JP5535587B2 - Gasification system and operation method thereof - Google Patents

Gasification system and operation method thereof Download PDF

Info

Publication number
JP5535587B2
JP5535587B2 JP2009261935A JP2009261935A JP5535587B2 JP 5535587 B2 JP5535587 B2 JP 5535587B2 JP 2009261935 A JP2009261935 A JP 2009261935A JP 2009261935 A JP2009261935 A JP 2009261935A JP 5535587 B2 JP5535587 B2 JP 5535587B2
Authority
JP
Japan
Prior art keywords
water
carbon
gasification
amount
facility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009261935A
Other languages
Japanese (ja)
Other versions
JP2011105843A (en
Inventor
文彦 木曽
真二 田中
穐山  徹
琢也 石賀
文彦 流森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP2009261935A priority Critical patent/JP5535587B2/en
Publication of JP2011105843A publication Critical patent/JP2011105843A/en
Application granted granted Critical
Publication of JP5535587B2 publication Critical patent/JP5535587B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Description

本発明は、ガス化システム及びその運転方法に関する。   The present invention relates to a gasification system and an operation method thereof.

地球温暖化対策のため、水素(H)及び一酸化炭素(CO)の混合ガスを製造する炭素系燃料のガス化システムに対しても、炭素系燃料中に含まれる炭素を回収することが求められている。炭素系燃料をガス化した生成ガスの主成分は、一酸化炭素及び水素である。生成ガスに含まれる炭素を除去するために、この一酸化炭素を除去すると、生成ガスの発熱量が大きく低下する。 As a countermeasure against global warming, carbon contained in carbon-based fuel can be recovered even for a carbon-based fuel gasification system that produces a mixed gas of hydrogen (H 2 ) and carbon monoxide (CO). It has been demanded. The main components of the product gas obtained by gasifying carbon-based fuel are carbon monoxide and hydrogen. When this carbon monoxide is removed in order to remove carbon contained in the product gas, the amount of heat generated by the product gas is greatly reduced.

このため、下記反応式(1)に示すシフト反応を利用して一酸化炭素を水蒸気(HO)と反応させて水素と二酸化炭素(CO)とし、二酸化炭素を生成ガスから除去することで、生成ガスの発熱量の低下を最小限に抑えながら、生成ガスに含まれる炭素を回収する方式が、一般的に用いられている。 For this reason, using the shift reaction shown in the following reaction formula (1), carbon monoxide is reacted with water vapor (H 2 O) to form hydrogen and carbon dioxide (CO 2 ), and carbon dioxide is removed from the product gas. Therefore, a method of recovering carbon contained in the generated gas while minimizing a decrease in the calorific value of the generated gas is generally used.

CO+HO→CO+H (1)
このようなシフト反応プロセスを含む炭素系燃料のガス化システムとしては、例えば、特許文献1がある。このシステムでは、シフト反応を進めるためのシフト反応器(シフトコンバータ)を設置し、この設備へ水蒸気を供給している。すなわち、特許文献1には、石炭ガス化ガス中に含まれる塩化水素ガスを除去しCO転換率を高めて炭酸ガスを回収できるCO除去石炭ガス化複合発電システムを提供することを目的として、石炭等の燃料をガス化炉でガス化して高温の石炭ガス化ガスを発生させ、これを発電に利用する石炭ガス化複合発電システムにおいて、上記ガス化炉からの石炭ガス化ガスを、湿式スクラバを通してガスに含まれる塩化水素を除去した後、シフトコンバータに導入し、そのシフトコンバータに蒸気を供給してガスに含まれるCOをCOに転換し、その後、石炭ガス化ガスを、脱炭酸ガス装置を通してCOを除去することを特徴とするCO除去石炭ガス化複合発電システムが開示されている。
CO + H 2 O → CO 2 + H 2 (1)
For example, Patent Document 1 discloses a carbonization gasification system including such a shift reaction process. In this system, a shift reactor (shift converter) for proceeding with the shift reaction is installed, and water vapor is supplied to this equipment. That is, in Patent Document 1, for the purpose of providing a CO 2 -removed coal gasification combined power generation system capable of removing hydrogen chloride gas contained in coal gasification gas and increasing CO conversion to recover carbon dioxide gas, In a coal gasification combined power generation system that uses a gasification furnace to gasify a fuel such as coal to generate high-temperature coal gasification gas and use it for power generation, the coal gasification gas from the gasification furnace is converted into a wet scrubber. After removing hydrogen chloride contained in the gas, the gas is introduced into the shift converter, steam is supplied to the shift converter to convert CO contained in the gas into CO 2 , and then the coal gasification gas is converted into decarbonized gas. CO 2 removal coal gasification combined cycle system, characterized in that the removal of CO 2 have been disclosed through the device.

また、特許文献2には、ガス化炉にスチームや炭層ガスを供給し、ガス化炉でシフト反応を進めることで、シフト反応器を不要とする方式が示されている。すなわち、特許文献2には、石炭と炭層ガスを高圧条件下で反応させて、水素と一酸化炭素の混合ガスを製造することができる製造装置及びこれを備える燃料・電力併産プラントを提供することを目的として、炭素系燃料とメタンを主成分とする炭層ガスを原料とし、ガス化装置にて水素と一酸化炭素の混合ガスを製造する装置であって、ガスが一方向に流れる前記ガス化装置と、該ガス化装置の上流域で前記炭素系燃料と前記炭層ガスの部分酸化が行われるように該上流域に該炭素系燃料と該炭層ガス及び酸化剤を供給する供給系と、該ガス化装置の下流域で前記上流域にて生成した一酸化炭素の一部が水素にシフトされるように該下流域に水蒸気を供給する供給系とを備えたことを特徴とする水素・一酸化炭素混合ガスの製造装置が開示されている。   Patent Document 2 discloses a method in which a shift reactor is not required by supplying steam or coal bed gas to a gasification furnace and advancing the shift reaction in the gasification furnace. That is, Patent Document 2 provides a production apparatus capable of producing a mixed gas of hydrogen and carbon monoxide by reacting coal and coal bed gas under high pressure conditions, and a fuel / electric power co-production plant including the same. For this purpose, an apparatus for producing a mixed gas of hydrogen and carbon monoxide in a gasifier using a carbonaceous fuel and a coal bed gas mainly composed of methane as raw materials, the gas flowing in one direction And a supply system for supplying the carbon-based fuel, the coal bed gas, and the oxidant to the upstream region so that partial oxidation of the carbon-based fuel and the coal bed gas is performed in the upstream region of the gasifier, A supply system for supplying water vapor to the downstream region so that a part of the carbon monoxide produced in the upstream region in the downstream region of the gasifier is shifted to hydrogen. Carbon monoxide mixed gas production equipment disclosed It has been.

生成ガスに含まれる二酸化炭素を除去する方法としては、アミンなどの吸収液を用いる方法(例えば、特許文献3)、ゼオライトなどの二酸化炭素の吸着体(例えば、特許文献4)などが公開されている。   As a method for removing carbon dioxide contained in the product gas, a method using an absorbing liquid such as amine (for example, Patent Document 3), an adsorbent of carbon dioxide such as zeolite (for example, Patent Document 4), and the like have been disclosed. Yes.

特許文献3には、二酸化炭素吸収部においてアミン化合物を含有する吸収液との気液接触により二酸化炭素が吸収除去された脱炭酸排ガスに対し、水洗部において洗浄水と気液接触させることより、前記脱炭酸排ガスに同伴するアミン化合物を回収するアミン回収方法において、前記水洗部を複数段構成とし、且つ、各段では、前記水洗部の入口側に設けられた液保留部に保留されている洗浄水を、前記水洗部の出口側へと輸送して、前記水洗部へ供給し、前記複数段の水洗部において、順次、前記脱炭酸排ガスに同伴するアミン化合物の回収処理を行うとともに、二酸化炭素吸収部及び各段の水洗部の出口にデミスタを設け、これらのデミスタによって脱炭酸排ガスに同伴する吸収液ミストや洗浄水ミストを除去し、且つ、後段の水洗部における液保留部から洗浄水を抜き出し、前段のデミスタをバイパスして、前段の水洗部又は前段の水洗部における液保留部へ供給することを特徴とするアミン回収方法が開示されている。   In Patent Document 3, the decarbonized exhaust gas from which carbon dioxide has been absorbed and removed by gas-liquid contact with an absorbing solution containing an amine compound in the carbon dioxide absorbing portion is brought into contact with cleaning water in the water-washing portion. In the amine recovery method for recovering an amine compound accompanying the decarbonation exhaust gas, the water washing section has a plurality of stages, and each stage is held in a liquid holding section provided on the inlet side of the water washing section. The washing water is transported to the outlet side of the flushing section and supplied to the flushing section. In the multiple-stage flushing section, the amine compound accompanying the decarbonation exhaust gas is sequentially recovered, and the carbon dioxide is collected. A demister is provided at the outlet of the carbon absorption unit and the water washing unit at each stage, and the absorption mist and washing water mist accompanying the decarbonized exhaust gas are removed by these demisters, and the water washing unit at the subsequent stage is removed. Kicking withdrawn washing water from the liquid holding unit, bypassing the preceding demister, amine recovery method and supplying discloses to the liquid holding portion in front of the washing unit or the front of the washing unit.

