JP5534750B2 - Method for producing solid material having concave portion on surface and method for producing electrophotographic photosensitive member - Google Patents

Method for producing solid material having concave portion on surface and method for producing electrophotographic photosensitive member Download PDF

Info

Publication number
JP5534750B2
JP5534750B2 JP2009198411A JP2009198411A JP5534750B2 JP 5534750 B2 JP5534750 B2 JP 5534750B2 JP 2009198411 A JP2009198411 A JP 2009198411A JP 2009198411 A JP2009198411 A JP 2009198411A JP 5534750 B2 JP5534750 B2 JP 5534750B2
Authority
JP
Japan
Prior art keywords
solvent
solution
mass
boiling point
concave portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009198411A
Other languages
Japanese (ja)
Other versions
JP2010094978A (en
JP2010094978A5 (en
Inventor
敦 大地
晴信 大垣
弘規 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009198411A priority Critical patent/JP5534750B2/en
Publication of JP2010094978A publication Critical patent/JP2010094978A/en
Publication of JP2010094978A5 publication Critical patent/JP2010094978A5/ja
Application granted granted Critical
Publication of JP5534750B2 publication Critical patent/JP5534750B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0525Coating methods
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0503Inert supplements
    • G03G5/051Organic non-macromolecular compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0503Inert supplements
    • G03G5/051Organic non-macromolecular compounds
    • G03G5/0514Organic non-macromolecular compounds not comprising cyclic groups
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0503Inert supplements
    • G03G5/051Organic non-macromolecular compounds
    • G03G5/0517Organic non-macromolecular compounds comprising one or more cyclic groups consisting of carbon-atoms only
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0557Macromolecular bonding materials obtained otherwise than by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/056Polyesters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0557Macromolecular bonding materials obtained otherwise than by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0564Polycarbonates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14708Cover layers comprising organic material
    • G03G5/14713Macromolecular material
    • G03G5/14747Macromolecular material obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G5/14752Polyesters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14708Cover layers comprising organic material
    • G03G5/14713Macromolecular material
    • G03G5/14747Macromolecular material obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G5/14756Polycarbonates

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Moulding By Coating Moulds (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

本発明は、表面に凹形状部を有する固形物の製造方法および電子写真感光体の製造方法に関する。   The present invention relates to a method for producing a solid having a concave portion on the surface and a method for producing an electrophotographic photosensitive member.

近年、さまざまな産業分野において、固形物の表面の形状が注目され、研究されている。特許文献1および特許文献2には、生分解性および両親媒性ポリマーの疎水性有機溶媒溶液をキャストし、キャスト液表面に液滴を結露させることにより、ハニカム状の多孔質体を製造する方法が開示されている。この多孔質体は、医療分野への応用が期待されている。また、特許文献3には、親水性溶剤と疎水性溶剤を特定の条件で組み合わせることにより、多様な表面形状を有する固形物を製造する方法が開示されている。この固形物は、幅広い分野への応用が期待されている。また、特許文献4および特許文献5にも、表面に凹形状部を有する固形物の製造方法が開示されている。   In recent years, in various industrial fields, the shape of the surface of solid materials has attracted attention and has been studied. Patent Document 1 and Patent Document 2 describe a method for producing a honeycomb-shaped porous body by casting a hydrophobic organic solvent solution of a biodegradable and amphiphilic polymer and condensing droplets on the surface of the cast liquid. Is disclosed. This porous body is expected to be applied to the medical field. Patent Document 3 discloses a method for producing a solid having various surface shapes by combining a hydrophilic solvent and a hydrophobic solvent under specific conditions. This solid material is expected to be applied to a wide range of fields. Patent Document 4 and Patent Document 5 also disclose a method for producing a solid having a concave portion on the surface.

特開2001−157574号公報JP 2001-157574 A 特開2002−335949号公報JP 2002-335949 A 特許第4018741号公報Japanese Patent No. 4018741 特開2008−179749号公報JP 2008-179749 A 特開2008−203807号公報JP 2008-203807 A

しかしながら、特許文献1および特許文献2に記載の方法では、キャスト液表面に液滴を結露させるために、特殊な両親媒性ポリマーや周辺環境の制御が必要となる。特に、高湿度気体を吹き付けたり、あるいは送風する場合には、キャスト膜の表面が乱れる可能性や、製造条件および製造装置上の制約が大きくなるデメリットがある。また、特許文献3に記載の方法には、生産効率や高分子化合物の選択性、凹形状部の制御性といった点で、さらなる改善の余地がある。   However, the methods described in Patent Document 1 and Patent Document 2 require special amphiphilic polymer and control of the surrounding environment in order to cause the droplets to condense on the cast liquid surface. In particular, when high-humidity gas is blown or blown, there is a demerit that the surface of the cast film may be disturbed and manufacturing conditions and restrictions on the manufacturing apparatus become large. In addition, the method described in Patent Document 3 has room for further improvement in terms of production efficiency, polymer compound selectivity, and control of the concave portion.

本発明の目的は、表面に凹形状部を有する固形物の製造方法を提供することである。   The objective of this invention is providing the manufacturing method of the solid substance which has a concave-shaped part on the surface.

本発明は、表面に凹形状部を有する固形物の製造方法であって、
疎水性溶剤を溶剤Bとし、該溶剤Bの沸点以上の沸点を有する親水性溶剤を溶剤Aとし、該溶剤Bの沸点未満の沸点を有する疎水性ではない溶剤を溶剤Cとしたとき、該溶剤A、該溶剤B、該溶剤Cおよび高分子化合物を含有し、かつ該溶剤A、該溶剤Bおよび該溶剤Cの含有量が下記(1)〜(5)の条件を満たす溶液を使用し、
該溶液に含有される溶剤蒸発させ、該溶液を固化させながら、結露によって該溶液の表面に凹形状部を形成ることを特徴とする固形物の製造方法である:
(1)該溶剤Aの含有量が、該溶液に含有されるすべての溶剤の合計質量に対して0.1質量%以上かつ25.0質量%未満であり、
(2)該溶剤Bの含有量が、該溶剤Aの含有量より大きく、
(3)該溶剤Bの含有量が、該溶液に含有されるすべての溶剤の合計質量に対して5.0質量%以上かつ49.9質量%以下であり、
(4)該溶剤Cの含有量が、該溶液に含有されるすべての溶剤の合計質量に対して50.0質量%以上かつ94.9質量%以下であり、
(5)該溶剤A、該溶剤Bおよび該溶剤Cの合計含有量が、該溶液に含有されるすべての溶剤の合計質量に対して90.0質量%以上である。
The present invention is a method for producing a solid having a concave portion on the surface,
When the hydrophobic solvent is solvent B, the hydrophilic solvent having a boiling point higher than the boiling point of the solvent B is solvent A, and the non-hydrophobic solvent having a boiling point less than the boiling point of the solvent B is solvent C, the solvent A solution containing A, the solvent B, the solvent C, and a polymer compound, and the contents of the solvent A, the solvent B, and the solvent C satisfy the following conditions (1) to (5):
Evaporating the solvent contained in the solution, while solidifying the solution, it is a method for producing a solid which is characterized that you forming a concave portion on the surface of the solution by condensation:
(1) The content of the solvent A is 0.1% by mass or more and less than 25.0% by mass with respect to the total mass of all the solvents contained in the solution,
(2) The content of the solvent B is larger than the content of the solvent A,
(3) The content of the solvent B is 5.0% by mass or more and 49.9% by mass or less with respect to the total mass of all the solvents contained in the solution,
(4) The content of the solvent C is 50.0 mass% or more and 94.9 mass% or less with respect to the total mass of all the solvents contained in the solution,
(5) The total content of the solvent A, the solvent B and the solvent C is 90.0% by mass or more based on the total mass of all the solvents contained in the solution.

