JP5535511B2 - Method for manufacturing hermetic fluid machine and hermetic fluid machine - Google Patents

Method for manufacturing hermetic fluid machine and hermetic fluid machine Download PDF

Info

Publication number
JP5535511B2
JP5535511B2 JP2009087512A JP2009087512A JP5535511B2 JP 5535511 B2 JP5535511 B2 JP 5535511B2 JP 2009087512 A JP2009087512 A JP 2009087512A JP 2009087512 A JP2009087512 A JP 2009087512A JP 5535511 B2 JP5535511 B2 JP 5535511B2
Authority
JP
Japan
Prior art keywords
fluid machine
fluid
machine
fixedly installed
stage compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009087512A
Other languages
Japanese (ja)
Other versions
JP2010236488A (en
Inventor
央幸 木全
創 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2009087512A priority Critical patent/JP5535511B2/en
Priority to PCT/JP2010/055159 priority patent/WO2010113735A1/en
Priority to EP10758508.5A priority patent/EP2330301B1/en
Publication of JP2010236488A publication Critical patent/JP2010236488A/en
Application granted granted Critical
Publication of JP5535511B2 publication Critical patent/JP5535511B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/005Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of dissimilar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/60Assembly methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/60Assembly methods
    • F04C2230/602Gap; Clearance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings

Description

本発明は、密閉容器内に複数組の流体機械が支持部材を介して固定設置され、共通の回転軸を介して連結されている密閉型流体機械の製造方法および密閉型流体機械に関するものである。   The present invention relates to a method for manufacturing a hermetic fluid machine in which a plurality of sets of fluid machines are fixedly installed in a hermetic container via a support member and connected via a common rotating shaft, and to a hermetic fluid machine. .

密閉容器内に複数組の流体機械が固定設置されている密閉型流体機械として、複数組の流体機械がそれぞれ膨張機とされた多段膨張機、流体機械がそれぞれ膨張機および圧縮機とされた膨張機一体型圧縮機、流体機械がそれぞれ低段側圧縮機および高段側圧縮機とされた多段圧縮機、流体機械がそれぞれ圧縮機とされた多気筒圧縮機等が知られている。これらの密閉型流体機械は、一般に密閉容器の内部に上下に所定の間隔を隔てて複数組の流体機械(膨張機、圧縮機等)が固定設置されており、その間に電動モータが設置され、該電動モータのロータに結合されている共通の回転軸を介して互いに連結された構成とされている(例えば、特許文献1ないし3参照)。   As a closed type fluid machine in which multiple sets of fluid machines are fixedly installed in an airtight container, a multistage expander in which multiple sets of fluid machines are used as expanders, and an expansion in which fluid machines are used as expanders and compressors, respectively. There are known a compressor-integrated compressor, a multi-stage compressor in which the fluid machine is a low-stage compressor and a high-stage compressor, respectively, a multi-cylinder compressor in which the fluid machine is a compressor, and the like. In these sealed fluid machines, generally, a plurality of sets of fluid machines (expanders, compressors, etc.) are fixedly installed in a sealed container at a predetermined interval in the vertical direction, and an electric motor is installed between them. The electric motors are coupled to each other via a common rotating shaft coupled to the rotor of the electric motor (see, for example, Patent Documents 1 to 3).

上記のような密閉型流体機械において、密閉容器に対する各流体機械の固定は、各流体機械の構成部材である軸受部材、シリンダ部材等の支持部材を、密閉容器に対して円周上の複数箇所(例えば、3ないし4箇所)で外周側から溶接(栓溶接)ないしはカシメによって固定設置する方法が一般的に採用されている。   In the above-described closed type fluid machine, each fluid machine is fixed to the sealed container by supporting members such as bearing members and cylinder members that are constituent members of each fluid machine at a plurality of positions on the circumference with respect to the sealed container. In general (for example, 3 to 4 locations), a method of fixing and installing from the outer peripheral side by welding (plug welding) or caulking is generally employed.

特開2008−163894号公報(図2参照)JP 2008-163894 A (see FIG. 2) 特開2008−163938号公報(図2参照)JP 2008-163938 A (see FIG. 2) 特開2009−19591号公報(図1参照)JP 2009-19591 A (see FIG. 1)

しかしながら、上記の密閉型流体機械では、密閉容器内に流体機械が所定の間隔を隔てて2組以上設けられることから、その間に結合される回転軸の軸長が長くなり、軸芯がズレ易くなるという問題がある。特に、複数組の流体機械を密閉容器内に溶接(栓溶接)ないしはカシメによって固定設置するものでは、溶接時の熱歪みやカシメ時の歪みによって軸芯のズレが顕著になるという傾向がある。このため、組み立て精度が低下し、各流体機械の性能にも影響を及ぼしてしまうという問題があった。   However, in the above-described sealed fluid machine, two or more sets of fluid machines are provided in the sealed container at a predetermined interval, so that the shaft length of the rotating shaft coupled therebetween becomes long, and the shaft core is easily displaced. There is a problem of becoming. In particular, in a case where a plurality of sets of fluid machines are fixedly installed in a sealed container by welding (plug welding) or caulking, there is a tendency that the misalignment of the shaft core becomes remarkable due to thermal distortion during welding and distortion during caulking. For this reason, there existed a problem that an assembly precision fell and it had influence on the performance of each fluid machine.

本発明は、このような事情に鑑みてなされたものであって、回転軸の軸長が長くなってもその軸芯のズレを低減もしくは防止し、複数組の流体機械を精度よく組み立て高性能化することができる密閉型流体機械の製造方法および密閉型流体機械を提供することを目的とする。   The present invention has been made in view of such circumstances, and reduces or prevents misalignment of the shaft core even when the shaft length of the rotating shaft becomes long, and assembles a plurality of sets of fluid machines with high performance. It is an object of the present invention to provide a method for manufacturing a hermetic fluid machine and a hermetic fluid machine.

上記した課題を解決するために、本発明の密閉型流体機械の製造方法および密閉型流体機械は、以下の手段を採用する。
すなわち、本発明にかかる密閉型流体機械の製造方法は、密閉容器内に所定の間隔を隔てて複数組の流体機械が、それぞれ支持部材を介して溶接またはカシメにより固定設置され、各々の流体機械が共通の回転軸を介して連結されている密閉型流体機械の製造方法において、前記複数組の流体機械の中の1つである第1の流体機械がロータリ式流体機械とされ、その前記支持部材と前記密閉容器の内周との間の隙間をS1、他の1つである第2の流体機械がスクロール式流体機械とされ、その前記支持部材と前記密閉容器の内周との間の隙間をS2としたとき、S1>S2とされ、前記隙間S2が小さくされている前記第2の流体機械とされた前記スクロール式流体機械の前記支持部材を先に前記密閉容器内に固定設置した後、前記隙間S1が大きくされている前記第1の流体機械とされた前記ロータリ式流体機械の前記支持部材を前記密閉容器内に固定設置して前記複数組の流体機械を組み立てることを特徴とする。
In order to solve the above-described problems, the method for manufacturing a sealed fluid machine and the sealed fluid machine of the present invention employ the following means.
That is, in the method for manufacturing a hermetic fluid machine according to the present invention, a plurality of sets of fluid machines are fixedly installed in a hermetic container at predetermined intervals by welding or caulking, respectively. Are connected via a common rotating shaft, the first fluid machine which is one of the plurality of sets of fluid machines is a rotary fluid machine, and the support thereof A clearance between the member and the inner periphery of the sealed container is S1, and the other second fluid machine is a scroll fluid machine, and the space between the support member and the inner periphery of the sealed container is When the gap is S2, S1> S2, and the support member of the scroll type fluid machine, which is the second fluid machine in which the gap S2 is reduced, is fixedly installed in the sealed container first. After, the gap S1 Said support member is said is larger first fluid machine wherein the rotary fluid machine fixedly mounted to the closed container, characterized in that assembling the plurality of sets of the fluid machine.