また、特許文献4には、ガス発生源中の二酸化炭素の吸着体であって、Si/Al原子比が1.0〜1.5のA型若しくはX型ゼオライトの担持率が5〜100(質量%)で、嵩密度が0.05〜1.00(g/cm)であり、ハニカム型、格子状型若しくはスパイラル型の構造を有することを特徴とする二酸化炭素の吸着体が開示されている。 Further, Patent Document 4 discloses an adsorbent of carbon dioxide in a gas generation source, and a supporting rate of A-type or X-type zeolite having an Si / Al atomic ratio of 1.0 to 1.5 is 5 to 100 ( Mass%) and a bulk density of 0.05 to 1.00 (g / cm 3 ), and a carbon dioxide adsorbent having a honeycomb type, lattice type or spiral type structure is disclosed. ing.

特開平9−279163号公報JP-A-9-279163 特開2001−139303号公報JP 2001-139303 A 特開2007−190553号公報JP 2007-190553 A 特開2004−202408号公報JP 2004-202408 A

特許文献2に記載の水素・一酸化炭素混合ガスの製造装置においては、ガス化装置に供給するための水蒸気をガス化装置の外部で発生させる必要があった。特に、蒸気タービンにおける発電に利用するために発生させた水蒸気の一部をガス化装置に供給する場合、発電のための熱源が奪われることとなり、発電効率が低下するとともに、水蒸気を輸送する際の熱損失も発生する点で改善の余地があった。   In the hydrogen / carbon monoxide mixed gas production apparatus described in Patent Document 2, it is necessary to generate water vapor to be supplied to the gasifier outside the gasifier. In particular, when a part of the steam generated to be used for power generation in the steam turbine is supplied to the gasifier, the heat source for power generation is deprived, which reduces power generation efficiency and transports steam. There was room for improvement in that heat loss also occurred.

本発明の目的は、炭素系燃料に含まれる炭素を二酸化炭素として回収しながら水素及び一酸化炭素の混合ガスを製造するガス化システムにおいて、シフト反応設備に供給する水蒸気を低減して低コスト化を図るとともに、水蒸気の生成及び輸送に伴う熱損失を低減し、発電システム全体の熱効率を向上することにある。   The object of the present invention is to reduce the cost by reducing the water vapor supplied to the shift reaction equipment in a gasification system that produces a mixed gas of hydrogen and carbon monoxide while recovering carbon contained in carbon-based fuel as carbon dioxide. In addition, the heat loss associated with the generation and transportation of water vapor is reduced, and the thermal efficiency of the entire power generation system is improved.

本発明のガス化設備は、炭素系燃料をガス化するためのガス化炉と、前記炭素系燃料を供給するための燃料供給部と、酸化剤を供給するための酸化剤供給部とを含むガス化設備であって、シフト反応に利用するための水を供給するための水供給配管、及び、この水供給配管と前記ガス化設備とを直接接続する水供給部を具備することを特徴とする。   The gasification facility of the present invention includes a gasification furnace for gasifying carbon-based fuel, a fuel supply unit for supplying the carbon-based fuel, and an oxidant supply unit for supplying an oxidant. A gasification facility comprising a water supply pipe for supplying water for use in a shift reaction, and a water supply unit for directly connecting the water supply pipe and the gasification facility. To do.

また、本発明のガス化システムは、上記のガス化設備と、このガス化設備で発生する二酸化炭素を除去するための二酸化炭素除去設備とを含むことを特徴とする。   Moreover, the gasification system of this invention is characterized by including said gasification equipment and the carbon dioxide removal equipment for removing the carbon dioxide which generate | occur | produces in this gasification equipment.

さらに、本発明の発電システムは、上記のガス化システムと、このガス化システムで製造されるガスを利用して発電を行うための発電機とを含むことを特徴とする。   Furthermore, a power generation system of the present invention includes the gasification system described above and a generator for generating power using the gas produced by the gasification system.

さらにまた、本発明のガス化システムの運転方法は、炭素系燃料をガス化するためのガス化炉、前記炭素系燃料を供給するための燃料供給部、及び、酸化剤を供給するための酸化剤供給部を含み、かつ、シフト反応に利用するための水を供給するための水供給配管、及び、この水供給配管と前記ガス化設備とを直接接続する水供給部を具備するガス化設備と、このガス化設備で発生する二酸化炭素を除去するための二酸化炭素除去設備とを含み、前記ガス化設備と前記二酸化炭素除去設備との間にシフト反応設備を有するガス化システムの運転方法であって、前記シフト反応設備の下流側における生成ガスの組成を用いてシフト反応設備における水蒸気と一酸化炭素との比を算出する工程と、この比、炭素系燃料供給量、酸化剤供給量及び前記炭素系燃料の組成を用いて前記水の供給量を調節する工程とを含むことを特徴とする。   Furthermore, the operation method of the gasification system of the present invention includes a gasification furnace for gasifying a carbon-based fuel, a fuel supply unit for supplying the carbon-based fuel, and an oxidation for supplying an oxidant. A gasification facility comprising a water supply pipe for supplying water for use in a shift reaction, and a water supply section that directly connects the water supply pipe and the gasification equipment And a carbon dioxide removal facility for removing carbon dioxide generated in the gasification facility, and a method for operating a gasification system having a shift reaction facility between the gasification facility and the carbon dioxide removal facility. And calculating the ratio of water vapor and carbon monoxide in the shift reaction facility using the composition of the product gas downstream of the shift reaction facility, the ratio, the carbon-based fuel supply amount, the oxidant supply amount, and Previous Characterized in that it comprises a step of adjusting the supply amount of the water using a composition of the carbonaceous fuel.

本発明によれば、水蒸気を製造するための間接熱交換設備が不要であることから、プラント建設費が低減される。   According to the present invention, since an indirect heat exchange facility for producing steam is unnecessary, plant construction costs are reduced.

また、本発明によれば、生成ガスと水とを直接接触させて水蒸気を製造することから、熱損失の少ないガス化設備及びガス化システム並びにこれらを用いた発電システムを提供することができる。   Further, according to the present invention, since the produced gas and water are brought into direct contact to produce water vapor, it is possible to provide gasification equipment and a gasification system with little heat loss and a power generation system using them.

さらに、本発明によれば、ガス化システムの運転状態が変動しても、安定した炭素の回収率を得ることができる。   Furthermore, according to the present invention, a stable carbon recovery rate can be obtained even if the operating state of the gasification system varies.

本発明による実施例1のガス化システムの設備及び流路を模式的に示す構成図である。It is a block diagram which shows typically the installation and flow path of the gasification system of Example 1 by this invention. 本発明による実施例1のガス化システムの信号配線を模式的に示す構成図である。It is a block diagram which shows typically the signal wiring of the gasification system of Example 1 by this invention. 本発明による実施例1の変形例であるガス化システムの設備及び流路を模式的に示す構成図である。It is a block diagram which shows typically the installation and flow path of the gasification system which are the modifications of Example 1 by this invention. 本発明による実施例1の変形例であるガス化システムの信号配線を模式的に示す構成図である。It is a block diagram which shows typically the signal wiring of the gasification system which is a modification of Example 1 by this invention. 本発明による実施例2のガス化システムの設備及び流路を模式的に示す構成図である。It is a block diagram which shows typically the installation and flow path of the gasification system of Example 2 by this invention. 本発明による実施例2のガス化システムの信号配線を模式的に示す構成図である。It is a block diagram which shows typically the signal wiring of the gasification system of Example 2 by this invention.

本発明は、二酸化炭素回収設備を備えたガス化システム及びその運転方法に関する。   The present invention relates to a gasification system including a carbon dioxide recovery facility and an operation method thereof.

また、本発明は、炭素系燃料をガス化し、燃料に含まれる炭素は二酸化炭素として排ガスから回収し、水素を主成分とするガスを製造するシステムに関するもので、二酸化炭素による地球温暖化防止に寄与する技術である。   The present invention also relates to a system for gasifying carbon-based fuel, recovering carbon contained in the fuel from the exhaust gas as carbon dioxide, and producing a gas containing hydrogen as a main component. This is a contributing technology.

炭素系燃料をガス化して得られた生成ガスから二酸化炭素を回収し、水素及び一酸化炭素の混合ガスを製造するガス化システムは、炭素系燃料に含まれる炭素の回収率の目標によって最適な構成が異なる。しかし、いずれのガス化システムに対しても、ガス化設備で製造された生成ガスに水を直接接触させ、以下に示すガス化システムの運転方法を用いることで、生成ガスに含まれる水蒸気濃度をシフト反応に必要な値とすることが可能となる。   The gasification system that recovers carbon dioxide from the product gas obtained by gasifying carbon-based fuel and produces a mixed gas of hydrogen and carbon monoxide is optimal depending on the target of the recovery rate of carbon contained in the carbon-based fuel. The configuration is different. However, for any gasification system, the water concentration in the product gas can be reduced by bringing water directly into contact with the product gas produced by the gasification equipment and using the operation method of the gasification system shown below. It becomes possible to make it a value required for a shift reaction.

まず、炭素系燃料に含まれる炭素の回収率の目標が低い場合について、課題を解決するための手段を示す。   First, the means for solving the problem in the case where the target of the recovery rate of carbon contained in the carbon-based fuel is low will be described.