本発明によれば、表面に凹形状部を有する固形物を、きわめて低コストかつ安定的に製造する方法を提供することができる。特に、上記特定の溶液組成を選択した場合には、常温常湿環境においても、溶剤を蒸発させるだけで、表面に凹形状部を自己組織化すること、すなわち他からの制御なしに凹形状部を形成することが可能な固形物の製造方法を提供することができる。本発明の製造方法により製造された表面に凹形状部を有する固形物は、分離膜、吸着材、触媒、担体、電池部材、医療材料、光学材料、軽量構造材、緩衝材、断熱材、吸音材、制振材、導電性材料、圧電性材料、摩擦性材料、摺動性材料、低誘電性材料といった用途が考えられ、さまざまな産業分野に応用することが期待できる。   ADVANTAGE OF THE INVENTION According to this invention, the method of manufacturing the solid substance which has a concave-shaped part on the surface stably at very low cost can be provided. In particular, when the above specific solution composition is selected, even in a room temperature and humidity environment, the concave shape portion can be self-organized on the surface by simply evaporating the solvent, that is, without any other control. The manufacturing method of the solid substance which can form can be provided. The solid material having a concave portion on the surface produced by the production method of the present invention is a separation membrane, an adsorbent, a catalyst, a carrier, a battery member, a medical material, an optical material, a lightweight structure material, a buffer material, a heat insulating material, and a sound absorbing material. Materials, vibration damping materials, conductive materials, piezoelectric materials, friction materials, slidable materials, low dielectric materials, etc. can be considered, and application to various industrial fields can be expected.

本発明の製造方法により固形物の表面に形成された凹形状部の表面観察における形状の例を示す。The example of the shape in the surface observation of the concave shape part formed in the surface of the solid substance by the manufacturing method of this invention is shown.

以下に、本発明を詳細に説明する。   The present invention is described in detail below.

本発明における親水性溶剤とは、水との親和性が大きな溶剤を示し、疎水性溶剤とは、水との親和性が小さな溶剤であることを示している。本発明では、親水性溶剤および疎水性溶剤の判断は、以下の実験と判断基準により行っている。   The hydrophilic solvent in the present invention indicates a solvent having a high affinity with water, and the hydrophobic solvent indicates a solvent having a low affinity with water. In the present invention, the determination of the hydrophilic solvent and the hydrophobic solvent is performed according to the following experiment and determination criteria.

[実験]
常温常湿環境(23±3℃、50±10%RH)において、まず50mlのメスシリンダーに、水を50ml量りとる。次に100mlのメスシリンダーに判断対象の溶剤を50ml量りとり、これに、先の操作で量りとった水50mlを加え、ガラス棒で全体が均一になるまでよく攪拌する。さらに、溶剤や水が揮発しないように蓋をして、気泡が消失し、界面が安定するまで十分に放置する。その後、100mlメスシリンダー内の混合液の状態を観察し、水相の体積を計測する。
[Experiment]
In a normal temperature and humidity environment (23 ± 3 ° C., 50 ± 10% RH), first weigh 50 ml of water into a 50 ml graduated cylinder. Next, weigh 50 ml of the solvent to be judged into a 100 ml graduated cylinder, add 50 ml of the water weighed in the previous operation, and stir well with a glass rod until the whole becomes uniform. Further, a lid is applied so that the solvent and water do not volatilize, and the mixture is allowed to stand until the bubbles disappear and the interface is stabilized. Thereafter, the state of the mixed solution in the 100 ml graduated cylinder is observed, and the volume of the aqueous phase is measured.

[判断基準]
水相(実質的に水からなる相)の体積が0ml以上5ml以下の場合は判断対象の溶剤を親水性溶剤と判断する。また、水相(実質的に水からなる相)の体積が45ml以上50ml以下の場合は判断対象の溶剤を疎水性溶剤と判断する。なお、均一な単一相となる場合は、水相(実質的に水からなる相)の体積は0mlであるため、判断対象の溶剤を親水性溶剤と判断する。この範囲外の場合は、親水性溶剤および疎水性溶剤のどちらにも該当しない。
[Judgment criteria]
When the volume of the aqueous phase (substantially composed of water) is 0 ml or more and 5 ml or less, the solvent to be judged is judged to be a hydrophilic solvent. Further, when the volume of the aqueous phase (substantially composed of water) is 45 ml or more and 50 ml or less, the solvent to be judged is judged to be a hydrophobic solvent. In addition, when it becomes a uniform single phase, since the volume of the water phase (phase substantially consisting of water) is 0 ml, the solvent to be determined is determined to be a hydrophilic solvent. If it is out of this range, neither a hydrophilic solvent nor a hydrophobic solvent is applicable.

[具体例]
上記の実験において、たとえば、判断対象の溶剤がトルエンの場合は、水相の体積は50mlになるため、疎水性溶剤と判断される。また、判断対象の溶剤がジメチルスルホキシド(DMSO)の場合は、均一な単一相となり、水相(実質的に水からなる相)の体積は0mlであり、親水性溶剤と判断される。さらに、溶剤が1,1−ジメトキシメタン(メチラール)の場合は、水相(実質的に水からなる相)の体積は69mlであり、親水性溶剤および疎水性溶剤のどちらにも該当しない。
[Concrete example]
In the above experiment, for example, when the determination target solvent is toluene, the volume of the aqueous phase is 50 ml, so that it is determined as a hydrophobic solvent. Further, when the determination target solvent is dimethyl sulfoxide (DMSO), it becomes a uniform single phase, and the volume of the aqueous phase (substantially water phase) is 0 ml, which is determined as a hydrophilic solvent. Further, when the solvent is 1,1-dimethoxymethane (methylal), the volume of the aqueous phase (substantially composed of water) is 69 ml, which does not correspond to either a hydrophilic solvent or a hydrophobic solvent.

本発明における高分子化合物とは、本発明の溶剤系(溶液に含有される溶剤)に溶解するものであれば特に制約はなく、製造物として得られる固形物に要求される機能特性に応じて、さまざまな高分子化合物を選択可能である。たとえば、電子デバイスへの応用を考えた場合には、アクリル樹脂、メタクリル樹脂、スチレン樹脂、スチレン−アクリロニトリル共重合樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリスルホン樹脂、ポリフェニレンオキシド樹脂、エポキシ樹脂、ポリウレタン樹脂、アルキド樹脂、不飽和樹脂、導電性樹脂、芳香族ポリエステル樹脂、ジアリルフタレート樹脂を用いることが好ましい。これらの高分子化合物は、単独で使用しても、2種以上混合して使用してもよい。   The polymer compound in the present invention is not particularly limited as long as it is soluble in the solvent system of the present invention (solvent contained in the solution), and depends on the functional characteristics required for the solid material obtained as a product. Various polymer compounds can be selected. For example, when considering application to electronic devices, acrylic resin, methacrylic resin, styrene resin, styrene-acrylonitrile copolymer resin, polyester resin, polycarbonate resin, polyarylate resin, polysulfone resin, polyphenylene oxide resin, epoxy resin, It is preferable to use a polyurethane resin, an alkyd resin, an unsaturated resin, a conductive resin, an aromatic polyester resin, or a diallyl phthalate resin. These polymer compounds may be used alone or in combination of two or more.

本発明の溶液における溶剤は、主に、疎水性溶剤である溶剤Bと、親水性溶剤である溶剤Aと、疎水性ではない溶剤Cとから構成される。本発明におけるこれらの溶剤の種類と沸点との関係、および、溶剤の種類と含有量との関係について、表1に示す。   The solvent in the solution of the present invention is mainly composed of a solvent B that is a hydrophobic solvent, a solvent A that is a hydrophilic solvent, and a solvent C that is not hydrophobic. Table 1 shows the relationship between the types and boiling points of these solvents and the relationship between the types and contents of the solvents in the present invention.