本発明によれば、密閉容器内に所定の間隔を隔てて溶接またはカシメにより固定設置される複数組の流体機械の中の1つである第1の流体機械とされたロータリ式流体機械の支持部材と密閉容器の内周との間の隙間をS1、他の1つである第2の流体機械とされたスクロール式流体機械の支持部材と密閉容器の内周との間の隙間をS2としたとき、S1>S2とされ、隙間S2が小さくされている第2の流体機械とされたスクロール式流体機械の支持部材を先に密閉容器内に固定設置した後、隙間S1が大きくされている第1の流体機械とされたロータリ式流体機械の支持部材を密閉容器内に固定設置して複数組の流体機械を組み立てるようにしているため、複数組の流体機械を連結する共通の回転軸の軸長が長くなったとしても、先に支持部材と密閉容器の内周との間の隙間S2が小さくされている第2の流体機械とされたスクロール式流体機械の支持部材を密閉容器内に固定設置した後、支持部材と密閉容器の内周との間の隙間S1が大きくされている第1の流体機械とされたロータリ式流体機械の支持部材を、大きい隙間S1を使って軸芯を調整しながら密閉容器内に固定設置することができる。従って、軸長が長くなる回転軸の軸芯のズレを低減もしくは防止し、複数組の流体機械を精度よく組み立て高性能化することができる。 According to the present invention, the rotary fluid machine is supported as a first fluid machine that is one of a plurality of sets of fluid machines that are fixedly installed in a sealed container by welding or caulking at a predetermined interval. The clearance between the member and the inner periphery of the sealed container is S1, and the clearance between the support member of the scroll fluid machine that is the second fluid machine that is the other and the inner periphery of the sealed container is S2. Then, S1> S2 is satisfied, and after the support member of the scroll type fluid machine , which is the second fluid machine in which the gap S2 is reduced, is fixedly installed in the sealed container first, the gap S1 is enlarged. Since the support member of the rotary fluid machine , which is the first fluid machine, is fixedly installed in the sealed container so as to assemble a plurality of sets of fluid machines, a common rotating shaft for connecting the plurality of sets of fluid machines. Even if the shaft length becomes longer, it is supported first After fixing installed second fluid machine and has been scroll fluid machine of support members gap S2 is smaller in a sealed container between the inner circumference of the timber and the closed container, the support member and the sealing of the container A support member of a rotary fluid machine , which is a first fluid machine having a large gap S1 between the circumference, can be fixedly installed in a sealed container while adjusting the axis using the large gap S1. it can. Therefore, it is possible to reduce or prevent the deviation of the axis of the rotating shaft, which increases the axial length, and to assemble a plurality of sets of fluid machines with high accuracy and improve performance.

さらに、本発明の密閉型流体機械の製造方法は、上記の密閉型流体機械の製造方法において、前記密閉容器内に固定設置される前記複数組の流体機械間に電動モータを固定設置した後、該電動モータを挟んでその一方側に前記第1の流体機械とされた前記ロータリ式流体機械、他方側に前記第2の流体機械とされた前記スクロール式流体機械をそれぞれ固定設置して前記複数組の流体機械を組み立てることを特徴とする。 Furthermore, the manufacturing method of the hermetic fluid machine according to the present invention is the method of manufacturing a hermetic fluid machine, wherein the electric motor is fixedly installed between the plurality of sets of fluid machines fixedly installed in the hermetic container. The rotary fluid machine , which is the first fluid machine, is fixed on one side of the electric motor, and the scroll fluid machine , which is the second fluid machine, is fixedly installed on the other side. A set of fluid machines is assembled.

本発明によれば、密閉容器内に固定設置される複数組の流体機械間に電動モータを固定設置した後、該電動モータを挟んでその一方側に第1の流体機械とされたロータリ式流体機械、他方側に第2の流体機械とされたスクロール式流体機械をそれぞれ固定設置して複数組の流体機械を組み立てるようにしているため、複数組の流体機械間に電動モータが設置され、該電動モータにより共通の回転軸を介して複数組の流体機械が駆動可能とされている密閉型流体機械についても、各々第1および第2の流体機械の支持部材をその軸芯を調整して密閉容器内に固定することができる。従って、複数組の流体機械間に電動モータが設けられることにより、軸長が長くなる回転軸の軸芯のズレを低減もしくは防止し、複数組の流体機械を精度よく組み立てることができる。 According to the present invention, after an electric motor is fixedly installed between a plurality of sets of fluid machines fixedly installed in an airtight container, the rotary fluid is a first fluid machine on one side of the electric motor. Since the scroll fluid machine , which is the second fluid machine, is fixedly installed on the other side of the machine and the plurality of sets of fluid machines are assembled, an electric motor is installed between the plurality of sets of fluid machines. For a hermetic fluid machine in which a plurality of sets of fluid machines can be driven by a common rotating shaft by an electric motor, the supporting members of the first and second fluid machines are respectively sealed by adjusting their axis. It can be fixed in a container. Therefore, by providing the electric motor between the plurality of sets of fluid machines, it is possible to reduce or prevent the deviation of the axis of the rotary shaft, which has a long shaft length, and to assemble the plurality of sets of fluid machines with high accuracy.

さらに、本発明の密閉型流体機械の製造方法は、上記の密閉型流体機械の製造方法において、前記電動モータを挟んでその一方側に設置される前記第1の流体機械が前記ロータリ式流体機械とされ、該ロータリ式流体機械を前記密閉容器内に固定設置する前記支持部材が上部軸受とされていることを特徴とする。 Further, a manufacturing method of a closed type fluid machine of the present invention is the manufacturing method of the sealed fluid machine, the first fluid machine wherein the rotary fluid machine installed in one side across said electric motor is a, the support member for fixing installed the rotary type fluid machine in the closed container is characterized in that it is an upper bearing.

本発明によれば、電動モータを挟んでその一方側に設置される第1の流体機械がロータリ式流体機械とされ、該ロータリ式流体機械を密閉容器内に固定設置する支持部材が上部軸受とされているため、ロータリ式流体機械をシリンダ部材により密閉容器に固定したものに比べ、第1の流体機械とされたロータリ式流体機械を支持する支持部材と、第2の流体機械を支持する支持部材との間の支持部材間距離を減少することができる。従って、両支持部材間の芯出性を向上し、複数組の流体機械の組み立て精度を一段と向上することができる。 According to the present invention, the first fluid machine installed on one side of the electric motor is a rotary fluid machine, and the support member for fixing and installing the rotary fluid machine in the hermetic container is the upper bearing. Therefore, the support member for supporting the rotary fluid machine , which is the first fluid machine, and the support for supporting the second fluid machine, compared to the rotary fluid machine fixed to the sealed container by the cylinder member. The distance between the supporting members between the members can be reduced. Therefore, the centering property between the two support members can be improved, and the assembly accuracy of a plurality of sets of fluid machines can be further improved.