炭素の回収率の目標値が低い場合、シフト反応に必要な水蒸気濃度も低いため、ガス化設備で製造された生成ガスに接触させる水の量が少ない。このため、生成ガスの温度低下は小さく、ガス化設備の下流側で生成ガスの熱を間接熱交換器により蒸気として回収することができる。この場合、生成ガスと水とを接触させる方法としては、ガス化設備のガス化炉やガス化炉出口に水を噴霧させる方法が適しており、以下に示す方法でガス化システムの運転を行う。   When the target value of the carbon recovery rate is low, the water vapor concentration required for the shift reaction is also low, so that the amount of water brought into contact with the product gas produced by the gasification facility is small. Therefore, the temperature drop of the product gas is small, and the heat of the product gas can be recovered as steam by the indirect heat exchanger on the downstream side of the gasification facility. In this case, as a method for bringing the produced gas into contact with water, a method of spraying water on the gasification furnace of the gasification facility or the gasification furnace outlet is suitable, and the gasification system is operated by the following method. .

シフト反応は、一般に、触媒を用いて行われ、触媒の種類、触媒量、触媒層温度等の条件によって、一酸化炭素1モルあたりに必要な水蒸気量が変化する。この水蒸気と一酸化炭素との比、炭素系燃料の供給量、酸化剤の供給量、生成ガス量及び生成ガス組成を測定した結果、及び、炭素系燃料の組成を用い、二酸化炭素濃度目標値(生成ガスに含まれる炭素モル数比)を実現するために必要な生成ガスに含まれる水蒸気量を求める。ここで、二酸化炭素濃度目標値は下記式(2)で定義される数値である。なお、以下において炭素を元素記号Cで表示する場合がある。   The shift reaction is generally performed using a catalyst, and the amount of water vapor required per mole of carbon monoxide varies depending on conditions such as the type of catalyst, the amount of catalyst, and the catalyst layer temperature. The ratio of water vapor to carbon monoxide, the amount of carbon-based fuel supplied, the amount of oxidant supplied, the amount of produced gas and the composition of the produced gas, and the carbon-based fuel composition were used to determine the target concentration of carbon dioxide. The amount of water vapor contained in the product gas required to realize (ratio of the number of carbon moles contained in the product gas) is determined. Here, the carbon dioxide concentration target value is a numerical value defined by the following formula (2). In the following, carbon may be indicated by the element symbol C.

(CO濃度目標値)=A/B (2)
(A:単位体積あたりの生成ガスに含まれるCOのモル数の目標値、B:単位体積あたりの生成ガスに含まれる炭素のモル数)
必要な水蒸気量は下記式(3)で求める。
(CO 2 concentration target value) = A / B (2)
(A: target value of the number of moles of CO 2 contained in the produced gas per unit volume, B: number of moles of carbon contained in the produced gas per unit volume)
The required amount of water vapor is determined by the following formula (3).

(必要な水蒸気量)={(CO濃度の目標値)×(生成ガスに含まれる炭素のモル数)−(COのモル数)}×r (3)
(r:水蒸気と一酸化炭素との比)
上記式(3)で求めた量の水を、ガス化設備におけるガス化炉或いはガス化炉出口に噴霧し、生成ガスの熱によって噴霧した水の全量を水蒸気として生成ガスに同伴させる。
(Required amount of water vapor) = {(target value of CO 2 concentration) × (number of moles of carbon contained in product gas) − (number of moles of CO 2 )} × r (3)
(R: ratio of water vapor to carbon monoxide)
The amount of water obtained by the above equation (3) is sprayed to the gasification furnace or the gasification furnace outlet in the gasification facility, and the total amount of water sprayed by the heat of the product gas is accompanied with the product gas as water vapor.

生成ガスに含まれる二酸化炭素を除去する方法としては、アミン溶液などの吸収液を用いる方法、ゼオライトなどの吸着剤を用いる方法などがある。これらの方法により、生成ガスに含まれる二酸化炭素の全量が除去される場合、二酸化炭素濃度の目標値は、生成ガスに含まれる二酸化炭素モル数が下記式(4)を満たすように設定すればよい。   As a method for removing carbon dioxide contained in the product gas, there are a method using an absorbing solution such as an amine solution and a method using an adsorbent such as zeolite. When the total amount of carbon dioxide contained in the product gas is removed by these methods, the target value of the carbon dioxide concentration is set so that the number of moles of carbon dioxide contained in the product gas satisfies the following formula (4). Good.

(COのモル数の目標値)=(炭素系燃料に含まれる炭素の回収率の目標値)×(炭素系燃料に含まれる炭素のモル数) (4)
しかし、二酸化炭素を除去する方法は、熱効率の低下を抑え、かつ、プラント仕様を満たす最適な運転条件では、二酸化炭素の一部は除去されずに下流へ流出する。そこで、二酸化炭素濃度の目標値は、この下流への流出分を考慮して、上記のようにして求めた値よりも高めに設定する。この目標値の調整は、二酸化炭素を除去する前の生成ガス流量及びガス組成並びに二酸化炭素除去後のガス組成から炭素燃料に含まれる炭素の回収率を求め、この値が目標値より低い場合は二酸化炭素濃度の目標値を高くし、この値が目標値より高い場合は二酸化炭素濃度の目標値を低くする。
(Target value of the number of moles of CO 2 ) = (Target value of the recovery rate of carbon contained in the carbon-based fuel) × (Number of moles of carbon contained in the carbon-based fuel) (4)
However, the method of removing carbon dioxide suppresses a decrease in thermal efficiency, and flows out downstream without being removed in a part of the carbon dioxide under the optimum operating conditions satisfying the plant specifications. Therefore, the target value of the carbon dioxide concentration is set higher than the value obtained as described above in consideration of the downstream outflow. The target value is adjusted by obtaining the recovery rate of carbon contained in the carbon fuel from the generated gas flow rate and gas composition before removing carbon dioxide and the gas composition after removing carbon dioxide, and this value is lower than the target value. The target value of the carbon dioxide concentration is increased, and if this value is higher than the target value, the target value of the carbon dioxide concentration is decreased.

なお、ガス化炉又はガス化炉出口に水を噴霧すると、生成ガス温度が低下する。下流でシフト反応を進めるために、生成ガスの温度はシフト反応器への通ガス可能温度以上とする必要がある。そこで、各部の温度、水供給量、生成ガス量及び熱回収設備の仕様からシフト反応設備入口の生成ガス温度を予測し、この温度をシフト反応設備への通ガス可能温度以上とすることができる水供給量の上限を求め、この水供給量を上限として水供給量を変化させる。   When water is sprayed on the gasification furnace or the gasification furnace outlet, the generated gas temperature is lowered. In order to advance the shift reaction downstream, the temperature of the product gas needs to be equal to or higher than the temperature at which gas can be passed to the shift reactor. Therefore, the temperature of each part, the amount of water supplied, the amount of generated gas, and the specifications of the heat recovery equipment can be used to predict the generated gas temperature at the shift reaction equipment inlet, and this temperature can be made higher than the temperature at which gas can pass through the shift reaction equipment The upper limit of the water supply amount is obtained, and the water supply amount is changed with this water supply amount as the upper limit.

つぎに、炭素系燃料に含まれる炭素の回収率の目標値が低い場合について、課題を解決するための手段を示す。炭素の回収率の目標値が高い場合、シフト反応に必要な水蒸気濃度も高い。このため、ガス化設備において生成ガスに接触させる水の量を多くする必要がある。このため、生成ガスの温度の低下が大きく、ガス化設備の下流で生成ガスの熱を回収する余地がない。このため、直接、下流側のシフト反応設備に生成ガスを送ることが望ましい。この場合、生成ガスと水とを接触させる方法としては、水溜り(液溜り)を通過させる方法が適しており、例えば水洗塔などを用いる。このように構成したガス化システムの場合、以下に示すように運転を行う。   Next, means for solving the problem in the case where the target value of the recovery rate of carbon contained in the carbon-based fuel is low will be described. When the target value of the carbon recovery rate is high, the water vapor concentration necessary for the shift reaction is also high. For this reason, it is necessary to increase the amount of water brought into contact with the product gas in the gasification facility. For this reason, the temperature of the product gas is greatly reduced, and there is no room for recovering the heat of the product gas downstream of the gasification facility. For this reason, it is desirable to send the product gas directly to the downstream shift reaction facility. In this case, as a method of bringing the product gas into contact with water, a method of passing a water pool (liquid pool) is suitable. For example, a water washing tower is used. In the case of the gasification system configured as described above, the operation is performed as follows.