Figure 0005534750
Figure 0005534750

なお、溶剤Bに関しては、溶剤が疎水性溶剤であるか否かのみで決定され、溶剤Aや溶剤Cとの沸点の大小には左右されない。すなわち、疎水性溶剤であれば溶剤Bとなる。一方、溶剤Aや溶剤Cに関しては、溶剤Bを決定した後、疎水性溶剤であるか親水性溶剤であるかどちらにも該当しない溶剤であるかに加えて、溶剤Bとの沸点の高低も考慮のうえで、溶剤Aに該当するか溶剤Cに該当するかそれ以外の溶剤に該当するかが決定される。   The solvent B is determined only by whether or not the solvent is a hydrophobic solvent, and does not depend on the boiling point of the solvent A or the solvent C. That is, it becomes the solvent B if it is a hydrophobic solvent. On the other hand, regarding the solvent A and the solvent C, after determining the solvent B, in addition to whether the solvent is a hydrophobic solvent or a hydrophilic solvent, whether the boiling point of the solvent B is high or low In consideration, it is determined whether it corresponds to the solvent A, the solvent C or the other solvent.

本発明の製造方法においては、親水性溶剤である溶剤Aを使用し、高分子化合物の溶液の溶剤系を制御することにより、結露を促進することに特徴がある。したがって、本発明の溶液が塗布された表面に水を結露させ、凹形状部を形成するためには、溶剤Aの含有量が、溶液に含有されるすべての溶剤の合計質量に対して、0.1質量%以上必要である。なお、後述する溶剤Bおよび溶剤Cの含有量の関係から、溶剤Aの最大の含有量は、溶液に含有されるすべての溶剤の合計質量に対して25.0質量%未満である。   The production method of the present invention is characterized in that condensation is promoted by using solvent A, which is a hydrophilic solvent, and controlling the solvent system of the polymer compound solution. Therefore, in order to condense water on the surface coated with the solution of the present invention and form a concave portion, the content of the solvent A is 0 with respect to the total mass of all the solvents contained in the solution. .1% by mass or more is necessary. In addition, from the relationship between the contents of the solvent B and the solvent C described later, the maximum content of the solvent A is less than 25.0% by mass with respect to the total mass of all the solvents contained in the solution.

また、水の結露による凹形状部の形成を安定化させるためには、疎水性溶剤として溶剤Bが必要であり、その含有量は、溶液に含有されるすべての溶剤の合計質量に対して5.0質量%以上である必要があり、なおかつ、前述の溶剤Aの含有量を超えるものである。溶剤Bの沸点は、100℃以上であることが好ましく、また、前述の溶剤Aの沸点は、溶剤Bの沸点以上である。なお、前述の溶剤Aおよび後述する溶剤Cの含有量の関係から、溶剤Bの最大の含有量は、溶液に含有されるすべての溶剤の合計質量に対して49.9質量%以下である。   Further, in order to stabilize the formation of the concave portion due to the condensation of water, the solvent B is required as a hydrophobic solvent, and the content thereof is 5 with respect to the total mass of all the solvents contained in the solution. It is necessary to be 0.0 mass% or more, and the content of the solvent A described above is exceeded. The boiling point of the solvent B is preferably 100 ° C. or higher, and the boiling point of the solvent A is higher than the boiling point of the solvent B. In addition, the maximum content of the solvent B is 49.9 mass% or less with respect to the total mass of all the solvents contained in a solution from the relationship of the content of the above-mentioned solvent A and the solvent C mentioned later.

さらに、本発明においては、疎水性でない溶剤(疎水性溶剤以外の溶剤)として溶剤Cを使用する。溶剤Cは、親水性溶剤、または、親水性溶剤および疎水性溶剤のどちらにも該当しない溶剤から選択され、溶剤Cの沸点は前述の溶剤Bの沸点未満である。溶剤Cの沸点は、70℃以下が好ましく、さらには45℃以下が好ましい。溶剤Cの沸点は、溶剤Aや溶剤Bの沸点よりも低いため、本発明の溶液を塗布した後には、他の溶剤よりも速く蒸発する傾向にある。したがって、溶液の表面に水が結露した後、凹形状部が形成され、安定化する過程においては、溶剤Aおよび溶剤Bが支配的な役割を担っている。   Further, in the present invention, the solvent C is used as a non-hydrophobic solvent (a solvent other than the hydrophobic solvent). The solvent C is selected from a hydrophilic solvent or a solvent that does not correspond to either a hydrophilic solvent or a hydrophobic solvent, and the boiling point of the solvent C is less than the boiling point of the solvent B described above. The boiling point of the solvent C is preferably 70 ° C. or lower, more preferably 45 ° C. or lower. Since the boiling point of the solvent C is lower than the boiling points of the solvent A and the solvent B, after applying the solution of the present invention, it tends to evaporate faster than other solvents. Therefore, after water is condensed on the surface of the solution, the concave portion is formed and the solvent A and the solvent B play a dominant role in the process of stabilization.

ここで、本発明においては、溶剤Cを溶液に含有されるすべての溶剤の合計質量に対して50.0質量%以上使用することが必要である。これは、本発明の溶液における溶剤の中で、最も高い構成比率である。これにより、第一に、高分子化合物の溶液の固化が促進されるので、生産効率を向上させることが可能となる。第二に、結露により形成される凹形状部の制御性を向上させることが可能である。第三に、高分子化合物の選択性を拡大することが可能である。なお、溶剤Cの最大の含有量は、前述の溶剤Aおよび溶剤Bの含有量の関係から、溶液に含有されるすべての溶剤の合計質量に対して94.9質量%以下である。   Here, in this invention, it is necessary to use 50.0 mass% or more of the solvent C with respect to the total mass of all the solvents contained in a solution. This is the highest constituent ratio among the solvents in the solution of the present invention. Thereby, firstly, solidification of the solution of the polymer compound is promoted, so that the production efficiency can be improved. Second, it is possible to improve the controllability of the concave portion formed by condensation. Thirdly, it is possible to expand the selectivity of the polymer compound. In addition, the maximum content of the solvent C is 94.9 mass% or less with respect to the total mass of all the solvents contained in a solution from the relationship of the content of the solvent A and the solvent B mentioned above.

本発明の製造方法は、上述した溶剤A、溶剤Bおよび溶剤Cと、高分子化合物とを含有する溶液中の溶剤が蒸発する過程において、溶液に含有される高分子化合物の表面に、結露により凹形状部が形成される。ここで、本発明における結露とは、前述の溶液の表面および内部の少なくとも一方で、空気中の水蒸気が凝縮することを意味する。したがって、本発明における表面に凹形状部を有する固形物とは、表面のみ凹形状部を有する固形物、表面の孔が貫通した固形物や、内部にも多数の孔が存在する固形物も含まれる。 In the production method of the present invention, in the process of evaporating the solvent in the solution containing the solvent A, the solvent B and the solvent C and the polymer compound, the surface of the polymer compound contained in the solution is dewed. A concave portion is formed. Here, the dew condensation in the present invention means that water vapor in the air condenses on at least one of the surface and the inside of the solution. Therefore, the solid matter having a concave portion on the surface in the present invention includes a solid matter having a concave shape portion only on the surface, a solid matter through which holes on the surface have penetrated, and a solid matter in which a large number of pores exist inside. It is.

本発明の製造方法は、溶液に使用する各溶剤の種類や量、あるいは組み合わせにより、結露により固形物の表面に形成される凹形状部や深さを制御することが可能である。また、汎用溶剤を利用することによりコストを低減できること、シンプルな生産方法であるがゆえに生産安定性に優れること、特殊な製造装置を必要としないことにより汎用性に優れ、応用可能性が広いこと、といった大きなメリットがある。   The production method of the present invention can control the concave shape portion and the depth formed on the surface of the solid material due to condensation, depending on the type, amount, or combination of the solvents used in the solution. In addition, the cost can be reduced by using a general-purpose solvent, the production stability is excellent because it is a simple production method, the versatility is excellent by not requiring special manufacturing equipment, and the applicability is wide. There is a big merit.