さらに、本発明にかかる密閉型流体機械は、密閉容器内に所定の間隔を隔てて複数組の流体機械が、それぞれ支持部材を介して溶接またはカシメにより固定設置され、各々の流体機械が共通の回転軸を介して連結されている密閉型流体機械において、前記複数組の流体機械の中の1つである第1の流体機械がロータリ式流体機械とされ、その前記支持部材と前記密閉容器の内周との間の隙間をS1、他の1つである第2の流体機械がスクロール式流体機械とされ、その前記支持部材と前記密閉容器の内周との間の隙間をS2としたとき、S1>S2とされていることを特徴とする。 Furthermore, in the sealed fluid machine according to the present invention, a plurality of sets of fluid machines are fixedly installed in the sealed container at predetermined intervals by welding or caulking, respectively, and each fluid machine is common. In a closed fluid machine connected via a rotary shaft, a first fluid machine that is one of the plurality of sets of fluid machines is a rotary fluid machine, and the support member and the sealed container are When the clearance between the inner periphery is S1 and the other second fluid machine is a scroll fluid machine, and the clearance between the support member and the inner periphery of the sealed container is S2. , S1> S2.

本発明によれば、密閉容器内に所定の間隔を隔てて溶接またはカシメにより固定設置される複数組の流体機械の中の1つである第1の流体機械とされたロータリ式流体機械の支持部材と密閉容器の内周との間の隙間をS1、他の1つである第2の流体機械とされたスクロール式流体機械の支持部材と密閉容器の内周との間の隙間をS2としたとき、S1>S2とされているため、複数組の流体機械を連結する共通の回転軸の軸長が長くなったとしても、先ず支持部材と密閉容器の内周との間の隙間S2が小さくされている第2の流体機械とされたスクロール式流体機械の支持部材を密閉容器内に固定設置した後、支持部材と密閉容器の内周との間の隙間S1が大きくされている第1の流体機械とされたロータリ式流体機械の支持部材を密閉容器内に固定設置することにより、大きい隙間S1を使って軸芯を調整しながら第1の流体機械とされたロータリ式流体機械の支持部材を密閉容器内に固定設置することが可能となる。従って、軸長が長くなる回転軸の軸芯のズレを低減もしくは防止し、複数組の流体機械を精度よく組み立て高性能化することができる。 According to the present invention, the rotary fluid machine is supported as a first fluid machine that is one of a plurality of sets of fluid machines that are fixedly installed in a sealed container by welding or caulking at a predetermined interval. The clearance between the member and the inner periphery of the sealed container is S1, and the clearance between the support member of the scroll fluid machine that is the second fluid machine that is the other and the inner periphery of the sealed container is S2. In this case, since S1> S2, the clearance S2 between the support member and the inner periphery of the sealed container is first set even if the shaft length of the common rotating shaft that connects a plurality of sets of fluid machines becomes longer. After the support member of the scroll type fluid machine , which is the second fluid machine that has been reduced, is fixedly installed in the sealed container, the gap S1 between the support member and the inner periphery of the sealed container is increased. the support member sealing capacity of the fluid machine and have been rotary fluid machine By fixedly installed within, it is possible to fix installing a first fluid machine and has been a rotary fluid machine of the support member while adjusting the axis with a large gap S1 in a sealed container. Therefore, it is possible to reduce or prevent the deviation of the axis of the rotating shaft, which increases the axial length, and to assemble a plurality of sets of fluid machines with high accuracy and improve performance.

さらに、本発明の密閉型流体機械は、上記の密閉型流体機械において、前記密閉容器内に所定の間隔を隔てて固定設置される前記複数組の流体機械間に、電動モータが固定設置され、該電動モータを挟んで一方側に前記第1の流体機械とされた前記ロータリ式流体機械、他方側に前記第2の流体機械とされた前記スクロール式流体機械がそれぞれ固定設置されていることを特徴とする。 Furthermore, the hermetic fluid machine of the present invention is the above-mentioned hermetic fluid machine, wherein an electric motor is fixedly installed between the plurality of sets of fluid machines that are fixedly installed in the sealed container at a predetermined interval. The rotary fluid machine that is the first fluid machine is fixed on one side of the electric motor, and the scroll fluid machine that is the second fluid machine is fixedly installed on the other side. Features.

本発明によれば、密閉容器内に所定の間隔を隔てて固定設置される複数組の流体機械間に、電動モータが固定設置され、該電動モータを挟んで一方側に第1の流体機械とされたロータリ式流体機械、他方側に第2の流体機械とされたスクロール式流体機械とされたスクロール式流体機械がそれぞれ固定設置されているため、複数組の流体機械間に電動モータが設置され、該電動モータにより共通の回転軸を介して複数組の流体機械が駆動可能とされている流体機械についても、各々第1および第2の流体機械の支持部材をその軸芯を調整して密閉容器内に固定することができる。従って、複数組の流体機械間に電動モータが設けられることにより、軸長が長くなる回転軸の軸芯のズレを低減もしくは防止し、複数組の流体機械を精度よく組み立てることができる。 According to the present invention, an electric motor is fixedly installed between a plurality of sets of fluid machines fixedly installed in a sealed container at a predetermined interval, and the first fluid machine and one side are sandwiched between the electric motors. Since the rotary fluid machine and the scroll fluid machine , which is the second fluid machine on the other side, are fixedly installed, an electric motor is installed between the plurality of fluid machines. Also, for fluid machines in which a plurality of sets of fluid machines can be driven by a common rotating shaft by the electric motor, the support members of the first and second fluid machines are respectively sealed by adjusting their axis It can be fixed in a container. Therefore, by providing the electric motor between the plurality of sets of fluid machines, it is possible to reduce or prevent the deviation of the axis of the rotary shaft, which has a long shaft length, and to assemble the plurality of sets of fluid machines with high accuracy.

さらに、本発明の密閉型流体機械は、上述のいずれかの密閉型流体機械において、前記第1の流体機械とされた前記ロータリ式流体機械が低段側圧縮機、前記第2の流体機械とされた前記スクロール式流体機械が高段側圧縮機とされ、前記低段側圧縮機で圧縮されることにより前記密閉容器内に吐出された中間圧のガスを、前記高段側圧縮機により吸入して高圧まで圧縮する多段圧縮機が構成されていることを特徴とする。 Furthermore, the hermetic fluid machine according to the present invention is the above-described hermetic fluid machine, wherein the rotary fluid machine as the first fluid machine is a low-stage compressor, the second fluid machine , The scroll fluid machine is a high-stage compressor, and the intermediate-pressure gas discharged into the hermetic container by being compressed by the low-stage compressor is sucked by the high-stage compressor. Thus, a multi-stage compressor that compresses to a high pressure is configured.

本発明によれば、第1の流体機械とされたロータリ式流体機械が低段側圧縮機、第2の流体機械とされたスクロール式流体機械が高段側圧縮機とされ、低段側圧縮機で圧縮されることにより密閉容器内に吐出された中間圧のガスを、高段側圧縮機により吸入して高圧まで圧縮する多段圧縮機が構成されているため、複数組の低段側および高段側圧縮機が共通の回転軸を介して駆動され、その軸長が長くなる多段圧縮機においても、各々低段側圧縮機および高段側圧縮機の支持部材をその軸芯を調整して密閉容器内に固定設置することができる。従って、軸長が長くなる共通の回転軸の軸芯のズレを低減もしくは防止し、複数組の低段側および高段側圧縮機を精度よく組み立て多段圧縮機を高性能化することができる。 According to the present invention, the rotary fluid machine that is the first fluid machine is the low-stage compressor, and the scroll fluid machine that is the second fluid machine is the high-stage compressor, and the low-stage compression is Since the multi-stage compressor is configured to suck the intermediate-pressure gas discharged into the sealed container by the compressor into the high-stage compressor and compress it to a high pressure, a plurality of sets of low-stage compressors and Even in a multi-stage compressor in which the high-stage compressor is driven through a common rotating shaft and the axial length thereof becomes long, the shaft cores of the support members of the low-stage compressor and the high-stage compressor are adjusted respectively. Can be fixed in a closed container. Therefore, it is possible to reduce or prevent the misalignment of the common rotating shaft with a long shaft length, and to assemble a plurality of sets of low-stage and high-stage compressors with high accuracy and to improve the performance of the multistage compressor.