シフト反応設備における水蒸気と一酸化炭素との比、炭素系燃料の供給量、酸化剤の供給量を測定した結果、及び、炭素系燃料の組成を用い、目標とする二酸化炭素濃度を得るために必要な生成ガスに含まれる水蒸気量(必要水蒸気量)を求める。つぎに、水溜り出口における生成ガスの温度及び圧力を測定した結果を用いて、生成ガスが水溜り通過した後の水蒸気濃度を予測し、この時の生成ガスに含まれる水蒸気量を求め、必要水蒸気量より小さい場合は、水溜りでの循環水量を減らして水溜りの温度を上げ、必要水蒸気量より大きい場合は、水溜りでの循環水量を増やして水溜りの温度を下げる。これは、水溜りを通過した後の生成ガスの温度が水溜りの温度と等しくなり、生成ガスに含まれる水蒸気濃度がこの温度の関数となることを利用するものである。   To obtain the target carbon dioxide concentration using the ratio of water vapor to carbon monoxide, the amount of carbon-based fuel supplied, the amount of oxidant supplied in the shift reaction facility, and the composition of the carbon-based fuel The amount of water vapor (required water vapor amount) contained in the necessary generated gas is determined. Next, using the result of measuring the temperature and pressure of the product gas at the water outlet, the water vapor concentration after the product gas has passed through the water pool is predicted, and the amount of water vapor contained in the product gas at this time is obtained. If the amount of water is smaller than the amount of water vapor, the amount of water circulating in the puddle is reduced to raise the temperature of the water puddle. If the amount of water vapor is larger than the required amount of water vapor, the amount of water circulated in the water puddle is increased to lower the temperature of the water puddle. This utilizes the fact that the temperature of the product gas after passing through the puddle becomes equal to the temperature of the puddle, and the water vapor concentration contained in the product gas is a function of this temperature.

ここで、水溜りには、生成ガスに含まれる未燃分や塩化水素などの微量成分が吸収されるため、水溜りの水を水洗塔の外部に排出してそれらを除去し、再び水洗塔の内部に戻す循環利用を行う。処理された水は大気温度と等しくなっており、この循環水量が少ない場合は水溜りの温度が上昇し、循環水量が多い場合は水溜りの温度が低下する。なお、水溜りの水は、生成ガスと接触して水蒸気となって下流へ流出するため、上記式(3)に示した量の水を補給する必要がある。二酸化炭素濃度の目標値の設定方法、及び、水溜り出口生成ガス温度がシフト反応設備への通ガス可能温度以上となるように水溜りでの循環水量を変化させる方法などは、炭素系燃料に含まれる炭素の回収率の目標値が低い場合と同様である。   Here, the water pool absorbs trace components such as unburned components and hydrogen chloride contained in the product gas, so the water in the water pool is discharged outside the washing tower to remove them, and the washing tower again. Recycle to return to the inside. The treated water is equal to the atmospheric temperature. When the amount of circulating water is small, the temperature of the puddle increases, and when the amount of circulating water is large, the temperature of the puddle decreases. In addition, since the water in the puddle comes into contact with the product gas and becomes water vapor and flows downstream, it is necessary to replenish the amount of water shown in the above formula (3). The carbon dioxide concentration target value setting method and the method of changing the amount of circulating water in the puddle so that the temperature of the gas produced at the puddle outlet is equal to or higher than the temperature at which gas can be passed to the shift reaction facility are used for carbon-based fuels. This is the same as when the target value of the recovery rate of contained carbon is low.

本発明において、発電システムとは、上記のガス化システムと、このガス化システムで製造されるガスを利用して発電を行うための発電機とを含むものの総称であり、石炭ガス化発電プラント、燃料電池発電システムなどを含む。   In the present invention, the power generation system is a general term for the above gasification system and a generator for generating power using the gas produced by the gasification system, a coal gasification power plant, Includes fuel cell power generation systems.

以下、本発明の実施例を用いて説明する。   The present invention will be described below with reference to examples.

本実施例は、炭素系燃料に含まれる炭素の回収率の目標値が低い場合のガス化システム及びその運転方法に関するものである。ここで、炭素の回収率の目標値が低い場合とは、天然ガスの炭素含有率を想定し、炭素の回収率の目標値を約60%に設定する場合をいう。   The present embodiment relates to a gasification system and a method for operating the gasification system when the target value of the recovery rate of carbon contained in the carbon-based fuel is low. Here, the case where the target value of the carbon recovery rate is low refers to a case where the target value of the carbon recovery rate is set to about 60% assuming the carbon content rate of natural gas.

図1は、本実施例のガス化システムの設備及び流路を模式的に示す構成図である。図2は、本実施例のガス化システムの信号配線を模式的に示す構成図である。   FIG. 1 is a configuration diagram schematically showing equipment and flow paths of the gasification system of the present embodiment. FIG. 2 is a configuration diagram schematically showing signal wiring of the gasification system of the present embodiment.

これらの図におけるガス化システムは、上流側から、ガス化設備10、熱回収設備20、脱塵設備30、シフト反応設備40、水洗塔51と硫化水素除去設備53とを含むガス生成設備50及び二酸化炭素除去設備60を含む構成となっている。   The gasification system in these drawings includes a gas generation facility 50 including a gasification facility 10, a heat recovery facility 20, a dust removal facility 30, a shift reaction facility 40, a water washing tower 51, and a hydrogen sulfide removal facility 53 from the upstream side. The carbon dioxide removal facility 60 is included.

図1において、ガス化設備10は、ガス化炉101及び生成ガス移動部102を含む構成であり、ガス化炉101と生成ガス移動部102との接続部は、ガス化炉出口103と呼ぶ。   In FIG. 1, the gasification facility 10 includes a gasification furnace 101 and a product gas transfer unit 102, and a connection part between the gasification furnace 101 and the product gas transfer unit 102 is referred to as a gasification furnace outlet 103.

生成ガスから炭素を除去するためには、一酸化炭素と水蒸気とを反応(シフト反応)させて二酸化炭素と水素とし、二酸化炭素を生成ガスから除去する必要がある。一酸化炭素は可燃性ガスであり、一酸化炭素を直接除去すると生成ガスの発熱量が低下するため、シフト反応で一酸化炭素を二酸化炭素に変換する必要がある。シフト反応には水蒸気が必要である。   In order to remove carbon from the product gas, it is necessary to react carbon dioxide and water vapor to form carbon dioxide and hydrogen, and to remove carbon dioxide from the product gas. Carbon monoxide is a flammable gas, and if carbon monoxide is removed directly, the calorific value of the product gas decreases, so it is necessary to convert carbon monoxide to carbon dioxide by a shift reaction. Steam is required for the shift reaction.

ガス化設備10は、炭素系燃料1(石炭)を供給するための燃料供給部111と、酸化剤2(酸素又は空気)を供給するための酸化剤供給部112とを有し、シフト反応に利用するための水4を供給するための水供給配管、及び、この水供給配管と前記ガス化設備とを直接接続する水供給部113を有する。ここで、水4は、少なくとも水供給配管の上流側では液体である。すなわち、供給される水4が水供給部113に達する前にガス化設備10の熱を受けて沸騰し、水蒸気となっても問題はない。本発明においては、水4を沸騰させる熱源及び熱交換器、並びに、沸騰した水蒸気を輸送するための配管が不要となっている点が重要である。   The gasification facility 10 includes a fuel supply unit 111 for supplying the carbon-based fuel 1 (coal) and an oxidant supply unit 112 for supplying the oxidant 2 (oxygen or air). It has the water supply piping for supplying the water 4 for utilization, and the water supply part 113 which connects this water supply piping and the said gasification equipment directly. Here, the water 4 is a liquid at least upstream of the water supply pipe. That is, before the supplied water 4 reaches the water supply unit 113, it receives the heat of the gasification facility 10 and boils to become water vapor. In the present invention, it is important that a heat source and a heat exchanger for boiling the water 4 and piping for transporting the boiled water vapor are not necessary.

通常、燃料供給部111及び酸化剤供給部112は、ガス化設備10の下部に位置するガス化炉101に設置されるが、ガス化設備10の上部に位置する生成ガス移動部102に燃料供給部111又は酸化剤供給部112を設置してもよい。   Normally, the fuel supply unit 111 and the oxidant supply unit 112 are installed in the gasification furnace 101 located in the lower part of the gasification facility 10, but supply fuel to the generated gas moving unit 102 located in the upper part of the gasification facility 10. The unit 111 or the oxidant supply unit 112 may be installed.

また、本実施例においては、水供給部113をガス化炉101又はガス化炉出口103若しくはその近傍に設置している。本実施例においては、ガス化設備10の下部に位置するガス化炉101に燃料供給部111及び酸化剤供給部112を設置しているため、水供給部113の設置位置は、燃料供給部111及び酸化剤供給部112の下流側である。ただし、水供給部113の設置位置はこれに限定されるものではなく、約1300℃となるガス化炉101又は生成ガス移動部102の高温部に水蒸気を供給することができる構成であって、ガス化炉101の高温部の温度を必要以上に低下させない構成であれば、水供給部113をガス化設備10の他の部位に設置してもよい。   In this embodiment, the water supply unit 113 is installed at the gasification furnace 101 or the gasification furnace outlet 103 or in the vicinity thereof. In the present embodiment, since the fuel supply unit 111 and the oxidant supply unit 112 are installed in the gasification furnace 101 located in the lower part of the gasification facility 10, the installation position of the water supply unit 113 is the fuel supply unit 111. And on the downstream side of the oxidant supply unit 112. However, the installation position of the water supply unit 113 is not limited to this, and is configured to be able to supply water vapor to the high temperature part of the gasification furnace 101 or the product gas moving unit 102 at about 1300 ° C., As long as the temperature of the high temperature part of the gasification furnace 101 is not lowered more than necessary, the water supply part 113 may be installed in another part of the gasification facility 10.