なお、本発明において、2種類以上の溶剤Bを組み合わせて使用する場合は、そのうち最も沸点の高い溶剤Bの沸点を、溶剤Aの沸点と対比するための溶剤Bの沸点とする。すなわち、最も沸点の高い溶剤Bの沸点以上の沸点を有する親水性溶剤が溶剤Aとなる。また、2種類以上の溶剤Bを組み合わせて使用する場合は、そのうち最も沸点の低い溶剤Bの沸点を、溶剤Cの沸点と対比するための溶剤Bの沸点とする。すなわち、最も沸点の低い溶剤Bの沸点未満の沸点を有する疎水性ではない溶剤が溶剤Cとなる。   In the present invention, when two or more kinds of solvents B are used in combination, the boiling point of the solvent B having the highest boiling point is set as the boiling point of the solvent B for comparison with the boiling point of the solvent A. That is, the hydrophilic solvent having a boiling point equal to or higher than the boiling point of the solvent B having the highest boiling point is the solvent A. When two or more kinds of solvents B are used in combination, the boiling point of solvent B having the lowest boiling point is set as the boiling point of solvent B for comparison with the boiling point of solvent C. That is, the non-hydrophobic solvent having a boiling point lower than that of the solvent B having the lowest boiling point is the solvent C.

本発明の製造方法においては、製造物として得られる固形物に要求される機能特性に応じて、さまざまな方法で前述の溶液を処理することができる。たとえば、固形物として、凹形状部を有する表面層を形成する場合には、ディップコート法(浸漬塗布法)やスピンコート法など公知の方法により前述の溶液を基体上に塗布し、凹形状部を有する表面層を形成することができる。また同様の方法により基体上に形成した膜を、基体から剥離することにより、薄膜やフィルムを製造することもできる。さらに水面上に前述の溶液を流し込むことにより、薄膜やフィルムを製造することも可能である。   In the production method of the present invention, the aforementioned solution can be treated by various methods depending on the functional properties required for the solid product obtained as a product. For example, when forming a surface layer having a concave portion as a solid material, the above-mentioned solution is applied onto a substrate by a known method such as a dip coating method (dip coating method) or a spin coating method, and the concave portion A surface layer can be formed. Moreover, a thin film or a film can also be produced by peeling a film formed on a substrate by the same method from the substrate. Furthermore, a thin film or a film can be produced by pouring the above-described solution onto the water surface.

なお、本発明の製造方法においては、製造物として得られる固形物への機能性付与のため、前述の溶液に、可塑剤、離型剤、架橋剤、金属微粒子、有機微粒子、界面活性剤、導電性化合物、抗菌剤などの各種化合物を添加することも可能である。また、前述の溶液の粘度、露点、塗布面全体の平滑性の制御、前述の溶液の溶剤系の溶解力の調整、製造物の孔の大小や深さの制御のために、溶剤A、溶剤Bおよび溶剤Cの種類や量を変化させたり、2種類以上の溶剤を組み合わせて使用することができる。また、本発明の製造方法においては、溶剤A、溶剤Bおよび溶剤C以外のさまざまな溶剤を使用することもできるが、表面に凹形状部を有する固形物を安定的に得るためには、溶剤A、溶剤Bおよび溶剤Cの合計含有量を、溶液に含有されるすべての溶剤の合計質量に対して90.0質量%以上とする必要がある。さらに、前述の溶液の温度、前述の溶液を塗布する基体の温度、周辺環境の温湿度などを調整する工程や、前述の溶液の表面に高湿度気体を吹き付けるといった工程などを組み合わせることも可能である。   In addition, in the production method of the present invention, in order to impart functionality to the solid material obtained as a product, the above-mentioned solution is added with a plasticizer, a release agent, a crosslinking agent, metal fine particles, organic fine particles, a surfactant, It is also possible to add various compounds such as conductive compounds and antibacterial agents. Also, solvent A, solvent for controlling the viscosity, dew point of the above solution, smoothness of the entire coated surface, adjusting the solvent power of the solvent system of the above solution, and controlling the size and depth of the product pores. The type and amount of B and solvent C can be changed, or two or more types of solvents can be used in combination. In the production method of the present invention, various solvents other than the solvent A, the solvent B and the solvent C can be used. In order to stably obtain a solid having a concave portion on the surface, the solvent The total content of A, solvent B and solvent C needs to be 90.0% by mass or more based on the total mass of all the solvents contained in the solution. Furthermore, it is possible to combine a process for adjusting the temperature of the solution, the temperature of the substrate on which the solution is applied, the temperature and humidity of the surrounding environment, and a process of blowing a high-humidity gas on the surface of the solution. is there.

以下、表2〜5に親水性溶剤の代表例を示し、表6に疎水性溶剤の代表例を示す。ただし、本発明に使用される親水性溶剤および疎水性溶剤は、これら代表例に限定されるものではない。なお、表2〜6における沸点は、原則として大気圧(1気圧:1013.25hPa)における沸点を示すが、大気圧以外の沸点である場合には、別途気圧を記載した。   Tables 2 to 5 show typical examples of hydrophilic solvents, and Table 6 shows typical examples of hydrophobic solvents. However, the hydrophilic solvent and the hydrophobic solvent used in the present invention are not limited to these representative examples. In addition, although the boiling point in Tables 2-6 shows the boiling point in atmospheric pressure (1 atmospheric pressure: 1013.25 hPa) in principle, when it was boiling points other than atmospheric pressure, the atmospheric pressure was described separately.

Figure 0005534750
Figure 0005534750

Figure 0005534750
Figure 0005534750

Figure 0005534750
Figure 0005534750

Figure 0005534750
Figure 0005534750

Figure 0005534750
Figure 0005534750

本発明の製造方法は応用範囲が広く、製造物として得られる固形物に要求される機能特性に応じて、最適な溶剤の選択は異なる。たとえば、応用例として、電子写真感光体の表面層へ適用させる場合、溶剤Aとしては、ジメチルスルホキシド、ポリエチレングリコール、トリエチレングリコール、ジプロピレングリコール、テトラヒドロフルフリルアルコールが好ましい。また、溶剤Bとしては、トルエン、o−キシレン(1,2−ジメチルベンゼン)、m−キシレン(1,3−ジメチルベンゼン)、p−キシレン(1,4−ジメチルベンゼン)、1,3,5−トリメチルベンゼン、モノクロロベンゼン(クロロベンゼン)が好ましい。さらに溶剤Cとしては、ジメトキシメタンが好ましい。これらの溶剤は、単独で使用しても、2種類以上混合して使用してもよい。   The production method of the present invention has a wide range of applications, and the selection of the optimum solvent varies depending on the functional properties required for the solid material obtained as a product. For example, when applied to the surface layer of an electrophotographic photoreceptor as an application example, the solvent A is preferably dimethyl sulfoxide, polyethylene glycol, triethylene glycol, dipropylene glycol, or tetrahydrofurfuryl alcohol. As the solvent B, toluene, o-xylene (1,2-dimethylbenzene), m-xylene (1,3-dimethylbenzene), p-xylene (1,4-dimethylbenzene), 1,3,5 -Trimethylbenzene and monochlorobenzene (chlorobenzene) are preferred. Further, as the solvent C, dimethoxymethane is preferable. These solvents may be used alone or in combination of two or more.

図1に、本発明の製造方法により固形物の表面に形成された凹形状部の表面観察における形状の例を示す。図1の(A)〜(E)中、1は固形物の表面であり、2は固形物の表面に形成された凹形状部である。図1の(A)〜(E)では、固形物の表面1は、複数の各々独立した凹形状部2を有している。   In FIG. 1, the example of the shape in the surface observation of the concave shaped part formed in the surface of the solid substance by the manufacturing method of this invention is shown. In FIGS. 1A to 1E, reference numeral 1 denotes a solid surface, and 2 denotes a concave portion formed on the solid surface. In (A) to (E) of FIG. 1, the solid surface 1 has a plurality of independent concave portions 2.

以下に、具体的な実施例を挙げて本発明をさらに詳細に説明する。ただし、本発明はこれらに限定されるものではない。また、実施例中の「部」は「質量部」を、「Mw」は「重量平均分子量」を、「Mv」は「粘度平均分子量」を意味する。なお、実施例に使用した高分子化合物および電荷輸送物質については、表7および8に詳細を記載した。   Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to these. In the examples, “part” means “part by mass”, “Mw” means “weight average molecular weight”, and “Mv” means “viscosity average molecular weight”. The polymer compounds and charge transport materials used in the examples are described in detail in Tables 7 and 8.