さらに、本発明の密閉型流体機械は、上記の密閉型流体機械において、前記ロータリ式流体機械とされた前記低段側圧縮機の上部軸受が、該低段側圧縮機を前記密閉容器内に固定設置する前記支持部材とされていることを特徴とする。 Further, the sealed type fluid machine of the present invention, in a closed type fluid machine described above, the upper bearing of the rotary fluid machine and has been the low-stage compressor, the low-stage compressor into the closed vessel The support member is fixedly installed.

本発明によれば、ロータリ式流体機械とされた低段側圧縮機の上部軸受が、該低段側圧縮機を密閉容器内に固定支持する支持部材とされているため、ロータリ式流体機械とされた低段側圧縮機をシリンダ部材により密閉容器に固定したものに比べ、ロータリ式流体機械とされた低段側圧縮機を支持する支持部材と、スクロール式流体機械とされた高段側圧縮機を支持する支持部材との間の支持部材間距離を減少することができる。従って、両支持部材間の芯出性を向上し、複数組の流体機械の組み立て精度を一段と向上することができる。 According to the present invention, the upper bearing of the low-stage compressor is a rotary fluid machine, since it is a support member for fixing and supporting the low-stage compressor in a sealed container, a rotary fluid machine Compared to a fixed low-stage compressor fixed to a sealed container with a cylinder member, a support member that supports a low-stage compressor that is a rotary fluid machine and a high-stage compression that is a scroll fluid machine The distance between the support members between the support members supporting the machine can be reduced. Therefore, the centering property between the two support members can be improved, and the assembly accuracy of a plurality of sets of fluid machines can be further improved.

本発明によると、複数組の流体機械を連結する共通の回転軸の軸長が長くなったとしても、支持部材と密閉容器の内周との間の隙間S2が小さくされている第2の流体機械とされたスクロール式流体機械の支持部材を密閉容器内に固定設置した後、支持部材と密閉容器の内周との間の隙間S1が大きくされている第1の流体機械とされたロータリ式流体機械の支持部材を、大きい隙間S1を使って軸芯を調整しながら密閉容器内に固定設置することができるため、軸長が長くなる回転軸の軸芯のズレを低減もしくは防止し、複数組の流体機械を精度よく組み立て高性能化することができる。 According to the present invention, the second fluid in which the gap S2 between the support member and the inner periphery of the hermetic container is reduced even if the shaft length of the common rotating shaft that connects a plurality of sets of fluid machines becomes longer. After the support member of the scroll type fluid machine that is a machine is fixedly installed in the sealed container, the rotary type is the first fluid machine in which the gap S1 between the support member and the inner periphery of the sealed container is increased. Since the support member of the fluid machine can be fixedly installed in the sealed container while adjusting the shaft center using the large gap S1, the shaft core misalignment of the rotating shaft that increases the shaft length can be reduced or prevented. A set of fluid machines can be assembled with high precision and high performance.

本発明の第1実施形態に係る密閉型流体機械の縦断面図である。1 is a longitudinal sectional view of a hermetic fluid machine according to a first embodiment of the present invention. 図1に示す密閉型流体機械の部分拡大図である。FIG. 2 is a partially enlarged view of the hermetic fluid machine shown in FIG. 1.

以下に、本発明にかかる実施形態について、図面を参照して説明する。
[第1実施形態]
以下、本発明の第1実施形態について、図1および図2を用いて説明する。
図1には、本発明の第1実施形態に係る密閉型流体機械1の縦断面図が示されている。ここでは、密閉容器の内部に複数組の流体機械が設けられている密閉型流体機械1の一例について、密閉型多段圧縮機(密閉型流体機械)1を用いて説明することとする。本実施形態に係る密閉型多段圧縮機1は、中間ハウジング3、上部ハウジング4および下部ハウジング5からなる密閉容器2を備えている。これらのハウジング3,4,5は、中間ハウジング3の上下端に各々上部ハウジング4および下部ハウジング5が全周溶接されて一体化されることにより密閉容器2を構成している。下部ハウジング5には、複数の据付け脚6が設けられている。
Embodiments according to the present invention will be described below with reference to the drawings.
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1 and 2.
FIG. 1 is a longitudinal sectional view of a hermetic fluid machine 1 according to the first embodiment of the present invention. Here, an example of the hermetic fluid machine 1 in which a plurality of sets of fluid machines are provided inside the hermetic container will be described using a hermetic multistage compressor (hermetic fluid machine) 1. The hermetic multistage compressor 1 according to this embodiment includes a hermetic container 2 including an intermediate housing 3, an upper housing 4, and a lower housing 5. The housings 3, 4, and 5 constitute an airtight container 2 by integrally welding the upper housing 4 and the lower housing 5 to the upper and lower ends of the intermediate housing 3. The lower housing 5 is provided with a plurality of installation legs 6.

中間ハウジング3の中央部には、ステータ8およびロータ9からなる電動モータ7が中間ハウジング3に圧入されることによって固定設置されている。電動モータ7のロータ9には、下端部分が下記する第1の流体機械を構成する低段側圧縮機20に連結され、上端部分が後述する第2の流体機械を構成する高段側圧縮機30に連結されるように上下方向に延長されている、複数組の流体機械に対する共通の回転軸10が結合されている。   An electric motor 7 including a stator 8 and a rotor 9 is fixedly installed in the center of the intermediate housing 3 by being press-fitted into the intermediate housing 3. A lower end portion of the rotor 9 of the electric motor 7 is connected to a low-stage compressor 20 that constitutes a first fluid machine described below, and an upper-end compressor that constitutes a second fluid machine that will be described later. A common rotating shaft 10 for a plurality of sets of fluid machines, which are extended in the vertical direction so as to be connected to 30, is coupled.

電動モータ7の一方側(下方側)には、複数組の流体機械の中の1つである第1の流体機械を構成する低段側圧縮機(第1の流体機械)20が設けられている。この低段側圧縮機20は、シリンダ室を形成するシリンダ部材21と、該シリンダ部材21の上面および下面に設置される一対の上部軸受22および下部軸受23と、回転軸10の下方部に設けられているクランク部10Aに嵌合され、回転軸10の回転によりシリンダ室内周を回動するロータ24等とから構成されるロータリ式圧縮機(ローリングピストン式圧縮機)とされている。   On one side (lower side) of the electric motor 7, a low-stage compressor (first fluid machine) 20 constituting a first fluid machine that is one of a plurality of fluid machines is provided. Yes. The low-stage compressor 20 is provided in a cylinder member 21 forming a cylinder chamber, a pair of upper bearing 22 and lower bearing 23 installed on the upper and lower surfaces of the cylinder member 21, and a lower portion of the rotary shaft 10. The rotary compressor (rolling piston compressor) is configured to include a rotor 24 and the like that are fitted to the crank portion 10A and rotate around the cylinder chamber by rotation of the rotary shaft 10.

上記の低段側圧縮機(ロータリ式圧縮機)20は、公知のものであってよく、密閉容器2に対する支持部材を構成する上部軸受22を介して中間ハウジング3の下方部位に円周上の複数箇所、例えば3箇所で外周側から栓溶接25にて溶接(またはカシメ)されることにより固定設置されている。該低段側圧縮機(ロータリ式圧縮機)20は、外部から吸入配管を経て吸入した低圧の冷媒ガスを中間圧まで圧縮した後、密閉容器2内に吐き出すように構成されている。   The above-described low-stage compressor (rotary compressor) 20 may be a known one, and is circumferentially provided at a lower portion of the intermediate housing 3 via an upper bearing 22 that constitutes a support member for the sealed container 2. It is fixedly installed by welding (or caulking) at a plurality of places, for example, three places from the outer peripheral side by plug welding 25. The low-stage compressor (rotary compressor) 20 is configured to compress low-pressure refrigerant gas sucked from the outside through a suction pipe to an intermediate pressure and then discharge it into the hermetic container 2.