ここで、約1300℃の高温部に水蒸気を供給することが望ましい理由は、シフト反応が1300℃未満の温度では進行しにくくなるためである。ただし、1000〜1300℃においてシフト反応の速度が急激に増加するため、この温度領域を利用してシフト反応を行うことも可能である。すなわち、1000〜1300℃となる温度領域に水蒸気を供給することも可能である。   Here, the reason why it is desirable to supply water vapor to the high temperature part of about 1300 ° C. is because the shift reaction is difficult to proceed at a temperature below 1300 ° C. However, since the speed of the shift reaction increases rapidly at 1000 to 1300 ° C., the shift reaction can be performed using this temperature region. That is, it is possible to supply water vapor to a temperature range of 1000 to 1300 ° C.

炭素系燃料1(石炭)及び酸化剤2(酸素又は空気)がガス化設備10に供給され、炭素系燃料1がガス化されることにより一酸化炭素及び水素を主成分とする生成ガスになる。この生成ガスは、生成ガス移動部102の出口において高温度(約1000℃)であるため、熱回収設備20にて生成ガスの熱を回収して冷却する。   The carbon-based fuel 1 (coal) and the oxidant 2 (oxygen or air) are supplied to the gasification facility 10, and the carbon-based fuel 1 is gasified to become a product gas mainly composed of carbon monoxide and hydrogen. . Since this generated gas has a high temperature (about 1000 ° C.) at the outlet of the generated gas moving unit 102, the heat of the generated gas is recovered by the heat recovery facility 20 and cooled.

本実施例においては、ガス化設備のガス化炉101やガス化炉出口103に水を噴霧(供給)し、ガス化炉101で発生する熱(ガス化炉101若しくはガス化炉出口103の壁部或いは生成ガスの顕熱)で水を蒸発させることにより水蒸気を得ることができるようになっている。   In the present embodiment, water is sprayed (supplied) to the gasification furnace 101 and the gasification furnace outlet 103 of the gasification facility, and heat generated in the gasification furnace 101 (the walls of the gasification furnace 101 or the gasification furnace outlet 103). The water vapor can be obtained by evaporating the water with the sensible heat of the part or the product gas.

図2において、制御装置70は、酸化剤流量測定部81、炭素系燃料流量測定部82、ガス化設備温度測定部85、供給水流量測定部95、ガス化設備出口温度測定部86、シフト反応設備上流側温度測定部87、シフト反応設備下流側ガス組成測定部89、ガス精製設備上流側流量測定部83、ガス精製設備下流側ガス組成測定部90、二酸化炭素除去設備上流側流量測定部84及び二酸化炭素除去設備下流側ガス組成測定部91で測定した値を元に、水の供給量(噴霧量)を算出し、水供給弁71の開度を調節するための制御を行う。この制御により水の供給量を調節する。   In FIG. 2, the control device 70 includes an oxidant flow rate measurement unit 81, a carbon-based fuel flow rate measurement unit 82, a gasification facility temperature measurement unit 85, a feed water flow rate measurement unit 95, a gasification facility outlet temperature measurement unit 86, and a shift reaction. Equipment upstream temperature measurement section 87, shift reaction equipment downstream gas composition measurement section 89, gas purification equipment upstream flow measurement section 83, gas purification equipment downstream gas composition measurement section 90, carbon dioxide removal equipment upstream flow measurement section 84 Based on the value measured by the gas composition measuring unit 91 on the downstream side of the carbon dioxide removal equipment, the amount of water supply (spray amount) is calculated, and control for adjusting the opening of the water supply valve 71 is performed. The amount of water supply is adjusted by this control.

制御装置70における水の供給量は、以下の手順により算出する。   The amount of water supplied in the control device 70 is calculated according to the following procedure.

すなわち、シフト反応設備下流側ガス組成測定部89で測定したガス組成を用いて、シフト反応設備40における水蒸気と一酸化炭素との比を算出し、この比とともに、炭素系燃料流量測定部82及び酸化剤流量測定部81で測定した炭素系燃料供給量及び酸化剤供給量、並びに、既知である炭素系燃料の組成を用いて、二酸化炭素濃度目標値を実現するために必要な生成ガスに含まれる水蒸気量を求める。制御装置70は、この水蒸気量と供給水流量測定部95で測定した供給水流量とを用いてフィードバック制御により目標とする量の水が供給されるように、水供給弁71を操作する。   That is, the ratio of water vapor and carbon monoxide in the shift reaction facility 40 is calculated using the gas composition measured by the gas composition measuring unit 89 on the downstream side of the shift reaction facility, and together with this ratio, the carbon-based fuel flow rate measuring unit 82 and Included in the generated gas necessary to achieve the target value of carbon dioxide concentration using the carbon-based fuel supply amount and the oxidant supply amount measured by the oxidant flow rate measuring unit 81 and the known carbon-based fuel composition Determine the amount of water vapor that is generated. The control device 70 operates the water supply valve 71 so that a target amount of water is supplied by feedback control using the water vapor amount and the supply water flow rate measured by the supply water flow rate measuring unit 95.

ここで、ガス化設備10のガス化炉101又はガス化炉出口103に水を噴霧(供給)すると、生成ガス温度が低下する。下流側のシフト反応設備40においてシフト反応を進めるためには、生成ガスの温度を所定の温度以上とする必要がある。   Here, when water is sprayed (supplied) to the gasification furnace 101 or the gasification furnace outlet 103 of the gasification facility 10, the generated gas temperature decreases. In order to advance the shift reaction in the downstream shift reaction facility 40, it is necessary to set the temperature of the product gas to a predetermined temperature or higher.

そこで、各部の温度測定結果、目標とする量の水の供給による温度低下、及び熱回収部での温度低下の予測結果から、シフト反応設備40の入口でのガス温度を予測し、この温度がシフト反応設備への通ガス可能温度以上となる範囲で水供給量を変化させることが望ましい。   Therefore, the gas temperature at the inlet of the shift reaction facility 40 is predicted from the temperature measurement result of each part, the temperature decrease due to the supply of the target amount of water, and the prediction result of the temperature decrease in the heat recovery unit. It is desirable to change the water supply amount in a range that is equal to or higher than the temperature at which gas can be passed to the shift reaction facility.

また、シフト反応設備40における水蒸気と一酸化炭素との比や、二酸化炭素除去設備60での二酸化炭素の回収率は、計画値を上回ることも、下回ることもある。このような場合に、目標とする炭素の回収率が得られない可能性がある。   Further, the ratio of water vapor and carbon monoxide in the shift reaction facility 40 and the carbon dioxide recovery rate in the carbon dioxide removal facility 60 may be higher or lower than the planned values. In such a case, the target carbon recovery rate may not be obtained.

そこで、ガス精製設備上流側流量測定部83で測定する生成ガス流量83、シフト反応設備下流側ガス組成測定部89で測定したガス組成及び二酸化炭素除去設備下流側ガス組成測定部91で測定したガス組成を用いて炭素系燃料からの炭素の回収率を求め、この値が目標値より低い場合は二酸化炭素濃度目標値を高くし、目標値より高い場合は二酸化炭素濃度目標値を低くする。   Therefore, the product gas flow rate 83 measured by the gas purification facility upstream flow rate measurement unit 83, the gas composition measured by the shift reaction facility downstream side gas composition measurement unit 89, and the gas measured by the carbon dioxide removal facility downstream side gas composition measurement unit 91 The carbon recovery rate from the carbon-based fuel is obtained using the composition. When this value is lower than the target value, the carbon dioxide concentration target value is increased, and when this value is higher than the target value, the carbon dioxide concentration target value is decreased.

水蒸気濃度を高めた生成ガスは、熱回収設備20で熱回収され、脱塵設備30へ送られる。なお、炭素の回収率の目標値によっては、シフト反応に必要な水を供給した後の生成ガスから熱回収することができないことがある。その場合は、図3及び図4に示すように、熱回収設備20を用いずにガス化システムを構成する。   The product gas having an increased water vapor concentration is recovered by the heat recovery facility 20 and sent to the dust removal facility 30. Depending on the target value of the carbon recovery rate, it may not be possible to recover heat from the product gas after supplying water necessary for the shift reaction. In that case, as shown in FIGS. 3 and 4, the gasification system is configured without using the heat recovery equipment 20.

脱塵設備30においては、サイクロン31及び電気集塵機32を用いて生成ガスに含まれるチャー(未燃炭素)などの微粒子が回収される。回収された微粒子は、ガス化炉101へリサイクルされる。脱塵後の生成ガスは、この生成ガスに含まれる硫化カルボニル(COS)を水蒸気と反応させて硫化水素及び二酸化炭素に変換するためのCOS転化器54(硫化カルボニル転化器とも呼ぶ。)に送られる。COS転化器54には、チタニア系やアルミナ系の触媒が充填されている。これは、硫化水素除去設備53で用いるアミン系の吸収液はCOSを吸収しないため、アミン系の吸収液に吸収させて高い脱硫率を達成するためにCOSを硫化水素とする必要があるからである。   In the dust removal equipment 30, fine particles such as char (unburned carbon) contained in the generated gas are collected using a cyclone 31 and an electric dust collector 32. The collected fine particles are recycled to the gasification furnace 101. The product gas after dedusting is sent to a COS converter 54 (also called a carbonyl sulfide converter) for reacting carbonyl sulfide (COS) contained in the product gas with water vapor to convert it into hydrogen sulfide and carbon dioxide. It is done. The COS converter 54 is filled with a titania-based or alumina-based catalyst. This is because the amine-based absorption liquid used in the hydrogen sulfide removal facility 53 does not absorb COS, so it is necessary to use COS as hydrogen sulfide in order to absorb the amine-based absorption liquid and achieve a high desulfurization rate. is there.