Figure 0005534750
Figure 0005534750

Figure 0005534750
Figure 0005534750

本発明における表7に記載の高分子化合物の粘度平均分子量(Mv)および重量平均分子量(Mw)は、以下に記載の方法に従い測定した。   The viscosity average molecular weight (Mv) and weight average molecular weight (Mw) of the polymer compounds described in Table 7 in the present invention were measured according to the methods described below.

[粘度平均分子量(Mv)の測定方法]
まず、測定の対象となる高分子化合物0.5gをメチレンクロライド100mlに溶解し、改良Ubbelohde型粘度計を用いて、25℃における比粘度を測定した。次に、この比粘度から極限粘度を求め、Mark−Houwinkの粘度式により、測定の対象となる高分子化合物の粘度平均分子量(Mv)を算出した。粘度平均分子量(Mv)は、GPC(ゲルパーミエーションクロマトグラフィー)により測定されるポリスチレン換算値とした。
[Measurement Method of Viscosity Average Molecular Weight (Mv)]
First, 0.5 g of the polymer compound to be measured was dissolved in 100 ml of methylene chloride, and the specific viscosity at 25 ° C. was measured using a modified Ubbelohde viscometer. Next, the intrinsic viscosity was determined from this specific viscosity, and the viscosity average molecular weight (Mv) of the polymer compound to be measured was calculated according to the Mark-Houwink viscosity equation. The viscosity average molecular weight (Mv) was a polystyrene conversion value measured by GPC (gel permeation chromatography).

[重量平均分子量(Mw)の測定方法]
測定の対象となる高分子化合物をテトラヒドロフラン中に入れ、数時間放置した後、振盪しながら測定の対象となる高分子化合物とテトラヒドロフランとをよく混合し(測定の対象となる高分子化合物の合一体がなくなるまで混合し)、さらに12時間以上静置した。その後、東ソー(株)製のサンプル処理フィルター(マイショリディスクH−25−5)を通過させたものをGPC(ゲルパーミエーションクロマトグラフィー)用試料とした。
[Measurement method of weight average molecular weight (Mw)]
The polymer compound to be measured is placed in tetrahydrofuran and allowed to stand for several hours, and then the polymer compound to be measured and tetrahydrofuran are mixed well while shaking (the combined integration of the polymer compound to be measured). The mixture was further mixed for 12 hours or more. Then, what passed the sample processing filter (Mishori disk H-25-5) by Tosoh Corporation was made into the sample for GPC (gel permeation chromatography).

次に、40℃のヒートチャンバー中でカラムを安定化させ、この温度におけるカラムに、溶媒としてテトラヒドロフランを毎分1mlの流速で流し、GPC用試料を10μl注入して、測定の対象となる高分子化合物の重量平均分子量を測定した。カラムには、東ソー(株)製のカラム(TSKgel SuperHM−M)を用いた。   Next, the column is stabilized in a heat chamber at 40 ° C., tetrahydrofuran as a solvent is flowed to the column at this temperature at a flow rate of 1 ml / min, 10 μl of a GPC sample is injected, and the polymer to be measured The weight average molecular weight of the compound was measured. A column (TSKgel SuperHM-M) manufactured by Tosoh Corporation was used as the column.

測定の対象となる高分子化合物の重量平均分子量の測定にあたっては、測定の対象となる高分子化合物が有する分子量分布を、数種の単分散ポリスチレン標準試料により作成された検量線の対数値とカウント数との関係から算出した。検量線を作成するための標準ポリスチレン試料には、アルドリッチ社製の単分散ポリスチレンの分子量が、3,500、12,000、40,000、75,000、98,000、120,000、240,000、500,000、800,000、1,800,000のものを10点用いた。検出器にはRI(屈折率)検出器を用いた。   In measuring the weight average molecular weight of the polymer compound to be measured, the molecular weight distribution of the polymer compound to be measured is counted with the logarithmic value of the calibration curve created by several monodisperse polystyrene standard samples. Calculated from the relationship with the number. The standard polystyrene sample for preparing a calibration curve has a molecular weight of 3,500, 12,000, 40,000, 75,000, 98,000, 120,000, 240, Ten points of 000, 500,000, 800,000 and 1,800,000 were used. An RI (refractive index) detector was used as the detector.

[実施例1]
溶剤Aとしてのジメチルスルホキシド3部、溶剤Bとしてのモノクロロベンゼン27部、溶剤Cとしてのジメトキシメタン30部、および、高分子化合物としてのポリカーボネート樹脂(商品名:ユーピロンZ200、三菱ガス化学(株)製)12部を混合溶解し、溶液を調製した。この溶液において、溶液に含有されるすべての溶剤の合計質量に対する各溶剤の質量比率(溶剤比率)は、溶剤Aが5%、溶剤Bが45%、溶剤Cが50%である。次に、常温常湿環境(23℃、50%RH)において、この溶液をガラス板上に塗布した。その後、常温常湿環境で3分間静置することにより、溶剤を蒸発させるとともに、塗膜表面に凹形状部を形成した。さらに、このガラス板を1時間150℃で乾燥(加熱乾燥)させて、ガラス板上にポリカーボネート樹脂膜を形成した。この樹脂膜をレーザー顕微鏡(VK−9500:(株)キーエンス製)で観察したところ、表面に多数の孔を規則的に有する形状が形成されていた。なお、孔径は約10μm、深さは約8μmであった。
[Example 1]
3 parts of dimethyl sulfoxide as solvent A, 27 parts of monochlorobenzene as solvent B, 30 parts of dimethoxymethane as solvent C, and polycarbonate resin as a polymer compound (trade name: Iupilon Z200, manufactured by Mitsubishi Gas Chemical Co., Ltd.) ) 12 parts were mixed and dissolved to prepare a solution. In this solution, the mass ratio (solvent ratio) of each solvent to the total mass of all the solvents contained in the solution is 5% for solvent A, 45% for solvent B, and 50% for solvent C. Next, this solution was apply | coated on the glass plate in normal temperature normal humidity environment (23 degreeC, 50% RH). Then, by leaving still for 3 minutes in a normal temperature normal humidity environment, while evaporating a solvent, the concave-shaped part was formed in the coating-film surface. Further, this glass plate was dried (heat-dried) at 150 ° C. for 1 hour to form a polycarbonate resin film on the glass plate. When this resin film was observed with a laser microscope (VK-9500: manufactured by Keyence Corporation), a shape having regularly a large number of holes on the surface was formed. The hole diameter was about 10 μm and the depth was about 8 μm.

[実施例2〜25]
実施例1において、溶剤A、溶剤B、溶剤Cおよび高分子化合物の種類や量(配合量)を表9〜11のように変更した以外は、実施例1と同様に樹脂膜を製造し、表面の観察を行った。その結果を表14に示す。なお、実施例で使用したポリエチレングリコールは、沸点250℃のポリエチレングリコール(ポリエチレングリコール200:キシダ化学(株))を使用した。
[Examples 2 to 25]
In Example 1, except that the types and amounts (blending amounts) of the solvent A, the solvent B, the solvent C and the polymer compound were changed as shown in Tables 9 to 11, a resin film was produced in the same manner as in Example 1, The surface was observed. The results are shown in Table 14. The polyethylene glycol used in the examples was polyethylene glycol having a boiling point of 250 ° C. (polyethylene glycol 200: Kishida Chemical Co., Ltd.).

[実施例26]
本発明の応用例として、電子写真感光体の表面層への適用例(本発明に係る「表面に凹形状部を有する固形物」を電子写真感光体の表面層とした例)を示す。
[Example 26]
As an application example of the present invention, an application example to the surface layer of the electrophotographic photoreceptor (an example in which the “solid matter having a concave portion on the surface” according to the present invention is used as the surface layer of the electrophotographic photoreceptor) is shown.

23℃、60%の環境下で熱間押し出しすることにより得られた、長さ260.5mm、直径30mmのアルミニウムシリンダー(JIS−A3003、アルミニウム合金のED管、昭和アルミニウム(株)製)を支持体(導電性円筒状支持体)とした。   Supports an aluminum cylinder (JIS-A3003, aluminum alloy ED tube, Showa Aluminum Co., Ltd.) with a length of 260.5 mm and a diameter of 30 mm obtained by hot extrusion in an environment of 23 ° C. and 60%. The body (conductive cylindrical support) was used.