また、電動モータ7の他方側(上方側)には、複数組の流体機械の中の他の1つである第2の流体機械を構成する高段側圧縮機(第2の流体機械)30が設けられている。この高段側圧縮機30は、軸受部材31と、該軸受部材31に対し固定設置される固定スクロール32と、回転軸10の上端に設けられているクランクピン10Bに嵌合されるとともに、前記固定スクロール32に噛合されて圧縮室を形成し、回転軸10の回転により固定スクロール32の周りに公転旋回駆動される旋回スクロール33等とから構成されるスクロール式圧縮機とされている。   Further, on the other side (upper side) of the electric motor 7, a high-stage compressor (second fluid machine) 30 constituting a second fluid machine that is another one of the plurality of sets of fluid machines. Is provided. The high-stage compressor 30 is fitted to a bearing member 31, a fixed scroll 32 fixed to the bearing member 31, and a crank pin 10 </ b> B provided at the upper end of the rotary shaft 10. The scroll compressor is configured to be engaged with the fixed scroll 32 to form a compression chamber, and to be constituted by a revolving scroll 33 or the like that is driven to revolve around the fixed scroll 32 by the rotation of the rotary shaft 10.

上記の高段側圧縮機(スクロール式圧縮機)30は、公知のものであってよく、密閉容器2に対する支持部材を構成する軸受部材31を介して中間ハウジング3の上方部位に円周上の複数箇所、例えば3箇所で外周側から栓溶接35にて溶接(またはカシメ)されることにより固定設置されている。該高段側圧縮機(スクロール式圧縮機)30は、低段側圧縮機(ロータリ式圧縮機)20から密閉容器2内に吐き出された中間圧の冷媒ガスを吸入し、それを高圧まで圧縮した後、上部ハウジング4内に図示省略のディスチャージカバー等を介して区画形成されている吐出チャンバー36内に吐き出し、外部へと送出するように構成されている。   The high-stage compressor (scroll compressor) 30 may be a well-known compressor, and is circumferentially provided at an upper portion of the intermediate housing 3 via a bearing member 31 that constitutes a support member for the sealed container 2. It is fixedly installed by welding (or caulking) at a plurality of places, for example, three places from the outer peripheral side by plug welding 35. The high-stage compressor (scroll compressor) 30 sucks the intermediate-pressure refrigerant gas discharged from the low-stage compressor (rotary compressor) 20 into the sealed container 2 and compresses it to a high pressure. After that, it is configured to discharge into the discharge chamber 36 which is partitioned in the upper housing 4 via a discharge cover (not shown) and the like, and to send it out.

上記の密閉型多段圧縮機(密閉型流体機械)1において、第1の流体機械である低段側圧縮機(ロータリ式圧縮機)20および第2の流体機械である高段側圧縮機(スクロール式圧縮機)30を、密閉容器2(中間ハウジング3)内に固定設置して密閉型多段圧縮機1を製造する際、軸長が長くなっている回転軸10の軸芯のズレを低減もしくは防止するため、図2に示されるように、それぞれの支持部材である上部軸受22と密閉容器2(中間ハウジング3)の内周との間の隙間をS1、軸受部材31と密閉容器2(中間ハウジング3)の内周との間の隙間をS2としたとき、S1>S2に設定している。   In the above-described hermetic multistage compressor (sealed fluid machine) 1, a low stage compressor (rotary compressor) 20 that is a first fluid machine and a high stage compressor (scroll) that is a second fluid machine. When manufacturing the hermetic multistage compressor 1 by fixing the compressor 30) in the hermetic container 2 (intermediate housing 3), the axial misalignment of the rotary shaft 10 with a long shaft length is reduced or In order to prevent this, as shown in FIG. 2, the clearance between the upper bearing 22 as the respective support member and the inner periphery of the sealed container 2 (intermediate housing 3) is S1, and the bearing member 31 and the sealed container 2 (intermediate) When the gap between the inner periphery of the housing 3) is S2, S1> S2.

そして、製造時には、先ず隙間S2が小さくされている第2の流体機械である高段側圧縮機30の軸受部材31を密閉容器2内に栓溶接35(またはカシメ)により固定設置した後、隙間S1が大きくされている第1の流体機械である低段側圧縮機20の上部軸受22を、大きい隙間S1を使って軸芯を調整しながら密閉容器2内に栓溶接25(またはカシメ)により固定設置することによって、高段側圧縮機30および低段側圧縮機20を順次組み立てるようにしている。なお、上記の隙間S1,S2は、1例として小さい方の隙間S2が、0.1mm程度、大きい方の隙間S1が、隙間S2の2倍程度とされている。   At the time of manufacturing, first, the bearing member 31 of the high-stage compressor 30 which is the second fluid machine in which the gap S2 is reduced is fixedly installed in the sealed container 2 by plug welding 35 (or caulking), and then the gap The upper bearing 22 of the low-stage compressor 20, which is the first fluid machine having a large S1, is adjusted by plug welding 25 (or caulking) in the hermetic container 2 while adjusting the shaft core using a large gap S1. By fixedly installing, the high stage compressor 30 and the low stage compressor 20 are sequentially assembled. The gaps S1 and S2 are, for example, such that the smaller gap S2 is about 0.1 mm and the larger gap S1 is about twice the gap S2.

以上に説明の構成により、本実施形態によれば、以下の作用効果を奏する。
上記の如く、本実施形態に係る密閉型多段圧縮機(密閉型流体機械)1は、密閉容器2の中央部に電動モータ7を設置し、その両端側に第1の流体機械である低段側圧縮機20および第2の流体機械である高段側圧縮機30が設けられた構成とされているため、両者を連結する共通軸である回転軸10の軸長が長くなり、その軸芯がズレ易く、しかも支持部材である上部軸受22や軸受部材31の溶接またはカシメ時の影響を受けるため、その傾向が顕著となる。
With the configuration described above, according to the present embodiment, the following operational effects can be obtained.
As described above, the hermetic multistage compressor (sealed fluid machine) 1 according to the present embodiment has the electric motor 7 installed in the center of the hermetic container 2 and the first stage is a low stage that is the first fluid machine. Since the side compressor 20 and the high-stage compressor 30 that is the second fluid machine are provided, the axial length of the rotary shaft 10 that is a common shaft for connecting both is increased, and the shaft core thereof is increased. This tendency is prominent, and the tendency is prominent because it is affected by welding or caulking of the upper bearing 22 and the bearing member 31 that are support members.

しかるに、本実施形態では、密閉容器2内に所定の間隔を隔てて栓溶接25,35またはカシメによって固定設置される複数組の流体機械の1つである低段側圧縮機(第1の流体機械)20の上部軸受(支持部材)22と密閉容器2の内周との間の隙間をS1、他の1つである高段側圧縮機(第2の流体機械)30の軸受部材(支持部材)31と密閉容器2の内周との間の隙間をS2としたとき、S1>S2と設定し、隙間S2が小さくされている高段側圧縮機30の軸受部材31を先に密閉容器2内に栓溶接35またはカシメにより固定設置した後、隙間S1が大きくされている低段側圧縮機20の上部軸受22を密閉容器2内に栓溶接25またはカシメにより固定設置して複数組の流体機械である低段側圧縮機20および高段側圧縮機30を組み立てるようにしている。   However, in this embodiment, a low-stage compressor (first fluid) which is one of a plurality of sets of fluid machines fixedly installed in the sealed container 2 by plug welding 25, 35 or caulking at a predetermined interval. The clearance between the upper bearing (supporting member) 22 of the machine 20 and the inner periphery of the sealed container 2 is S1, and the bearing member (supporting) of the high-stage compressor (second fluid machine) 30 which is the other one. Member) 31 and when the clearance between the inner periphery of the sealed container 2 is S2, S1> S2 is set, and the bearing member 31 of the high-stage compressor 30 in which the gap S2 is reduced is first sealed container. The upper bearing 22 of the low-stage compressor 20 having a large gap S1 is fixedly installed in the sealed container 2 by plug welding 25 or caulking. Low stage compressor 20 and high stage compressor 3 which are fluid machines So that assembling.