ガス化システムの構成上、ガス化設備10におけるシフト反応が十分でないとされる場合、本実施例に示すように、COS転化器54の次の段階として、シフト反応設備40を設けることが望ましい。シフト反応設備40には、鉄−クロム系や銅−亜鉛系の触媒が充填されている。   If the shift reaction in the gasification facility 10 is not sufficient due to the configuration of the gasification system, it is desirable to provide the shift reaction facility 40 as the next stage of the COS converter 54 as shown in the present embodiment. The shift reaction facility 40 is filled with an iron-chromium or copper-zinc catalyst.

シフト反応後の生成ガスは、ガス精製設備50に導かれ、ガス精製設備50の水洗塔51で塩化水素等を除去し、ガス精製設備50の硫化水素除去設備53で硫化水素を除去する。   The product gas after the shift reaction is guided to the gas purification facility 50, where hydrogen chloride and the like are removed by the water washing tower 51 of the gas purification facility 50, and hydrogen sulfide is removed by the hydrogen sulfide removal facility 53 of the gas purification facility 50.

水洗塔51での塩化水素除去率を上げるためには、水洗塔51へ供給する水の水素イオン濃度(pH)を、水酸化ナトリウムなどを用いてアルカリ性にすればよい。   In order to increase the hydrogen chloride removal rate in the washing tower 51, the hydrogen ion concentration (pH) of the water supplied to the washing tower 51 may be made alkaline using sodium hydroxide or the like.

硫化水素除去設備53は、アミン水溶液などの吸収液56が用いられる。硫化水素を吸収した吸収液156は、再生塔(図示せず)に送られ、吸収液156に含まれる硫化水素を除去して循環利用される。   The hydrogen sulfide removal equipment 53 uses an absorbing liquid 56 such as an aqueous amine solution. The absorbing liquid 156 that has absorbed hydrogen sulfide is sent to a regeneration tower (not shown), and the hydrogen sulfide contained in the absorbing liquid 156 is removed and recycled.

硫化水素が除去された生成ガスは、二酸化炭素除去設備60に送られる。ここで生成ガスから二酸化炭素が除去され、水素を主成分とする製品ガス3が下流へ供給される。二酸化炭素吸収に用いる吸収液55としては、アミン水溶液などが用いられる。二酸化炭素を吸収した吸収液155は、再生塔(図示せず)に送られ、吸収液156に含まれる二酸化炭素を除去して循環利用される。   The product gas from which hydrogen sulfide has been removed is sent to the carbon dioxide removal facility 60. Here, carbon dioxide is removed from the product gas, and the product gas 3 containing hydrogen as a main component is supplied downstream. As the absorbing liquid 55 used for carbon dioxide absorption, an aqueous amine solution or the like is used. The absorption liquid 155 that has absorbed carbon dioxide is sent to a regeneration tower (not shown), and carbon dioxide contained in the absorption liquid 156 is removed and recycled.

上述のガス化システムの運転方法に関する特徴をまとめると、以下のようになる。   The characteristics relating to the operation method of the gasification system described above are summarized as follows.

二酸化炭素除去設備60の上流側における生成ガスの流量及び組成並びに二酸化炭素除去設備60の下流側における生成ガスの組成を用いて炭素系燃料1に含まれる炭素の回収率を算出する工程と、この炭素の回収率に応じて二酸化炭素濃度の目標値を調整する工程とを含む。   Calculating the recovery rate of carbon contained in the carbon-based fuel 1 using the flow rate and composition of the product gas upstream of the carbon dioxide removal facility 60 and the composition of the product gas downstream of the carbon dioxide removal facility 60; Adjusting the target value of the carbon dioxide concentration according to the carbon recovery rate.

ガス化設備10及びガス化設備10の上流側の温度、水の供給量及びシフト反応設備40の下流側の生成ガス流量を用いてシフト反応設備40の上流側の生成ガス温度を予測する工程と、この生成ガス温度をシフト反応設備40への通ガス可能温度以上とすることができる水の供給量の上限値を算出する工程と、この上限値以下の範囲で水の供給量を変化させる工程とを含む。   Predicting the gasification facility 10 and the temperature upstream of the gasification facility 10, the amount of water supplied, and the product gas flow rate downstream of the shift reaction facility 40 to predict the product gas temperature upstream of the shift reaction facility 40; , A step of calculating an upper limit value of the amount of water that can make the generated gas temperature equal to or higher than a temperature at which gas can be passed to the shift reaction facility 40, and a step of changing the amount of supplied water within the range of the upper limit value Including.

本実施例においては、炭素系燃料に含まれる炭素の回収率の目標値が高い場合のガス化システム及びその運用方法に関するものである。ここで、炭素の回収率の目標値が高い場合とは、可能な限り炭素の回収を行うことを想定し、炭素の回収率の目標値を約90%に設定する場合をいう。   The present embodiment relates to a gasification system and a method for operating the gasification system when the target value of the recovery rate of carbon contained in the carbon-based fuel is high. Here, the case where the target value of the carbon recovery rate is high refers to the case where the target value of the carbon recovery rate is set to about 90%, assuming that carbon is recovered as much as possible.

図5は、本発明による実施例2のガス化システムの設備及び流路を模式的に示す構成図である。図6は、本発明による実施例2のガス化システムの信号配線を模式的に示す構成図である。   FIG. 5 is a configuration diagram schematically showing equipment and flow paths of the gasification system according to the second embodiment of the present invention. FIG. 6 is a configuration diagram schematically showing signal wiring of the gasification system according to the second embodiment of the present invention.

本実施例においては、図3及び図4に示すガス化システムと同様、熱回収設備20を用いない。   In the present embodiment, the heat recovery equipment 20 is not used as in the gasification system shown in FIGS. 3 and 4.

図5に示すように、本実施例のガス化システムは、上流側から、ガス化設備10、脱塵設備30、水洗塔51、COS転化器54、シフト反応設備40、硫化水素除去設備53及び二酸化炭素除去設備60を含む構成となっている。水洗塔51は、排水処理設備52と接続され、排水処理設備52にて処理された循環水6を水洗塔51に供給させるようになっている。   As shown in FIG. 5, the gasification system of the present embodiment has a gasification facility 10, a dust removal facility 30, a water washing tower 51, a COS converter 54, a shift reaction facility 40, a hydrogen sulfide removal facility 53, and an upstream side. The carbon dioxide removal facility 60 is included. The flush tower 51 is connected to the waste water treatment facility 52 so that the circulating water 6 treated in the waste water treatment facility 52 is supplied to the flush tower 51.

また、図6においては、循環水6の量を、弁73の開度を制御装置70で調節するようになっている。   In FIG. 6, the amount of the circulating water 6 is adjusted by the control device 70 with the opening degree of the valve 73.

炭素の回収率の目標値が高い場合、シフト反応に必要な水蒸気濃度も高い。また、必要な水蒸気量も多い。このため、ガス化設備10で製造された生成ガスに接触させる水の量が多い。このため、生成ガスの温度の低下が大きく、ガス化設備10の下流で生成ガスの熱を回収する余地がない。このため、サイクロン230を有する脱塵設備30に生成ガスを導入して比較的大きい微粒子を除去した後、下流側のシフト反応設備40に供給する。   When the target value of the carbon recovery rate is high, the water vapor concentration necessary for the shift reaction is also high. Also, a large amount of water vapor is required. For this reason, there is much quantity of the water contacted with the product gas manufactured with the gasification equipment 10. FIG. For this reason, the temperature of the product gas is greatly reduced, and there is no room for recovering the heat of the product gas downstream of the gasification facility 10. For this reason, the generated gas is introduced into the dedusting facility 30 having the cyclone 230 to remove relatively large particles, and then supplied to the shift reaction facility 40 on the downstream side.

本実施例においては、底部に液溜り252を有する水洗塔51を用い、生成ガスと水とを接触させる方式用いている。   In the present embodiment, a washing tower 51 having a liquid reservoir 252 at the bottom is used, and the generated gas is brought into contact with water.

この水洗塔51の上流側には、ベンチュリースクラバー251が設けてあり、このベンチュリースクラバー251に補給する水4を導入して水4を微粒化することにより、生成ガスに含まれる微粒子の除去効率を向上させている。水4と混合された生成ガスは、水洗塔51の下部の液溜り252に導入される。水洗塔51に補給する水4は、水洗塔51の上部から供給してもよい。この水4の供給量は、水供給弁72の開度を調節することにより変化させる。   A venturi scrubber 251 is provided on the upstream side of the water washing tower 51. By introducing the water 4 to be supplied to the venturi scrubber 251 and atomizing the water 4, the removal efficiency of the fine particles contained in the generated gas is improved. It is improving. The product gas mixed with the water 4 is introduced into a liquid pool 252 at the bottom of the washing tower 51. The water 4 to be supplied to the washing tower 51 may be supplied from the upper part of the washing tower 51. The supply amount of the water 4 is changed by adjusting the opening degree of the water supply valve 72.