導電性粒子としての酸素欠損型SnOを被覆したTiO粒子(粉体抵抗率80Ω・cm、SnOの被覆率(質量比率)は50%)6.6部、結着樹脂としてのフェノール樹脂(商品名:プライオーフェンJ−325、大日本インキ化学工業(株)製、樹脂固形分60%)5.5部、および、溶剤としてのメトキシプロパノール5.9部を、直径1mmのガラスビーズを用いたサンドミルで3時間分散処理して、分散液を調製した。得られた分散液に、表面粗し付与材としてのシリコーン樹脂粒子(商品名:トスパール120、GE東芝シリコーン(株)製、平均粒径2μm)0.5部、および、レベリング剤としてのシリコーンオイル(商品名:SH28PA、東レ・ダウコーニング(株)製)0.001部を添加して攪拌し、導電層用塗布液を調製した。この導電層用塗布液を、支持体に浸漬塗布し、30分間140℃で乾燥させ、熱硬化させることによって、支持体上端から130mmの位置の平均膜厚が15μmの導電層を形成した。 TiO 2 particles coated with oxygen-deficient SnO 2 as conductive particles (powder resistivity 80 Ω · cm, SnO 2 coverage (mass ratio) 50%) 6.6 parts, phenol resin as binder resin (Product name: Priorofen J-325, manufactured by Dainippon Ink & Chemicals, Inc., resin solid content 60%) 5.5 parts, and 5.9 parts of methoxypropanol as a solvent, 1 mm diameter glass beads. The dispersion was prepared by dispersing for 3 hours with the used sand mill. In the obtained dispersion, 0.5 parts of silicone resin particles (trade name: Tospearl 120, manufactured by GE Toshiba Silicone Co., Ltd., average particle diameter 2 μm) as a surface roughening agent, and silicone oil as a leveling agent (Product name: SH28PA, manufactured by Toray Dow Corning Co., Ltd.) 0.001 part was added and stirred to prepare a coating solution for a conductive layer. The conductive layer coating solution was dip-coated on a support, dried at 140 ° C. for 30 minutes, and thermally cured to form a conductive layer having an average film thickness of 15 μm at a position of 130 mm from the upper end of the support.

次に、N−メトキシメチル化ナイロン樹脂(商品名:トレジンEF−30T、帝国化学産業(株)製)4部および共重合ナイロン樹脂(商品名:アミランCM8000、東レ(株)製)2部を、メタノール65部/n−ブタノール30部の混合溶剤に溶解させることによって、中間層用塗布液を調製した。この中間層用塗布液を、導電層上に浸漬塗布し、10分間100℃で乾燥させることによって、支持体上端から130mm位置の平均膜厚が0.5μmの中間層を形成した。   Next, 4 parts of N-methoxymethylated nylon resin (trade name: Toresin EF-30T, manufactured by Teikoku Chemical Industry Co., Ltd.) and 2 parts of copolymer nylon resin (trade name: Amilan CM8000, manufactured by Toray Industries, Inc.) An intermediate layer coating solution was prepared by dissolving in a mixed solvent of methanol 65 parts / n-butanol 30 parts. This intermediate layer coating solution was dip-coated on the conductive layer and dried at 100 ° C. for 10 minutes to form an intermediate layer having an average film thickness of 0.5 μm at a position of 130 mm from the upper end of the support.

次に、CuKα特性X線回折におけるブラッグ角(2θ±0.2°)の7.5°、9.9°、16.3°、18.6°、25.1°および28.3°に強いピークを有する結晶形のヒドロキシガリウムフタロシアニン結晶(電荷発生物質)10部、ポリビニルブチラール(商品名:エスレックBX−1、積水化学工業(株)製)5部、および、シクロヘキサノン250部を、直径1mmのガラスビーズを用いたサンドミル装置で1時間分散処理して、分散液を調製した。得られた分散液に、酢酸エチル250部を加えることによって、電荷発生層用塗布液を調製した。この電荷発生層用塗布液を、中間層上に浸漬塗布し、10分間100℃で乾燥させることによって、支持体上端から130mm位置の平均膜厚が0.16μmの電荷発生層を形成した。   Next, the Bragg angles (2θ ± 0.2 °) in CuKα characteristic X-ray diffraction are 7.5 °, 9.9 °, 16.3 °, 18.6 °, 25.1 ° and 28.3 °. 10 parts of a crystalline hydroxygallium phthalocyanine crystal (charge generating material) having a strong peak, 5 parts of polyvinyl butyral (trade name: ESREC BX-1, manufactured by Sekisui Chemical Co., Ltd.), and 250 parts of cyclohexanone are 1 mm in diameter. A dispersion was prepared by dispersing for 1 hour in a sand mill using glass beads. A charge generating layer coating solution was prepared by adding 250 parts of ethyl acetate to the obtained dispersion. This charge generation layer coating solution was dip-coated on the intermediate layer and dried at 100 ° C. for 10 minutes to form a charge generation layer having an average film thickness of 0.16 μm at a position of 130 mm from the upper end of the support.

次に、溶剤Aとしてのジメチルスルホキシド2.94部、溶剤Bとしてのモノクロロベンゼン14.7部、溶剤Cとしてのジメトキシメタン41.16部、高分子化合物としてのポリカーボネート樹脂(商品名:ユーピロンZ200、三菱ガス化学(株)製)8.5部、表8に記載の電荷輸送物質(a)4.8部、および、電荷輸送物質(b)0.5部を混合溶解させることによって、表面層(電荷輸送層)用塗布液を調製した。この表面層用塗布液における、溶剤A、溶剤Bおよび溶剤Cの、溶液に含有されるすべての溶剤の合計質量に対する質量比率は、溶剤Aが5%、溶剤Bが25%、溶剤Cが70%である。常温常湿環境(23℃、50%RH)において、この表面層用塗布液を、電荷発生層上に浸漬塗布した。その後、常温常湿環境で3分間静置することにより、塗膜表面に凹形状部を形成した。さらに、あらかじめ装置内が120℃に加熱されていた送風乾燥機内に入れ、1時間乾燥(加熱乾燥)させることによって、支持体上端から130mm位置の平均膜厚が20μmの電荷輸送層を形成した。このようにして、表面に凹形状部を有する表面層を有する電子写真感光体を製造した。このようにして製造した電子写真感光体の表面を、レーザー顕微鏡(VK−9500:(株)キーエンス製)で観察したところ、表面に多数の孔を有する形状が形成されていた。なお、孔径は約7μm、深さは約6μmであった。これらの結果を表14に示す。   Next, 2.94 parts of dimethyl sulfoxide as solvent A, 14.7 parts of monochlorobenzene as solvent B, 41.16 parts of dimethoxymethane as solvent C, polycarbonate resin as a polymer compound (trade name: Iupilon Z200, The surface layer was prepared by mixing and dissolving 8.5 parts of Mitsubishi Gas Chemical Co., Ltd.), 4.8 parts of the charge transport material (a) described in Table 8, and 0.5 part of the charge transport material (b). A coating solution for (charge transport layer) was prepared. In the coating solution for the surface layer, the mass ratio of the solvent A, the solvent B, and the solvent C to the total mass of all the solvents contained in the solution is 5% for the solvent A, 25% for the solvent B, and 70% for the solvent C. %. In a room temperature and normal humidity environment (23 ° C., 50% RH), the surface layer coating solution was dip coated on the charge generation layer. Then, the concave shape part was formed in the coating-film surface by leaving still for 3 minutes in normal temperature normal humidity environment. Furthermore, the charge transport layer having an average film thickness of 20 μm at a position of 130 mm from the upper end of the support was formed by placing the apparatus in a blower dryer that had been heated to 120 ° C. in advance and drying (heat drying) for 1 hour. Thus, an electrophotographic photosensitive member having a surface layer having a concave portion on the surface was produced. When the surface of the electrophotographic photoreceptor thus produced was observed with a laser microscope (VK-9500: manufactured by Keyence Corporation), a shape having a large number of holes on the surface was formed. The hole diameter was about 7 μm and the depth was about 6 μm. These results are shown in Table 14.