このため、低段側圧縮機20および高段側圧縮機30を連結する共通の回転軸の軸長が長くなったとしても、先に密閉容器2の内周との間の隙間S2が小さくされている高段側圧縮機30の支持部材である軸受部材31を密閉容器2内に固定設置した後、密閉容器2の内周との間の隙間S1が大きくされている低段側圧縮機20の支持部材である上部軸受22を、大きい隙間S1を使って軸芯を調整しながら密閉容器2内に固定設置することができる。従って、軸長が長くなる回転軸10の軸芯のズレを低減もしくは防止し、複数組の流体機械である低段側圧縮機20および高段側圧縮機30を精度よく組み立て、それを高性能化することができる。   For this reason, even if the axial length of the common rotating shaft connecting the low-stage compressor 20 and the high-stage compressor 30 is increased, the gap S2 between the inner periphery of the sealed container 2 is reduced first. The low-stage compressor 20 in which the clearance S1 between the inner periphery of the hermetic container 2 is increased after the bearing member 31 that is a support member of the higher-stage compressor 30 is fixedly installed in the hermetic container 2. The upper bearing 22 that is a support member of the above can be fixedly installed in the hermetic container 2 while adjusting the shaft core using the large gap S1. Therefore, the axial misalignment of the rotary shaft 10 with a long shaft length is reduced or prevented, and the low-stage compressor 20 and the high-stage compressor 30 which are a plurality of sets of fluid machines are assembled with high accuracy, and the high performance is achieved. Can be

特に、第1の流体機械を構成する低段側圧縮機20がロータリ式圧縮機とされ、このロータリ式圧縮機20を密閉容器2内に固定設置する支持部材が上部軸受22とされているため、ロータリ式圧縮機20をシリンダ部材21により密閉容器2に固定設置したものに比べ、低段側圧縮機20を支持する上部軸受22と、高段側圧縮機30を支持する軸受部材31との間の支持部材間距離を減少することができる。これによって、上部軸受22と軸受部材31間の芯出性を向上し、複数組の流体機械である低段側圧縮機20および高段側圧縮機30の組み立て精度を一段と向上することができる。   In particular, the low-stage compressor 20 constituting the first fluid machine is a rotary compressor, and the support member that fixes and installs the rotary compressor 20 in the sealed container 2 is the upper bearing 22. Compared with the rotary compressor 20 fixed to the hermetic container 2 by the cylinder member 21, the upper bearing 22 that supports the low-stage compressor 20 and the bearing member 31 that supports the high-stage compressor 30. The distance between the support members can be reduced. Thereby, the centering property between the upper bearing 22 and the bearing member 31 can be improved, and the assembly accuracy of the low-stage compressor 20 and the high-stage compressor 30 which are a plurality of sets of fluid machines can be further improved.

また、第1の流体機械が低段側圧縮機20、第2の流体機械が高段側圧縮機30とされて密閉型多段圧縮機(密閉型流体機械)1が構成され、低段側圧縮機20で圧縮されることにより密閉容器2内に吐出された中間圧のガスを、高段側圧縮機30により吸入して高圧まで圧縮するようにしているため、複数組の低段側および高段側圧縮機20,30が共通の回転軸10を介して駆動可能され、その軸長が長くされた密閉型多段圧縮機1においても、共通の回転軸10の軸芯のズレを低減もしくは防止し、低段側および高段側圧縮機20,30を精度よく組み立てて密閉型多段圧縮機1を高性能化することができる。   The first fluid machine is a low-stage compressor 20, the second fluid machine is a high-stage compressor 30, and a hermetic multistage compressor (sealed fluid machine) 1 is configured, and the lower-stage compressor The intermediate-pressure gas discharged into the sealed container 2 by being compressed by the compressor 20 is sucked by the high-stage compressor 30 and compressed to a high pressure. Even in the hermetic multistage compressor 1 in which the stage side compressors 20 and 30 can be driven through the common rotating shaft 10 and the shaft length thereof is increased, the misalignment of the axis of the common rotating shaft 10 is reduced or prevented. In addition, the hermetic multistage compressor 1 can be improved in performance by assembling the low-stage and high-stage compressors 20 and 30 with high accuracy.

さらに、低段側圧縮機20がロータリ式圧縮機、高段側圧縮機30がスクロール式圧縮機とされているため、低段側のロータリ式圧縮機により圧縮され、密閉容器2内に吐出された中間圧のガスを高段側のスクロール式圧縮機により吸入して高圧まで圧縮することができる。これによって、ロータリ式圧縮機が持つ高差圧時の圧縮漏れが大きくなる等の弱点およびスクロール式圧縮機が持つ高押しのけ量を確保しようとすると外径寸法が大きくなる等の弱点を補完した小型で高性能の密閉型多段圧縮機1を得ることができる。   Further, since the low-stage compressor 20 is a rotary compressor and the high-stage compressor 30 is a scroll compressor, the compressor is compressed by the low-stage rotary compressor and discharged into the sealed container 2. The intermediate pressure gas can be sucked and compressed to a high pressure by a scroll compressor on the higher stage side. This makes it possible to compensate for the weaknesses of the rotary compressor, such as increased compression leakage at high differential pressure, and to compensate for the weaknesses of the scroll compressor, such as an increase in outer diameter when attempting to secure the high displacement. And a high-performance hermetic multistage compressor 1 can be obtained.

[他の実施形態]
次に、本発明の他の実施形態について、以下に説明する。
(1)上記した第1実施形態では、第1の流体機械である低段側圧縮機20の上部軸受(支持部材)22と密閉容器2の内周との間の隙間をS1、第2の流体機械である高段側圧縮機30の軸受部材(支持部材)31と密閉容器2の内周との間の隙間をS2としたとき、S1>S2と設定し、隙間S2が小さくされている高段側圧縮機30の軸受部材31を先に栓溶接35またはカシメによって密閉容器2に固定設置するようにしているが、上記とは逆に、S1<S2と設定し、隙間S1が小さくされている低段側圧縮機20の上部軸受21を先に栓溶接25またはカシメによって密閉容器2に固定設置するようにしてもよく、これによっても、第1実施形態と同様の作用効果を得ることができる。
[Other Embodiments]
Next, another embodiment of the present invention will be described below.
(1) In the first embodiment described above, the clearance between the upper bearing (support member) 22 of the low-stage compressor 20 that is the first fluid machine and the inner periphery of the sealed container 2 is defined as S1, When the clearance between the bearing member (support member) 31 of the high-stage compressor 30 that is a fluid machine and the inner periphery of the sealed container 2 is S2, S1> S2 is set, and the clearance S2 is reduced. The bearing member 31 of the high-stage compressor 30 is first fixedly installed in the sealed container 2 by plug welding 35 or caulking. On the contrary, S1 <S2 is set and the gap S1 is reduced. The upper bearing 21 of the lower-stage compressor 20 may be fixedly installed in the sealed container 2 by plug welding 25 or caulking first, and this also achieves the same effect as the first embodiment. Can do.