また、塩化水素などを吸収した水洗塔51の排水5は、排水処理設備52に送り、塩化水素を除去して循環水6とし、水洗塔51の上部から供給して再利用する。水洗塔51の内部には、棚段253が設けてあり、生成ガスに含まれる塩化水素などの微量成分の除去効率を向上させている。ここで、排水5の流量は、弁74により調節できるようになっている。   The drainage water 5 of the washing tower 51 that has absorbed hydrogen chloride or the like is sent to the wastewater treatment facility 52 to remove the hydrogen chloride to form the circulating water 6, which is supplied from the upper part of the washing tower 51 and reused. A shelf 253 is provided inside the flush tower 51 to improve the removal efficiency of trace components such as hydrogen chloride contained in the product gas. Here, the flow rate of the waste water 5 can be adjusted by a valve 74.

さらに、排水処理設備52のチャーを含有する水をチャー含有水7としてガス化炉101へ供給し、チャーをガス化するとともに、水分をガス化炉101におけるシフト反応に利用する。ここで、排水処理設備52で処理する排水5の上澄みを循環水6とし、チャーの濃度が高い水をチャー含有水7とすることが望ましい。   Furthermore, the water containing the char of the waste water treatment facility 52 is supplied to the gasification furnace 101 as the char-containing water 7 to gasify the char and use the moisture for the shift reaction in the gasification furnace 101. Here, it is desirable that the supernatant of the wastewater 5 to be treated by the wastewater treatment facility 52 is the circulating water 6 and the water having a high char concentration is the char-containing water 7.

これにより、チャーの処理も容易となり、補給する水の量を低減することができる。   Thereby, the treatment of char becomes easy, and the amount of water to be replenished can be reduced.

炭素系燃料1及び酸化剤2の供給方式は、実施例1と同様である。   The supply system of the carbon-based fuel 1 and the oxidant 2 is the same as that in the first embodiment.

本実施例においては、上述のように、チャー含有水7をガス化炉101に供給することにより、ガス化炉101におけるシフト反応に必要な水分を供給している。ガス化設備10を出た生成ガスは、脱塵設備30に送られ、生成ガスに含まれる未燃石炭粒子が除去される。この未燃石炭粒子はガス化炉へリサイクルされる。微粒子を除去した生成ガスは、上記の水洗塔51へ送られる。   In the present embodiment, as described above, by supplying the char-containing water 7 to the gasification furnace 101, moisture necessary for the shift reaction in the gasification furnace 101 is supplied. The product gas exiting the gasification facility 10 is sent to the dust removal facility 30, where unburned coal particles contained in the product gas are removed. The unburned coal particles are recycled to the gasifier. The product gas from which the fine particles have been removed is sent to the water washing tower 51.

水洗塔51の出口の生成ガスに含まれる水蒸気量を、シフト反応に必要な量とするため、以下の方法で制御装置70を用いて制御する。   In order to make the amount of water vapor contained in the product gas at the outlet of the water-washing tower 51 necessary for the shift reaction, control is performed using the control device 70 in the following manner.

まず、シフト反応設備40における水蒸気と一酸化炭素との比、炭素系燃料1の供給量、酸化剤2の供給量、炭素系燃料1の組成を用い、二酸化炭素濃度の目標値を得るために必要な生成ガス中の水蒸気量(必要水蒸気量)を求める。   First, in order to obtain the target value of the carbon dioxide concentration using the ratio of water vapor and carbon monoxide in the shift reaction facility 40, the supply amount of the carbon-based fuel 1, the supply amount of the oxidant 2, and the composition of the carbon-based fuel 1. The amount of water vapor in the required product gas (required water vapor amount) is determined.

つぎに、水洗塔51の出口における生成ガスの温度及び圧力をそれぞれ、水洗塔出口温度測定部88及び水洗塔出口圧力測定部85で測定した結果を用いて生成ガスが水洗塔51を通過した後の水蒸気濃度を予測(算出)し、この時の生成ガス中に含まれる水蒸気量を求める。   Next, after the product gas has passed through the water washing tower 51 using the results obtained by measuring the temperature and pressure of the product gas at the outlet of the water washing tower 51 by the water washing tower outlet temperature measuring unit 88 and the water washing tower outlet pressure measuring unit 85, respectively. Is estimated (calculated), and the amount of water vapor contained in the product gas at this time is obtained.

この水蒸気量が上記の必要水蒸気量より小さい場合は、水供給弁73の開度を低くして水洗塔51での循環水6の量を減らし、水洗塔51下部の液溜り252の温度を上げる。また、上記の必要水蒸気量より大きい場合は、水供給弁73の開度を高くして循環水6の量を増やし、液溜り252の温度を下げる。   When this amount of water vapor is smaller than the above required amount of water vapor, the opening of the water supply valve 73 is lowered to reduce the amount of circulating water 6 in the water washing tower 51 and the temperature of the liquid pool 252 at the bottom of the water washing tower 51 is raised. . If the amount of water vapor is larger than the required amount of water vapor, the opening of the water supply valve 73 is increased to increase the amount of circulating water 6 and the temperature of the liquid reservoir 252 is decreased.

水洗塔51には、この循環水6とは別に、水4(補給水)を供給する必要がある。これは、生成ガスと接触して水蒸気となって水洗塔51の下流へ流出する水分を補う必要があるためである。水4の量は、水洗塔51で生成ガスに添加する必要がある水の量と同等とするが、必要に応じて水洗塔51下部の液溜り252の高さが一定になるように調整する。   In addition to the circulating water 6, it is necessary to supply water 4 (make-up water) to the flush tower 51. This is because it is necessary to make up for the moisture that comes into contact with the product gas to form water vapor and flows out downstream of the washing tower 51. The amount of water 4 is equal to the amount of water that needs to be added to the product gas in the flush tower 51, but is adjusted so that the height of the liquid reservoir 252 at the bottom of the flush tower 51 is constant as necessary. .

なお、水洗塔51の出口における水蒸気と一酸化炭素との比を目標値まで上げることができない場合、シフト反応設備40に水蒸気8を供給することにより、シフト反応で不足する水蒸気を補う。   In addition, when the ratio of the water vapor | steam and carbon monoxide in the exit of the water-washing tower 51 cannot be raised to a target value, the water vapor | steam insufficient by a shift reaction is supplemented by supplying the water vapor | steam 8 to the shift reaction equipment 40.

水洗塔51の下部からは、上記の循環水6の量と同等の水を抜き出すが、必要に応じて、水洗塔51の液溜り252の高さが一定になるように調整する。水洗塔51から抜き出した水5は排水処理設備52に導く。凝集沈降装置(図示せず)を用い、未燃の石炭粒子を含む排水を濃縮してガス化炉101へリサイクルする。未燃の石炭粒子が少ない上澄み液は、微粒子を除去し、さらに塩化水素などの微量成分を除去した後に、水洗塔51へリサイクルする。   Although water equivalent to the amount of the circulating water 6 is extracted from the lower part of the flush tower 51, the height of the liquid reservoir 252 of the flush tower 51 is adjusted to be constant as necessary. The water 5 extracted from the water washing tower 51 is guided to the waste water treatment facility 52. Using a coagulation sedimentation apparatus (not shown), the waste water containing unburned coal particles is concentrated and recycled to the gasification furnace 101. The supernatant liquid with few unburned coal particles is recycled to the water washing tower 51 after removing fine particles and further removing trace components such as hydrogen chloride.

二酸化炭素濃度の目標値の設定方法は、実施例1と同様である。また、液溜り252の出口における生成ガス温度がシフト反応設備40への通ガス可能温度以上となる範囲で循環水6の量を変化させる方法なども、実施例1と同様である。   The method for setting the target value of the carbon dioxide concentration is the same as in the first embodiment. Further, the method of changing the amount of the circulating water 6 in a range in which the generated gas temperature at the outlet of the liquid reservoir 252 is equal to or higher than the temperature at which gas can be passed to the shift reaction facility 40 is the same as in the first embodiment.

上述のガス化システムの運転方法に関する特徴をまとめると、以下のようになる。   The characteristics relating to the operation method of the gasification system described above are summarized as follows.

ガス化設備10の下流側に、生成ガスと水とを接触させるための水溜り252を有する水洗塔51を設け、水洗塔51と排水処理設備52とを接続し、排水処理設備52にて処理された循環水6を水洗塔51に供給させる構成を有するガス化システムの運転方法であって、炭素系燃料供給量、酸化剤供給量、炭素系燃料1の組成、及び、シフト反応設備40における水蒸気と一酸化炭素との比を用いて、シフト反応設備40における必要水蒸気量を算出する工程と、ガス化設備10の下流側の生成ガス温度並びに水洗塔51の生成ガスの温度及び圧力を用いて、生成ガスが水溜り252を通過した後の水蒸気濃度を予測し、この時の生成ガスに含まれる水蒸気量を算出する工程と、この水蒸気量を必要水蒸気量に近づけるために循環水6の流量の制御を行う工程とを含む。   A flush tower 51 having a water reservoir 252 for bringing the generated gas and water into contact with each other is provided on the downstream side of the gasification equipment 10. The flush tower 51 and the waste water treatment equipment 52 are connected to each other and treated by the waste water treatment equipment 52. The operation method of the gasification system having a configuration in which the recycled water 6 is supplied to the water washing tower 51, in the carbon-based fuel supply amount, the oxidant supply amount, the composition of the carbon-based fuel 1, and the shift reaction facility 40. Using the ratio of water vapor and carbon monoxide, the step of calculating the required water vapor amount in the shift reaction facility 40, the product gas temperature downstream of the gasification facility 10, and the temperature and pressure of the product gas in the flush tower 51 are used. Thus, the water vapor concentration after the product gas has passed through the water pool 252 is predicted, the amount of water vapor contained in the product gas at this time is calculated, and in order to bring this water vapor amount closer to the required water vapor amount, Flow And a step of controlling the.