[実施例27〜30]
実施例26と同様に電荷発生層までを形成した。次に、実施例26の表面層用塗布液において、溶剤A、溶剤B、溶剤Cおよび高分子化合物の種類や量(配合量)を表12のように変更した以外は、実施例26と同様に電子写真感光体を製造し、表面の観察を行った。その結果を表14に示す。
[Examples 27 to 30]
Similar to Example 26, the layers up to the charge generation layer were formed. Next, in the surface layer coating solution of Example 26, the same manner as in Example 26 except that the types and amounts (blending amounts) of the solvent A, the solvent B, the solvent C, and the polymer compound were changed as shown in Table 12. An electrophotographic photosensitive member was manufactured and the surface was observed. The results are shown in Table 14.

[比較例1〜8]
実施例1において、溶剤A、溶剤B、溶剤Cおよび高分子化合物の種類や量(配合量)を表13のように変更した以外は、実施例1と同様に樹脂膜を製造し、表面の観察を行った。その結果を表15に示す。
[Comparative Examples 1-8]
In Example 1, except that the types and amounts (blending amounts) of the solvent A, the solvent B, the solvent C and the polymer compound were changed as shown in Table 13, a resin film was produced in the same manner as in Example 1, and the surface Observations were made. The results are shown in Table 15.

[比較例9および10]
実施例26と同様に電荷発生層までを形成した。次に、実施例26の表面層用塗布液において、溶剤A、溶剤B、溶剤Cおよび高分子化合物の種類や量(配合量)を表13のように変更した以外は、実施例26と同様に電子写真感光体を製造し、表面の観察を行った。その結果を表15に示す。
[Comparative Examples 9 and 10]
Similar to Example 26, the layers up to the charge generation layer were formed. Next, in the coating solution for surface layer of Example 26, the same manner as in Example 26 except that the types and amounts (blending amounts) of the solvent A, the solvent B, the solvent C and the polymer compound were changed as shown in Table 13. An electrophotographic photosensitive member was manufactured and the surface was observed. The results are shown in Table 15.

Figure 0005534750
Figure 0005534750

Figure 0005534750
Figure 0005534750

Figure 0005534750
Figure 0005534750

Figure 0005534750
Figure 0005534750

Figure 0005534750
Figure 0005534750

Figure 0005534750
Figure 0005534750

Figure 0005534750
Figure 0005534750

いずれの実施例においても、本発明の溶液を塗布後、凹形状部の形成時間として静置時間を3分に統一しているが、凹形状部が形成されている。しかしながら、比較例1、比較例3、比較例9および比較例10においては、同様の条件では形状を形成することができないか、形状の形成が不十分である。すなわち、本発明の製造方法は、生産効率に優れることは明確である。   In any example, after applying the solution of the present invention, the standing time is unified as 3 minutes as the formation time of the concave portion, but the concave portion is formed. However, in Comparative Example 1, Comparative Example 3, Comparative Example 9, and Comparative Example 10, the shape cannot be formed under the same conditions, or the formation of the shape is insufficient. That is, it is clear that the production method of the present invention is excellent in production efficiency.

また、実施例1〜6と比較例2、および、実施例7〜12と比較例4より、凹形状部の孔径および深さの制御性が向上していることは明らかである。   From Examples 1 to 6 and Comparative Example 2, and Examples 7 to 12 and Comparative Example 4, it is clear that the controllability of the hole diameter and depth of the concave portion is improved.

さらに、実施例22〜25と比較例5〜8より、高分子化合物の選択性を拡大することが可能である。   Furthermore, it is possible to expand the selectivity of the polymer compound from Examples 22 to 25 and Comparative Examples 5 to 8.

1 固形物の表面
2 固形物の表面に形成された凹形状部
DESCRIPTION OF SYMBOLS 1 Surface of solid substance 2 Concave-shaped part formed in the surface of solid substance

Claims (11)

表面に凹形状部を有する固形物の製造方法であって、
疎水性溶剤を溶剤Bとし、該溶剤Bの沸点以上の沸点を有する親水性溶剤を溶剤Aとし、該溶剤Bの沸点未満の沸点を有する疎水性ではない溶剤を溶剤Cとしたとき、該溶剤A、該溶剤B、該溶剤Cおよび高分子化合物を含有し、かつ該溶剤A、該溶剤Bおよび該溶剤Cの含有量が下記(1)〜(5)の条件を満たす溶液を使用し、
該溶液に含有される溶剤蒸発させ、該溶液を固化させながら、結露によって該溶液の表面に凹形状部を形成ることを特徴とする固形物の製造方法:
(1)該溶剤Aの含有量が、該溶液に含有されるすべての溶剤の合計質量に対して0.1質量%以上かつ25.0質量%未満であり、
(2)該溶剤Bの含有量が、該溶剤Aの含有量より大きく、
(3)該溶剤Bの含有量が、該溶液に含有されるすべての溶剤の合計質量に対して5.0質量%以上かつ49.9質量%以下であり、
(4)該溶剤Cの含有量が、該溶液に含有されるすべての溶剤の合計質量に対して50.0質量%以上かつ94.9質量%以下であり、
(5)該溶剤A、該溶剤Bおよび該溶剤Cの合計含有量が、該溶液に含有されるすべての溶剤の合計質量に対して90.0質量%以上である。
A method for producing a solid having a concave portion on the surface,
When the hydrophobic solvent is solvent B, the hydrophilic solvent having a boiling point higher than the boiling point of the solvent B is solvent A, and the non-hydrophobic solvent having a boiling point less than the boiling point of the solvent B is solvent C, the solvent A solution containing A, the solvent B, the solvent C, and a polymer compound, and the contents of the solvent A, the solvent B, and the solvent C satisfy the following conditions (1) to (5):
Evaporating the solvent contained in the solution, while solidifying the solution, a manufacturing method of a solid which is characterized that you forming a concave portion on the surface of the solution by condensation:
(1) The content of the solvent A is 0.1% by mass or more and less than 25.0% by mass with respect to the total mass of all the solvents contained in the solution,
(2) The content of the solvent B is larger than the content of the solvent A,
(3) The content of the solvent B is 5.0% by mass or more and 49.9% by mass or less with respect to the total mass of all the solvents contained in the solution,
(4) The content of the solvent C is 50.0 mass% or more and 94.9 mass% or less with respect to the total mass of all the solvents contained in the solution,
(5) The total content of the solvent A, the solvent B and the solvent C is 90.0% by mass or more based on the total mass of all the solvents contained in the solution.
前記溶液に含有される溶剤を蒸発させ、該溶液を固化させながら、結露によって前記溶液に含有される高分子化合物の表面に凹形状部を形成する請求項1に記載の固形物の製造方法。The method for producing a solid material according to claim 1, wherein a concave portion is formed on the surface of the polymer compound contained in the solution by condensation while the solvent contained in the solution is evaporated and the solution is solidified. 前記溶液の塗膜を形成し、該塗膜に含有される溶剤を蒸発させ、該塗膜を固化させながら、該塗膜の表面に凹形状部を形成する請求項1または2に記載の固形物の製造方法。The solid according to claim 1 or 2, wherein a coating film of the solution is formed, a solvent contained in the coating film is evaporated, and the coating film is solidified to form a concave portion on the surface of the coating film. Manufacturing method. 前記溶剤Bの沸点が100℃以上であり、前記溶剤Cの沸点が70℃以下である請求項1〜3のいずれか1項に記載の固形物の製造方法。 The manufacturing method of the solid substance of any one of Claims 1-3 whose boiling point of the said solvent B is 100 degreeC or more, and whose boiling point of the said solvent C is 70 degrees C or less. 前記溶剤Cの沸点が45℃以下である請求項1〜4のいずれか1項に記載の固形物の製造方法。 The method for producing a solid material according to any one of claims 1 to 4, wherein the solvent C has a boiling point of 45 ° C or lower. 前記溶剤Bが、トルエン、o−キシレン、m−キシレン、p−キシレン、1,3,5−トリメチルベンゼンおよびモノクロロベンゼンからなる群より選択される少なくとも1種の溶剤である請求項1〜のいずれか1項に記載の固形物の製造方法。 It said solvent B is, toluene, o- xylene, m- xylene, p- xylene, according to claim 1 to 5 is at least one solvent selected from the group consisting of 1,3,5-trimethylbenzene and monochlorobenzene The manufacturing method of the solid substance of any one. 前記溶剤Aが、ジメチルスルホキシド、ポリエチレングリコール、トリエチレングリコール、ジプロピレングリコールおよびテトラヒドロフルフリルアルコールからなる群より選択される少なくとも1種の溶剤である請求項1〜のいずれか1項に記載の固形物の製造方法。 Said solvent A is dimethyl sulfoxide, polyethylene glycol, triethylene glycol, according to any one of claims 1 to 6 which is at least one solvent selected from the group consisting of dipropylene glycol and tetrahydrofurfuryl alcohol A method for producing a solid material. 前記高分子化合物が、ポリカーボネート樹脂および芳香族ポリエステル樹脂の少なくとも一方である請求項1〜のいずれか1項に記載の固形物の製造方法。 Method for producing the polymer compound, the solid product according to any one of claims 1 to 7, a polycarbonate resin and the aromatic polyester resin is at least one. 前記溶剤Cがジメトキシメタンである請求項1〜のいずれか1項に記載の固形物の製造方法。 The said solvent C is dimethoxymethane, The manufacturing method of the solid substance of any one of Claims 1-8 . 前記凹形状部が孔径10μm以下かつ深さ8μm以下の凹形状部である請求項1〜のいずれか1項に記載の固形物の製造方法。 The method for producing a solid material according to any one of claims 1 to 9 , wherein the concave portion is a concave portion having a pore diameter of 10 µm or less and a depth of 8 µm or less. 請求項1〜10のいずれか1項に記載の製造方法によって表面層を形成する工程を有する電子写真感光体の製造方法。 Process for producing an electrophotographic photoreceptor comprising the step of forming a surface layer by the manufacturing method according to any one of claims 1-10.
JP2009198411A 2008-09-19 2009-08-28 Method for producing solid material having concave portion on surface and method for producing electrophotographic photosensitive member Active JP5534750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009198411A JP5534750B2 (en) 2008-09-19 2009-08-28 Method for producing solid material having concave portion on surface and method for producing electrophotographic photosensitive member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008241017 2008-09-19
JP2008241017 2008-09-19
JP2009198411A JP5534750B2 (en) 2008-09-19 2009-08-28 Method for producing solid material having concave portion on surface and method for producing electrophotographic photosensitive member

