置を有し、後部に螺旋トンネルに沿って覆工体を組み立てるエレクタ装置を有するシールド本体を、螺旋軸を中心とする円弧状に形成するとともに、前後に3個以上に分割された複数の胴部により構成し、
互いに隣接される後方の胴部に対して前方の胴部を、掘進方向に向かって左右一方に旋回して螺旋トンネルを掘削する場合に、左右他方に所定の捻り角で捻って連結固定し、
前記捻り角は、連結部の前後の胴部の合計の周長または螺旋軸を中心とする占有角の比率により設定され、ここで周長は、端部の胴部は全周長、中間の胴部は周長の1/2、また占有角は、端部の胴部は全占有角、中間の胴部は占有角の1/2とすることにより、前端の胴部の前端面と後端の胴部の後端面とをそれぞれ螺旋経路上の螺旋トンネル断面に略合致させる
ことを特徴とする螺旋トンネル掘削用シールド掘進機。
A shield tunneling machine for spiral tunnel excavation for excavating a spiral tunnel having a non-circular cross section along a spiral path with a predetermined gradient around a spiral axis,
A shield body having an excavator at the front and an erector that assembles the lining body along the spiral tunnel at the rear is formed in an arc shape centered on the spiral axis, and is divided into three or more parts in the front and rear. multiple constituted by cylinder portions,
When excavating a spiral tunnel by turning the front trunk with respect to the rear trunks adjacent to each other in the right and left direction toward the excavation direction, the right and left other are twisted at a predetermined twist angle and fixed and connected.
The torsion angle is set by the total circumference of the body parts before and after the connecting part or the ratio of the occupied angle around the spiral axis, where the circumference is the entire circumference of the body part at the end, The front of the front end of the front end and the rear end of the front end A shield tunneling machine for excavation of a spiral tunnel, characterized in that the rear end face of the end barrel part substantially matches the spiral tunnel section on the spiral path.
螺旋軸を中心として所定の勾配の螺旋経路に沿って、非円形断面の螺旋トンネルを掘削する螺旋トンネル掘削用シールド掘進機であって、
前部に掘削装置を有し、後部に螺旋トンネルに沿って覆工体を組み立てるエレクタ装置を有するシールド本体を、前後に複数に分割された複数の胴部により構成するとともに、当該各胴部を、螺旋トンネルに内接するように中間部で折り曲げられて前後に3個以上に分割された複数の直状断面の分割胴部により形成し、
互いに隣接される後方の胴部に対して前方の胴部を、掘進方向に向かって左右一方に旋回して螺旋トンネルを掘削する場合に、左右他方に所定の捻り角で捻って連結固定し、
前記捻り角は、連結部の前後の胴部の合計の周長または螺旋軸を中心とする占有角の比率により設定され、ここで周長は、端部の胴部は全周長、中間の胴部は周長の1/2、また占有角は、端部の胴部は全占有角、中間の胴部は占有角の1/2とすることにより、前端の胴部の前端面と後端の胴部の後端面とをそれぞれ螺旋経路上の螺旋トンネル断面に略合致させる
ことを特徴とする螺旋トンネル掘削用シールド掘進機。
A shield tunneling machine for spiral tunnel excavation for excavating a spiral tunnel having a non-circular cross section along a spiral path with a predetermined gradient around a spiral axis,
A shield body having an excavator at the front and an erector device for assembling the lining body along the spiral tunnel at the rear is composed of a plurality of trunks divided into a plurality of front and rear parts, and , Formed by a plurality of straight section divided body parts that are bent at the middle part so as to be inscribed in the spiral tunnel and divided into three or more in the front and rear ,
When excavating a spiral tunnel by turning the front trunk with respect to the rear trunks adjacent to each other in the right and left direction toward the excavation direction, the right and left other are twisted at a predetermined twist angle and fixed and connected.
The torsion angle is set by the total circumference of the body parts before and after the connecting part or the ratio of the occupied angle around the spiral axis, where the circumference is the entire circumference of the body part at the end, The front of the front end of the front end and the rear end of the front end A shield tunneling machine for excavation of a spiral tunnel, characterized in that the rear end face of the end barrel part substantially matches the spiral tunnel section on the spiral path.
連結部に、前側胴部の連結端面と後側胴部の連結端面との合致部分からはみ出す胴部拡張部が形成され、
前側胴部と後側胴部の連結部側の外面に、前記胴部拡張部を削除する削除面部および前記胴部拡張部に連続する増径面部の少なくとも一方を設けた
ことを特徴とする請求項1乃至4のいずれかに記載の螺旋トンネル掘削用シールド掘進機。
The connecting portion is formed with a body extension portion that protrudes from a matching portion between the connecting end surface of the front body portion and the connecting end surface of the rear body portion,
The outer surface of the connecting portion side of the front body portion and the rear body portion is provided with at least one of a deletion surface portion for deleting the body portion expansion portion and a diameter increasing surface portion continuous with the body portion expansion portion. Item 5. A shield tunneling machine for spiral tunnel excavation according to any one of Items 1 to 4.
JP2010061726A 2010-03-18 2010-03-18 Shield machine for spiral tunnel excavation Expired - Fee Related JP5538965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010061726A JP5538965B2 (en) 2010-03-18 2010-03-18 Shield machine for spiral tunnel excavation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010061726A JP5538965B2 (en) 2010-03-18 2010-03-18 Shield machine for spiral tunnel excavation