(2)上記した第1実施形態において、第1の流体機械である低段側圧縮機20のロータリ式圧縮機を、2気筒ロータリ式圧縮機等の多気筒圧縮機とすることができる。
(3)上記した第1実施形態では、第1の流体機械である低段側圧縮機20のロータリ式圧縮機を、上部軸受22を介して密閉容器2に固定設置するようにしているが、必ずしも上部軸受22で支持する必要はなく、シリンダ部材21を支持部材として低段側圧縮機20のロータリ式圧縮機を密閉容器2に固定設置するようにしてもよい。
(2) In the first embodiment described above, the rotary compressor of the low-stage compressor 20 that is the first fluid machine can be a multi-cylinder compressor such as a two-cylinder rotary compressor.
(3) In the first embodiment described above, the rotary compressor of the low-stage compressor 20 that is the first fluid machine is fixedly installed in the sealed container 2 via the upper bearing 22. The upper bearing 22 is not necessarily supported, and the rotary compressor of the low-stage compressor 20 may be fixedly installed in the sealed container 2 with the cylinder member 21 as a support member.

(4)さらに、上記第1実施形態では、密閉流体機械1として、複数組の流体機械の中の1つである第1の流体機械を低段側圧縮機20、他の1つである第2の流体機械を高段側圧縮機30とした密閉型多段圧縮機1の例について説明したが、第1の流体機械および第2の流体機械を、他の膨張機、圧縮機等の流体機械に置き換えることができ、密閉型流体機械1を多段膨張機、膨張機一体型圧縮機、多気筒圧縮機等として構成することも可能である。   (4) Furthermore, in the first embodiment, as the hermetic fluid machine 1, the first fluid machine, which is one of a plurality of sets of fluid machines, is replaced with the low-stage compressor 20, and the other one. Although the example of the hermetic multistage compressor 1 in which the second fluid machine is the high-stage compressor 30 has been described, the first fluid machine and the second fluid machine are replaced with other fluid machines such as an expander and a compressor. The hermetic fluid machine 1 can be configured as a multistage expander, an expander-integrated compressor, a multicylinder compressor, or the like.

なお、本発明は、上記実施形態にかかる発明に限定されるものではなく、その要旨を逸脱しない範囲において、適宜変形が可能である。例えば、上記実施形態では、隙間S1およびS2について、小さい方のS2を0.1mm程度、大きい方のS1をS2の2倍程度としたものを例示したが、これは単なる1例であって、このような数値に限定されないことはもちろんである。また、上記の実施形態では、低段側圧縮機20および高段側圧縮機30に対する給油構造が省略されているが、公知の給油構造を採用できることは云うまでもない。   In addition, this invention is not limited to the invention concerning the said embodiment, In the range which does not deviate from the summary, it can change suitably. For example, in the above-described embodiment, the gaps S1 and S2 are illustrated with the smaller S2 being about 0.1 mm and the larger S1 being about twice that of S2, but this is merely an example, Of course, it is not limited to such a numerical value. In the above embodiment, the oil supply structure for the low-stage compressor 20 and the high-stage compressor 30 is omitted, but it is needless to say that a known oil supply structure can be adopted.

1 密閉型流体機械(密閉型多段圧縮機)
2 密閉容器
7 電動モータ
10 回転軸
20 低段側圧縮機(第1の流体機械)
22 上部軸受(支持部材)
25 栓溶接
30 高段側圧縮機(第2の流体機械)
31 軸受部材(支持部材)
35 栓溶接
S1 上部軸受と密閉容器内周との隙間
S2 軸受部材と密閉容器内周との隙間
1 Sealed fluid machinery (sealed multistage compressor)
2 Sealed container 7 Electric motor 10 Rotating shaft 20 Low stage compressor (first fluid machine)
22 Upper bearing (support member)
25 Plug welding 30 High stage compressor (second fluid machine)
31 Bearing member (support member)
35 Plug welding S1 Clearance between the upper bearing and the inner periphery of the sealed container S2 Clearance between the bearing member and the inner periphery of the sealed container

Claims (7)

密閉容器内に所定の間隔を隔てて複数組の流体機械が、それぞれ支持部材を介して溶接またはカシメにより固定設置され、各々の流体機械が共通の回転軸を介して連結されている密閉型流体機械の製造方法において、
前記複数組の流体機械の中の1つである第1の流体機械がロータリ式流体機械とされ、その前記支持部材と前記密閉容器の内周との間の隙間をS1、他の1つである第2の流体機械がスクロール式流体機械とされ、その前記支持部材と前記密閉容器の内周との間の隙間をS2としたとき、S1>S2とされ、前記隙間S2が小さくされている前記第2の流体機械とされた前記スクロール式流体機械の前記支持部材を先に前記密閉容器内に固定設置した後、前記隙間S1が大きくされている前記第1の流体機械とされた前記ロータリ式流体機械の前記支持部材を前記密閉容器内に固定設置して前記複数組の流体機械を組み立てることを特徴とする密閉型流体機械の製造方法。
Sealed fluid in which a plurality of sets of fluid machines are fixedly installed by welding or caulking via support members in a sealed container, and each fluid machine is connected via a common rotating shaft. In the manufacturing method of the machine,
A first fluid machine that is one of the plurality of sets of fluid machines is a rotary fluid machine, and a gap between the support member and the inner periphery of the sealed container is defined as S1 and the other one. A second fluid machine is a scroll type fluid machine, and when a clearance between the support member and the inner periphery of the sealed container is S2, S1> S2, and the clearance S2 is reduced. The rotary member used as the first fluid machine in which the gap S1 is increased after the support member of the scroll fluid machine used as the second fluid machine is fixedly installed in the sealed container first. A method of manufacturing a hermetic fluid machine, wherein the plurality of sets of fluid machines are assembled by fixedly installing the support member of the fluidic machine in the hermetic container.
前記密閉容器内に固定設置される前記複数組の流体機械間に電動モータを固定設置した後、該電動モータを挟んでその一方側に前記第1の流体機械とされた前記ロータリ式流体機械、他方側に前記第2の流体機械とされた前記スクロール式流体機械をそれぞれ固定設置して前記複数組の流体機械を組み立てることを特徴とする請求項1に記載の密閉型流体機械の製造方法。 After the electric motor is fixedly installed between the plurality of sets of fluid machines fixedly installed in the hermetic container, the rotary fluid machine is used as the first fluid machine on one side of the electric motor, 2. The method for manufacturing a hermetic fluid machine according to claim 1, wherein the plurality of sets of fluid machines are assembled by fixedly installing the scroll type fluid machine, which is the second fluid machine , on the other side. 前記電動モータを挟んでその一方側に設置される前記第1の流体機械が前記ロータリ式流体機械とされ、該ロータリ式流体機械を前記密閉容器内に固定設置する前記支持部材が上部軸受とされていることを特徴とする請求項2に記載の密閉型流体機械の製造方法。 Wherein across the electric motor the first fluid machine installed in one side is to the rotary fluid machine, the supporting member for fixedly installed the rotary type fluid machine in the closed vessel is an upper bearing The method for manufacturing a hermetic fluid machine according to claim 2, wherein: 密閉容器内に所定の間隔を隔てて複数組の流体機械が、それぞれ支持部材を介して溶接またはカシメにより固定設置され、各々の流体機械が共通の回転軸を介して連結されている密閉型流体機械において、
前記複数組の流体機械の中の1つである第1の流体機械がロータリ式流体機械とされ、その前記支持部材と前記密閉容器の内周との間の隙間をS1、他の1つである第2の流体機械がスクロール式流体機械とされ、その前記支持部材と前記密閉容器の内周との間の隙間をS2としたとき、S1>S2とされていることを特徴とする密閉型流体機械。
Sealed fluid in which a plurality of sets of fluid machines are fixedly installed by welding or caulking via support members in a sealed container, and each fluid machine is connected via a common rotating shaft. In the machine
A first fluid machine that is one of the plurality of sets of fluid machines is a rotary fluid machine, and a gap between the support member and the inner periphery of the sealed container is defined as S1 and the other one. A second fluid machine is a scroll type fluid machine, and S1> S2, where S2 is a gap between the support member and the inner periphery of the sealed container. Fluid machinery.
前記密閉容器内に所定の間隔を隔てて固定設置される前記複数組の流体機械間に、電動モータが固定設置され、該電動モータを挟んで一方側に前記第1の流体機械とされた前記ロータリ式流体機械、他方側に前記第2の流体機械とされた前記スクロール式流体機械がそれぞれ固定設置されていることを特徴とする請求項4に記載の密閉型流体機械。 The electric motor is fixedly installed between the plurality of sets of fluid machines fixedly installed in the sealed container at a predetermined interval, and the first fluid machine is disposed on one side of the electric motor. The hermetic fluid machine according to claim 4, wherein the rotary fluid machine and the scroll fluid machine as the second fluid machine are fixedly installed on the other side. 前記第1の流体機械とされた前記ロータリ式流体機械が低段側圧縮機、前記第2の流体機械とされた前記スクロール式流体機械が高段側圧縮機とされ、前記低段側圧縮機で圧縮されることにより前記密閉容器内に吐出された中間圧のガスを、前記高段側圧縮機により吸入して高圧まで圧縮する多段圧縮機が構成されていることを特徴とする請求項4または5に記載の密閉型流体機械。 The rotary fluid machine as the first fluid machine is a low-stage compressor, the scroll fluid machine as the second fluid machine is a high-stage compressor, and the low-stage compressor 5. A multi-stage compressor configured to suck the intermediate-pressure gas discharged into the hermetic container by being compressed by the high-stage compressor and compress it to a high pressure. Or the hermetic fluid machine according to 5. 前記ロータリ式流体機械とされた前記低段側圧縮機の上部軸受が、該低段側圧縮機を前記密閉容器内に固定設置する前記支持部材とされていることを特徴とする請求項に記載の密閉型流体機械。 Upper bearing of the rotary fluid machine and has been the low-stage compressor, in claim 6, characterized in that it is the supporting member for fixedly installed the low-stage compressor into the closed vessel The sealed fluid machine as described.
JP2009087512A 2009-03-31 2009-03-31 Method for manufacturing hermetic fluid machine and hermetic fluid machine Active JP5535511B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009087512A JP5535511B2 (en) 2009-03-31 2009-03-31 Method for manufacturing hermetic fluid machine and hermetic fluid machine
PCT/JP2010/055159 WO2010113735A1 (en) 2009-03-31 2010-03-25 Sealed fluid machine producing method and sealed fluid machine
EP10758508.5A EP2330301B1 (en) 2009-03-31 2010-03-25 Sealed fluid machine manufacturing method and sealed fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009087512A JP5535511B2 (en) 2009-03-31 2009-03-31 Method for manufacturing hermetic fluid machine and hermetic fluid machine