Publications (3)

Publication Number Publication Date
JP2010094978A JP2010094978A (en) 2010-04-30
JP2010094978A5 JP2010094978A5 (en) 2012-10-11
JP5534750B2 true JP5534750B2 (en) 2014-07-02

Family

ID=41381585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009198411A Active JP5534750B2 (en) 2008-09-19 2009-08-28 Method for producing solid material having concave portion on surface and method for producing electrophotographic photosensitive member

Country Status (5)

Country Link
US (1) US7972551B2 (en)
EP (1) EP2165818B1 (en)
JP (1) JP5534750B2 (en)
KR (1) KR101273691B1 (en)
CN (1) CN101709114B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8342638B2 (en) * 2009-11-30 2013-01-01 Hewlett-Packard Development Company, L.P. Servicing article
JP5172031B2 (en) * 2011-07-29 2013-03-27 キヤノン株式会社 Method for manufacturing electrophotographic photosensitive member, electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259453A (en) 1985-09-09 1987-03-16 Fujitsu Ltd Method for detecting fault of call signal output device
JP4431233B2 (en) 1999-11-30 2010-03-10 テルモ株式会社 Honeycomb structure and method for preparing the same, and film and cell culture substrate using the structure
JP2002335949A (en) 2001-05-22 2002-11-26 Inst Of Physical & Chemical Res Cell three-dimensional tissue culture method using honeycomb structure film
KR101174391B1 (en) 2004-08-27 2012-08-16 국립대학법인 홋가이도 다이가쿠 Process for production of submicrohoneycomb structures
EP1885779B1 (en) 2005-05-27 2010-10-27 Fujifilm Corporation Method for producing self-assembled construction
JP4018741B1 (en) 2007-01-26 2007-12-05 キヤノン株式会社 Method for producing a solid having a concave shape on the surface
JP4041921B1 (en) 2007-01-26 2008-02-06 キヤノン株式会社 Electrophotographic photoreceptor manufacturing method
JP2008241017A (en) 2007-03-29 2008-10-09 Honda Motor Co Ltd Hydraulic shock absorber

Also Published As

Publication number Publication date
EP2165818A1 (en) 2010-03-24
CN101709114A (en) 2010-05-19
JP2010094978A (en) 2010-04-30
KR20100033342A (en) 2010-03-29
US20100075246A1 (en) 2010-03-25
EP2165818B1 (en) 2013-11-06
CN101709114B (en) 2012-05-30
KR101273691B1 (en) 2013-06-12
US7972551B2 (en) 2011-07-05

Similar Documents

Publication Publication Date Title
JP4018741B1 (en) Method for producing a solid having a concave shape on the surface
EP2109006B1 (en) Process for manufacturing electrophotographic photoreceptor
WO2009011072A1 (en) Process for producing electrophotographic photoreceptor
Sotiriou et al. Flexible, multifunctional, magnetically actuated nanocomposite films
Tian et al. Assembly of Nanotubes of Poly (4‐vinylpyridine) and Poly (acrylic acid) through Hydrogen Bonding
JP5534750B2 (en) Method for producing solid material having concave portion on surface and method for producing electrophotographic photosensitive member
Guselnikova et al. Fast and reproducible wettability switching on functionalized PVDF/PMMA surface controlled by external electric field
Nam et al. Antifogging Surface Facilitated by Nanoscale Coatings with Controllable Hydrophobicity and Cross‐Linking Density
Slepička et al. Honeycomb‐like pattern formation on perfluoroethylenepropylene enhanced by plasma treatment
KR20070051940A (en) Object comprising a non-insulative coating
Hou et al. Conformal nanocoatings with uniform and controllable thickness on microstructured surfaces: a general assembly route
Ding et al. Hydrophobicity of polyaniline microspheres deposited on a glass substrate
Manoli et al. Polymer‐BaTiO3 composites: Dielectric constant and vapor sensing properties in chemocapacitor applications
Wang et al. Self‐Assembly of Adjustable Micropatterned Graphene Oxide and Reduced Graphene Oxide on Porous Polymeric Surfaces
Wu et al. Fabrication of Robust Hydrophobic and Super‐Hydrophobic Polymer Films with Onefold or Dual Inverse Opal Structures
Kim et al. Porous Silica Particles as Oil Absorbents: Comparison of Meso‐, Macro‐, and Meso/Macro‐Structures
Huang et al. Preparation of urushiol‐titanium chelate polymer/multiwall carbon nanotubes composite honeycomb films with chemical resistance by breath figures
Goossens et al. Interfacial Water Drives Improved Proton Transport in Siliceous Nanocomposite Nafion Thin Films
JP2002275654A (en) Production method for water repelling-oil repelling surface and structure having the same surface
Gunji et al. Preparation and characterization of mesoporous silica thin films from polyethoxysiloxanes
Patachia et al. Imprinted poly (vinyl alcohol) as a promising tool for xanthine derivatives separation
JP5127339B2 (en) Method for producing electrophotographic photosensitive member
Ro et al. Cubic silsesquioxanes as tunable high‐performance coating materials
Chen et al. In-situ formation of an ion-doped porous structure for high sensitive humidity sensing utilizing low-cost UV sensitive glue
TW201207868A (en) Method for making a conductive polymer composite material

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140422

R151 Written notification of patent or utility model registration

Ref document number: 5534750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151