シフト反応設備40の上流側の生成ガス温度を測定し、この生成ガス温度をシフト反応設備40への通ガス可能温度以上となる範囲で水溜り252での循環水6の流量を変化させる工程を含む。   A step of measuring the temperature of the product gas upstream of the shift reaction facility 40 and changing the flow rate of the circulating water 6 in the water reservoir 252 within a range where the product gas temperature is equal to or higher than the temperature at which gas can be passed to the shift reaction facility 40. Including.

1:炭素系燃料、2:酸化剤、3:製品ガス、4:水、5:排水、6:循環水、7:チャー含有水、8:水蒸気、10:ガス化設備、20:熱回収設備、30:脱塵設備、40:シフト反応設備、50:ガス精製設備、51:水洗塔、52:排水処理設備、53:硫化水素除去設備、54:COS転化器、60:二酸化炭素除去設備、70:制御装置、113:水供給部。   1: Carbon fuel, 2: Oxidizing agent, 3: Product gas, 4: Water, 5: Drainage, 6: Circulating water, 7: Char-containing water, 8: Steam, 10: Gasification equipment, 20: Heat recovery equipment 30: Dedusting equipment, 40: Shift reaction equipment, 50: Gas purification equipment, 51: Water washing tower, 52: Waste water treatment equipment, 53: Hydrogen sulfide removal equipment, 54: COS converter, 60: Carbon dioxide removal equipment, 70: Control device, 113: Water supply unit.

Claims (2)

炭素系燃料をガス化するためのガス化炉、前記炭素系燃料を供給するための燃料供給部、及び、酸化剤を供給するための酸化剤供給部を含み、かつ、シフト反応に利用するための水を供給するための水供給配管、及び、この水供給配を接続する水供給部を具備するガス化設備と、このガス化設備の下流側に、生成ガスと水とを接触させるための水溜りを有する水洗塔と、前記ガス化設備で発生する二酸化炭素を除去するための二酸化炭素除去設備と、前記水洗塔に接続された排水処理設備とを含み、前記ガス化設備と前記二酸化炭素除去設備との間にシフト反応設備を有し、前記排水処理設備にて処理された循環水を前記水洗塔に供給する構成を有するガス化システムの運転方法であって、前記シフト反応設備の下流側における生成ガスの組成を用いて前記シフト反応設備における水蒸気と一酸化炭素との比を算出する工程と、この比、炭素系燃料供給量、酸化剤供給量及び前記炭素系燃料の組成を用いて前記水の供給量を調節する工程と、前記炭素系燃料供給量、前記酸化剤供給量、前記炭素系燃料の組成及び前記比を用いて、前記シフト反応設備における必要水蒸気量を算出する工程と、前記ガス化設備の下流側の生成ガス温度並びに前記水洗塔の生成ガスの温度及び圧力を用いて、前記生成ガスが前記水溜りを通過した後の水蒸気濃度を予測し、この時の生成ガスに含まれる水蒸気量を算出する工程と、この水蒸気量を前記必要水蒸気量に近づけるために前記循環水量の制御を行う工程とを含むことを特徴とするガス化システムの運転方法。 A gasification furnace for gasifying carbon-based fuel, a fuel supply unit for supplying the carbon-based fuel, and an oxidant supply unit for supplying an oxidant, and for use in a shift reaction water water supply pipe for supplying, and, a gasification facility having a water supply unit for connecting the water supply piping, downstream of the gasification facility, for contacting the product gas and water A water washing tower having a water reservoir, a carbon dioxide removal equipment for removing carbon dioxide generated in the gasification equipment, and a wastewater treatment equipment connected to the water washing tower, the gasification equipment and the carbon dioxide. have a shift reaction equipment between the carbon removal facilities, the wastewater treatment the treated circulating water method of operating a gasification system having the configuration supplied to the washing tower at facilities, the shift reaction equipment Of the product gas downstream And calculating the ratio of water vapor and carbon monoxide in the shift reaction facility using the composition, and supplying the water using the ratio, the carbon-based fuel supply amount, the oxidant supply amount, and the composition of the carbon-based fuel. Adjusting the amount, using the carbon-based fuel supply amount, the oxidant supply amount, the composition of the carbon-based fuel, and the ratio, calculating a required water vapor amount in the shift reaction facility, and the gasification Using the product gas temperature on the downstream side of the facility and the temperature and pressure of the product gas in the washing tower, the water vapor concentration after the product gas has passed through the water pool is predicted, and the water vapor contained in the product gas at this time A method for operating a gasification system, comprising: a step of calculating an amount; and a step of controlling the amount of circulating water so that the amount of water vapor approaches the amount of water vapor required . 前記シフト反応設備の上流側の生成ガス温度を測定し、この生成ガス温度を前記シフト反応設備への通ガス可能温度以上となる範囲で前記水溜りでの前記循環水量を変化させる工程を含むことを特徴とする請求項記載のガス化システムの運転方法。 Measuring the temperature of the product gas upstream of the shift reaction facility, and changing the amount of circulating water in the water reservoir in a range where the product gas temperature is equal to or higher than the temperature at which gas can be passed to the shift reaction facility. The method for operating a gasification system according to claim 1 .
JP2009261935A 2009-11-17 2009-11-17 Gasification system and operation method thereof Active JP5535587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009261935A JP5535587B2 (en) 2009-11-17 2009-11-17 Gasification system and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009261935A JP5535587B2 (en) 2009-11-17 2009-11-17 Gasification system and operation method thereof

Publications (2)

Publication Number Publication Date
JP2011105843A JP2011105843A (en) 2011-06-02
JP5535587B2 true JP5535587B2 (en) 2014-07-02

Family

ID=44229685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009261935A Active JP5535587B2 (en) 2009-11-17 2009-11-17 Gasification system and operation method thereof

Country Status (1)

Country Link
JP (1) JP5535587B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014015499A (en) * 2012-07-06 2014-01-30 Hitachi Ltd Gasification method and system of the same, and coal gasification composite electricity generation method and system of the same
CN102965154B (en) * 2012-12-12 2017-05-24 天津渤化永利化工股份有限公司 Improved ultrahigh-pressure nitrogen and carbon dioxide switching method
CN103555371B (en) * 2013-11-15 2015-04-08 华东理工大学 Method for improving gasification efficiency of slurry feed gasification device
CN113214873B (en) * 2021-03-30 2022-02-08 宁夏神耀科技有限责任公司 Dry coal powder entrained flow gasifier and dry coal powder gasification method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798949B2 (en) * 1988-04-25 1995-10-25 株式会社日立製作所 Integrated coal gasification combined cycle system
JPH09279163A (en) * 1996-04-11 1997-10-28 Ishikawajima Harima Heavy Ind Co Ltd Complex electricity generating system for removing co2 and gasifying coal

Also Published As

Publication number Publication date
JP2011105843A (en) 2011-06-02

Similar Documents

Publication Publication Date Title
JP4395542B1 (en) High purity CO2 recovery method and system from gasification gas
TWI491726B (en) The method of gas purification, coal gasification plant and shift catalyst
JP6304856B2 (en) Biomass gasification method using improved three-column circulating fluidized bed
JP5535587B2 (en) Gasification system and operation method thereof
JP5594370B2 (en) Product gas reforming method and apparatus
JP5646966B2 (en) Method and apparatus for producing gas mainly containing hydrogen
CN103421544A (en) Gasification and generation system of carbon fuel
WO2019073722A1 (en) Methane production system and methane production method
JP6139845B2 (en) Carbon fuel gasification system
JP2020055946A (en) Gasification gas production apparatus, and production method of gasification gas
JP5379092B2 (en) Gasification power generation system
JPH11104451A (en) Purification of gas and apparatus for purifying gas
TWI500888B (en) Gasification method, gasification system and integrated coal gasification combined cycle
JP2020055947A (en) Gasification gas production apparatus, and production method of gasification gas
JP5514133B2 (en) CO2 recovery method and CO2 recovery device
JP7140726B2 (en) Carbon-based fuel gasification power generation system
Sato et al. System for recovering high-purity CO 2 from gasification gas containing CO, CO 2, COS and H 2 S
Sandu et al. ASSESSMENT OF VARIOUS WATER-GAS-SHIFT PROCESS CONFIGURATIONS APPLIED TO PARTIAL OXIDATION ENERGY CONVERSION PROCESSES WITH CARBON CAPTURE
JP2010241949A (en) Method and device for purifying coal gasification gas
JP2005239905A (en) Gas cleaning apparatus and process, gasification system, gasification power generation system
CORMOS et al. TRANSITION TO LOW CARBON ECONOMY: CARBON CAPTURE APPROACHES TO BE APPLIED IN ENERGY-INTENSIVE INDUSTRIAL APPLICATIONS
Cormos et al. Evaluation of energy vectors poly-generation schemes based on solid fuel gasification processes with Carbon Capture and Storage (CCS)
JP2012041438A (en) Gasification system
JP2012219156A (en) Gasification system for carbon fuel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140423

R150 Certificate of patent or registration of utility model

Ref document number: 5535587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350