Publications (2)

Publication Number Publication Date
JP2010236488A JP2010236488A (en) 2010-10-21
JP5535511B2 true JP5535511B2 (en) 2014-07-02

Family

ID=42828028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009087512A Active JP5535511B2 (en) 2009-03-31 2009-03-31 Method for manufacturing hermetic fluid machine and hermetic fluid machine

Country Status (3)

Country Link
EP (1) EP2330301B1 (en)
JP (1) JP5535511B2 (en)
WO (1) WO2010113735A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2016007086A (en) * 2013-12-01 2017-01-06 Aspen Compressor Llc Compact low noise rotary compressor.
JP6477137B2 (en) * 2015-03-27 2019-03-06 株式会社富士通ゼネラル Rotary compressor
US11614086B2 (en) 2016-12-30 2023-03-28 Aspen Compressor, Llc Flywheel assisted rotary compressors
CN108443148A (en) * 2018-05-30 2018-08-24 广东美芝制冷设备有限公司 Multi-cylinder rotation compressor
JP6791302B2 (en) * 2019-05-21 2020-11-25 ダイキン工業株式会社 Compressor
JP6863405B2 (en) * 2019-05-21 2021-04-21 ダイキン工業株式会社 Scroll compressor and refrigerator equipped with it

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11141483A (en) * 1997-11-06 1999-05-25 Matsushita Electric Ind Co Ltd Electric gas compressor
JP3699580B2 (en) * 1998-01-14 2005-09-28 日本電産株式会社 Manufacturing method of fluid dynamic bearing motor
US6290472B2 (en) * 1998-06-10 2001-09-18 Tecumseh Products Company Rotary compressor with vane body immersed in lubricating fluid
JP4348508B2 (en) * 2002-06-27 2009-10-21 三菱電機株式会社 Bearing alignment assembly method and bearing alignment assembly apparatus
US7195468B2 (en) * 2004-12-13 2007-03-27 Lg Electronics Inc. Scroll compressor having frame fixing structure and frame fixing method thereof
KR20080094111A (en) * 2006-03-07 2008-10-22 다이킨 고교 가부시키가이샤 Method of producing compressor, and compressor
JP4946840B2 (en) 2006-12-08 2012-06-06 ダイキン工業株式会社 Refrigeration equipment
JP4875484B2 (en) 2006-12-28 2012-02-15 三菱重工業株式会社 Multistage compressor
JP4924092B2 (en) * 2007-02-26 2012-04-25 パナソニック株式会社 Refrigeration cycle equipment
JP2009019591A (en) 2007-07-12 2009-01-29 Panasonic Corp Expander-integrated compressor and refrigerating cycle device

Also Published As

Publication number Publication date
JP2010236488A (en) 2010-10-21
EP2330301A4 (en) 2016-10-26
WO2010113735A1 (en) 2010-10-07
EP2330301B1 (en) 2018-08-29
EP2330301A1 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
JP5535511B2 (en) Method for manufacturing hermetic fluid machine and hermetic fluid machine
KR100947419B1 (en) 2 cylinder rotary compressor
JP4780971B2 (en) Rotary compressor
JP5084692B2 (en) 2-cylinder rotary compressor
WO2015045678A1 (en) Rotary compressor
US7201568B2 (en) Scroll fluid machine
JP2011106427A (en) Multiple-cylinder rotary compressor and method of manufacturing the same
KR20130047569A (en) Rotary compressor
JP5781019B2 (en) Rotary compressor
US9523361B2 (en) Scroll compressor having back pressure chamber that operatively contains a discharge pressure and an intermediate pressure during different periods of time within a single compression cycle
KR20020034883A (en) Plural cylinder rotary compressor
JP5606422B2 (en) Rotary compressor
JP2009047040A (en) Scroll type fluid machine
JP6409910B1 (en) Scroll compressor
EP3141754B1 (en) Rotary compressor and method for manufacturing the same
JP6151324B2 (en) Hermetic electric compressor
JP4939239B2 (en) Crankshaft
JP6810658B2 (en) Scroll compressor
JP6400389B2 (en) Hermetic electric compressor
CN110762010A (en) Compression mechanism of rotary compressor and rotary compressor
EP3557067B1 (en) Piston rotor, crankshaft, rotary compressor, and assembling method of crankshaft
JP2017053263A (en) Rotary Compressor
JP2015194093A (en) rotary compressor
JP2007170409A (en) Rotary compressor
JP2007170408A (en) Rotary compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140423

R151 Written notification of patent or utility model registration

Ref document number: 5535511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350