Publications (2)

Publication Number Publication Date
JP2011196033A JP2011196033A (en) 2011-10-06
JP5538965B2 true JP5538965B2 (en) 2014-07-02

Family

ID=44874594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010061726A Expired - Fee Related JP5538965B2 (en) 2010-03-18 2010-03-18 Shield machine for spiral tunnel excavation

Country Status (1)

Country Link
JP (1) JP5538965B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107218049A (en) * 2017-07-27 2017-09-29 中铁工程装备集团有限公司 One kind is applied to helix tunnel construction device and method
CN108661653A (en) * 2018-05-22 2018-10-16 中交二公局第三工程有限公司 The method realized and quickly rectified a deviation is promoted by the way that manual operation shield machine is actively hinged

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03176592A (en) * 1989-12-04 1991-07-31 Sato Kogyo Co Ltd Construction of spiral tunnel and shield machine therefor
JP3809592B2 (en) * 1997-04-07 2006-08-16 大成建設株式会社 Rolling correction device for shield machine

Also Published As

Publication number Publication date
JP2011196033A (en) 2011-10-06

Similar Documents

Publication Publication Date Title
WO1987007322A1 (en) Apparatus for correcting irregularities in or enlarging an underground duct
JP5538965B2 (en) Shield machine for spiral tunnel excavation
JP3410437B2 (en) Segment ring and segment ring lining method
JP5198229B2 (en) Tunnel excavator for curve construction and tunnel construction method using the same
JP5327111B2 (en) Segment and tunnel construction method
JP6715164B2 (en) Pipe roof construction method
JP7194003B2 (en) excavator steel shell and excavator
JP3106267B2 (en) Assembling method of shield machine and shield tunnel
JP3249473B2 (en) Tunnel support structure
JP3925757B2 (en) Tunnel liner
JP6811299B1 (en) Segment set consisting of B segment and K segment, open tunnel and its construction method
JP2942846B2 (en) Shield construction method and shield machine
JP3653324B2 (en) Segment and tunnel inner wall using this segment
JP2662638B2 (en) Composite section shield tunnel structure
JPH07247797A (en) Circular holder of lining wall for tunnel construction
JP4340568B2 (en) Curving machine
JP3210625B2 (en) Support unit and method of forming tunnel support body
JPH0462297A (en) Larger section tunnel
JPS6322988A (en) Intermediate-breaking mechanism of shield machine
JP3868195B2 (en) Tail seal structure of widening tunnel excavator
JP2002147165A (en) Shield excavator and shield excavation method
JP4142828B2 (en) Shield machine
JP3941182B2 (en) Expansion and contraction method for shield machine
JP3816776B2 (en) Folding shield machine
JPH01284695A (en) Joining structure of middle wall in cylindrical wall body for drilled hole

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5538965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140430

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees